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Abstract
Our aim in this article is to study the class of so-called ρ−paraconvex multifunc-
tions from a Banach space X into the subsets of another Banach space Y . These
multifunctions are defined in relation with a modulus function ρ : X → [0,+∞) sat-
isfying some suitable conditions. This class of multifunctions generalizes the class of
γ−paraconvex multifunctions with γ > 1 introduced and studied by Rolewicz, in the
eighties and subsequently studied by A. Jourani and some others authors. We establish
some regular properties of graphical tangent and normal cones to paraconvex multi-
functions between Banach spaces as well as a sum rule for coderivatives for such class
of multifunctions. The use of subdifferential properties of the lower semicontinuous
envelope function of the distance function associated to a multifunction established in
the present paper plays a key role in this study.
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1 Introduction and Preliminaries

Because of the importance of convexity, both from a theoretical point of view, but also
for the role it plays in certain applications, many efforts have been made in recent
decades to extend the notion of convexity. This work dedicated to Franco Giannessi
gives us the opportunity to quote one of his remarks concerning generalizations of
convexity, a quote given in his book [14, page 127]:

“[...] in the last three decades there has been an impressive growth of definitions of
generalized convexity, both for sets and functions. The way of obtaining them is very
simple: if we remove one of the many properties enjoyed by convexity, or we extend
one of the terms of the definition, then we obtain a generalized concept; now, the
same can be done with the concept just obtained, and so on in a practically endless
process. Some of such generalizations are of fundamental importance; unfortunately,
many generalizations look like mere formal mathematics without any motivation and
contribute to drive mathematics away from the real world. Neglecting the fact that
definition is the cornerstone of mathematics and hence is the most difficult task, new
generalized concepts of convexity sprout like mushrooms (even 30 meaningless gener-
alizations of convexity can be found in a same recent paper! while E. De Giorgi, in his
entire mathematical life, gave only one concept: (p,q)-convexity; and G. Stampacchia
dealt with coerciveness ; both such extensions of convexity have been introduced and
used under strong motivations”.

The problem addressed in this paper belongs to the study of variational properties
of paraconvex multifunctions between Banach spaces. The concept of paraconvexity
of functions or multifunctions traces back to the work by S. Rolewicz [35–40] and
later has been the object of contributions by Jourani [18,19], Ngai and Penot [28] and
some others.

Historically, traces of paraconvexity can be found in the notion of (p, q)−convexity
defined by De Giorgi-Marino-Tosques ( [10], see also [11]) and has been used in the
study of evolution equations as well as in some problems related to the calculus of
variations. Notions of paraconvexity are also found in Mifflin’s semiconvexity [22],
in Cannarsa and Sinestrari [6] (Semi-convex functions ), in Janin [17] (PC functions),
in Mazure and Volle [21] (A-convexity), in Spingarn [41] and Rockafellar [33] (lower
C1 and lower C2 functions), or in the definition of weak convexity by Vial [45]. A
common feature of the above-mentioned classes of functions is that each of them
preserves more or less interesting geometrical/analytic properties of convexity. Also,
as mentioned, for instance, by Daniidilis and Malick [9], in Hilbert spaces, when f
is locally Lipschitz, weakly convexity, lower C2 and ρ-paraconvexity (for ρ(x) =
1
2‖x‖2) are equivalent. This fact is highlighted by the numerous applications of this
particular class of functions in optimization, but also in areas such that statistical
learning and signal processing. We refer for details to the recent article of Davis and
Drusvyatskiy.1

Another motivation for considering such classes of nonsmooth functions possess-
ing nice variational properties is the point of view of the theory of subdifferentiability.

1 Subgradient methods under weak convexity and tame geometry, SIAG/OPT (Volume 28, Number 1,
December 2020).
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In [4], the authors showed that almost every 1−Lipschitz function defined on a Banach
space has a Clarke subdifferential identically equal to the dual ball. For such func-
tions, the subgradient (Clarke) gives no significant information. Therefore, the task of
considering special classes of nonsmooth functions which establish regular properties
of subdifferentials plays an important role in variational analysis and applications.

In the works by Rolewicz and the other authors mentioned above, some nice proper-
ties on subdifferentials and on generic differentiation of paraconvex functions, as well
as some properties of openness, Lipschitzness, metric regularity and error bound of
paraconvex multifunctions have been established. This article can be considered as a
continuation of these previous works concerning paraconvex multifunctions between
Banach spaces. Here, we consider in a unified way paraconvexity with respect to a
modulus function satisfying some suitable conditions. Namely, the main results estab-
lished in this article concern:

• The regularity of graphical tangent and normal cones to paraconvexmultifunctions
between Banach spaces;

• Some calculus for subgradients of the lower semicontinuous envelope function of
the distance function associated to a multifunction. This allows to characterize the
paraconvexity via the paramonotonicity;

• A sum rule for coderivatives of paraconvex multifunctions.

We conclude the study by stating some open problems.

1.1 Tools fromVariational Analysis

Variational analysis being instrumental in this study, let us briefly gather some of its
basics. They can be found for example in [7,23,32,34,44] and will be used throughout
the paper.

Throughout we assume that X is a Banach space with norm ‖ · ‖. We denote by X∗
the topological dual of X , and we assume that X and X∗ are paired by 〈·, ·〉. We use
BX , for the closed unit ball in X and B(x, δ),B[x, δ] for the, respectively, open and
closed balls centered at x with radius δ > 0. Given a subset S of X , we note cl (S) and
Int(S) the closure and the interior of S, respectively. We use the notation F : X ⇒ Y
to mean a multifunction from X to Y , that is, for every x ∈ X , F(x) is a subset
(possibly empty) of Y . The graph of F is gph F := {(x, y) ∈ X × Y : y ∈ F(x)}
and Dom F = {x ∈ X : F(x) 	= ∅} is the effective domain of F . We say that F is
closed-graph (or simply closed) whenever gph F is closed with respect to the product
topology on X × Y .

Definition 1.1 (Tangent cones) Let C be a nonempty subset of X and fix x ∈ C .
The contingent (or Bouligand) tangent cone to C at x is the set

T −
C (x) := {

u ∈ X : ∃ sequences (un) ⊆ X , un → u, tn → 0+, x + tnun ∈ C, ∀n ∈ N
}
.

The Clarke tangent cone to C at x is the set

T ↑
C (x) := {

u ∈ X : ∀(xn) → x, with xn ∈ C, ∀(tn) → 0+, ∃(un) → u, xn + tnun ∈ C
}
.
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Definition 1.2 (Normal cones) The Bouligand normal cone to C to x ∈ C is the set

N−
C (x) := {

x∗ ∈ X∗ : 〈x∗, u〉 ≤ 0, ∀u ∈ T −
C (x)

} ;

The Clarke normal cone to C at x is the set

N↑
C (x) :=

{
x∗ ∈ X∗ : 〈x∗, u〉 ≤ 0, ∀u ∈ T ↑

C (x)
}

.

If f : X → R ∪ {+∞} is an extended-real-valued function, its effective domain is
the set Dom f := {x ∈ X : f (x) < +∞}. We use the notation y −→

f
x (respectively,

y −→
C

x ) to mean y → x and f (y) → f (x), (respectively, y → x and y ∈ C).

Definition 1.3 (Directional derivatives) The (lower) Hadamard directional derivative
(or contingent derivative) of f at x ∈ Dom f in the direction v is

f −(x, v) := lim inf
(t,u)→(0+,v)

f (x + tv) − f (x)

t
, v ∈ X .

The Rockafellar generalized directional derivative of f at x ∈ Dom f in the direction
v is

f ↑(x, v) := lim
ε→0+ lim sup

y−→
f

x,t→0+
inf

w∈v+εBX

f (y + tw) − f (y)

t
.

Definition 1.4 (Subdifferentials) The Hadamard-subdifferential of f at x ∈ Dom f
is

∂− f (x) := {x∗ ∈ X∗ : 〈x∗, v〉 ≤ f −(x, v), ∀v ∈ X}.

The Clarke subdifferential of f at x ∈ Dom f is

∂↑ f (x) := {x∗ ∈ X∗ : 〈x∗, v〉 ≤ f ↑(x, v), ∀v ∈ X}.

The Fréchet subdifferential ∂̂ f (x) of f at x ∈ Dom f is defined as

∂̂ f (x) :=
{

x∗ ∈ X∗ : lim inf
h→0

f (x + h) − f (x) − 〈x∗, h〉
‖h‖ ≥ 0

}

and ∂̂ f (x) := ∅ if f (x) = +∞.

Note that the subdifferentials operators ∂−, ∂↑ can be represented geometrically as
follows:

∂− f (x) = {x∗ ∈ X∗ : (x∗,−1) ∈ N−
epi f (x, f (x))},
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and

∂↑ f (x) = {x∗ ∈ X∗ : (x∗,−1) ∈ N↑
epi f (x, f (x))},

where epi f denotes the epigraph of f :

epi f := {(x, α) ∈ X × R : f (x) ≤ α}.

Conversely, the Bouligand and Clarke normal cones to a subset C ⊆ X (at x ∈ C)
may be represented as the respective subdifferentials of the indicator function δC of
C :

N−
C (x) = ∂−δC (x), N↑

C (x) = ∂↑δC (x),

where

δC (x) :=
{
0 if x ∈ C
+∞ otherwise.

The Clarke subdifferential enjoys a sum rule (see [7, Theo. 2.9.8]):

∂↑( f1 + f2)(x) ⊆ ∂↑ f1(x) + ∂↑ f2(x), (1)

provided f1 is lower semicontinuous and f2 is locally Lipschitz around x .

The Fréchet normal cone to a subset C ⊆ X at some point x ∈ C is defined as

N̂C (x) := ∂̂δC (x) =
{

x∗ ∈ X∗ : lim sup
z→C x

〈x∗, z − x〉
‖z − x‖ ≤ 0

}
.

The following inclusions hold:

T −
C (x) ⊇ T ↑

C (x), and N̂C (x) ⊆ N−
C (x) ⊆ N↑

C (x).

When X is Asplund, i.e., when every continuous convex function defined on X is
generically Fréchet differentiable, the Fréchet subdifferential enjoys a fuzzy sum rule
( [13], see also [23]): For any ε > 0, for x ∈ Dom f1 ∩ Dom f2, provided f1, f2 are
lower semicontinuous and one of them is locally Lipschitz around x , one has

∂̂( f1 + f2)(x)

⊆
⋃{

∂̂ f1(x1) + ∂̂ f2(x2) + εBX∗ : (xi , f (xi )) ∈ B((x, f (x)), ε), i = 1, 2
}

.

(2)

Let X , Y beBanach spaces. Throughout,when considering the cartesian product X×Y ,
unless otherwise stated, we suppose it endowed with the max-norm:

‖(x, y)‖ = max{‖x‖, ‖y‖}, (x, y) ∈ X × Y .
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For a multifunction F : X ⇒ Y , the naming coderivative of F at a point (x, y) ∈
gph F, refers to a multifunction (DF∗)!(x, y) : Y ∗ ⇒ X∗ and defined as

(DF∗)!(x, y)(y∗) :=
{

x∗ : (x∗,−y∗) ∈ N !
gph F (x, y)

}
, y∗ ∈ Y ∗,

for every (x, y) ∈ gph F . The symbol "!" means that the coderivative of F is related
either to the lower Hadamard or the Clarke, or the Fréchet normal cone.

2 Paraconvexity of Functions andMultifunctions

We start by introducing a notion of modulus function.

Definition 2.1 (Modulus function) Let X , Y be Banach spaces. We say that a function
ρ : X → R+ := [0,+∞) is a modulus function if it verifies the following properties:

(C1) ρ is a continuous convex function on X ;
(C2) ρ(0) = 0, and the function ρ is even, i.e., ρ(−x) = ρ(x), for all x ∈ X;
(C3) lim‖x‖→0

ρ(x)
‖x‖ = 0.

Definition 2.2 An extended-real-valued function f : X → R ∪ {+∞} is called
ρ−paraconvex if there exists a nonnegative constant κ such that for all x1, x2 ∈ X ,
and all t ∈ [0, 1], one has

f (t x1 + (1 − t)x2) ≤ t f (x1) + (1 − t) f (x2) + κt(1 − t)ρ(x1 − x2). (3)

This definition subsumes known concepts of convexity, depending on the prescribed
modulus function:

• When ρ(x) = ‖x‖2 the notion was introduced by Rolewicz [38] ; it is also known
under the name of weakly convex function investigated by [3,45]

• When ρ in the form ρ(·) = ‖ · ‖η(·) with η(x) → 0 as x → 0, one retrieves the
concept of semiconvexity introduced by Alberti, Ambrosio and Cannarsa [1],

Definition 2.3 A multifunction F : X ⇒ Y between two Banach spaces X and Y
is called ρ-paraconvex if there exists a nonnegative constant κ such that for all
x1, x2 ∈ X , and all t ∈ [0, 1], one has

t F(x1) + (1 − t)F(x2) ⊆ F(t x1 + (1 − t)x2) + κt(1 − t)ρ(x1 − x2)BY . (4)

Taking ρ(x) = ε‖x‖γ , γ > 1, we recover the γ -paraconvexity in the sense of
Rolewicz [35]. Obviously if a function f : X → R ∪ {+∞} is ρ-paraconvex for
a modulus function ρ verifying (C1) − (C3), then it is approximately convex at all
point x ∈ Dom f , in the sense introduced and studied by Ngai-Luc-Théra [25], then
in [26,27,31].
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Consider m functions fi : X → R∪{+∞}, i = 1, ..., m, for some m ∈ N∗.Define
the multifunction F : X → R

m by

F(x) = 
m
i=1[ fi (x),+∞), x ∈ X . (5)

The following proposition shows the equivalence between the paraconvexity of the
functions fi , i = 1, ..., m, and the one of the multifunction F . The proof is straight-
forward from the definition.

