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Abstract
An invariant-point theorem and its equivalent formulation are established in which
distance functions are replaced by minimal time functions. It is worth emphasizing
here that the class of minimal time functions can be interpreted as a general type
of directional distance functions recently used to develop new applications in opti-
mization theory. The obtained results are applied in two directions. First, we derive
sufficient conditions for the existence of solutions to optimization-related problems
without convexity. As an easy corollary, we get a directional Ekeland variational prin-
ciple. Second, we propose a new type of global error bounds for inequalities which
allows us to simultaneously study nonconvex and convex functions. Several examples
and comparison remarks are included as well to explain advantages of our results with
existing ones in the literature.

Keywords Minimal time functions · Invariant points · Existence of solutions ·
Generalized global error bounds

Mathematics Subject Classification 49J53 · 90C26 · 49J27 · 58E30

1 Introduction

It is well known that the important tool for proving the celebrated theorem of Bishop
and Phelps [12] on the density of the set of support points of a bounded, closed and
convex set in a Banach space is Lemma 1 in [12], which can be considered as an
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ordering principle. Since its appearance, this lemma has been developed by many
mathematicians with wide applications in diverse fields (see, e.g., [1, 20, 23, 28, 43,
46] and the references therein). One of the crucial contributions is the invariant-point
theorem established by Dancs et al. [17] under suitable assumptions on the usual
distance function. A number of generalizations of this theorem and its equivalent
formulations have been obtained by many authors, see, e.g., [9, 25, 31, 33, 34, 44].
Also, the interested reader is referred to [4, 6, 7] for other necessary and sufficient
conditions for the existence of invariant points and their analogous in general spaces.

On the other hand, the so-called minimal time functions have been intensively
studied in the literature due to their important applications in variational analysis,
optimization, control theory, etc. For details, the reader is referred to [16, 27, 29, 35,
37, 38], among many others. This class of minimal time functions is similar to the
class of scalarization functions and enjoys striking and useful properties. Recently,
researchers have obtained many interesting results by using minimal time functions
as directional distance functions. We mention here several significant developments
and applications. In 2013, Nam and Zǎlinescu [38] provided some generalized differ-
entiation properties of this class of functions and applied the obtained results to study
location problems. Then, Durea et al. [18] improved and generalized the work of Nam
and Zǎlinescu. Particularly, Durea et al. [19] introduced the three directional regular-
ity concepts: directional metric regularity, directional linear openness and directional
Aubin continuity. To establish necessary and sufficient conditions for these new regu-
larity concepts, they devised a generalized form of the Ekeland variational principle in
which the usual distance function is replaced by a directional minimal time function.
Besides, it should bementioned that there are several significant versions of directional
regularity notions, which were introduced and investigated in the excellent papers [3,
5, 24, 41]. However, the approach through the directional minimal time function is
more general (see [19,Remark 2.3]).

In this paper, following the aforementioned research direction initiated by Durea
et al. [19] and being inspired by [11, 14, 15, 17, 18, 28, 31, 34, 38, 42], we choose
the general class of minimal time functions as underlying functions for our consider-
ation. An important advantage of this approach is that the obtained results contain the
corresponding directional versions, as will be shown by several examples in the next
sections.

The layout of the paper is as follows. Section 2 is devoted to some notations,
concepts and preliminary facts for our later use. In Sect. 3, we present two sufficient
conditions for the existence important points in nonlinear analysis and prove their
equivalence. We also show that one of these sufficient conditions characterizes the
completeness of a normed space. Section 4 contains applications of results in the
previous section developed in two directions. In the first subsection, we investigate
the solution existence of approximated equilibrium and equilibrium problems without
any convexity requirement. As a direct consequence, we obtain a directional Ekeland
variational principle. For the second subsection, we begin by introducing and studying
a new type of global error bounds for an inequality defined by a nonconvex function.
Then, we specialize this type of global error bounds to the case of a convex continuous
function. The final short section includes conclusions.
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2 Notations and Preliminaries

Throughout this paper, we use the convention that inf ∅ = +∞ and sup∅ = −∞.
As usual, N and R denote the set of the natural numbers and that of the real numbers,
respectively. Let X be a normed space, whose topological dual X∗ is endowed with
the weak∗ topology and let A ⊂ X . The interior and closure hull of the set A are
denoted by int A and A, respectively. Recall that the polar A◦ of A is the set A◦ :=
{x∗ ∈ X∗ | 〈x∗, x〉 ≤ 1,∀x ∈ A}. Put

‖A‖ := sup{‖x‖ | x ∈ A} and ‖A◦‖ := sup{‖x∗‖ | x∗ ∈ A◦}.

The support function σA : X∗ → R ∪ {+∞} of A is defined by

σA(x∗) = sup
x∈A

〈x∗, x〉 for x∗ ∈ X∗.

Let g : X → R ∪ {+∞} be a convex function. The domain of g is the set where it
is finite and is denoted by dom g := {x ∈ X | g(x) < +∞}. Given x̄ ∈ dom g, the
subdifferential of g at x̄ in the sense of convex analysis is

∂g(x̄) := {x∗ ∈ X∗ | 〈x∗, x − x̄〉 ≤ g(x) − g(x̄) for all x ∈ X}.

We now introduce a broad class of minimal time functions corresponding to control
problems with constant dynamics and target sets in normed vector spaces defined as
follows:

Definition 2.1 Let F be a nonempty subset of X and let � : X ⇒ X be a set-valued
map. The minimal time function is given by

TF,�(x, y) := inf{t ≥ 0 | (x + t F) ∩ �(y) �= ∅} for (x, y) ∈ X × X . (1)

We shall work not with general functions TF,�. For ∅ �= K ⊂ X , we set:

1) TF (x, K ) := TF,�(x, y) when �(y) ≡ K ;
2) TF (x, y) := TF,�(x, y) when � is the identity map.

In this paper, we only consider two cases above which are sufficient for our purposes.

Remark 2.1 (i) If one of the sets F and K is compact, while the other one is closed,
and TF (x, K ) < +∞, then (see, e.g., [18,Proposition 2.3 (i)]) the infimum in
(1) is attained.

(ii) The domain of TF (·, K ) is the set where it is finite and is denoted by

dom TF (·, K ) := {x ∈ X | TF (x, K ) < +∞}.

Then, we have (see, e.g., [38,Proposition 2.1])

dom TF (·, K ) = K − cone F,

where cone F := ⋃
λ≥0 λF , the usual conical hull.
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(iii) By taking some particular cases of F and �, the minimal time function (1) may
be: the indicator function, the distance function, or the Minkowski function.
The readers are referred to [16, 27, 29, 35, 37] and the references therein for the
study of the minimal time function.

(iv) If F is a spherical sectorwith the apex at the origin and�(y) ≡ K , then this class
of functions can be viewed as a general type of directional distance functions
(see [14, 15, 18, 19, 38] and below examples).

The following lemma lists some properties of a special case of the minimal time
function (1) which are well suited to our aim in the next sections.

