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Abstract
We investigate convergence properties of Bregman distances induced by convex rep-
resentations of maximally monotone operators. We also introduce and study the
projection mappings associated with such distances.
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1 Introduction and Preliminaries

This paper ismotivated by the recent article [9], which introduces a notion ofBregman-
type distance associated with a convex representation of an arbitrary maximally
monotone operator in such a way that, when the operator is the gradient of a dif-
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ferentiable strictly convex function f , the Bregman-type distance associated with its
convex representation coincides with the classical Bregman distance induced by f
(see Proposition 4). Bregman-type distances have been further studied more recently
in [7,18], the latter paper dealing with their associated farthest Voronoi cells.

The aim of this paper is to investigate the convergence properties of such Bregman-
type distances as well as to study their associated projection mappings, which we
introduce here.

We recall some definitions and lemmas which will be used in the sequel. We start
with the following important lemma, which will play a crucial role in the proof of a
fixed point result involving Bregman-type projections we will prove in the last section
(see Theorem 17).

Lemma 1 [14, Lemma 4] Let X be a nonempty compact convex set in a Hausdorff
topological vector space Y . Let A be a closed subset of X × X having the following
properties:
(i) (x, x) ∈ A for every x ∈ X.
(ii) For any fixed point y ∈ X, the set {x ∈ X : (x, y) /∈ A} is a (possibly empty)
convex set.

Then, there exists a point y0 ∈ X such that X × {y0} ⊆ A.

Throughout the paper, E will be a Banach space with norm ‖.‖ and dual space E∗.
For any x ∈ E , we denote the value of x∗ ∈ E∗ at x by 〈x, x∗〉. When {xn}n∈N is a
sequence in E , we denote the strong convergence of {xn}n∈N to x ∈ E as n → ∞ by
xn → x, and the weak convergence by xn⇀x . We say that a function h : E × E∗ →
R∪ {+∞} is norm × weak ∗ lower semicontinuous when every sublevel set of h is
closed in the norm × weak∗ topology of E × E∗, that is, in the product topology of
the strong topology of E and the weak∗ topology of E∗.

We first recall the notion of convex representation of a maximally monotone oper-
ator.

Definition 2 (see [17, p. 27]) Let S : E ⇒ E∗ be a maximally monotone operator.
We say that h : E × E∗ → R ∪ {+∞} represents S if the following three conditions
hold:

(i) h is convex and norm × weak∗ lower semicontinuous;
(ii) h(x, x∗) ≥ 〈x, x∗〉, ∀(x, x∗) ∈ E × E∗;
(iii) h(x, x∗) = 〈x, x∗〉 if and only if x∗ ∈ Sx . The set of all functions h satisfying

these properties will be denoted by H(S).

For a given maximally monotone operator S : E ⇒ E∗, it is well known (see, e.g.,
[10, Corollary 4.1]) that H(S) has a smallest element and a biggest one. The biggest
element is the norm × weak∗ lower semicontinuous convex envelope of π + δG(S),

where π : E × E∗ → R is defined by

π(E, E∗) := 〈x, x∗〉,

G(S) denotes the graph of S,

G (S) := {(
x, x∗) ∈ E × E∗ : x∗ ∈ Sx

}
,
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and δG(S) : E × E∗ → R∪ {+∞} denotes the indicator function of G(S),

δG(S)

(
x, x∗) :=

{
0 if (x, x∗) ∈ G(S),

+∞ otherwise.

The smallest element is the Fitzpatrick function FS associated with S , introduced in
[16]:

FS(x, x
∗) := 〈x, x∗〉 − inf

(y,y∗)∈S〈x − y, x∗ − y∗〉.

For more details on the family H(S), see [8,10,11,16].
We recall that the domain of an operator S : E ⇒ E∗ is the set

dom(S) := {x ∈ E : Sx 
= ∅} ,

and the domains of g : E → R ∪ {+∞} and h : E × dom(S) → R ∪ {+∞} are the
sets

dom(g) := {x ∈ E : g(x) < +∞}

and

dom (h) := {(x, y) ∈ E × dom(S) : h (x, y) < +∞} ,

respectively.

Definition 3 [9] Let S : E ⇒ E∗ be maximally monotone and single-valued on
dom(S). The Bregman-type distance associated with h ∈ H(S) is the function Dh :
E × dom(S) → R ∪ {+∞} defined by

Dh(x, y) := h(x, Sy) − 〈x, Sy〉.

Let us recall that a function g : E → R ∪ {+∞} is said to be strictly convex on a
convex set X ⊆ E if

g(λx + (1 − λ)y) < λg(x) + (1 − λ)g(y),∀x, y ∈ X , x 
= y, ∀λ ∈ (0, 1).