Proposition 2.1 Let X be a Banach space. Let given a modulus function ρ : X → R+
and m extended-real-valued functions fi : X → R ∪ {+∞}, i = 1, ..., m, and the
multifunction F defined by (5). If all fi , i = 1, ..., m are ρ-paraconvex functions,
then F is a ρ-paraconvex multifunction. The converse holds provided all Dom fi

(i = 1, ..., m) are equal.

This following folklore lemma is an approximate Jensen inequality (inclusion) for
paraconvex functions (resp. multifunctions). Its proof is standard by induction simi-
larly to the convex case that we leave it for the reader.

Lemma 2.1 (Approximate Jensen’s inequality) Let ρ : X → R+ be a modulus func-
tion verifying (C1) − (C2).

(i) Let f : X → R ∪ {+∞} be a ρ-paraconvex function with respect to some κ > 0
as in Definition 2.2. Then for any k ∈ N∗, x1, ..., xk ∈ X , λi ≥ 0, i = 1, ..., k
with

∑k
i=1 λi = 1, one has

f

(
k∑

i=1

λi xi

)

≤
k∑

i=1

λi f (xi ) + κ

k∑

i=1

λi (1 − λi ) max
1≤ j≤k

ρ(x j − xi ). (6)

(ii) Let F : X ⇒ Y be a ρ-paraconvex multifunction with respect to some κ > 0 as
in Definition 2.3. Then for any k ∈ N∗, x1, ..., xk ∈ X , λi ≥ 0, i = 1, ..., k with∑k

i=1 λi = 1, one has

k∑

i=1

λi F(xi ) ⊆ F

(
k∑

i=1

λi xi

)

+ κ

[
k∑

i=1

λi (1 − λi ) max
1≤ j≤k

ρ(x j − xi )

]

BY .

(7)

Given a multifunction F : X ⇒ Y , we consider the distance function dF : X × Y →
R ∪ {+∞} defined by

dF (x, y) := d(y, F(x)) = inf{‖y − z‖ : z ∈ F(x)}, (x, y) ∈ X × Y ,

with the convention d(y,∅) = +∞. This distance function has been studied and used
in the literature, e.g., byThibault [42], Bounkhel-Thibault [5] andMordukhovich-Nam
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[24]. Except when Y is finite dimensional, dF is not lower semicontinuous, even if F
is a closed multifunction (i.e., the graph of F is closed in the product space X × Y ).
We will use the lower semicontinuous envelope ϕF : X × Y → R∪ {+∞} of dF and
defined as follows:

ϕF (x, y) := lim inf
(u,v)→(x,y)

dF (u, v) = lim inf
u→x

dF (u, y), (x, y) ∈ X × Y .

This function ϕF played a key role in the study of metric regularity and implicit
multifunction theorems (e.g., see [20,29,30] and the references given therein).

The relationships between the paraconvexity of a multifunction F : X ⇒ Y , the
associated distance function dF and its lower semicontinuous envelopeϕF are stated in
the following proposition. Note that the equivalence between (i) and (i i) for γ−para-
convex multifunctions for γ > 0, was given in [18].

Proposition 2.2 Let X and Y be Banach spaces and suppose that F : X ⇒ Y is
a multifunction and ρ : X → R is a modulus function verifying (C1) − (C2). Let
consider the three following statements:

(i) F is a ρ-paraconvex multifunction;
(ii) dF is a ρ-paraconvex function;

(iii) ϕF is a ρ-paraconvex function.

Then, one has (i) ⇔ (i i) ⇒ (i i i). Moreover, if Y is a reflexive space, then the three
statements are equivalent.

Proof For (i) ⇒ (i i), suppose that the multifunction F is ρ-paraconvex with respect
to some κ > 0. Given (x1, y1), (x2, y2) ∈ X × Y , t ∈ [0, 1], we need to show that

dF (t(x1, y1)+(1−t)(x2, y2)) ≤ tdF (x1, y1)+(1−t)dF (x2, y2)+κt(1−t)ρ(x1−x2).
(8)

Obviously, (8) holds trivially when F(x1) or F(x2) is an empty set. Hence, we suppose
that F(x1) 	= ∅, F(x2) 	= ∅. Then, picking sequences (zk) with zk ∈ F(x1) and (vk)

with vk ∈ F(x2) such that

lim
k→∞ ‖y1 − zk‖ = dF (x1, y1), lim

k→∞ ‖y2 − vk‖ = dF (x2, y2),

and using the ρ-paraconvex of F, for each k ∈ N, there exists wk such that

wk ∈ F(t x1 + (1 − t)x2) and ‖t zk + (1 − t)vk − wk‖ ≤ κt(1 − t)ρ(x1 − x2).

Hence,

dF (t(x1, y1) + (1 − t)(x2, y2)) ≤ ‖t y1 + (1 − t)y2 − wk‖
≤ ‖t y1 + (1 − t)y2 − t zk − (1 − t)vk‖

+ ‖t zk + (1 − t)vk − wk‖
≤ t‖y1 − zk‖ + (1 − t)‖y2 − vk‖ + κt(1 − t)ρ(x1 − x2).
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By letting k → ∞ in the preceding relation, we obtain (8).
For (i i) ⇒ (i), suppose that dF is ρ-paraconvex with respect to some κ > 0.

Fix x1, x2 ∈ X , t ∈ [0, 1]. Then for any y1 ∈ F(x1), y2 ∈ F(x2), observing
that dF (xi , yi ) = 0 (i = 1, 2), by taking any real μ > κ, we may select w ∈
F(t x1 + (1 − t)x2) such that

‖t y1 + (1 − t)y2 − w‖ ≤ μt(1 − t)ρ(x1 − x2),

establishing that F is ρ-paraconvex with respect to any real μ > κ.

(i i) ⇒ (i i i). For (x1, y1), (x2, y2) ∈ Dom ϕF , for t ∈ [0, 1], picking sequences
(u1

k) and (u2
k) converging, respectively, to x1 and to x2, such that dF (u1

k, y1) →
ϕF (x1, y1) and dF (u2

k, y2) → ϕF (x2, y2), one has

dF (t(u1
k , y1) + (1 − t)(u2

k , y2)) ≤ tdF (u1
k , y1) + (1 − t)dF (u2

k , y2) + κt(1 − t)ρ(x1 − x2).

By letting k → ∞, as

ϕF (t(x1, y1) + (1 − t)(x2, y2)) ≤ lim inf
k→∞ dF (t(u1

k, y1) + (1 − t)(u2
k, y2)),

we derive

ϕF (t(x1, y1) + (1 − t)(x2, y2)) ≤ tϕF (x1, y1) + (1 − t)ϕF (x2, y2) + κt(1 − t)ρ(x1 − x2),

establishing the ρ-paraconvexity of ϕF .
Suppose now that Y is reflexive and that ϕF is ρ-paraconvex with respect to some

κ > 0. In order to prove (i i i) ⇒ (i i), it suffices to show that ϕF = dF , i.e., dF is itself
lower semicontinuous on X × Y . We may assume that ϕF (x, y) < +∞, since when
ϕF (x, y) = +∞, then as ϕF ≤ dF , dF (x, y) = +∞. Pick sequences (uk), (vk)

with uk ∈ X , limk→∞ uk = x, and vk ∈ F(uk) such that limk→∞ ‖y − vk‖ =
ϕF (x, y). This yields that (vk) is a bounded sequence, and consequently, it has a weak
convergent subsequence. Without loss of generality, assume that the whole sequence
(vk) converges weakly to v ∈ Y . By the Mazur Lemma (see [8]), we may find convex
combinations

wk =
N (k)∑

i=k

θ
(k)
i vi , where θ

(k)
i ∈ [0, 1] and

N (k)∑

i=k

θ
(k)
i = 1,

such that (wk) converges strongly to v. As ϕF is ρ-paraconvex with respect to κ > 0,
thanks to Lemma 2.1, for zk = ∑N (k)

i=k θ
(k)
i ui ,

ϕF (zk, wk) ≤
N (k)∑

i=k

θ
(k)
i ϕF (ui , vi ) + κ

N (k)∑

i=k

θ
(k)
i (1 − θ

(k)
i ) max

k≤ j≤N (k)
ρ(u j − ui )
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= κ

N (k)∑

i=k

θ
(k)
i (1 − θ

(k)
i ) max

k≤ j≤N (k)
ρ(u j − ui )

≤ κ max
k≤i, j≤N (k)

ρ(u j − ui ).

Reminding that uk → x, and ρ is continuous, the right hand of the preceding relation
tends to 0 as k → ∞ . It follows that

0 ≤ ϕF (x, v) ≤ lim inf
k→∞ ϕF (zk, wk) = 0,

and consequently, ϕF (x, v) = 0. Hence, v ∈ F(x), since gph F is closed. Finally,
since

dF (x, y) ≤ ‖y − v‖ ≤ lim
k→∞ ‖y − vk‖ = ϕF (x, y) ≤ dF (x, y),

one obtains dF (x, y) = ϕF (x, y). ��
Open problem 1 Does the equivalence between (i) and (i i i) in Proposition 2.2 holds
when the reflexivity of the image space Y fails?

3 Regularity of Graphical Tangent Cones and Normal Cones of
ParaconvexMultifunctions

As mentioned before, every ρ-paraconvex function defined on a Banach space X is
approximately convex at all points for any modulus function ρ verifying (C1)− (C3).
In view of [25, Theo. 3.6], for approximately convex functions, all the usual subdif-
ferentials in the literature coincide. In this section, we shall establish the regularity of
graphical tangent cones and normal cones to the graph of paraconvex multifunctions
between Banach spaces. The first result concerns the regularity of the Clarke graphical
tangent cone.

Proposition 3.1 Let ρ : X → R+ be a modulus function satisfying (C1) − (C3). Let
F : X ⇒ Y be a ρ-paraconvex multifunction. Then Bouligand’s and Clarke’s tangent
cones to the graph of F coincide at all (x, y) ∈ gph F : T −

gph F (x, y) = T ↑
gph F (x, y).

As a result,

N−
gph F (x, y) = N↑

gph F (x, y), for all (x, y) ∈ gph F .

Proof Given (x, y) ∈ gph F, it always holds T ↑
gph F (x, y) ⊆ T −

gph F (x, y). Hence, it

suffices to show that T −
gph F (x, y) ⊆ T ↑

gph F (x, y). Let (u, v) ∈ T −
gph F (x, y) be given.

Then, there exist sequences (tn) ↓ 0+, (un, vn) → (u, v) such that (x + tnun, y +
tnvn) ∈ gph F . Pick sequences ((xn, yn)) →gph F (x, y), and (sn) ↓ 0+, as well as a
sequence of positive reals (εn) ↓ 0, such that

max
n∈N

{sn, ‖xn − x‖, ‖yn − y‖} ≤ ε1t1.
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For each n ∈ N, define

k(n) := max {k ∈ N : max{si , ‖xi − x‖, ‖yi − y‖ : i ≥ n} ≤ εk tk} .

Then obviously (k(n)) is a non-decreasing sequence. Suppose to contrary that k(n) is
bounded above by some N0. Then,

max{si , ‖xi − x‖, ‖yi − y‖ : i ≥ n} > εN0+1tN0+1, for all n ∈ N.

This contradicts the convergence of the sequences (sn), (‖xn − x‖), and (‖yn − y‖)
to 0. Hence, lim

n→∞ k(n) = +∞. As a result,

sn

tk(n)

→ 0,
xn − x

tk(n)

→ 0, and
yn − y

tk(n)

→ 0.

Wemay assume that
sn

tk(n)

∈ (0, 1) for all n large. By using the following relations

xn + sn

(
uk(n) + x − xn

tk(n)

)
=

(
1 − sn

tk(n)

)
xn + sn

tk(n)

(x + tk(n)uk(n));

yn + sn

(
vk(n) + y − yn

tk(n)

)
=

(
1 − sn

tk(n)

)
yn + sn

tk(n)

(y + tk(n)vk(n)),

and the ρ-paraconvexity of F (with respect to κ > 0), we may select

wn ∈ F

(
xn + sn

(
uk(n) + x − xn

tk(n)

))

such that
∥∥∥∥yn + sn

(
vk(n) + y − yn

tk(n)

)
− wn

∥∥∥∥ ≤ κ
sn

tk(n)

(
1 − sn

tk(n)

)
ρ(xn − x − tk(n)uk(n)).

Thus, by setting

an := wn −
[

yn + sn

(
vk(n) + y − yn

tk(n)

)]
,

one obtains an/sn → 0 as n → ∞, due to ‖xn − x‖/tk(n) → 0, and by (C3),

lim
n→∞

1

tk(n)

ρ(xn − x − tk(n)uk(n)) = lim
n→∞

‖xn − x − tk(n)uk(n)‖
tk(n)

ρ(xn − x − tk(n)uk(n))

‖xn − x − tk(n)uk(n)‖ = 0.