Lemma 2.1 Let x̄ be an arbitrary element of X, let F ⊂ X be a nonempty, bounded,
closed, and convex set and let � be the identity map. Consider the minimal time
function TF : X × X → R ∪ {+∞}. Then,
(i) the domain of T (x̄, ·) is

domTF (x̄, ·) := {y ∈ X | TF (x̄, y) < +∞} = x̄ + coneF . (2)

If x ∈ domTF (x̄, ·), then

domTF (x, ·) ⊂ domTF (x̄, ·). (3)

(ii) TF (x̄, ·) is convex and lower semicontinuous.
(iii) ∂TF (x̄, ·)(x̄) = C∗, where C∗ := {u∗ ∈ X∗ | σF (u∗) ≤ 1}.
(iv) TF (x, z) ≤ TF (x, y) + TF (y, z) for all x, y, z ∈ X.

Proof Theproofs are similar to the proofs of results in [16, 18, 19, 35, 37, 38].However,
we prefer to give all the details, for the sake of readability.

(i) If y ∈ dom TF (x̄, ·), one has TF (x̄, y) < +∞. Hence, there exists t ≥ 0 and
u ∈ F such that y = x̄ + tu ∈ x̄ + cone F . Since the reverse inclusion is
trivially true, equality (2) holds.
For y ∈ dom TF (x, ·), there exist two sequences (yn) ⊂ dom TF (x, ·) and
(un) ⊂ F such that

yn = x + TF (x, yn)un → y as n → +∞. (4)

On the other hand, we also have two sequences (zn) ⊂ dom TF (x̄, ·) and (vn) ⊂
F such that

zn = x̄ + TF (x̄, zn)vn → x as n → +∞. (5)

Combining (4) and (5), we get

x̄ + TF (x̄, zn)vn + TF (x, yn)un → y as k → +∞.
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While the convexity of cone F tells us that

TF (x̄, zn)vn + TF (x, yn)un ∈ cone F,

and hence, by (2), x̄ +TF (x̄, zn)vn +TF (x, yn)un ∈ dom TF (x̄, ·). This means
that y ∈ dom TF (x̄, ·), so (3) holds.

(ii) Take any y1, y2 ∈ dom TF (x̄, ·) and let α ∈ [0, 1]. Then, there exist u1, u2 ∈ F
such that y1 = x̄ + TF (x̄, y1)u1 and y2 = x̄ + TF (x̄, y2)u2. It follows from the
convexity of F that

αy1 + (1 − α)y2 = x̄ + αTF (x̄, y1)u1 + (1 − α)TF (x̄, y2)u2
∈ x̄ + (αTF (x̄, y1) + (1 − α)TF (x̄, y2))F .

By the definition of the minimal time function, one has

TF (x̄, αy1 + (1 − α)y2) ≤ αTF (x̄, y1) + (1 − α)TF (x̄, y2).

This means that TF (x̄, ·) is convex.
Fix any λ ≥ 0. We first show that

{y ∈ X | TF (x̄, y) ≤ λ} = x̄ + [0, λ]F .

Indeed, for every z ∈ {y ∈ X | TF (x̄, y) ≤ λ}, there exists u ∈ F such that
z = x̄ + TF (x̄, z)u ∈ x̄ + [0, λ]F . Hence,

{y ∈ X | TF (x̄, y) ≤ λ} ⊂ x̄ + [0, λ]F .

Conversely, let y ∈ x̄ + [0, λ]F . Then, there are t ∈ [0, λ] and u ∈ F such that
y = x̄ + tu. It follows that TF (x̄, y) ≤ t ≤ λ. Thus, one has

{y ∈ X | TF (x̄, y) ≤ λ} = x̄ + [0, λ]F .

Since x̄ + [0, λ]F is closed for any λ ≥ 0, while if λ < 0, then

{y ∈ X | TF (x̄, y) ≤ λ} = ∅,

we conclude that all lower level sets of TF (x̄, ·) are closed. This means that
TF (x̄, ·) is lower semicontinuous.

(iii) Let any u∗ ∈ ∂TF (x̄, ·)(x̄). Using the fact that TF (x̄, x̄) = 0, we get

〈u∗, y − x̄〉 ≤ TF (x̄, y) for all y ∈ X .

Fix any u ∈ F and set yt := x̄ + tu for some t > 0. Then, yt ∈ dom TF (x̄, ·),
and hence, one has

〈u∗, yt − x̄〉 = 〈u∗, tu〉 ≤ TF (x̄, yt ) ≤ t,
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or equivalently, 〈u∗, u〉 ≤ 1. This means that u∗ ∈ C∗.
To see the reverse inclusion, fix any u∗ ∈ C∗ and y ∈ dom TF (x̄, ·). Then,
there is u ∈ F satisfying y = x̄ + TF (x̄, y)u. Hence, we get

〈u∗, y − x̄〉 = 〈u∗, TF (x̄, y)u〉 ≤ TF (x̄, y) = TF (x̄, y) − TF (x̄, x̄),

which yields u∗ ∈ ∂TF (x̄, ·)(x̄).
(iv) First of all, if TF (x, y) or TF (y, z) equals +∞, then there is nothing to prove.

Otherwise, i.e., both are finite, one can find u1, u2 ∈ F such that

y = x + TF (x, y)u1 and z = y + TF (y, z)u2,

and hence, z = x + TF (x, y)u1 + TF (y, z)u2. Since F is convex,

z = x + TF (x, y)u1 + TF (y, z)u2 ∈ x + (TF (x, y) + TF (y, z))F .

Consequently, TF (x, z) ≤ TF (x, y) + TF (y, z). ��
The remaining of this section is devoted to some basic concepts of set theory.

Definition 2.2 Let A be a nonempty set and let x, y, z ∈ A be arbitrarily chosen. A
binary relation � on A is said to be

(i) reflexive iff x � x .
(ii) transitive iff z � y and y � x imply z � x .
(iii) antisymmetric iff x � y and y � x imply x = y.

Definition 2.3 Let A be a nonempty set and � a binary relation on A. We say that �
is

(i) a preorder iff it is reflexive and transitive.
(ii) a partial order iff it is reflexive, transitive and antisymmetric.

Moreover, if a binary relation � is a preorder/partial order on A, then (A,�) is called
a preordered/partial ordered set.

Definition 2.4 (i) Let (A,�) be a preordered set. An element x̄ in A is said to be

(i1) minimal iff for every x ∈ A such that x � x̄ one has x̄ � x .
(i2) strictly minimal iff for every x ∈ A such that x � x̄ one has x̄ = x .

(ii) Let (A,�) be a partially ordered set. An element x̄ in A is said to be minimal
iff for every x ∈ A such that x � x̄ one has x̄ = x .

Observe that (ii) implies (i2) which in its turn implies (i1). The converse is not true in
general. We next provide a simple example to clarify the above concepts.

Example 2.1 (i) Let A = {{a}, {b}, {a, b}, {c, d}} and x, y ∈ A be arbitrarily cho-
sen, and let � be defined by

x � y iff |x | ≤ |y|,
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where | · | denotes cardinality of a set. Then, (A,�) is a preordered set. Clearly,
{a, b} and {c, d} are minimal, but not strict.

(ii) Let A = {{a}, {b}, {a, b}} and let � be defined as in (i). Then, {a, b} is strictly
minimal. Note that (A,�) is not a partially ordered set.