In the case when X = dom(g), we simply say that g is strictly convex.
We recall the classical definition of Bregman distance. Let g : E → R ∪ {+∞}

be differentiable on int dom(g), the interior of dom(g), and strictly convex. The
Bregman distance [13] (see also [6,12]) corresponding to g is the function Dg :
dom(g) × int dom(g) → R defined by

Dg(x, y) = g(x) − g(y) − 〈x − y,∇g(y)〉, ∀x, y ∈ E .
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It follows from the convexity of g that Dg(x, y) ≥ 0 for all (x, y) ∈ dom(g) ×
int dom(g) . However, Dg might not be symmetric and might not satisfy the triangle
inequality.

We recall that a convex function g : E → R ∪ {+∞} is said to be proper if
g 
≡ +∞. Its Fenchel conjugate is the lower semicontinuous proper convex function
g∗ : E∗ → R ∪ {+∞} , defined by

g∗(x∗) := sup
x∈E

{〈
x, x∗〉 − g (x)

}
.

Proposition 4 [9, Proposition 3.5] Let g : E → R∪ {+∞} proper, continuous, strictly
convex, and differentiable on dom (g). Take S = ∇g and hg ∈ H(S) such that

hg(x, x
∗) := g(x) + g∗(x∗). (1)

Then, for every (x, y) ∈ E × dom(g), we have

Dhg (x, y) = Dg(x, y) = g(x) − g(y) − 〈x − y,∇g(y)〉.

Remark 5 It is worth noticing that the continuity assumption on g implies that dom(g)
is open. Indeed, one has dom (g) = g−1 (R) , and R is open in R∪ {+∞}.

The rest of the paper consists of two more sections. In Sect. 2, we establish some
convergence properties of Bregman-type distances. In Sect. 3, we introduce and study
projections associated with Bregman-type distances; in particular, we give simple
sufficient conditions for such mappings to be single-valued, a characterization of the
elements of the projection sets, and a fixed point result for compositions of Bregman-
type projection mappings with continuous mappings.

2 Convergence Properties of Bregman-Type Distances

Let us recall that a function g : E → R ∪ {+∞} is said to be coercive if

lim‖x‖→∞ g (x) = +∞,

and supercoercive if it satisfies the stronger condition

lim‖x‖→∞
g (x)

‖x‖ = +∞.

We start with a generalization of [3, Lemma 2.5].

Lemma 6 Let {xn}n∈N be a sequence in E, and assume that E is reflexive, S : E ⇒ E∗
is maximally monotone and single-valued on dom(S), and h ∈ H(S) is weakly con-
tinuous in its first variable. If {xn}n∈N is bounded, then the sequence {Dh(xn, y)}n∈N
is bounded for every y ∈ E such that (xn, y) ∈ dom(h) and dom(h) ∩ (E × {y}) is
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closed. Conversely, if there exists y ∈ E such that the sequence {Dh(xn, y)}n∈N is
bounded and h (·, Sy) is supercoercive, then {xn}n∈N is bounded.

Proof Let y ∈ E be such that (xn, y) ∈ dom(h) and dom(h) ∩ (E × {y}) is closed,
and suppose that {Dh(xn, y)}n∈N is unbounded. Then, there is a subsequence

{
xnk

}
k∈N

which weakly converges to some x ∈ E and satisfies Dh(xnk , y) → +∞. Clearly,
(x, y) ∈ dom(h), therefore, since h is weakly continuous in its first variable, we have
Dh(xnk , y) → Dh(x, y) ∈ R, which is a contradiction. Conversely, let y ∈ E be
such that the sequence {Dh(xn, y)}n∈N is bounded and h (·, Sy) is supercoercive, and
assume that {xn}n∈N is unbounded. After passing to a subsequence if necessary, we
may assume that ‖xn‖ → ∞; since h(·, Sy) is supercoercive, so is Dh(·, y), and thus
Dh(xn, y) → ∞, which is absurd. ��
Definition 7 (see [4, Definition 2.1]) Let S and h be as in Definition 2. A sequence
{xn}n∈N is said to be Dh -convergent to x ∈ dom(S) if Dh(xn, x) → 0, in symbols

xn
Dh→ x .

Our next result is a generalization of [4, Proposition 2.2], the proof of which we
partially follow.

Proposition 8 (Dh-convergence) Let S and h be as in Definition 2. For x ∈ dom(S)

and a sequence {xn}n∈N in E, the following statements hold:

(i) If h (·, Sx) is continuous and xn → x, then xn
Dh→ x .

(ii) If E is reflexive, S is strictly monotone, h (·, Sx) is supercoercive and xn
Dh→ x,

then xn⇀x .
(iii) If E is finite dimensional, S is strictly monotone and h (·, Sx) is continuous and

supercoercive, then

xn → x ⇔ xn
Dh→ x ⇔ xn⇀x .

Proof (i) If xn → x , then limn→∞ Dh(xn, x) = Dh(x, x) = 0, hence xn
Dh→ x .