Next, as

wn = yn + sn

(
vk(n) + y − yn

tk(n)

+ an

sn

)
,

123



Journal of Optimization Theory and Applications (2022) 193:180–218 191

one derives that

(
(xn + sn

(
uk(n) + x − xn

tk(n)

)
, yn + sn

(
vk(n) + y − yn

tk(n)

+ an

sn

))
∈ gph F;

(
uk(n) + x − xn

tk(n)

, vk(n) + y − yn

tk(n)

+ an

sn

)
→ (u, v),

which yields (u, v) ∈ T ↑
gph F (x, y). The proof is completed. ��

Remark 3.1 By Proposition 8.10.3 of [44], we can establish that the graph of a ρ-
paraconvexmultifunction F is subsmooth in each of its points. Taking into account this
fact, one referee pointed out that Proposition 3.1 is a consequence of this subsmooth-
ness. Nevertheless, let us note that the subsmoothness of the graph of a ρ-paraconvex
multifunction is implied from the next theorem which shows the coincidence of the
Clarke, the Bouligand and the Fréchet normal cones to the graph of a ρ-paraconvex
multifunction.

Theorem 3.1 Let X and Y be Banach spaces, F : X ⇒ Y a ρ-paraconvex multifunc-
tion with respect to κ > 0, and ρ : X → R+ satisfying (C1) − (C3). Then,

setting

N (ρ,κ)
gph F (x̄, ȳ) :=

{
(x∗, y∗) ∈ X∗ × Y ∗ :
〈x∗,x − x̄〉 + 〈y∗, y − ȳ〉 ≤ κ‖y∗‖ρ(x − x̄), ∀(x, y) ∈ gph F

}
,

(9)
it holds

N↑
gph F (x̄, ȳ) = N−

gph F (x̄, ȳ) = N̂gph F (x̄, ȳ) = N (ρ,κ)
gph F (x̄, ȳ), (10)

for all (x̄, ȳ) ∈ gph F.

Proof Obviously, N (ρ,κ)
gph F (x̄, ȳ) ⊆ N̂gph F (x̄, ȳ). Conversely, take (x∗, y∗) ∈ N̂gph F

(x̄, ȳ). By definition, for each ε > 0, there is δ > 0, such that

〈x∗, x − x̄〉 + 〈y∗, y − ȳ〉 ≤ ε‖(x, y) − (x̄, ȳ)‖,

for all (x, y) ∈ gph F ∩ B((x̄, ȳ), δ). Let (x, y) ∈ gph F be given. For t ∈ (0, 1), the
ρ-paraconvexity of F gives the existence of some w ∈ F(x̄ + t(x − x̄)) such that

‖ȳ + t(y − ȳ) − w‖ ≤ κt(1 − t)ρ(x − x̄).

This implies that for t > 0 sufficiently small,

(x̄ + t(x − x̄), w) ∈ gph F ∩ B((x̄, ȳ), δ),
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and therefore

t(〈x∗, x − x̄〉 + 〈y∗, y − ȳ〉)
= 〈x∗, x̄ + t(x − x̄) − x̄〉 + 〈y∗, ȳ + t(y − ȳ) − ȳ〉
= 〈x∗, x̄ + t(x − x̄) − x̄〉 + 〈y∗, w − ȳ〉 + 〈y∗, ȳ + t(y − ȳ) − w〉
≤ ε‖(x̄ + t(x − x̄), w) − (x̄, ȳ)‖ + ‖y∗‖κt(1 − t)ρ(x − x̄)

≤ tε(‖x − x̄‖ + ‖y − ȳ‖ + κ(1 − t)ρ(x − x̄)) + ‖y∗‖κt(1 − t)ρ(x − x̄).

,

Consequently,

〈x∗, x − x̄〉 + 〈y∗, y − ȳ〉
≤ ε(‖x − x̄‖ + ‖y − ȳ‖ + κ(1 − t)ρ(x − x̄)) + ‖y∗‖κρ(x − x̄).

By letting ε ↓ 0, one obtains for all (x, y) ∈ gph F,

〈x∗, x − x̄〉 + 〈y∗, y − ȳ〉 ≤ κ‖y∗‖ρ(x − x̄).

Hence, (x∗, y∗) ∈ N (ρ,κ)
gph F (x̄, ȳ). Noticing that N̂gph F (x̄, ȳ) ⊆ N−

gph F (x̄, ȳ), by virtue

of the previous Proposition 3.1, it suffices to show that N−
gph F (x̄, ȳ) ⊆ N (ρ,κ)

gph F (x̄, ȳ)

to complete the proof.
Let (x, y) ∈ gph F be given. By (C3), we can pick a sequence of positive reals

(tn) ↓ 0 such that t0 = 1, tn ∈ (0, 1) for all n ∈ N∗, and

ρ(tn+1(x − x̄))

tn+1
≤ ρ(tn(x − x̄)) − ρ(tn+1(x − x̄)), for all n ∈ N. (11)

Set x0 = x, y0 = w0, z−1 = z0 = 0, and

x1 = x̄ + t1(x − x̄), y1 = ȳ + t1(y − ȳ).

As F isρ-paraconvex, choosew1 ∈ F(x1) such that ‖y1−w1‖ ≤ κt1(1−t1)ρ(x−x0).
Setting z1 := (w1 − y1)/t1, one has

⎧
⎪⎨

⎪⎩

‖z1 − z0‖ ≤ κρ(x − x̄),

w1 = ȳ + t1(y − ȳ + z1),

y1 = ȳ + t1
t0

(w1 − ȳ) = ȳ + t1(y − ȳ + z0).

Starting from x0, y0, w0, z0 as above, we shall construct by induction sequences
(xn), (yn), (wn), (zn) with xn ∈ X , yn, wn, zn ∈ Y , such that for all n ∈ N,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xn = x̄ + tn(x − x̄),

‖zn+1 − zn‖ ≤ κ
ρ(tn(x − x̄))

tn
,

wn = ȳ + tn(y − ȳ + zn), (xn, wn) ∈ gph F,

yn = ȳ + tn(y − ȳ + zn−1).

(12)
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Indeed, suppose we have constructed xn, yn, wn, zn . Set firstly

xn+1 = x̄ + tn+1(x − x̄), yn+1 = ȳ + tn+1(y − ȳ + zn).

Then, one has

xn+1 = x̄ + tn+1

tn
(xn − x̄), yn+1 = ȳ + tn+1

tn
(wn − ȳ).

Thanks to the ρ-paraconvexity of F , we may select wn+1 ∈ F(xn+1) such that

‖yn+1 − wn+1‖ ≤ κ
tn+1

tn

(
1 − tn+1

tn

)
ρ(tn(x − x̄)).

So, by setting

zn+1 = wn+1 − ȳ − tn+1(y − ȳ)

tn+1
,

we have

wn+1 = ȳ + tn+1(y − ȳ + zn+1), zn+1 − zn = (wn+1 − yn+1)/tn+1.

Therefore,

‖zn+1 − zn‖ = ‖wn+1 − yn+1‖
tn+1

≤ κ
ρ(tn(x − x̄))

tn
.

Thus, xn+1, yn+1, wn+1, zn+1 are well defined and satisfy (12). By (11), for all n, m ∈
N, with n < m, one has

‖zn − zm‖ ≤
m−1∑

j=n

‖z j+1 − z j‖ ≤ ρ(tn(x − x̄)) − ρ(tm(x − x̄)).

From the last inequality, we deduce that (zn) is a Cauchy sequence which converges
to some z ∈ Y . Then, one has

‖z‖ ≤
∞∑

j=0

‖z j+1 − z j‖ ≤
∞∑

j=0

ρ(t j (x − x̄))

t j
≤ κρ(x − x̄).

By construction, one has (x − x̄, y − ȳ + z) ∈ T −
gph F (x̄, ȳ). Hence, for all (x∗, y∗) ∈

N−
gph F (x̄, ȳ),

〈x∗, x − x̄〉 + 〈y∗, y − ȳ + z〉 ≤ 0,
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which yields

〈x∗, x − x̄〉 + 〈y∗, y − ȳ〉 ≤ ‖y∗‖κρ(x − x̄), ∀(x, y) ∈ gph F,

and (x∗, y∗) ∈ N (ρ,κ)
gph F (x̄, ȳ). The proof is completed. ��

Remark 3.2 One referee pointed out that this theorem can be recovered via the
ρ−convexity of the function ϕF as in Proposition 2.2, by using the descriptions of
N↑
gph F (x̄, ȳ) and N̂gph F (x̄, ȳ) in Theorems Theorems 4.1(i) and 4.2(i).

4 Subdifferentials of the Lower Semicontinuous Envelope of the
Distance Function Associated to aMultifunction

Our aim in this section is to establish some calculus rules for Fréchet and Clarke sub-
differentials of the lower semicontinuous envelope of the distance function associated
to a multifunction in terms of the respective normal cones to their graphs. Consider
now a multifunction F : X ⇒ Y between Banach spaces X , Y , and the lower semi-
continuous envelope of the associated distance function:

ϕ(x, y) := ϕF (x, y) = lim inf
u→x

d(y, F(u)), (x, y) ∈ X × Y .

The following observation is immediate from the definition.

Observation 1 Given a multifunction F : X ⇒ Y , let us note by F the graphical
closure of F, i.e., gph F = cl(gph F). For (x̄, ȳ) ∈ X × Y , one has

(i) ϕ(x̄, ȳ) = 0 ⇐⇒ (x̄, ȳ) ∈ gph F . In particular, when F is closed, then

ϕ(x̄, ȳ) = 0 ⇐⇒ (x̄, ȳ) ∈ gph F;

(ii) ϕF (x, y) = ϕF (x, y), for all (x, y) ∈ X × Y ;
(iii) For (x̄, ȳ) ∈ gph F, ∂̂ϕ(x̄, ȳ) = ∂̂dF (x̄, ȳ).

The first theorem concerns the Fréchet subdifferential. Note that the part (i) of The-
orem 4.1 could be derived. directly from [43, Prop. 4.1] and Observation 1-(i i i). For
the reader’s convenience, we give a direct proof.

Theorem 4.1 Let F : X ⇒ Y be a multifunction between Banach spaces X , Y . For
(x̄, ȳ) ∈ Dom ϕ, one has

(i) If (x̄, ȳ) ∈ gph F then

∂̂ϕ(x̄, ȳ) =
{
(x∗, y∗) ∈ X∗ × Y ∗ : (x∗, y∗) ∈ N̂gph F (x̄, ȳ), ‖y∗‖ ≤ 1

}
.

(13)
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(ii) Suppose that X and Y are Asplund spaces and F is closed. If (x̄, ȳ) /∈ gph F then

ˆ∂ϕ(x̄, ȳ) ⊆

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(x∗, y∗) ∈ X∗ × Y ∗ :

∀(xn) → x̄, ∀(yn), (xn, yn) ∈ gph F;
(‖ȳ − yn‖) → ϕ(x̄, ȳ), ∃(un, vn) ∈ gph F,

(u∗
n, v∗

n ) ∈ N̂gph F (un, vn);
‖(un, vn) − (xn, yn)‖ → 0;
‖u∗

n − x∗‖ → 0; ‖v∗
n − y∗‖ → 0; ‖y∗‖ = 1

|〈y∗, ȳ − vn〉 − ‖ȳ − vn‖| → 0

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

(14)

Moreover, if F is ρ-paraconvex for some modulus function ρ : X → R+ satisfying
(C1) − (C3), then we have equality.

Proof (i). Assume (x̄, ȳ) ∈ gph F, then ϕ(x̄, ȳ) = 0. For (x∗, y∗) ∈ ˆ∂ϕ(x̄, ȳ), for
any ε > 0, there is δ > 0 such that

〈(x∗, y∗), (x, y) − (x̄, ȳ)〉 ≤ ϕ(x, y) + ε‖(x, y) − (x̄, ȳ)‖,

for all (x, y) ∈ (x̄, ȳ) + δBX×Y . Thus

〈(x∗, y∗), (x, y) − (x̄, ȳ)〉 ≤ ε‖(x, y) − (x̄, ȳ)‖,

for all (x, y) ∈ ((x̄, ȳ) + δBX×Y ) ∩ gph F . This shows that (x∗, y∗) ∈ N̂gph F (x̄, ȳ).