Definition 2.5 Given a preordered set (A,�), we say that (xn) ⊂ A is a decreasing
sequence iff xn+1 � xn for all n ≥ 1. If in addition A is a topological space, the
preorder � is said to be lower closed iff L(x) := {y ∈ A | y � x} is a closed subset
of A, for every x ∈ A.

3 Necessary and Sufficient Conditions for Invariant Points

Let X be a normed space and A ⊂ X . It is known that (A, d), where d(x, y) := ‖x−y‖
for all x, y ∈ A, is a metric space. Let G : A ⇒ A be a set-valued map. A point x̄ in A
is called an invariant point of G iff G(x̄) = {x̄}. We first present a sufficient condition
for the existence of an invariant point, which makes use of the minimal time function
introduced in the previous sections.

Theorem 3.1 Let X be a Banach space, A ⊂ X a closed set and F ⊂ X a nonempty,
bounded, closed and convex set and let G : A ⇒ A be a set-valued map. Assume that
the following conditions are satisfied

(i) for all x ∈ A, x ∈ G(x) and G(x) is closed;
(ii) for all x ∈ A, if y ∈ G(x) then G(y) ⊂ G(x);
(iii) limn→∞ TF (xn, xn+1) = 0, if xn+1 ∈ G(xn) ∩ dom TF (xn, ·) for all n ≥ 1.

Then, for every x0 ∈ A, there exists x̄ ∈ G(x0) such that

G(x̄) ∩ dom TF (x̄, ·) = {x̄}.

Consequently, if G(x̄) ⊂ dom TF (x̄, ·), then x̄ is an invariant point of G.

The next result is an equivalent reformulation of Theorem 3.1.

Theorem 3.2 Let X , A and F be the same as in Theorem 3.1. Assume that the following
conditions hold

(i) the metric space (A, d) is endowed with a preorder � satisfying the lower
closedness on (A, d);

(ii) limn→∞ TF (xn, xn+1) = 0, if (xn) ⊂ (A,�) is a decreasing sequence and
satisfies xn+1 ∈ dom TF (xn, ·) for all n ≥ 1.

Then, for every x0 ∈ A, there exists x̄ ∈ {y ∈ A | y � x0} such that x̄ is a strictly
minimal element in the set A ∩ dom TF (x̄, ·). If, furthermore,

{y ∈ A | y � x̄} ⊂ dom TF (x̄, ·),

then x̄ is a strictly minimal element in the set A.
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Proof [Direct proof of Theorem 3.1] First, we observe that, by (i) and the definition of
the minimal time function, G(x)∩domTF (x, ·) contains x and is closed for all x ∈ A.

On the other hand, it is known that (A, d) is a complete metric space. If �
(
G(x) ∩

dom TF (x, ·)
)
, the diameter of G(x) ∩ dom TF (x, ·), is unbounded above for some

x ∈ A, then we replace d by d ′ defined as

d ′(x, y) := d(x, y)

1 + d(x, y)
for all x, y ∈ A.

It is easy to see that this replacement does not affect assumptions (i)–(iii). Hence,

we can assume that �
(
G(x) ∩ dom TF (x, ·)

)
is bounded for each x ∈ A. Setting

x1 := x0. By the definition of �
(
G(xn) ∩ dom TF (xn, ·)

)
, we can take xn+1 ∈

G(xn) ∩ dom TF (xn, ·) such that (using d ′ if necessary)

�
(
G(xn) ∩ dom TF (xn, ·)

)

2
− 1

2n
≤ d(xn+1, xn) for all n ≥ 1. (6)

We get further from assumption (ii) and Lemma 2.1 (i) that

G(xn+1) ∩ domTF (xn+1, ·) ⊂ G(xn) ∩ domTF (xn, ·) for all n ≥ 1.

On the other hand, it follows from (iii) that there exists n0 ∈ N such that
TF (xn, xn+1) < +∞ for all n ≥ n0. Then, by Lemma 2.1 (i), there is un ∈ F
satisfying xn+1 = xn + TF (xn, xn+1)un, which immediately yields

d ′(xn+1, xn) ≤ d(xn+1, xn) = ‖xn+1 − xn‖ = TF (xn, xn+1)‖un‖
≤ TF (xn, xn+1)‖F‖.

This together with (6) implies that

�
(
G(xn) ∩ dom TF (xn, ·)

)
≤ 2TF (xn, xn+1)‖F‖ + 1

2n−1 .

By the boundedness of F and (iii), we obtain

�
(
G(xn) ∩ dom TF (xn, ·)

)
→ 0 as n → +∞.

Therefore, Cantor’s intersection theorem tells us that

∞⋂

n=1

(
G(xn) ∩ dom TF (xn, ·)

)
= {x̄} for some x̄ ∈ A. (7)
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Since x̄ ∈ G(xn) ∩ dom TF (xn, ·) for all n ≥ 1, we have x̄ ∈ G(x0) and further that

G(x̄) ⊂
∞⋂

n=1

G(xn) and dom TF (x̄, ·) ⊂
∞⋂

n=1

dom TF (xn, ·)

by assumption (ii) and Lemma 2.1 (i), respectively. It follows from (7) that

G(x̄) ∩ dom TF (x̄, ·) ⊂ {x̄} =
∞⋂

n=1

(
G(xn) ∩ domTF (xn, ·)

)
.

Therefore, we must haveG(x̄)∩ dom TF (x̄, ·) = {x̄}. The equalityG(x̄) = {x̄} holds
trivially when G(x̄) ⊂ dom TF (x̄, ·).

[Theorem 3.1 ⇒ Theorem 3.2]. We define G : A ⇒ A by

G(x) := {y ∈ A | y � x} for x ∈ A.

It follows from the lower closedness of the preorder that G(x) is closed. Hence, the
reflexivity and the transitivity of the preorder imply the corresponding assumptions
(i) and (ii) of Theorem 3.1 for G. If (xn) is a decreasing sequence and satisfies xn+1 ∈
dom TF (xn, ·), then one has, by the definition of G and (ii) of Theorem 3.2, that
xn+1 ∈ G(xn) ∩ dom TF (xn, ·) for all n ≥ 1 and

lim
n→∞ TF (xn, xn+1) = 0,

i.e., (iii) of Theorem 3.1 is fulfilled. According to Theorem 3.1, there exists x̄ ∈ G(x0)
such thatG(x̄)∩ dom TF (x̄, ·) = {x̄}. Suppose that there exists x ∈ A∩ dom TF (x̄, ·)
satisfying x �= x̄ and such that x � x̄ . Then, the definition of G ensures that x ∈
G(x̄) ∩ dom TF (x̄, ·) = {x̄}, which is a contradiction. Hence, x̄ ∈ {x ∈ A | x � x0}
is a strictly minimal element in the set A ∩ domTF (x̄, ·). Clearly, if {y ∈ A | y �
x̄} ⊂ domTF (x̄, ·), then x̄ is a strictly minimal element in the set A.

[Theorem 3.2 ⇒ Theorem 3.1]. Define a binary relation � on A by

y � x if and only if y ∈ G(x), for x, y ∈ A.