Moreover, since 〈y∗, y − ȳ〉 ≤ d(y, F(x̄)) + ε‖y − ȳ‖ ≤ (1 + ε)‖y − ȳ‖ for all
y ∈ ȳ + δBY , this implies that ‖y∗‖ ≤ 1. Conversely, for (x∗, y∗) ∈ N̂gph F (x̄, ȳ),

with ‖y∗‖ ≤ 1, then for any ε ∈ (0, 1), there is δ ∈ (0, ε) such that

〈(x∗, y∗), (x, y) − (x̄, ȳ)〉 ≤ ε‖(x, y) − (x̄, ȳ)‖, (15)

for all (x, y) ∈ ((x̄, ȳ) + δBX×Y ) ∩ gph F . Pick η > 0 such that

η ∈ (0, δ/4) and (‖x∗‖ + ‖y∗‖)η < δ/2. (16)

Let (x, y) ∈ B((x̄, ȳ), η) with (x, y) 	= (x̄, ȳ) be given arbitrarily. If ϕ(x, y) ≥ δ/2
then

〈(x∗, y∗), (x, y) − (x̄, ȳ)〉 ≤ (‖x∗‖ + ‖y∗‖)η < δ/2 ≤ ϕ(x, y), (17)

otherwise, pick sequences (δn) ↓ 0, δn ∈ (0, η); (un) ∈ B(x, δn) and (vn) with
(un, vn) ∈ gph F such that

‖y − vn‖ ≤ ϕ(x, y) + δn‖(x, y) − (x̄, ȳ)‖. (18)

If ϕ(x, y) > (‖x∗‖ + ‖y∗‖)‖(x, y) − (x̄, ȳ)‖, then

〈(x∗, y∗), (x, y) − (x̄, ȳ)〉 ≤ ‖(x∗, y∗)‖‖(x, y) − (x̄, ȳ)‖ < ϕ(x, y), (19)
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otherwise, as ϕ(x, y) < δ/2,

‖vn − ȳ‖ < ‖y − vn‖ + ‖y − ȳ‖ ≤ ϕ(x, y) + δn‖(x, y) − (x̄, ȳ)‖ + ‖y − ȳ‖
< δ/2 + (δn + 1)η < δ.

So, (un, vn) ∈ B((x̄, ȳ), δ), and therefore by (15),

〈(x∗, y∗), (un, vn) − (x̄, ȳ)〉 ≤ ε‖(un, vn) − (x̄, ȳ)‖.

Hence, one obtains the following estimates, by ‖y∗‖ ≤ 1; un ∈ B(x, δn); relation
(18), and ϕ(x, y) ≤ (‖x∗‖ + ‖y∗‖)‖(x, y) − (x̄, ȳ)‖,

〈(x∗, y∗), (x, y) − (x̄, ȳ)〉
= 〈(x∗, y∗), (un, vn) − (x̄, ȳ)〉 + 〈x∗, x − un〉 + 〈y∗, y − vn〉
≤ ε‖(un, vn) − (x̄, ȳ)‖ + ‖x∗‖δn + ‖y − vn‖
≤ (ε + ‖x∗‖)δn + ‖y − vn‖ + ε(‖(x, y) − (x̄, ȳ)‖ + ‖y − vn‖)
≤ (ε + ‖x∗‖)δn + ϕ(x, y) + δn‖(x, y) − (x̄, ȳ)‖

+ ε(1 + ‖x∗‖ + ‖y∗‖ + δn)‖(x, y) − (x̄, ȳ)‖.

By letting n → ∞, one obtains

〈(x∗, y∗), (x, y) − (x̄, ȳ)〉 ≤ ϕ(x, y) + ε(1 + ‖x∗‖ + ‖y∗‖)‖(x, y) − (x̄, ȳ)‖.

This relation, together with (17) and (19), and the fact that ε > 0 is arbitrary, yield
(x∗, y∗) ∈ ∂̂ϕ(x̄, ȳ), which completes the proof of (i).

(i i). Let (x̄, ȳ) /∈ gph F, and (x∗, y∗) ∈ ∂̂ϕ(x̄, ȳ) be given. Let sequences (xn) →
x̄ , (yn), such that (xn, yn) ∈ gph F for all n ∈ N and ‖ȳ − yn‖ → ϕ(x̄, ȳ). Picking
a sequence (εn) ↓ 0, with εn ∈ (0, 1) for all n, then there is a sequence (δn) ↓ 0,
δn ∈ (0, 1), such that

〈(x∗, y∗), (x, y) − (x̄, ȳ)〉 ≤ ϕ(x, y) − ϕ(x̄, ȳ) + εn‖(x, y) − (x̄, ȳ)‖, (20)

for all (x, y) ∈ (x̄, ȳ) + δnBX×Y . For each n ∈ N, set

k(n) := max

{
k ∈ N : max

i≥n

{‖xi − x̄‖, ‖ȳ − yi‖ − ϕ(x̄, ȳ)
} ≤ δ2k /8

}
.

Proceeding similarly to the proof of Proposition 3.1 (k(n)) is a non-decreasing and
unbounded sequence. Using (20), one derives that for all (x, y) ∈ (x̄, ȳ)+ δk(n)BX×Y

and every integer,

〈(x∗, y∗), (x, y)− (x̄, ȳ)〉 ≤ ‖y −v‖+δgph F (x, v)−‖ȳ − yn‖+δ2k(n)/8+εk(n)δk(n).

(21)
Define the function g : X × Y × Y → R ∪ {+∞} by

g(x, y, v) = ‖y − v‖ + δgph F (x, v) − 〈(x∗, y∗), (x, y)〉, (x, y, v) ∈ X × Y × Y .
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Relation (21) implies

g(xn, ȳ, yn) ≤ inf{g(x, y, v) : (x, y) ∈ (x̄, ȳ) + δk(n)BX×Y , (x, v) ∈ gph F} + αn,

where, αn = (1+‖x∗‖)δ2k(n)/8+εk(n)δk(n). Setting βn := (1+‖x∗‖)δk(n)/2+4εk(n)

and applying the Ekeland Variational Principle [12], take (an, b̄n, bn) ∈ (xn, ȳ, yn) +
(δk(n)/4)BX×Y×Y with (an, bn) ∈ gph F, such that

g(an, b̄n, bn) ≤ g(x, y, v) + βn‖(x, y, v) − (an, b̄n, bn))‖,

for all (x, y) ∈ (x̄, ȳ) + δk(n)BX×Y , with (x, v) ∈ gph F . Consequently,

(0, 0, 0) ∈ ∂̂[g + βn‖ · −(an, b̄n, bn))‖](an, b̄n, bn).

In view of the fuzzy sum rule ( [13]), there exist

(un, vn) ∈ gph F ∩ ((an, bn) + (δk(n)/4)BX×Y ); (u∗
n, v∗

n) ∈ N̂gph F (un, vn);
(zn, wn) ∈ (b̄n, bn) + (δk(n)/4)BX×Y ; (z∗

n, w
∗
n) ∈ ∂̂‖ · − · ‖(zn, wn)

such that
‖(x∗, y∗, 0) − (0, z∗

n, w∗
n) − (u∗

n, 0, v∗
n)‖ ≤ 2βn . (22)

As,

‖(un, vn) − (an, bn)‖ ≤ δk(n)/4 and ‖(an, bn) − (xn, yn)‖ ≤ δk(n)/4,

one has ‖(un, vn) − (xn, yn)‖ → 0, as n → ∞. On one hand, inequality (22), yields

‖u∗
n − x∗‖ → 0, ‖z∗

n − y∗‖ → 0, and ‖w∗
n + v∗

n‖ → 0.

On the other hand, we know that (x̄, ȳ) /∈ gph F , (xn, yn) ∈ gph F , xn → x̄, zn → ȳ.

Suppose by contradiction that for large n, (n ≥ n0), wn ≡ zn . Then wn → ȳ and also
yn → ȳ. Thus, (xn, yn) ∈ gph F → (x̄, ȳ). Hence, (x̄, ȳ) ∈ gph F , a contradiction.
Therefore, for n ≥ n0,wn 	= zn . Thus, from the relation (z∗

n, w∗
n) ∈ ∂̂‖ ·− ·‖(zn, wn),

it follows that ‖z∗
n‖ = 1, w∗

n = −z∗
n, and 〈z∗

n, zn − wn〉 = ‖zn − wn‖. Thus, as
w∗

n = −z∗
n , ‖w∗

n + v∗
n‖ → 0 and z∗

n → y∗, it yields ‖v∗
n − y∗‖ → 0. Moreover, since

zn → ȳ, ‖wn − vn‖ → 0, and ‖z∗
n − y∗‖ → 0, one obtains

|〈y∗, ȳ − vn〉 − ‖ȳ − vn‖| → 0 and ‖y∗‖ = 1.

Hence, (14) is shown.
Suppose now F is ρ-paraconvex with respect to some κ > 0, for some function

ρ verifying (C1) − (C3). Let (x∗, y∗) be in the set of the right side of (14). Since
(u∗

n, v∗
n) ∈ N̂gph F (un, vn), thanks to Theorem 3.1, one has

〈(u∗
n, v∗

n), (u, v) − (un, vn)〉 ≤ κρ(u − un), (23)
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for all (u, v) ∈ gph F . For (x, y) ∈ Dom ϕ, there are sequence (zn) → x, (wn) with
wn ∈ F(zn), such that ‖y − wn‖ → ϕ(x, y). One has

〈(x∗, y∗), (x, y) − (x̄, ȳ)〉
= 〈x∗, x − zn + un − x̄〉 + 〈(x∗, y∗), (zn, wn) − (un, vn)〉

+ 〈y∗, y − wn〉 − 〈y∗, ȳ − vn〉
≤ 〈x∗, x − zn + un − x̄〉 + κρ(zn − un) + ‖y − wn‖ − 〈y∗, ȳ − vn〉.

By letting n → ∞, as (un) → x̄; (zn) → x; ‖y−wn‖ → ϕ(x, y), and 〈y∗, ȳ−vn〉 →
ϕ(x̄, ȳ), one obtains

〈(x∗, y∗), (x, y) − (x̄, ȳ)〉 ≤ ϕ(x, y) − ϕ(x̄, ȳ) + κρ(x − x̄),

showing (x∗, y∗) ∈ ˆ∂ϕ(x̄, ȳ). The proof ends. ��
The preceding theorem yields the following corollary.

Corollary 4.1 Suppose that X and Y are Asplund spaces and that F is a closed multi-
function. Given (x̄, ȳ) /∈ gph F, assume that the projection PF(x̄)(ȳ) of ȳ onto F(x̄)

is nonempty, and that ϕ(x̄, ȳ) = d(ȳ, F(x̄)). Then for any v̄ ∈ PF(x̄)(ȳ), one has

ˆ∂ϕ(x̄, ȳ) ⊆
{
(x∗, y∗) ∈ X∗ × Y ∗ : (x∗, y∗) ∈ N̂gph F (x̄, v̄); ‖y∗‖ = 1

〈y∗, ȳ − v̄〉 = d(ȳ, F(x̄))

}
.

(24)

[ Moreover, equality holds in (24) if F is ρ-paraconvex for some modulus function
ρ : X → R+ satisfying (C1) − (C3).

Proof Inclusion (24) follows directly from (14) by picking (xn) = (un) := (x̄); (yn) =
(vn) := (v̄). Next, take (x∗, y∗) in the set of the right side of (24). One has

〈(x∗, y∗), (u, v) − (x̄, v̄)〉 ≤ κρ(x − x̄), (25)

for all (u, v) ∈ gph F . For (x, y) ∈ Dom ϕ, pick (zn) → x, (wn) with wn ∈ F(zn),

such that ‖y − wn‖ → ϕ(x, y). One has

〈(x∗, y∗), (x, y) − (x̄, ȳ)〉 = 〈x∗, x − zn〉 + 〈(x∗, y∗), (zn, wn) − (x̄, v̄)〉
+〈y∗, y − wn〉 − 〈y∗, ȳ − v̄〉

≤ 〈x∗, x − zn〉 + κρ(zn − x̄) + ‖y − wn‖ − 〈y∗, ȳ − v̄〉.

By letting n → ∞, as (zn) → x , ‖y − wn‖ → ϕ(x, y), and 〈y∗, ȳ − v̄〉 =
d(ȳ, F(x̄)) = ϕ(x̄, ȳ), one obtains

〈(x∗, y∗), (x, y) − (x̄, ȳ)〉 ≤ ϕ(x, y) − ϕ(x̄, ȳ) + κρ(x − x̄),

showing that (x∗, y∗) ∈ ˆ∂ϕ(x̄, ȳ). ��
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Remark 4.1 It is important to observe that in the proof of part (i i) of Theorem 4.1,
the Asplund property of the spaces under consideration is only needed for using the
fuzzy sum rule for Fréchet subdifferentials. When F is ρ-paraconvex, according to
Theorem 3.1, gph F is Clarke regular, that is N↑

gph F (x̄, ȳ) = N̂gph F (x̄, ȳ) for all
(x̄, ȳ) ∈ gph F . Also, instead of using in the proof of the preceding theorem the fuzzy
sum rule for Fréchet subdifferentials in Asplund spaces, we may use the sum rule for
Clarke subdifferentials. Hence, wemay establish that inclusion (14) in Theorem 4.1, as
well as, (24) inCorollary 4.1, are valid for any graphicallyClarke regularmultifunction
F betweenBanach spaces X andY .Moreover, when F is ρ-paraconvex for ρ verifying
(C1) − (C3), equality in (14) and (24) holds in any Banach space.

In general Banach spaces, for establishing an estimate of the Clarke subdifferential
∂↑ϕ(x̄, ȳ) at points (x̄, ȳ) ∈ Dom ϕ, outside of the graph of F,we need the following
(graphical) norm-to-weak closedness of F :
Definition 4.1 A multifunction F : X ⇒ Y is said to be (graphically) norm-to-weak
closed at x̄ ∈ Dom F, if for any sequences (un) and (vn) with (un, vn) ∈ gph F
such that (un) → x̄, and (vn) converges weakly to some v̄, one has (x̄, v̄) ∈ gph F .

We shall say that F is norm-to-weak closed if it is norm-to-weak closed at all point
x ∈ Dom F .

Obviously, in finite dimension, graphically norm-to-weak closed property coincides
with the usual graphical closedness property. As shown in the following Lemma 4.1,
when Y is reflexive, graphical norm-to-weak closedness and graphical strong closed-
ness for paraconvex multifunctions agree.

Lemma 4.1 Let Y be a reflexive space, and let F : X ⇒ Y be a ρ-paraconvex
multifunction for ρ verifying (C1) − (C2). If F is graphically (strongly) closed, then
F is graphically norm-to-weak closed.

Proof Let x ∈ Dom F . Take sequences (un) → x, (vn) with (un, vn) ∈ gph F
and (vn) converging weakly to v ∈ Y . By the Mazur Lemma, we may find convex
combinations

wn =
N (n)∑

k=n

θ
(n)
k vk, where θ

(n)
k ∈ [0, 1] and

N (n)∑

k=n

θ
(n)
k = 1,

such that (wn) converges strongly to v. As F is ρ-paraconvex, thanks to Lemma 2.1,
forzk = ∑N (k)

i=k θ
(k)
i ui , there is yn ∈ F(zn) such that

‖yn − wn‖ ≤ κ
∑N (n)

k=n θ
(n)
k (1 − θ

(n)
k )maxn≤ j≤N (n) ρ(u j − uk)

≤ κ maxn≤i, j≤N (n) ρ(u j − ui ).

Since un → x, (wn) → v, ρ is continuous and F is (strongly) closed, then (yn) → v,

and one obtains that v ∈ F(x). ��
Lemma 4.2 Let Y be reflexive and F : X ⇒ Y be a norm-to-weak closed multifunction
at x̄ ∈ Dom F. Then, PF(x̄)(y) 	= ∅ and ϕ(x̄, y) = d(y, F(x̄)) for all y ∈ Y .
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Proof For y ∈ Y , pick sequences (un) → x̄ and (vn) with (un, vn) ∈ gph F such
that ‖y − vn‖ → ϕ(x̄, y). Then, (vn) is bounded. So, since Y is reflexive, there is a
subsequence (vk(n)) converging weakly to some v̄ ∈ F(x̄) according to the norm-to
weak closedness of F . Hence,

d(y, F(x̄)) ≥ ϕ(x̄, y) = lim
n

‖y − vn‖ ≥ ‖y − v̄‖ ≥ d(y, F(x̄)).

So, v ∈ PF(x̄)(y) and ϕ(x̄, y) = d(y, F(x̄)). ��
Recall that a Banach space Y is said to have the Kadec-Klee property if the sequential
weak convergence on the unit sphere SY of Y coincides with the norm convergence.
Equivalently, whenever a sequence (xn) in X satisfies ‖xn‖ → ‖x̄‖ and xn → x̄
weakly, then lim

n→+∞ ‖xn − x̄‖ = 0. It is well known that L p -spaces (1 < p < +∞)

have the Kadec-Klee property.

Theorem 4.2 Let F : X ⇒ Y be a closed multifunction between Banach spaces X
and Y . Let (x̄, ȳ) ∈ Dom ϕ be given.

(i) For (x̄, ȳ) ∈ gph F, one has

N↑
gph F (x̄, ȳ) = clw∗

⋃

λ≥0

λ∂↑ϕ(x̄, ȳ), (26)

where the symbol clw∗ denotes the weak∗ closure.
(ii) For x̄ ∈ Dom F, (x̄, ȳ) ∈ (X × Y ) \ gph F, assume that Y is a reflexive space

with the norm on Y satisfying the Kadec-Klee property, and that F is (graphically)
norm-to-weak closed at x̄ . Then, one has

∂↑ϕ(x̄, ȳ) × {0} ⊆ clw∗co

⎧
⎨

⎩

(x∗, y∗, v∗ − y∗) ∈ X∗ × Y ∗ × Y ∗ :
v̄ ∈ PF(x̄)(ȳ), (x∗, v∗) ∈ N↑

gph F (x̄, v̄);
‖y∗‖ = 1; 〈y∗, ȳ − v̄〉 = d(ȳ, F(x̄))

⎫
⎬

⎭
,

(27)

where the notation clw∗co denotes the weak∗ closed convex hull. As a result, if
PF(x̄)(ȳ) is singleton (which holds e.g., when the norm on Y is strictly convex and
F(x̄) is convex), then

∂↑ϕ(x̄, ȳ) ⊆
{

(x∗, y∗) ∈ X∗ × Y ∗ : v̄ = PF(x̄)(ȳ), (x∗, y∗) ∈ N↑
gph F (x̄, v̄);

‖y∗‖ = 1; 〈y∗, ȳ − v̄〉 = d(ȳ, F(x̄))

}

.

(28)
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Proof (i). Define the function ψ : X × Y × Y → R ∪ {+∞} by

ψ(x, y, v) = ‖y − v‖ + δgph F (x, v), (x, y, v) ∈ X × Y × Y .

Given (u, d) ∈ X × Y , take sequences (εn) ↓ 0, (xn, yn) −→
ϕ

(x̄, ȳ), (tn) ↓ 0 such

that

ϕ↑((x̄, ȳ), (u, d)) = lim
n→∞ inf

(u′,d ′)∈(u,d)+εn BX×Y

ϕ((xn, yn) + tn(u′, d ′)) − ϕ(xn, yn)

tn
.

Pick (zn, vn) ∈ gph F such that zn − xn = tnεnan/2 with

‖an‖ ≤ 1 and ‖yn − vn‖ ≤ ϕ(xn, yn) + t2n .

Note that (vn) → ȳ since (ϕ(xn, yn)) → 0 and (yn) → ȳ, and for any (u′, d ′, w′) ∈
(u, d, w) + (εn/2)BX×Y×Y , we have

ψ(((zn, yn, vn) + tn(u′, d ′, w′))
= ‖(yn + tnd ′) − (vn + tnw

′)‖ + δgph F (zn + tnu′, vn + tnw
′)

≥ ‖(yn + tnd ′) − (vn + tnw′)‖ with vn + tnw′ ∈ F(zn + tnu′)
≥ d((yn + tnd ′), F(zn + tnu′)) ≥ ϕ(zn + tnu′, yn + tnd ′).

Combining this inequality with the fact that

ψ(xn, yn, vn) = ‖yn − vn‖ ≤ ϕ(xn, yn) + t2n ,

one has

ψ((zn, yn, vn) + tn(u′, d ′, w′)) − ψ(zn, yn, vn)

tn

≥ ϕ(xn + tn(u′ + εnan/2), yn + tnd ′) − ϕ(xn, yn)

tn
− tn . (29)

As u′ ∈ u + εn/2BX , u′ + εnan/2 ∈ u + εn BX , for all (u, d, w) ∈ X × Y × Y , (29)
yields

ψ↑((x̄, ȳ, ȳ), (u, d, w))

≥ lim supn→∞ inf(u′,d ′)∈(u,d)+(εn/2)BX×Y

ϕ(xn + tn(u′ + εnan/2), yn + tnd ′) − ϕ(xn, yn)

tn≥ ϕ↑((x̄, ȳ), (u, d)).

Hence, ∂↑ϕ(x̄, ȳ) × {0} ⊆ ∂↑ψ(x̄, ȳ, ȳ), and by the sum rule applied to the Clarke
subdifferential of ψ, one obtains

∂↑ϕ(x̄, ȳ) ⊆
{
(x∗, y∗) ∈ N↑

gph F (x̄, ȳ), ‖y∗‖ ≤ 1
}

,
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and therefore,

clw∗
⋃

λ≥0

λ∂↑ϕ(x̄, ȳ) ⊆ N↑
gph F (x̄, ȳ).

For the opposite inclusion, consider the distance function dgph F to the graph of F on
the product space X × Y , endowed with the norm

‖(x, y)‖ = ‖x‖ + ‖y‖, (x, y) ∈ X × Y .

Due to ( [7, Prop. 2.4.2]),

N↑
gph F (x̄, ȳ) = clw∗

⋃

λ≥0

λ∂↑dgph F (x̄, ȳ).

Hence, it suffices to show that ∂↑dgph F (x̄, ȳ) ⊆ ∂↑ϕ(x̄, ȳ), or equivalently,

d↑
gph F ((x̄, ȳ), (u, w)) ≤ ϕ↑((x̄, ȳ), (u, w)), ∀(u, w) ∈ X × Y .

Indeed, for (u, w) ∈ X × Y , pick (εn) ↓ 0, (xn, yn) → (x̄, ȳ), (tn) ↓ 0 such that

d↑
gph F ((x̄, ȳ), (u, w))= lim

n→∞ inf
(u′,w′)∈(u,w)+εn BX×Y

dgph F ((xn, yn)+tn(u′, w′))−dgph F (xn, yn)

tn
.

Pick (un, vn) ∈ gph F, such that

d((xn, yn), (un, vn)) = ‖xn − un‖ + ‖yn − vn‖ ≤ dgph F (xn, yn) + t2n .

and note that since (xn, yn) → (x̄, ȳ), then (un, vn) → (x̄, ȳ).

For (u′, w′) ∈ (u, w) + εn BX×Y , with ϕ(un + tnu′, yn + tnw′) < +∞, select a
sequence (zn, wn) ∈ gph F such that

‖zn − un − tnu′‖ ≤ t2n ;
‖yn + tnw′ − wn‖ ≤ ϕ(un + tnu′, yn + tnw′) + t2n .

One has

ϕ(un + tnu′, yn + tnw′) − ϕ(un, yn) ≥ ‖yn + tnw′ − wn‖ − t2n − ‖yn − vn‖
≥ dgph F (xn + tnu′, yn + tnw′) − ‖xn + tnu′ − zn‖ − ‖yn − vn‖ − t2n
≥ dgph F (xn + tnu′, yn + tnw′) − ‖un + tnu′ − zn‖ − ‖xn − un‖ − ‖yn − vn‖ − t2n
≥ dgph F (xn + tnu′, yn + tnw′) − dgph F (xn, yn) − 3t2n .
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Thus,

ϕ↑((x̄, ȳ), (u, w))

≥ lim sup
n→∞

inf
(u′,w′)∈(u,w)+εn BX×Y

ϕ((un, yn) + tn(u′, w′)) − ϕ(un, yn)

tn

≥ lim
n→∞ inf

(u′,w′)∈(u,w)+εn BX×Y

dgph F ((xn, yn) + tn(u′, w′)) − dgph F (xn, yn)

tn

= d↑
gph F ((x̄, ȳ), (u, w)),

for all (u, w) ∈ X × Y , which completes the proof of (i).
(i i). Consider the function ψ as before. Given (u, d) ∈ X × Y , take sequences

(εn) ↓ 0, ((xn, yn)) −→
ϕ

(x̄, ȳ), (tn) ↓ 0 such that

ϕ↑((x̄, ȳ), (u, d)) = lim
n→∞ inf

(z,w)∈(u,d)+εn BX×Y

ϕ((xn, yn) + tn(z, w)) − ϕ(xn, yn)

tn
.

Pick (zn), (vn) such that

(zn, vn) ∈ gph F;
zn − xn = tnεnan/2 with ‖an‖ ≤ 1;
‖yn − vn‖ ≤ ϕ(xn, yn) + t2n .

Observing that

‖vn‖ ≤ ‖yn − vn‖ + ‖yn‖ ≤ ϕ(xn, yn) + t2n + ‖yn‖,

and combining this estimate along with the convergence of (ϕ(xn, yn)) to ϕ(x̄, ȳ) and
(yn) to ȳ, one concludes that (vn) is bounded.Moreover, due to the reflexivity of Y and
the graphical norm-to-weak closedness of F , relabeling if necessary, we may assume
that the whole sequence (vn) converges weakly to some v̄ ∈ F(x̄). Therefore, one has

ϕ(x̄, ȳ) ≤ ‖ȳ − v̄‖ ≤ lim
n→∞ ‖yn − vn‖ = lim

n→∞ ϕ(xn, yn) = ϕ(x̄, ȳ),

and consequently, ‖ȳ − v̄‖ = ϕ(x̄, ȳ). This yields v̄ ∈ PF(x̄)(ȳ). Moreover, as (vn)

converges weakly to v̄ and ‖yn − vn‖ → ‖ȳ − v̄‖, due to the Kadec-Klee property,
(vn) → v̄, strongly. Now for any w ∈ Y , one has

ψ↑((x̄, ȳ, v̄), (u, d, w))

≥ lim sup
n→∞

inf
(u′,d ′,w′)∈(u,d,w)+(εn/2)BX×Y×Y

ψ((zn, yn, vn) + tn(u′, d ′, w′)) − ψ(zn, yn, vn)

tn
.
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For any (u′, d ′, w′) ∈ (u, d, w) + (εn/2)BX×Y×Y , let us proceed as in the proof
of the first part of (i). Since

ψ(((zn, yn, vn)+tn(u′, d ′, w′))≥ϕ(zn +tnu′, yn +tnd ′)=ϕ(xn + tn(u′ + εnan/2), yn + tnd ′),

and

ψ(xn, yn, vn) = ‖yn − vn‖ ≤ ϕ(xn, yn) + t2n ,

one has

ψ((zn, yn, vn) + tn(u′, d ′, w′)) − ψ(zn, yn, vn)

tn

≥ ϕ(xn + tn(u′ + εnan/2), yn + tnd ′) − ϕ(xn, yn)

tn
− tn .