By (i) and (ii) of Theorem 3.1, the binary relation � is a preorder satisfying the lower
closedness on (A, d), i.e., (i) of Theorem 3.2 is satisfied. Clearly, for each sequence
(xn) in assumption (iii) of Theorem 3.1 one has that (xn) is a decreasing sequence and
satisfies xn+1 ∈ dom TF (xn, ·) and limn→∞ TF (xn, xn+1) = 0. Hence, by Theorem
3.2, there exists x̄ ∈ {x ∈ A | x � x0} such that x̄ is a strictly minimal element in the
set A ∩ domTF (x̄, ·). Then, x̄ satisfies the conclusions of Theorem 3.1. ��

The following corollary is the invariant point theorem in [17] (for the case of Banach
spaces). It is worth noting that the authors of [17] have used this result to give a simple
proof for Ekeland’s variational principle.
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Corollary 3.1 Let X, A and G be the same as in Theorem 3.1. Assume that conditions
(i) and (ii) of Theorem 3.1 hold. Assume further that

(iii’) limn→∞ ‖xn+1 − xn‖ = 0, if xn+1 ∈ G(xn) for all n ≥ 1.
Then G has an invariant point.

Proof Let F be the closed unit ball. Then, due to the imposed assumptions, all assump-
tions of Theorem 3.1 are satisfied. We arrive at the conclusion. ��

In the following simple example, Theorem 3.1 is applicable, while Corollary 3.1 is
not.

Example 3.1 Let X = R
m (with the Euclidean norm), A = R × R

m−1+ , where R
m−1+

is the nonnegative orthant of R
m−1, and let G : A ⇒ A be defined by

G(x) =
{

�m
i=1[0, xi ] if x = (x1, x2, ..., xm) ∈ R

m+,

(−∞, 0] × {x2} × ... × {xm} if x = (x1, x2, ..., xm) ∈ A \ R
m+.

Now let F = �m
i=1[0, 1]. It is easy to see that (i) and (ii) of Theorem 3.1 are fulfilled. If

(xn) is a sequence satisfying xn+1 ∈ G(xn) ∩ dom TF (xn, ·), two cases are possible:
1) xn+1 = xn for all n ≥ 1.
2) xn+1 ∈ [x1n , 0] × {x2n } × .... × {xmn } for all n ≥ 1.

In both cases (1) and (2), we have limn→∞ TF (xn, xn+1) = 0, i.e., (iii) of Theorem
3.1 holds. Thus, for every x0 ∈ A, there exists x̄ ∈ G(x0) such that

G(x̄) ∩ dom TF (x̄, ·) = {x̄}.

By direct checking, one sees that x̄ = (0, ..., 0). Moreover, since

G(x̄) = {0, ..., 0} ⊂ R
m+ = dom TF (x̄, ·),

one has x̄ is an invariant point of G. However, Corollary 3.1 is not applicable,
since, if we take x1 := (−1, 1, ..., 1) and

xn+1 := (−n − 1, 1, ..., 1) ∈ (−∞, 0] × {1}, ..., {1} = G(xn)

then ‖xn+1 − xn‖ � 0 as n → +∞.

Next, let us give another example in whichG has no invariant point but exists x̄ ∈ A
such that G(x̄) ∩ dom TF (x̄, ·) = {x̄}.
Example 3.2 Let X = A = C[0,1] (the space of the real continuous functions on [0, 1]
with the maximum norm). Let G : X ⇒ X be defined by

G(x) = {y ∈ C[0,1] | y(t) ≤ x(t), ∀t ∈ [0, 1]}.
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Clearly, G has no invariant point. To apply Theorem 3.1, we take F = {y ∈ C[0,1] |
0 ≤ y(t) ≤ 1,∀t ∈ [0, 1]}. Assumptions (i) and (ii) hold trivially. It is not hard to see
that for all x ∈ X ,

dom TF (x, ·) = x + cone F = x + {y ∈ C[0,1] | 0 ≤ y(t), ∀t ∈ [0, 1]}.

Thus, if (xn) is a sequence satisfying xn+1 ∈ G(xn)∩dom TF (xn, ·), then there exists
yn ∈ {y ∈ C[0,1] | 0 ≤ y(t), ∀t ∈ [0, 1]} such that

xn(t) + yn(t) = xn+1(t) ≤ xn(t) for all t ∈ [0, 1],

where the inequality holds by the definition of G. This clearly implies the equality
xn+1 = xn for all n, and hence limn→∞ TF (xn, xn+1) = 0, i.e., the assumption
(iii) is fulfilled. By theorem 3.1, for every x0 ∈ X there exists x̄ ∈ G(x0) such that
G(x̄) ∩ dom TF (x̄, ·) = {x̄}.

We end this section with a result, which together with Theorem 3.1 characterizes
completeness.

Theorem 3.3 Let X be a normed vector space. If X is not a Banach space then there
exist a closed set A ⊂ X, a nonempty, bounded, closed and convex set F ⊂ X and
a set-valued map G satisfying (i)–(iii) of Theorem 3.1 such that G has no invariant
point.

Proof Let A = X and F ⊂ X be a nonempty, bounded, closed and convex set
containing the origin as an interior point. Observe first that since 0 ∈ int F , ‖F◦‖ is
bounded and dom TF (x, ·) = X for all x ∈ X . We next show that

TF (x, y) ≤ ‖F◦‖‖y − x‖ for all x, y ∈ X . (8)

Indeed, for all x, y ∈ X , one has

TF (x, y) = inf{t > 0 | (x + t F) ∩ {y} �= ∅}
= inf{t > 0 | t−1(y − x) ∈ F}
= inf{t > 0 | 〈x∗, t−1(y − x)〉 ≤ 1, ∀x∗ ∈ F◦}
= sup{〈x∗, y − x〉 | x∗ ∈ F◦}
≤ ‖F◦‖‖y − x‖,

where the third equality follows from the bipolar theorem.
On the other hand, since X is not a Banach space, there exists a sequence of

nonempty closed sets such that X = 	1 ⊃ ... ⊃ 	i ⊃ ... and �(	i ) → 0 as i → ∞,
but

⋂∞
i=1 	i = ∅. Now, we can define G : X ⇒ X as follows:

G(x) = 	i+1 ∪ {x}, if x ∈ 	i and x /∈ 	i+1.

Clearly, x ∈ G(x) andG(x) is closed for all x ∈ X , i.e., (i) is satisfied. For every x ∈ X ,
if y ∈ G(x), two cases are possible: either y = x or y ∈ 	i+1. If y = x , we obviously
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have G(y) = G(x). For the second case, since 	i+1 ⊂ ... ⊂ 	1 and
⋂∞

i=1 	i = ∅,
there exists ī ≥ i + 1 such that y ∈ 	ī and y /∈ 	ī+1. Then G(y) = 	ī+1 ∪ {y}. Since
	ī+1 ⊂ 	i+1, G(y) ⊂ G(x). Thus, (ii) is checked. To verify (iii), let (xn) ⊂ X be a
sequence satisfying xn+1 ∈ G(xn). By the properties of the sequence (	i ), for every
xn there exists in ∈ N such that

xn ∈ 	in and xn /∈ 	in+1,

and then G(xn) = 	in+1 ∪ {xn}. Since xn+1 ∈ G(xn), an argument similar to the
verify of (ii) yields in+1 ≥ in . Thus, if there exists n0 ∈ N such that in+1 = in (i.e.,
xn+1 = xn) for all n ≥ n0, then limn→∞ TF (xn, xn+1) = 0. Otherwise, we have
in → ∞ whenever n → ∞. On the other hand, one gets by (8) that

TF (xn, xn+1) ≤ ‖F◦‖‖xn+1 − xn‖ ≤ ‖F◦‖ sup{‖y − x‖ | x, y ∈ G(xn)}
= ‖F◦‖�(G(xn)) ≤ ‖F◦‖�(	in ),

where the last inequality is valid because G(xn) ⊂ 	in . Letting n → ∞ and invoking
the boundedness of ‖F◦‖, we also have limn→∞ TF (xn, xn+1) = 0.Hence,G satisfies
all assumptions of Theorem 3.1. However, G has no invariant point. Since if x̄ exists
such that G(x̄) = {x̄}, we would have

{x̄} = G(x̄) = 	i∗+1 ∪ {x̄} and x̄ /∈ 	i∗+1 for some i∗ ∈ N.