As u′ ∈ u + ε/2BX , u′ + εnan/2 ∈ u + εn BX , therefore one obtains

ψ↑((x̄, ȳ, v̄), (u, d, w))

≥ lim sup
n→∞

inf
(u′,d ′)∈(u,d)+(εn/2)BX×Y

ϕ(xn + tn(u′ + εnan/2), yn + tnd ′) − ϕ(xn, yn)

tn

≥ ϕ↑((x̄, ȳ), (u, d)).

Hence,

ϕ↑((x̄, ȳ), (u, d)) ≤ sup{ψ↑((x̄, ȳ, v̄), (u, d, w)) : v̄ ∈ PF(x̄)(ȳ)},

for all (u, d, w) ∈ X × Y × Y . Obviously, for any v̄ ∈ PF(x̄)(ȳ),

ψ↑((x̄, ȳ, v̄), (u, d, w)) > −∞, for all (u, d, w) ∈ X × Y × Y .

Thus, ψ↑((x̄, ȳ, v̄), ·) : X × Y × Y → R ∪ {+∞} is lower semicontinuous and
sublinear. Hence, thanks to (Hörmander [15] or [7, Prop. 2.1.4]), one has

∂↑ϕ(x̄, ȳ) × {0} ⊆ clw∗co{∂↑ψ(x̄, ȳ, v̄) : v ∈ PF(x̄)(ȳ)}.

Applying the sum rule to the Clarke subdifferential, for all v̄ ∈ PF(x̄)(ȳ), we have

∂↑ψ(x̄, ȳ, v̄) ⊆
{
(x∗, y∗, w∗ + v∗) : (y∗, w∗) ∈ ∂↑‖ · − · ‖Y (ȳ, v̄), (x∗, v∗) ∈ N↑

gph F (x̄, v̄)
}

.

Consequently,

∂↑ψ(x̄, ȳ, v̄)⊆
{

(x∗, y∗, v∗ − y∗) ∈ X∗×Y ∗ × Y ∗ : (x∗, v∗)∈ N↑
gph F (x̄, v̄);

‖y∗‖ = 1; 〈y∗, ȳ − v̄〉 = d(ȳ, F(x̄))

}

.
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Combining this inclusion with the previous relation shows (27). ��

5 �-Paraconvexity and �-Paramonotonicity

It is well known that the convexity of a lower semicontinuous function is characterized
by the monotonicity of its subdifferential. To characterize some notions of generalized
convexity, some corresponding generalized monotonicity has been introduced in the
literature. For instance, in this generalized direction of paraconvexity considered in the
present paper, γ−monotonicity for some γ ∈ [1, 2),was used in [19], (ormore general
α(·)−paramonotonicity in [37]), and approximate monotonicity in [26]. We introduce
a notion of ρ−monotonicity associated to a modulus function ρ for a multifunctions
T : X ⇒ X∗,which generalizes naturally the one of γ−monotonicity for some γ > 0
( [19], see also [28,37]).

Definition 5.1 Suppose given a Banach space X with continuous dual X∗, and a mod-
ulus function ρ : X → R+. A multifunction T : X ⇒ X∗ is called ρ−paramonotone
with respect to some constant κ > 0 if

〈x∗
1 − x∗

2 , x1 − x2〉 ≥ −κρ(x1 − x2), ∀(xi , x∗
i ) ∈ gph T , i = 1, 2.

If F(X) stands for set of all lower semicontinuous extended-real-valued functions
f : X → R∪ {+∞}, recall that (see, e.g., [26]) a subdifferential is a correspondence
∂ : F(X) × X ⇒ X∗ which assigns to any f ∈ F(X), and x ∈ Dom f a subset
∂ f (x) ⊆ X∗ such that 0 ∈ ∂ f (x) if x is a local minimizer of f .

Definition 5.2 (Fuzzy Mean Value Theorem), [26, Def. 6]) A subdifferential ∂ is
said to be valuable on X , if for any x̄, ȳ ∈ X , with x̄ 	= ȳ, and for any (l.s.c.) lower
semicontinuous function f : X → R ∪ {+∞} finite at x̄ and for any r ∈ R with
f (ȳ) ≥ r , there exist u ∈ [x̄, ȳ[:= {t x̄ + (1 − t)ȳ : t ∈ (0, 1]} and sequences
(un) → u, (u∗

n) such that u∗
n ∈ ∂ f (un), ( f (un)) → f (u),

(i) lim inf
n→∞ 〈u∗

n, ȳ − x̄〉 ≥ r − f (x̄);
(ii) lim inf

n→∞

〈
u∗

n,
ȳ − un

‖ȳ − u‖
〉

≥ r − f (x̄)

‖ȳ − x̄‖ ;
(iii) lim

n→∞ ‖u∗
n‖d[x̄,ȳ](un) = 0.

This fuzzymean value property was firstly established by Zagrodny [46] for the Clarke
subdifferential in Banach spaces. Its extensions have been developed in the literature
for some classes of subdifferentials (see [2] and the references given therein). For our
purpose, we just mention that the Clarke subdifferential is valuable on any Banach
space; the Hadamard subdifferential is valuable on any Hadamard smooth Banach
space, and the Fréchet subdifferential is valuable on every Asplund space.

Also, let us mention the dag subdifferential associated to the dag derivative and
introduced in [31]:

f †(x, v) := lim sup
t↓0,y→ f x

1

t
( f (y + t(v + x − y)) − f (y)) x ∈ Dom f , v ∈ X;
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∂† f (x) = {x∗ ∈ X∗ : 〈x∗, v〉 ≤ f †(x, v), ∀v ∈ X},

when x ∈ Dom f , and ∂† f (x) = ∅, otherwise. It seems to be the largest possible
subdifferential to be used in our context. In particular, it contains the Clarke subdif-
ferential.

The following subdifferential characterizations generalize the usual convex case,
and the one of γ−convexity for γ ∈ (1, 2] in [18]). The proof which is omitted is
standard, and similar to the one in [26, Theo. 10] in which the characterizations of
approximate convexity have been established.

Theorem 5.1 Let ρ : X → R+ be a modulus function verifying (C1) − (C3) on a
Banach space X . Let f : X → R ∪ {+∞} be a lower semicontinuous function. Le ∂

be a subdifferential operator such that for any f , ∂ f is contained in ∂† f . Consider
the following assertions:

(i) f is ρ-paraconvex;
(ii) there is some κ > 0 such that for all x ∈ Dom f , and all u ∈ X ,

f †(x, u) ≤ f (x + u) − f (x) + κρ(u);

(iii) there is some κ > 0 such that for all x ∈ Dom f , and all x∗ ∈ ∂ f (x),

〈x∗, u〉 ≤ f (x + u) − f (x) + κρ(u), for all u ∈ X;

(iv) ∂ f is ρ−paramonotone.

Then, (i) ⇒ (i i) ⇒ (i i i) ⇒ (iv). If moreover, ∂ is valuable, then all assertions are
equivalent.

The preceding theorem subsumes the equivalence between ρ-paraconvexity of ϕF and
ρ−paramonotonicity of ∂ϕF , where ∂ is either the Clarke subdifferential on Banach
spaces X × Y , or the Fréchet subdifferential when X , Y are Asplund spaces. In the
following theorem, we show that ρ-paraconvexity of the function ϕF can be character-
ized by the ρ−monotonicity of ∂ϕF ∩ (X∗ × SY ∗), for the appropriate subdifferential
∂ , where SY ∗ stands for the unit sphere in Y ∗.

Here, we adopt the notion of (relative) radial continuity of a function, which means
continuity along segments whose extremities belong to the domain of the function.
From Proposition 2.2 and ( [25, Cor. 3.3]), one has the following lemma.

Lemma 5.1 If F : X ⇒ Y is ρ-paraconvex for a modulus function ρ verifying (C1)−
(C2), then ϕF is radially continuous.

Theorem 5.2 Let ρ : X → R+ be a given modulus function verifying (C1) − (C3).
Let F : X ⇒ Y be a closed multifunction between Banach spaces X and Y . Then, the
function ϕF is ρ-paraconvex if and only if ϕF is radially continuous, F has convex
values and ∂ϕF ∩ (X∗ × SY ∗) is ρ−paramonotone, provided that

(i) either ∂ = ∂̂ and X , Y being Asplund spaces; moreover, in this case, for the
sufficient part, the condition for F to have convex values can be removed,
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(ii) or ∂ = ∂↑, Y is reflexive with a strictly convex norm having the Kadec-Klee
property, the multifunction F is graphically norm-to-weak closed.

Proof Due to ( [25, Cor. 3.3]), the ρ−paraconvexity of ϕF implies immediately the
radial continuity of ϕF . If ϕF is ρ−paraconvex, then for any x̄ ∈ X , ϕF (x̄, ·) is convex
with respect to the variable y. Therefore, since ϕF (x̄, y1) = ϕF (x̄, y1) = 0, then for
any y1, y2 ∈ F(x̄), or any y ∈ [y1, y2], ϕF (x̄, y) = 0, which implies y ∈ F(x̄), i.e.,
F has convex values. So the necessary part is a corollary of the preceding theorem.
For the sufficiency part, assume that ϕ := ϕF is radially continuous and there is some
κ > 0 such that for ∂ = ∂↑, or ∂̂,

〈(x∗
1 , y∗

1 ) − (x∗
2 , y∗

2 ), (x1, y1) − (x2, y2)〉 ≥ −κρ(x1 − x2), (30)

for all ((xi , yi ), (x∗
i , y∗

i )) ∈ gph ∂ϕ ∩ (X × Y × X∗ × SY ∗). Let (xi , yi ) ∈ Dom ϕ

be given with (x1, y1) 	= (x2, y2). Given t ∈ (0, 1), set (x, y) = t(x1, y1) + (1 −
t)(x2, y2). We shall show that

ϕ(x, y) ≤ tϕ(x1, y1) + (1 − t)ϕ(x2, y2) + 2κt(1 − t)ρ(x1 − x2). (31)

If ϕ(x, y) = 0, then (31) holds trivially. Otherwise, consider the case ϕ(x, y) > 0. By
the lower semicontinuity of ϕ, select (ūi , v̄i ) ∈ [(xi , yi ), (x, y)[, i = 1, 2, such that

ϕ(u, v) > 0, for all (u, v) ∈](ū1, v̄1), (ū2, v̄2)[, (32)

and
either (ūi , v̄i ) = (xi , yi ) or ϕ(ūi , v̄i ) = 0, for i = 1 or 2. (33)

Consider s̄ ∈ (0, 1) such that (x, y) = s̄(ū1, v̄1) + (1 − s̄)(ū2, v̄2), along with
arbitrary (ui , vi ) ∈](ūi , v̄i ), (x, y)[, i = 1, 2; then there exists s ∈ (0, 1) such
that (x, y) = s(u1, v1) + (1 − s)(u2, v2). Applying the fuzzy mean value (Def-
inition 5.2) to ϕ on the segments [(u1, v1), (x, y)], with r < ϕ(x, y), we get
(z1, z2) ∈ [(u1, v1), (x, y)[ and sequences ((z1,n, z2,n)) → (z1, z2), ((z∗

1,n, z∗
2,n))

such that (z∗
1,n, z∗

2,n) ∈ ∂ϕ(z1,n, z2,n) for each n and

lim inf
n→+∞

〈
(z∗

1,n, z∗
2,n),

(u2, v2) − (z1,n, z2,n)

‖(u2, v2) − (z1,n, z2,n)‖
〉

>
r − ϕ(u1, v1)

‖(x, y) − (u1, v1)‖ . (34)

Let β ∈ (0, 1) be such that (x, y) = β(u2, v2)+(1−β)(z1, z2) and let (w1,n, w2,n) =
β(u2, v2) + (1 − β)(z1,n, z2,n). Then, as ϕ is l.s.c., for large n, and using the fact
that (z1,n, z2,n) → (z1, z2) and r < ϕ(w1,n, w2,n) we get ((w1,n, w2,n)) → (x, y) .
Moreover,‖(w1,n, w2,n)−(u2, v2)‖ = (1−sn)‖(u1, v1)−(u2, v2)‖ for some sequence
(sn) → s. Applying again (Definition 5.2 to ϕ on [(u2, v2), (w1,n, w2,n)], one obtains
(v1,n, v2,n) ∈ [(u2, v2), (w1,n, w2,n)[ a sequence (v1,n,p, v2,n,p) → (v1,n, v2,n) as
p → ∞,, (v∗

1,n,p, v
∗
2,n,p) with (v∗

1,n,p, v
∗
2,n,p) ∈ ∂ϕ(v1,n,p, v2,n,p) for all n, p, and

lim inf
p

〈
(v∗

1,n,p, v
∗
2,n,p),

(z1,n, z2,n) − (v1,n,p, v2,n,p)

‖(z1,n, z2,n) − (v1,n,p, v2,n,p)‖
〉
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>
r − ϕ(u2, v2)

‖(w1,n, w2,n) − (u2, v2)‖
= r − ϕ(u2, v2)

(1 − sn)‖(u1, v1) − (u2, v2)‖ . (35)

From relation (34), there exists some m ≥ k such that for all n ≥ m,

〈
(z∗

1,n, z∗
2,n),

(v1,n, v2,n) − (z1,n, z2,n)

‖(v1,n, v2,n) − (z1,n, z2,n)‖
〉

=
〈
(z∗

1,n, z∗
2,n),

(u2, v2) − (z1,n, z2,n)

‖(u2, v2) − (z1,n, z2,n)‖
〉

>
r − ϕ(u1, v1)

‖(x, y) − (u1, v1)‖
= r − ϕ(u1, v1)

s‖(u1, v1) − (u2, v2)‖ . (36)

On the other hand, since (v1,n,p, v2,n,p) → (v1,n, v2,n), for each n and (sn) → s,
from (35) and (36), one can find q(n) such that for all p ≥ q(n),

〈
(v∗

1,n,p, v
∗
2,n,p),

(z1,n, z2,n) − (v1,n,p, v2,n,p)

‖(z1,n, z2,n) − (v1,n,p, v2,n,p)‖
〉

>
r − ϕ(u2, v2)

(1 − sn)‖(u1, v1) − (u2, v2)‖ ,

and

〈
(z∗

1,n, z∗
2,n),

(v1,n,p, v2,n,p) − (z1,n, z2,n)

‖(v1,n,p, v2,n,p) − (z1,n, z2,n)‖
〉

>
r − ϕ(u1, v1)

sn‖(u1, v1) − (u2, v2)‖ .

In view of (33), as ((z1,n, z2,n)) → (z1, z2) ∈ [(u1, v2), (x, y)[; ((w1,n, w2,n)) →
(x, y); and (v1,n, v2,n) ∈ [(u2, v2), (w1,n, w2,n)[, one can find M ≥ m, and
N (n) ≥ q(n) such that for n ≥ M, p ≥ N (n), one has ϕ(z1,n, z2,n) > 0 and
ϕ(v1,n,p, v2,n,p) > 0, as well. Thus, (since gph F is closed), z2,n /∈ F(z1,n) and
v2,n,p /∈ F(v1,n,p), and thanks to Theorem 4.1 for the case (i), and to relation (28) in
Theorem 4.1 for the case (i i), ‖v∗

2,n,p‖ = ‖z∗
2,n‖ = 1, for all n ≥ M, p ≥ N (n).

Adding the corresponding sides of the two inequalities above, and using relation
(30), one derives that

κs(1 − sn)
‖(u1, v1) − (u2, v2)‖

‖(v1,n,p, v2,n,p) − (z1,n, z2,n)‖ρ(v1,n,p − z1,n)

≥ (1 − sn)(r − ϕ(u1, v1)) + s(r − ϕ(u2, v2)).

(37)

Considering a subsequence if necessary, without loss of generality, we can assume
that ((v1,n, v2,n)) → (w1, w2) ∈ [(u2, v2), (x, y)]. Therefore, for each n,we can find
an index p(n) ≥ N (n) with p(n) → ∞ such that ((v1,n,p(n), v2,n,p(n))) → (w1, w2).
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By taking p = p(n) in (37), and letting n → ∞, one obtains

κs(1 − s) ‖u1−u2‖‖w1−z1‖ρ(w1 − z1) = κs(1 − s)
‖(u1, v1) − (u2, v2)‖
‖(w1, w2) − (z1, z2)‖ρ(w1 − z1)

≥ (1 − s)(r − ϕ(u1, v1)) + s(r − ϕ(u2, v2)).

(38)
Note that ρ is convex, ρ(0) = 0, and ρ is an even function. As [z1, w1] ⊆ [u1, u2],
one has

‖u1 − u2‖
‖w1 − z1‖ρ(w1 − z1) ≤ ρ(u1 − u2).

Hence, since r is arbitrary close to ϕ(x, y), (38) yields

ϕ(x, y) ≤ sϕ(u1, v1) + (1 − s)ϕ(u2, v2) + κs(1 − s)ρ(u1 − u2).

As (ui , vi ) is, respectively, arbitrary close to (ūi , v̄i ), i = 1, 2, using the radial conti-
nuity of ϕ, the preceding inequality implies

ϕ(x, y) ≤ s̄ϕ(ū1, v̄1) + (1 − s̄)ϕ(ū2, v̄2) + κ s̄(1 − s̄)ρ(ū1 − ū2). (39)

To establish (31) from (39), let α1, α2 ∈ [0, 1] with α1 > α2 such that

(ūi , v̄i ) = αi (x1, y1) + (1 − αi )(x2, y2), i = 1, 2.

Then, t = s̄α1 + (1 − s̄)α2, and

ϕ(ū1 − ū2) = ϕ((α1 − α2)(x1 − x2)) ≤ (α1 − α2)ϕ(x1 − x2).

Therefore, it yields

s̄(1 − s̄)ρ(ū1 − ū2) ≤ 2t(1 − t)ϕ(x1 − x2). (40)

On the other hand, by (33),

ϕ(ūi , v̄i ) ≤ αiϕ(x1, y1) + (1 − αi )ϕ(x2, y2), i = 1, 2.

Hence,

s̄ϕ(ū1, v̄1) + (1 − s̄)ϕ(ū2, v̄2) ≤ (s̄α1 + (1 − s̄)α2)ϕ(x1, y1) + ((1 − s̄)α1 + s̄α2)ϕ(x2, y2)
= tϕ(x1, y1) + (1 − t)ϕ(x2, y2).

This inequality together with (40) yields (31). ��
When Y is a finite dimensional space, using the Bouligand normal cone, Huang [16],
gave some characterizations of the γ -paraconvexity for γ > 1. We present in the next
theorems characterizations of the ρ-paraconvexity of a multifunction F : X ⇒ Y
between a Banach space X and a reflexive Banach space Y .
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Theorem 5.3 Let X and Y be Banach spaces with Y reflexive. Let ρ : X → R+ be a
modulus function verifying (C1) − (C3), and F : X ⇒ Y be a closed multifunction.
Consider the following assertions:

(i) F is ρ-paraconvex;
(ii) F is graphically norm-to-weak closed with convex values and N↑

gph F (x, y) =
N (ρ,κ)(x, y) for all (x, y) ∈ gph F, for some κ > 0;

(iii) F is graphically norm-to-weak closed with convex values and N↑
gph F ∩(X∗×BY ∗)

is ρ−paramonotone;
(iv) ϕF is ρ-paraconvex;
(v) ∂↑ϕF is ρ−paramonotone;

(vi) ϕF is radially continuous, F is graphically norm-to-weak closed with convex
values, and ∂↑ϕF ∩ (X∗ × SY ∗) is ρ−paramonotone;

(vii) ϕF is radially continuous, F is graphically norm-to-weak closed with convex
values, and N↑

gph F ∩ (X∗ × SY ∗) is ρ−paramonotone.

Then, one has (i) ⇒ (i i) ⇔ (i i i); (i) ⇔ (iv) ⇔ (v) ⇒ (vi), and (i) ⇒ (vi i).
Moreover, if in addition the norm on Y is strictly convex and has the Kadec-Klee
property, then all assertions are equivalent.

Proof (i) ⇒ (i i) is due to Lemma 4.1 and Theorem 3.1, while the equivalence of
(i i) and (i i i) is straightforward from the cone property. The equivalences (i) ⇔
(iv) ⇔ (v) is due to Proposition 2.2 and Theorem 5.1, while (v) ⇒ (vi) as well
as (i) ⇒ (vi i) are due to (i) ⇔ (v); (i) ⇒ (i i i), and Lemma 5.1. Suppose in
addition that the norm on Y is strictly convex and has the Kadec-Klee property. The
implication (vi i) ⇒ (iv) follows from Theorem 5.2. [(ii)]. Let us prove (i i) ⇒ (v)

and (vi i) ⇒ (vi) to complete the proof. Denote ϕ := ϕF , and let (x̄, ȳ) ∈ X × Y ,

(x∗, y∗) ∈ ∂↑ϕ(x̄, ȳ). Then ‖y∗‖ ≤ 1, and by Lemma 4.2, PF(x̄)(ȳ) is nonempty
and reduces to a singleton since F(x̄) is convex, and ϕ(x̄, ȳ) = d(ȳ, F(x̄)). From
Theorem 4.2, for v̄ := PF(x̄)(ȳ), one has 〈y∗, ȳ − v̄〉 = ‖ȳ − v̄‖ = ϕ(x̄, ȳ), and

(x̄∗, ȳ∗) ∈ N↑
gph F (x̄, v̄) = N (ρ,κ)(x, y). Thus,

〈(x̄∗, ȳ∗), (x, v) − (x̄, v̄)〉 ≤ κρ(x − x̄), for all (x, v) ∈ gph F .

For any (x, y) ∈ Dom ϕ, consider sequences (un) → x; (vn) with (un, vn) ∈ gph F,

‖y − vn‖ → ϕ(x, y). The relation above implies

〈(x̄∗, ȳ∗), (x, y) − (x̄, ȳ)〉
= 〈x̄∗, x − un〉 + 〈ȳ∗, y − vn〉 − 〈ȳ∗, ȳ − v̄〉 + 〈(x̄∗, ȳ∗), (un, vn) − (x̄, v̄)〉
≤ 〈x̄∗, x − un〉 + ‖y − vn‖ − ‖ȳ − v̄‖ + κρ(un − x̄),

.

When n → ∞, we obtain

〈(x̄∗, ȳ∗), (x, y) − (x̄, ȳ)〉 ≤ ϕ(x, y) − ϕ(x̄, ȳ) + κρ(x − x̄),

Thus for any (x, y) ∈ Dom ϕ and (x∗, y∗) ∈ ∂↑ϕ(x, y),

〈(x∗, y∗), (x̄, ȳ) − (x, y)〉 ≤ ϕ(x̄, ȳ) − ϕ(x, y) + κρ(x − x̄).
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Adding side by side the two last inequalities yields,

〈(x̄∗, ȳ∗) − (x∗, y∗), (x̄, ȳ) − (x, y)〉 ≥ −2κρ(x − x̄),

and the ρ−paramonotonicity of ∂↑ϕ.

For (vi i) ⇒ (vi), let (x̄, ȳ), (x, y) ∈ X × Y , (x̄∗, ȳ∗) ∈ ∂↑ϕ(x̄, ȳ), (x∗, y∗) ∈
∂↑ϕ(x, y)with ‖ȳ∗‖ = ‖y∗‖ = 1 be given. By Theorem 4.2, (x̄∗, ȳ∗) ∈ N↑

gph F (x̄, v̄);
(x∗, y∗) ∈ N↑

gph F (x, v); 〈ȳ∗, ȳ− v̄〉 = ‖ȳ− v̄‖ and 〈y∗, y−v〉 = ‖y−v‖,where v̄ =
PF(x̄)(ȳ), v = PF(x)(y).Thus due to the ρ−paramonotonicity of N↑

gph F ∩(X∗×SY ∗),
for some κ > 0, one has

〈(x∗, y∗) − (x̄∗, ȳ∗), (x, y) − (x̄, ȳ)〉
= 〈y∗, (y − v) − (ȳ − v̄)〉 + 〈ȳ∗, (ȳ − v̄) − (y − v)〉 + 〈(x∗, y∗) − (x̄∗, ȳ∗), (x, v) − (x̄, v̄)〉
≥ (‖y − v‖ − ‖ȳ − v̄‖) + (‖ȳ − v̄‖ − ‖y − v‖) − κρ(x − x̄) = −κρ(x − x̄).

That is, ∂↑ϕF ∩ (X∗ × SY ∗) is ρ−paramonotone. The proof is complete. ��
Thenext characterizations useFréchet normal cones and subdifferentials inAsplund

spaces.

Theorem 5.4 Let X and Y be Asplund spaces. Let ρ : X → R+ be a function veri-
fying (C1) − (C3). For a closed multifunction F : X ⇒ Y , consider the following
assertions:

(i) F is ρ-paraconvex;
(ii) N̂gph F (x, y) = N (ρ,κ)(x, y) for all (x, y) ∈ gph F, for some κ > 0,

(iii) N̂gph F ∩ (X∗ × BY ∗) is ρ−paramonotone;
(iv) ϕF is ρ-paraconvex;
(v) ˆ∂ϕF is ρ−paramonotone;

(vi) ϕF is radially continuous and ∂̂ϕF ∩ (X∗ × SY ∗) is ρ−paramonotone;
(vii) ϕF is radially continuous and N̂gph F ∩ (X∗ × SY ∗) is ρ−paramonotone.

Then, one has (i) ⇒ (i i) ⇔ (i i i) ⇒ (iv) ⇔ (v) ⇔ (vi) ⇐ (vi i), and (i) ⇒ (vi i).
Moreover, if Y is reflexive, then all assertions are equivalent.