Consequently, 	i∗+1 = ∅, a contradiction. ��

4 Applications

Throughout this section, we shall assume that X is a Banach space. By using the
results of the previous section, we present several applications in optimization. We
also provide some examples for comparisons with existing results in the literature to
make sure of the role of our study.

4.1 Existence of Solutions to Optimization-Related Problems

Let A be a subset of X and g : A × A → R ∪ {+∞}. Recall that the equilibrium
problem is to find x̄ ∈ A such that g(x̄, y) ≥ 0 for all y ∈ A. This problem is
known also as the Ky Fan’s inequality (see [22]). The term “equilibrium problem”
first appeared in [36]. It has been developed and applied in many research areas.
However, most developments and applications focused on the case where the data
had certain convexity assumptions. In this subsection, we derive from Theorem 3.1
sufficient conditions for the existence of solutions to approximate equilibrium and
equilibrium problems, without any convexity requirement.

Theorem 4.1 Let X, F and A be the same as in Theorem 3.1 and let g : A × A →
R ∪ {+∞}. Assume that the following conditions are satisfied:
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(i) for every x ∈ A, g(x, x) = 0 and g(x, ·) is lower semicontinuous;
(ii) for every x, y, z ∈ A, g(x, z) ≤ g(x, y) + g(y, z);
(iii) for every x ∈ A, g(x, ·) is bounded from below on A ∩ dom TF (x, ·).
Then, for any x0 ∈ A and any ε > 0, there exists x̄ ∈ S such that

g(x̄, y) + εTF (x̄, y) > 0 for all y ∈
(
A ∩ dom TF (x̄, ·)

)∖
{x̄},

where S := {y ∈ A | g(x0, y) + εTF (x0, y) ≤ 0}.
Proof Fix any ε > 0. We apply Theorem 3.1 with G : A ⇒ A is defined by

G(x) = {y ∈ A | g(x, y) + εTF (x, y) ≤ 0} for x ∈ A.

For every x ∈ A, we have x ∈ G(x) by (i) and the definition of the minimal time
function. Moreover, G(x) is closed by (i) and Lemma 2.1 (ii). Hence, assumption (i)
of Theorem 3.1 is satisfied. For every x ∈ A, if y ∈ G(x) and z ∈ G(y), i.e.,

g(x, y) + εTF (x, y) ≤ 0 and g(y, z) + εTF (y, z) ≤ 0,

then by summing these inequalities side by side we obtain that

0 ≥ g(x, y) + g(y, z) + ε(TF (x, y) + TF (y, z)) ≥ g(x, z) + εTF (x, z),

where the last inequality holds by (ii) and Lemma 2.1 (iv). This yields z ∈ G(x),
i.e., (ii) of Theorem 3.1 is fulfilled. Finally, let (xn) be a sequence satisfying xn+1 ∈
G(xn) ∩ dom TF (xn, ·). By the definition of G, we have

εTF (xn, xn+1) ≤ −g(xn, xn+1).

On the other hand, by setting u(xn) := inf y∈(G(xn)∩ dom TF (xn ,·)) g(xn, y) we get

u(xn+1) = inf y∈(G(xn+1)∩ dom TF (xn+1,·)) g(xn+1, y)
≥ inf y∈(G(xn)∩ dom TF (xn ,·)) g(xn+1, y)

≥ inf y∈(G(xn)∩ dom TF (xn ,·))
(
g(xn, y) − g(xn, xn+1)

)

≥ inf y∈(G(xn)∩ dom TF (xn ,·)) g(xn, y) − g(xn, xn+1)

≥ u(xn) − g(xn, xn+1),

where the first inequality holds by Lemma 2.1 (i) and the definition of G. It follows
that εTF (xn, xn+1) ≤ u(xn+1) − u(xn). Observe that for all n ≥ 1, we have −∞ <

u(xn) ≤ 0 by (i) and (iii), and hence
∑∞

n=1 εTF (xn, xn+1) < +∞. This ensures that
limn→∞ TF (xn, xn+1) = 0, i.e., (iii) of Theorem 3.1 holds. According to Theorem
3.1, there exists x̄ ∈ G(x0) = S such that

G(x̄) ∩ dom TF (x̄, ·) = {x̄}.
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Consequently,

g(x̄, y) + εTF (x̄, y) > 0 for all y ∈
(
A ∩ dom TF (x̄, ·)

)∖
{x̄},

we are done. ��
Remark 4.1 In Theorem 4.1, if F is the closed unit ball, then we can obtain Ekeland’s
variational principle for an equilibrium problem in [11]. In addition, if ε = 1, then
Theorem 4.1 becomes Theorem 1 in [42] (for the case of Banach spaces).

As a direct consequence of Theorem 4.1, we derive an Ekeland variational principle
in terms of the minimal time functions.

Corollary 4.1 Let X, A and F be the same as in Theorem 4.1. Let f : A → R∪{+∞}
be a proper lower semicontinuous function. Assume that for each x ∈ A, f is bounded
from below on A ∩ dom TF (x, ·). Then, for any x0 ∈ A and any ε > 0, one can find
x̄ ∈ A such that

f (x̄) ≤ f (x0) − εTF (x0, x̄) (9)

and

f (x̄) < f (y) + εTF (x̄, y), ∀y ∈
(
A ∩ dom TF (x̄, ·)

)∖
{x̄}. (10)

Consequently, if f is bounded from below on A, then relation (10) becomes

f (x̄) < f (y) + εTF (x̄, y), ∀y ∈ A \ {x̄}. (11)

Proof Define

g(x, y) := f (y) − f (x) for all x, y ∈ A.

It is easy to see that assumptions (i)–(iv) of Theorem 4.1 hold. According to this
theorem, there exists x̄ ∈ {y ∈ A | g(x0, y) + εTF (x0, y) ≤ 0} such that

g(x̄, y) + εTF (x̄, y) > 0 for all y ∈
(
A ∩ dom TF (x̄, ·)

)∖
{x̄},

Consequently, (9) and (10) hold.
Now, suppose f is bounded from below on A. Let z ∈ A \ {x̄} be such that

z /∈ dom TF (x̄, ·). Thismeans that TF (x̄, z) = +∞, and hence, relation (10) becomes
(11). ��
Remark 4.2 If F is a spherical sector with the apex at the origin, then Corollary 4.1
can be viewed as a directional Ekeland variational principle, which has been recently
studied in [19]. Moreover, if F is the closed unit ball, then Corollary 4.1 becomes the
famous Ekeland variational principle in [20] (for the Banach space case).
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Example 4.1 Let X = A = R and f : X → R ∪ {+∞} be defined by

f (x) =
{

1
ex if x > 0

x3 otherwise.

Now, let F = [0, 1]. Then, for each x ∈ X we have

domTF (x, ·) = x + [0 + ∞) = [x,+∞).

It is not hard to see that the assumptions of Corollary 4.1 are fulfilled. Therefore, for
every x0 ∈ X and ε > 0, there exists x̄ ∈ X such that inequalities (9) and (10) hold.

Remark 4.3 In the above example, we see that since f is unbounded from below on A,
Corollary 3.2 in [19] does not work. Thus, Corollary 4.1 is different from Corollary
3.2 in [19].

We now pass to an equilibrium problem.

Theorem 4.2 Let X, F, A and g be as in Theorem 4.1. Assume that

(i) for each x ∈ A, g(x, x) = 0 and g(x, ·) is lower semicontinuous;
(ii) for x, y, z ∈ A satisfying g(x, y) ≤ 0 and g(y, z) ≤ 0, one has g(x, z) ≤ 0;
(iii) limn→+∞TF (xn, xn+1) = 0, if (xn) is a sequence satisfying

xn+1 ∈ dom TF (xn, ·) and g(xn, xn+1) ≤ 0, ∀n ≥ 1.

Then, for each x0 ∈ A, there exists x̄ ∈ A such that g(x0, x̄) ≤ 0 and

g(x̄, y) > 0 for all y ∈
(
A ∩ dom T (x̄, ·)

)∖
{x̄}.

Proof Employ Theorem 3.1 with G(x) = {y ∈ A | g(x, y) ≤ 0} for every x ∈ A. It is
easy to see that all assumptions of Theorem 3.1 are satisfied. Clearly, the conclusions
of Theorem 3.1 and this theorem are the same. ��

Aswe have seen, the proof technique of the above sufficient condition is simple, but
seems to also be applicable for many optimization-related problems such as inclusion
problems, traffic networks problems and non-cooperative games problems (see, e.g.,
[31]). The following simple example illustrates Theorem 4.2 which can be interpreted
as an instance of an equilibrium in the direction.

Example 4.2 Let X = A = R, and let g : X × X → R be defined by

g(x, y) = x2m+1 − y2m+1 for x, y ∈ X ,

where m ∈ N. The equilibrium problem is

find x̄ ∈ X such that g(x̄, y) ≥ 0 for all y ∈ X .
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Clearly, this problem does not have any solution. Furthermore, to try with Ekeland’s
variational principle for equilibrium problems in [11, 42] we see that Theorem 1 in
[42] and Theorem 2.1 in [11] cannot be applied for this case, since for every x ∈ X ,
g(x, ·) is not bounded from below on X .

Now, let F = [−1, 0]. Then, for each x ∈ X we have

domTF (x, ·) = x + (−∞, 0] = (−∞, x].

Fix any x0 ∈ X . It is not difficult to verify that the assumptions of Theorem 4.2 are
satisfied for g. This meets a direct checking with the result that there exists x̄ = x0
such that

x̄2m+1 − y2m+1 ≥ 0 for all y ∈
(
X ∩ dom TF (x̄, ·)

)
= (−∞, x̄].

Let us notice here the importance of the fact that x̄ is an equilibrium point with respect
to its left direction.

4.2 Generalized Global Error Bounds

Let f : X → R. For the inequality

f (x) ≤ 0, (12)

let S := {x ∈ X | f (x) ≤ 0} denote the solution set. To avoid trivially, we shall
assume that ∅ �= S �= X .

We now introduce a newnotion of global error bounds for inequality (12) as follows:

Definition 4.1 Let F be a nonempty subset of X . Inequality (12) is said to have a
generalized global error bound with respect to F if there exists τ > 0 such that

TF (x, S) ≤ τ [ f (x)]+ for all x ∈ CF , (13)

where [ f (x)]+ := max{ f (x), 0} and CF := dom TF (·, S) = S − cone F (see
Remark 2.1 (ii)).

Remark 4.4 (i) We first observe that if F is the closed unit ball, then the concept of
the generalized global error bound (13) becomes the concept of the usual global
error bounds (see, e.g., [8, 13, 26, 28, 30, 39] and references therein). Moreover,
it should be mentioned that the concept of generalized local error bounds with
respect to F has been proposed and studied in our paper [34].

(ii) If F is a spherical sector with the apex at the origin, then Definition 4.1 is
closely related to the concept of directional metric subregularity in [15]. Indeed,
let H : X ⇒ R be defined by H(x) := [ f (x),+∞). Then, inequality (13) can
be rewritten as

TF (x, H−1(0)) ≤ τd(0, H(x)) for all x ∈ CF ,
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where H−1(0) := {x ∈ X | 0 ∈ H(x)}. Then, one says that H is globally
metrically subregular at 0 with respect to F with modulus τ .

To establish necessary and sufficient conditions for the existence of generalized
global error bounds for a lower semicontinuous function without convexity, we first
need the following lemma, which is a type of Lemma 2.42 in [28] and Theorem 3 in
[2] in the minimal time function setting.

Lemma 4.1 Let X , F and A be the same as in Theorem 3.2, and let f be a lower
semicontinuous function. Suppose that there exists a number β > 0 such that for any
x ∈ A with f (x) > 0, there is a ȳ ∈ A \ {x}, which satisfies the inequality

[ f (ȳ)]+ ≤ f (x) − βTF (x, ȳ). (14)

Then, for any x0 ∈ A satisfying f (x0) > 0, there is a point x̄ ∈ A such that
TF (x0, x̄) ≤ f (x0)

β
and f (x̄) ≤ 0.

Proof Take β and x0 satisfying the conditions. Set ε := f (x0) and λ := ε
β
. We apply

Theorem 3.2 with the binary relation ≺ defined by

y � x iff [ f (y)]+ + ε

λ
TF (x, y) ≤ [ f (x)]+ for all x, y ∈ A.

By Lemma 2.1 (ii), the function y �→ [ f (y)]+ + TF (x, y) is lower semicontinuous
for x ∈ A. Hence,

L(x) := {y ∈ A | y � x} = {y ∈ A | [ f (y)]+ + ε

λ
TF (x, y) ≤ [ f (x)]+}

is closed in A, for all x ∈ A. For every x ∈ A, we have x � x . This means that � is
reflexive. To see the transitivity of �, let x, y, z ∈ A be such that z � y and y � x .
Then, we have

[ f (z)]+ + ε

λ
TF (y, z) ≤ [ f (y)]+ and [ f (y)]+ + ε

λ
TF (x, y) ≤ [ f (x)]+.