Proof The implications (i) ⇒ (i i) ⇔ (i i i); (i) ⇒ (vi i) and the equivalences (iv) ⇔
(v) ⇔ (vi) can be proved as in the preceding theorem. When Y is reflexive, then
(i) ⇔ (iv). It remains to prove (i i i) ⇒ (v) and (vi i) ⇒ (vi). Suppose (i i i) holds,
i.e., N̂gph F ∩ (X∗ × BY ∗) is ρ−monotone with respect to some constant κ > 0. Let
(xi , yi ) ∈ X × Y , (x∗

i , y∗
i ) ∈ ∂̂ϕ(xi , yi ), i = 1, 2 be given. Thanks to Theorem 4.1,

‖y∗
i ‖ ≤ 1, (i = 1, 2), and we can find sequences ((u(n)

i , v
(n)
i )) with (u(n)

i , v
(n)
i ) ∈

gph F and ((u(n)∗
i , v

(n)∗
i )), i = 1, 2, such that

(u(n)∗
i , v

(n)∗
i ) ∈ N̂gph F (u(n)

i , v
(n)
i ); ‖u(n)

i − xi‖ → 0; ‖yi − v
(n)
i ‖ → ϕ(xi , yi ),

and

‖((u(n)∗
i , v

(n)∗
i ) − (x∗

i , y∗
i )‖ → 0; |〈v(n)∗

i , yi − v
(n)
i 〉 − ‖yi − v

(n)
i ‖| → 0, i = 1, 2.
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By the ρ−paramonotonicity of N̂gph F ∩ (X∗ × BY ∗),

〈(u(n)∗
1 , v

(n)∗
1 ) − (u(n)∗

2 , v
(n)∗
2 ), (u(n)

1 , v
(n)
1 ) − (u(n)

2 , v
(n)
2 )〉 ≥ −κρ(u(n)

1 − u(n)
2 ).

Hence,

〈(u(n)∗
1 , v

(n)∗
1 ) − (u(n)∗

2 , v
(n)∗
2 ), (u(n)

1 , y1) − (u(n)
2 , y2)〉

= 〈(u(n)∗
1 , v

(n)∗
1 ) − (u(n)∗

2 , v
(n)∗
2 ), (u(n)

1 , v
(n)
1 ) − (u(n)

2 , v
(n)
2 )〉

+〈v(n)∗
1 , (y − v

(n)
1 ) − (y2 − v

(n)
2 )〉 + 〈v(n)∗

2 , (y2 − v
(n)
2 ) − (y − v

(n)
1 )〉

≥ −κρ(u(n)
1 − u(n)

2 ) + 〈v(n)∗
1 , (y − v

(n)
1 )〉 + 〈v(n)∗

2 , (y2 − v
(n)
2 )〉

−‖v(n)∗
1 ‖‖y2 − v

(n)
2 ‖ − ‖v(n)∗

2 ‖‖y − v
(n)
1 ‖.

Noticing that for every i = 1, 2,

(u(n)
i ) → xi ;
(u(n)∗

i , v
(n)∗
i ) → (x∗

i , y∗
i );

‖y∗
i ‖ ≤ 1;

|〈v(n)∗
i , yi − v

(n)
i 〉 − ‖yi − v

(n)
i ‖| → 0,

and passing to the limit one obtains

(x∗
1 , y∗

1 ) − (x∗
2 , y∗

2 ), (x1, y1) − (x2, y2)〉 ≥ −κρ(x1 − x2),

showing the ρ−paramonotonicity of ˆ∂ϕ. The proof of (vi i) ⇒ (vi) is completely
similar. ��
Open problem 2 Does the equivalence of all (or some) of assertions in the two pre-
ceding theorems hold without the reflexivity of the image space Y?

6 Coderivatives of the Sum of �-ParaconvexMultifunctions

Consider two multifunctions F1, F2 : X ⇒ Y , which are ρ-paraconvex for a modulus
function verifying (C1)−(C3). Then, the summultifunction F1+ F2 is ρ-paraconvex
Hence, the respective coderivatives agree. We denote each of them by DF∗(x̄, ȳ), for
(x̄, ȳ) ∈ gph F . Still, due to Theorem 3.1, for some κ > 0, one has

DF∗(x̄, ȳ)(y∗) =
{

x∗ ∈ X∗ : (x∗,−y∗) ∈ N (ρ,κ)
gph F (x̄, ȳ)

}
,

for all (x̄, ȳ) ∈ gph F, all y∗ ∈ Y ∗, where

N (ρ,κ)
gph F (x̄, ȳ) =

{
(x∗, y∗) ∈ X∗ × Y ∗ :
〈x∗, x − x̄〉 + 〈y∗, y − ȳ〉 ≤ κ‖y∗‖ρ(x − x̄), ∀(x, y) ∈ gph F

}
.
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The paper concludes with a sum rule for the coderivative of F1 + F2.

Theorem 6.1 Let X , Y be Banach spaces. Consider two ρ-paraconvex multifunctions
F1, F2 : X ⇒ Y , for a modulus function ρ verifying (C1) − (C3). Then for (x̄, ȳ1) ∈
gph F1 and (x̄, ȳ2) ∈ gph F2, one has

D(F1 + F2)
∗(x̄, ȳ1 + ȳ2)(y∗) ⊇ DF∗

1 (x̄, ȳ1)(y∗) + DF∗
2 (x̄, ȳ2)(y∗), for all y∗ ∈ Y ∗.

(41)
Equality in (41) holds provided that the following two conditions are satisfied.

(i) There are δ > 0, τ > 0 such that

ϕF1+F2(x, y1 + y2) ≤ τ
(
ϕF1(x, y1) + ϕF2(x, y2)

)

for all (x, y1, y2) ∈ B((x̄, ȳ1, ȳ2), δ);
(ii)

⋃

λ≥0

λ
(
Dom ϕF1(·, 0) − Dom ϕF2(·, 0)

)

is a closed subspace of X .

Proof Let y∗ ∈ Y ∗, x∗
i ∈ DF∗

i (x̄, ȳi )(y∗), i = 1, 2. Then for some κ > 0,

(x∗
i ,−y∗) ∈ N (ρ,κ)

gph Fi
(x̄, ȳi ), i = 1, 2. For any (x, y) ∈ gph(F1 + F2), there are

yi ∈ Fi (x), i = 1, 2, such that y1 + y2 = y, and therefore

〈x∗
1 , x − x̄〉 − 〈y∗, y1 − ȳ1〉 ≤ κ‖y∗‖ρ(x − x̄);
〈x∗

2 , x − x̄〉 − 〈y∗, y2 − ȳ2〉 ≤ κ‖y∗‖ρ(x − x̄).

By adding the two inequalities side by side, one obtains

〈x∗
1 + x∗

2 , x − x̄〉 − 〈y∗, y − (ȳ1 + ȳ2)〉 ≤ 2κ‖y∗‖ρ(x − x̄).

The last inequality being verified for all (x, y) ∈ gph(F1 + F2), this shows that

x∗
1 + x∗

2 ∈ D(F1 + F2)
∗(x̄, ȳ1 + ȳ2)(y∗),

proving (41).
Let conditions (i) − (i i) be satisfied. Let x∗ ∈ D(F1 + F2)

∗(x̄, ȳ1 + ȳ2)(y∗) for
y∗ ∈ Y ∗. Thanks to Theorem 4.1 - part (i), (x∗,−y∗) ∈ α∂̂ϕF1+F2(x̄, ȳ1 + ȳ2),
for some α > 0, namely α = 1 if ‖y∗‖ ≤ 1, and α = ‖y∗‖, otherwise. Thus, as
ϕFi (x̄, ȳ1 + ȳ2) = 0, for any ε > 0, there is δε ∈ (0, δ), here δ is as in (i), such that

〈(x∗,−y∗), (x, y) − (x̄, ȳ1 + ȳ2)〉 ≤ αϕF1+F2(x, y) + ε‖(x, y) − (x, y1 + y2)‖,
(42)
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for all (x, y) ∈ B((x̄, ȳ1 + ȳ2), δε). Consider the mappings fi (i = 1, 2) defined on
X × Y × Y by fi (x, y1, y2) = ϕFi (x, yi ). By condition (i), relation (42) implies that
for all (x, y1, y2) ∈ B((x̄, ȳ1, ȳ2), δε/2), we have

〈(x∗,−y∗,−y∗), (x, y1, y2) − (x̄, ȳ1, ȳ2)〉
≤ ατ( f1 + f2)(x, y1, y2) + ε‖((x, y1, y2) − (x̄, ȳ1, ȳ2)‖. (43)

This yields

(x∗,−y∗,−y∗) ∈ ατ ∂̂( f1 + f2)(x̄, ȳ1, ȳ2).

Note that f1, f2 are lower semicontinuous ρ-paraconvex functions, therefore they are
approximately convex (at all points). Moreover, Dom fi = Dom ϕFi (·, 0) × Y × Y ,

i = 1, 2, thus by condition (i i),

⋃

λ≥0

λ(Dom f1 − Dom f2)

is a closed space of X ×Y ×Y . So thanks to the sum rule formula for the subdifferential
of approximately convex functions [25, Theo. 3.8],

∂̂( f1 + f2)(x̄, ȳ1, ȳ2) = ∂̂ f1(x̄, ȳ1, ȳ2) + ∂̂ f2(x̄, ȳ1, ȳ2).

Hence, there exist (z∗
i ,−v∗

i ) ∈ ∂̂ϕFi (x̄, ȳi ), i = 1, 2, such that

(x∗,−y∗,−y∗) = ατ
(
(z∗

1,−v∗
1 , 0) + (z∗

2, 0,−v∗
2)

)
.

That is, ατv∗
i = y∗, i = 1, 2, and x∗ = ατ z∗

1 + ατ z∗
2. As (z∗

i ,−v∗
i ) ∈ ∂̂ϕFi (x̄, ȳi ),

i = 1, 2, thanks again to Theorem 4.1 - part (i), ατ z∗
i ∈ DF∗

i (x̄, ȳi )(y∗), i = 1, 2.
Thus,

x∗ ∈ DF∗
1 (x̄, ȳ1)(y∗) + DF∗

2 (x̄, ȳ2)(y∗),

and accordingly the proof is complete. ��
The following lemma gives some verified sufficient conditions to ensure (i) − (i i).

Lemma 6.1 Let X , Y be Banach spaces. Consider two ρ-paraconvex closed multi-
functions F1, F2 : X ⇒ Y , for a modulus function ρ satisfying (C1) − (C3). Let
(x̄, ȳi ) be given in gph Fi , i = 1, 2.

(a) If x̄ belong either to Int(Dom F1) or to Int(Dom F2), then the both two conditions
(i) − (i i) in the preceding theorem are satisfied.

(b) If Y is reflexive, then condition (i) holds automatically, while (i i) is equivalent to

⋃

λ≥0

λ (Dom F1 − Dom F2)
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being a closed subspace of X .

Proof (a). Let e.g., x̄ ∈ Int(Dom F1). Then obviously x ∈ Int(Dom ϕ(·, 0)). So as
x̄ ∈ Dom F2,

⋃

λ≥0

λ
(
Dom ϕF1(·, 0) − Dom ϕF2(·, 0)

) = X ,

that is, (i i) is satisfied. In [18, Theo. 2.4], Jourani, established that for a γ -paraconvex
multifunction with γ > 1 between general Banach spaces, the condition x̄ belongs to
the interior of its domain is equivalent to the locally pseudo-Lipschitzness of the mul-
tifunction. Observe that with an almost similar proof (we omit here), this equivalence
also holds for ρ-paraconvex multifunctions with ρ satisfying (C1) − (C3). That is, if
x̄ ∈ Int(Dom F1), then for ȳ1 ∈ F1(x̄), there are r , ε > 0 such that

F1(x1) ∩ (ȳ1 + εBY ) ⊆ F1(x2) + r‖x1 − x2‖BY ,

for all xi ∈ x̄ + εBX , i = 1, 2. Thus, we can say that d(y1, F(x)) = ϕF1(x, y1) for
all (x, y1) ∈ B((x̄, ȳ1), ε/2), and that ϕF1 is Lipschitz on B((x̄, ȳ1), ε/2). For any
(x, y1) ∈ B((x̄, ȳ1), ε/2), any y2 ∈ Y , with ϕF2(x, y2) < +∞, taking a sequence
(un) → x, such that d(y2, F2(un)) → ϕF2(x, y2), one has

ϕF1+F2(x, y1 + y2) ≤ lim inf
n→∞ d(y1 + y2, F1(un) + F2(un))

= lim
n→∞ d(y1, F1(un)) + lim inf

n→∞ d(y2, F2(un))

= ϕF1(x, y1) + ϕF2(x, y2).

Hence, (i) is satisfied with τ = 1.
For (b), when Y is reflexive, due to the proof of (i i i) ⇒ (i) in Proposition 2.2,

ϕFi = dFi = d(·, Fi (·)), and therefore, Dom ϕFi (·, 0) = Dom Fi , i = 1, 2. So (i i) is
equivalent to say that

⋃

λ≥0

λ (Dom F1 − Dom F2)

is a closed subspace of X . For any (x, y1, y2) ∈ X × Y × Y , one has

ϕF1+F2(x, y1 + y2) ≤ d(y1 + y2, F1(x) + F2(x))

≤ d(y1, F1(x)) + d(y2, F2(x)) = ϕF1(x, y1) + ϕF2(x, y2),

establishing (i i). ��
Open problem 3 Is it possible to establish a sum rule for the coderivative of paracon-
vex multifunctions without the constraint qualifications (i) and (ii) from the previous
theorem.
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7 Conclusions

We established some regular properties of graphical tangent and normal cones to
ρ-paraconvex multifunctions between Banach spaces as well as a sum rule for
coderivatives for such class of multifunctions. Some characterizations of the ρ-
paraconvexity via the ρ-paramonotonicity of normal cone mappings are presented.
This presentation gives rise to three open questions.
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