Hence,

[ f (z)]+ + ε

λ
TF (x, z) ≤ [ f (z)]+ + ε

λ
TF (x, y) + ε

λ
TF (y, z) ≤ [ f (x)]+,

where the first inequality follows from Lemma 2.1 (iv). This shows that z � x .
Therefore, the binary relation � is a preorder satisfying the lower closedness on A,
i.e., assumption (i) of Theorem 3.2 is satisfied. Furthermore, let (xn) be a decreasing
sequence and satisfy xn+1 ∈ dom TF (xn, ·). By the definition of the binary relation
�, one has

ε

λ
TF (xn, xn+1) ≤ [ f (xn)]+ − [ f (xn+1)]+.
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Since 0 ≤ [ f (xn)]+ < +∞ for all n ≥ 1,

∞∑

n=1

ε

λ
TF (xn, xn+1) < +∞.

This immediately implies that limn→∞ TF (xn, xn+1) = 0, i.e., assumption (ii) of
Theorem 3.2 is also fulfilled. By Theorem 3.2, there exists a

x̄ ∈ {y ∈ A | y � x0} = {y ∈ A | [ f (y)]+ + ε

λ
TF (x0, y) ≤ f (x0)}

such that x̄ is a strictly minimal element in the set {y ∈ A | y � xn} ⊂ dom T (xn, ·).
Consequently,

[ f (x̄)]+ + ε

λ
TF (x0, x̄) ≤ f (x0). (15)

We note that ε = f (x0), so f (x0) ≤ infx∈A[ f (x)]+ +ε ≤ [ f (x̄)]+ +ε. This together
with (15) implies that

[ f (x̄)]+ + ε

λ
TF (x0, x̄) ≤ [ f (x̄)]+ + ε,

and hence, one must have TF (x0, x̄) ≤ λ = f (x0)
β

. Furthermore, we will show that

{y ∈ A | y � x̄} ⊂ dom TF (x̄, ·). (16)

Indeed, if there exists x ∈ {y ∈ A | y � x̄} such that x �= x̄ , then the definition
of the binary � tells us that ε

λ
TF (x̄, x) ≤ [ f (x̄)]+ − [ f (x)]+. Using the fact that

0 ≤ [ f (x̄)]+ and [ f (x)]+ < +∞, we get x ∈ dom TF (x̄, ·), which proves (16).
Hence, x̄ is a strictly minimal element in the set A, or equivalently,

[ f (x̄)]+ < [ f (y)]+ + βTF (x̄, y) for all y ∈ A\{x̄}. (17)

If f (x̄) > 0, by (14), there is a ȳ ∈ A\{x̄} satisfying

[ f (ȳ)]+ ≤ f (x̄) − βTF (x̄, ȳ),

i.e.,

[ f (ȳ)]+ + βTF (x̄, ȳ) ≤ [ f (x̄)]+.

This clearly contradicts (17). The proof has been completed. ��
Remark 4.5 When F is the closed unit ball, inequality (14) is called “the Caristi-like
condition” by Arutyunov in [2].
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Theorem 4.3 Let F ⊂ X be a nonempty, compact and convex set, and let f be a lower
semicontinuous.

(i) If inequality (12) has a generalized global error bound with respect to F, then
there exists a number β > 0 such that for any x ∈ CF satisfying f (x) > 0, one
has

[ f (ȳ)]+ ≤ f (x) − βTF (x, ȳ) for some ȳ ∈ CF \ {x}. (18)

(ii) In addition, if we suppose that CF is closed, then the converse of (i) is true.

Proof (i) Suppose there is τ > 0 such that

TF (x, S) ≤ τ [ f (x)]+, ∀x ∈ CF .

Fix arbitrary x ∈ CF with f (x) > 0. Since S is closed, F is compact and
TF (x, S) < +∞, see Remark 2.1 (i), we can find an ȳ ∈ S ⊂ CF \ {x} such
that

TF (x, ȳ) = TF (x, S) ≤ τ f (x),

which means that (18) holds for β ≤ 1
τ
.

(ii) Suppose to the contrary that for each τ ′ ∈ (0,+∞), there exists x0 ∈ CF such
that

TF (x0, S) > τ ′[ f (x0)]+. (19)

In particular, we can take τ ′ := 1
β
. Clearly, x0 /∈ S, i.e., f (x0) > 0. Applying

Lemma 4.1 with A := CF , there exists x̄ ∈ CF such that f (x̄) ≤ 0 (i.e.,
x̄ ∈ S ⊂ CF ) and TF (x0, x̄) ≤ f (x0)

β
= τ ′ f (x0). This together with (19)

implies that

τ ′ f (x0) ≥ TF (x0, x̄) ≥ TF (x0, S) > τ ′[ f (x0)]+,

a contradiction. The proof is complete. ��
Remark 4.6 For the special case, where F is the closed unit ball, condition (18) implies
the sufficient condition for the existence of usual global/local error bounds studied in
[28] and further developed, e.g., in [21, 41].

Next, we give an example to explain the advantage of the second part of Theorem
4.3. Note that this example was first used in [45] (see also [10]) to illustrate the
discontinuity of a set-valued map in Hausdorff sense.

Example 4.3 Let f1, f2 : R
4 → R be defined by f1(x) = x1 and
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f2(x) = x161 + x82 + x63 + x1x
3
2 x

3
3 + x21 x

4
2 x

2
3 + x22 x

4
3

+x41 x
2
3 + x41 x

6
2 + x21 x

6
2 + x21 + x22 + x23 − x4,

for all x = (x1, x2, x3, x4) ∈ R
4. Define f (x) = max{ f1(x), f2(x)}, x ∈ R

4. Con-
sider the solution set S := {x ∈ R

4 | f (x) ≤ 0}. Next, we take F := [0, 1] ×
[−1, 1] × [−1, 1] × [−1, 1]. Observe first that for every x = (x1, x2, x3, x4) ∈ R

4,
if x1 > 0 then x /∈ S. This implies that S ⊂ − cone F , and hence, we have that
CF := S − cone F = −cone F , and it is closed. Let x = (x1, x2, x3, x4) ∈ CF be
such that f (x) > 0. Setting

ȳ := (x1, x2, x3, x
16
1 + x82 + x63 + x1x

3
2 x

3
3 + x21 x

4
2 x

2
3 + x22 x

4
3

+x41 x
2
3 + x41 x

6
2 + x21 x

6
2 + x21 + x22 + x23 ),

we get ȳ ∈ S (due to f1(ȳ) = x1 ≤ 0 and f2(ȳ) = 0). This yields ȳ ∈ CF \ {x}.
Furthermore, one has

TF (x, ȳ) = x161 + x82 + x63 + x1x32 x
3
3 + x21 x

4
2 x

2
3 + x22 x

4
3 + x41 x

2
3 + x41 x

6
2+x21 x

6
2 + x21 + x22 + x23 − x4,

and hence, inequality (18) holds for β = 1. According to Theorem 4.3, f (x) ≤ 0
admits a generalized global error bound with respect to F but does not have an usual
global error bound, as shown in [32] and also in [39].

Finally, we specialize the previous result to the case of convex continuous functions.
Given a compact and convex F ⊂ X and x ∈ X withTF (x, S) < +∞. The generalized
projection of x to S is defined by

�F (x, S) := {y ∈ S | TF (x, S) = ρF (y − x)},

where ρF is the Minkowski gauge given by

ρF (z) := inf{t ≥ 0 | z ∈ t F} for all z ∈ X .

It is not hard to check that, under our assumptions on F and S, the generalized projec-
tion �F (x̄, S) is always nonempty and TF (x̄, S) = 0 if and only if x̄ ∈ S (see, e.g.,
[29,Proposition 2.2]).

Theorem 4.4 Let F ⊂ X be a nonempty, compact and convex set and let f be a convex
continuous function.

(i) If inequality (12) has a generalized global error bound with respect to F, then

γ := inf
{
σF (−x∗) | x∗ ∈ ∂[ f ]+(x), x ∈ CF \ S

}
> 0, (20)

(recall that CF := domTF (·, S)).
(ii) In addition, if we suppose that 0 ∈ int F, then the converse of (i) is true.
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Proof For the first part, let us suppose that there is τ > 0 such that

TF (x, S) ≤ τ [ f (x)]+, ∀x ∈ CF .

Hence (cf. [29,Proposition 2.2 (i)])

1

τ
≤ [ f (x)]+

TF (x, S)
, ∀x ∈ CF \ S. (21)

Fix any x ∈ CF \ S and x∗ ∈ ∂[ f ]+(x)). Then, one has

〈x∗, y − x〉 ≤ [ f (y)]+ − [ f (x)]+, ∀y ∈ X . (22)

On the other hand, since F is compact, S is closed and TF (x, S) < +∞, one has
�F (x, S) �= ∅. This means that there exists x̂ ∈ S such that ρF (x̂ − x) = TF (x, S).
In formula (22), we replace y by x̂ to have

[ f (x)]+ ≤ 〈x∗, x − x̂〉,

and hence,

[ f (x)]+
TF (x, S)

≤
〈
x∗, x − x̂

TF (x, S)

〉
.

Observe that x̂−x
TF (x,S)

∈ F . Thus, inequality (21) and the definition of the support
function imply that

1

τ
≤ [ f (x)]+

TF (x, S)
≤

〈
x∗, x − x̂

TF (x, S)

〉
=

〈
− x∗, x̂ − x

TF (x, S)

〉
≤ σF (−x∗).

Since x∗ and x are arbitrarily chosen, we conclude that inequality (20) holds.
For the second part, if 0 ∈ int F then CF = X = dom TF (x, ·) for all x ∈ X .

Hence, (20) can be rewritten as

γ := inf
{
σF (−x∗) | x∗ ∈ ∂[ f ]+(x), x ∈ X \ S

}
> 0. (23)

Suppose to the contrary that for every τ ′ ∈ (0,+∞), there exists x0 ∈ X such that

TF (x0, S) > τ ′[ f (x0)]+.

Clearly, x0 /∈ S. Set ε := [ f (x0)]+ = f (x0) > 0 and λ := τ ′ε. Then, one has

[ f (x0)]+ ≤ inf
y∈X[ f (y)]+ + ε
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and

λ < TF (x0, S). (24)

To employ Theorem 3.1, we set A := X and define

G(x) := {y ∈ X | [ f (y)]+ + ε

λ
TF (x, y) ≤ [ f (x)]+} for all x ∈ X .

It is not difficult to verify that (i)–(iii) of Theorem 3.1 are satisfied by the same
argument used in the proof of Theorem 4.1. Then, there is x̄ ∈ X such that x̄ ∈ G(x0)
and G(x̄) = x̄ and therefore that

TF (x0, x̄) ≤ λ (25)

and

[ f (x̄)]+ < [ f (y)]+ + ε

λ
TF (x̄, y), ∀y ∈ X \ {x̄}.

It follows that x̄ is a global minimum of the convex function

y �→ [ f (y)]+ + ε

λ
TF (x̄, y), y ∈ X .

Since [ f ]+ is finite and continuous at x̄ ∈ dom TF (x̄, ·), one has

0 ∈ ∂[ f ]+(x̄) + ε
λ
∂TF (x̄, ·)(x̄)

= ∂[ f ]+(x̄) + 1
τ ′ ∂TF (x̄, ·)(x̄). (26)

This together with Lemma 2.1 (iii) implies that 0 ∈ ∂[ f ]+(x̄) + 1
τ ′C∗. Then there

exist x∗ ∈ ∂[ f ]+(x̄) and u∗ ∈ C∗ such that −x∗ = 1
τ ′ u∗, and hence,

σF (−x∗) = 1

τ ′ σF (u∗) ≤ 1

τ ′ ( since σF (u∗) ≤ 1).

Furthermore, it follows from (24) and (25) that x̄ ∈ X \ S. We therefore have

inf{σF (−x∗) | x∗ ∈ ∂[ f ]+(x), x ∈ X \ S} ≤ infτ ′∈(0,+∞)

1

τ ′ = 0,

which contradicts (23). This completes the proof of the theorem. ��
Remark 4.7 The existence of error bounds is usually proved by using the Ekeland
variational principle in [20]; instead of that, one can apply Theorem 3.1 (invariant
points theorem) as seen in the proof ofTheorem4.4.Observe that Theorem4.4 includes
Proposition 2 (ii) of [40]. The following example illustrates the advantage of the
necessity part of Theorem 4.4 providing a case when it works well, while Proposition
2 (ii) of [40] is out of use.
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Example 4.4 Let m be a arbitrary positive integer satisfyingm ≥ 2 and let X = R and
f : X → R defined by

f (x) =
{

−x if x ≤ 0,

xm otherwise.

Clearly, f is a convex continuous function. It is not difficult to verify that

S := {x ∈ R | f (x) ≤ 0} = {0}.

One takes a sequence (xk) ⊂ (0,+∞) satisfying xk → 0 as k → ∞. We show that
the inequality f (x) ≤ 0 does not admit any usual global error bound. Suppose on the
contrary that there exists τ > 0 such that

xk = d(xk, S) ≤ τ [ f (xk)]+ = τ xmk for all k ∈ N.

Since xk > 0, one has 1 ≤ τ xm−1
k for all k ∈ N. Letting xk → 0 as k → ∞, we get a

contradiction. Thus, Proposition 2 (ii) of [40] cannot be applied in this case.
Now, let F = [0, 1]. Next, we can take τ = 1 to get

TF (x, S) = −x = [ f (x)]+, ∀x ∈ CF := domTF (·, S) = (−∞, 0].

Therefore, f (x) ≤ 0 has a generalized global error bound with respect to F .
Then, Theorem 4.4 tells us that (20) holds. Indeed, by direct computations, one has
∂[ f ]+(x) = {−1} for all x ∈ (−∞, 0) = CF \ S. This implies that

γ := inf{σF (−x∗) | x∗ ∈ ∂[ f ]+(x), x ∈ CF \ S} = 1 > 0,

i.e., (20) is satisfied.

Remark 4.8 In the above example, we can say that f has a global error bound in the
left direction of the solution set.

5 Conclusions

In this paper, we have provided a sufficient condition for a set-valued map, acting
from one closed subset of a Banach space to itself, to have an invariant point. We
have also shown that this result is equivalent to an ordering principle. The obtained
results can be applied to derive sufficient conditions for the existence of solutions to
various optimization-related problems. Another direction of the application is related
to necessary and sufficient conditions for the existence of a new type of global error
bounds.
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