(ii) Since xn
Dh→ x and h (·, Sx) is supercoercive, {Dh(xn, x)}n∈N is bounded; so, by

Lemma 6, the sequence {xn}n∈N is bounded and, in view of the reflexivity of E,

there exists a subsequence {xnk }k∈N weakly convergent to some y ∈ E . Since
Dh is lower semicontinuous in its first variable, we have

0 = lim
n→∞ Dh (xn, x) = lim

k→∞ Dh
(
xnk , x

) ≥ Dh (y, x) ≥ 0,

so Dh(y, x) = 0, which, by the strict monotonicity of S, yields y = x . This
proves that xn⇀x .
Statement (iii) follows from (i) and (ii), since weak and strong convergence are
equivalent in finite-dimensional spaces. ��
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3 Projections Associated with Bregman-Type Distances

In this section, we introduce and study the notion of h-projection, h being a convex
representation of a maximally monotone operator.

Definition 9 Let S and h be as is Definition 2. For a nonempty set X ⊆ E, we define
the associated h-distance function Dh(X , ·) : E → R ∪ {+∞} and h-projection
mapping Ph

X : E ⇒ X by

Dh(X , y) := inf
x∈X Dh(x, y)

and

Ph
X (y) := {x ∈ X : Dh(x, y) = Dh(X , y)} ,

respectively.

The following result establishes sufficient conditions for the nonemptiness of h-
Bregman projections. It generalizes [1, Proposition 2.1], and its proof is exactly along
the same lines.

Proposition 10 (The domain of Ph
X ) Let S and h be as is Definition 2. If E is reflexive

and y ∈ E is such that h(·, Sy) is weakly continuous and X ⊆ E is nonempty and
weakly closed, then Ph

X (y) 
= ∅ whenever at least one of the following conditions is
satisfied:

(i) X is bounded.
(ii) For every unbounded sequence {xn}n∈N in X , there exists a subsequence {xnk }k∈N

such that infk
h(xnk ,Sy)

‖xnk ‖ > ‖Sy‖ (this holds, in particular, if h(·, Sy) is superco-
ercive).

Proof Since h(·, Sy) is weakly continuous, Dh(·, y) is weakly continuous, too. Take
a sequence {xn}n∈N in X such that limn→∞ Dh (xn, x) = Dh(X , x). If condition (i)
holds, then the sequence {xn}n∈N is obviously bounded. If (ii) is satisfied and {xn}n∈N
were unbounded, then we would have

Dh(xnk , x) ≥ h(xnk , Sy) − ‖xnk‖‖Sy‖ = ‖xnk‖
(
h(xnk , Sy)

‖xnk‖
− ‖Sy‖

)
;

by the assumption, we obtain limk→∞ Dh(xnk , x) = +∞, a contradiction with
limn→∞ Dh (xn, x) = Dh(X , x). Therefore {xn}n∈N is bounded, and hence, since
E is reflexive, it has a weakly convergent subsequence {xnk }k∈N. Let x∗ be the weak
limit of xnk . Since X is weakly closed, x∗ ∈ X . This, together with the equalities

Dh(x
∗, x) = lim

k→∞ Dh(xnk , x) = lim
n→∞ Dh (xn, x) = Dh(X , x),

implies that x∗ ∈ Ph
X (y), and the proof is complete. ��
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We next give a sufficient condition for Ph
X (y) to have at most one element.

Proposition 11 (Nonmultiplicity of Ph
X ) Let S and h be as is Definition 2. If X ⊆ E

is convex and y ∈ E is such that h(·, Sy) is strictly convex and X ⊆ E is convex, then
Ph
X (y) has at most one element.

Proof Clearly, the strict convexity of h(·, Sy) implies that of Dh(·, y), which in turn
implies that Dh(·, y) has at most one minimizer over X . ��

Combining Propositions 10 and 11, one obtains sufficient conditions for an h-
projection mapping to be single-valued; in particular, one gets the following simple
statement.

Corollary 12 Let S and h be as is Definition 2. If E is reflexive, X ⊆ E is nonempty,
convex and closed and, for every y ∈ E, the function h(·, Sy) is weakly continuous
and strictly convex on X , then Ph

X is single-valued.

The following characterization of the elements of Ph
X (y) generalizes part of [5, Fact

2.3].

Proposition 13 (Characterization of projections) Let S and h be as is Definition 2. If
X ⊆ E is convex and closed, S : E ⇒ E∗ is single-valued on its domain, y ∈ E, the
function h is finite-valued and such that h(·, Sy) is subdifferentiable on Ph

X (y), and
x̄ ∈ X, then x̄ ∈ Ph

X (y) if and only if there exists x∗ ∈ ∂h(·, Sy) (x̄) such that

〈x − x̄, Sy − x∗〉 ≤ 0 ∀x ∈ X .

Proof The statement follows from the equivalence

x̄ ∈ Ph
X (y) ⇐⇒ 0 ∈ ∂Dh (·, y) (x̄) + NX (x̄),

with NX (x̄) denoting the normal cone to X at x̄, that is,

NX (x̄) := {
x∗ ∈ E∗ : 〈x − x̄, x∗〉 ≤ 0 ∀x ∈ X

} ;

notice that

∂Dh(·, y) (x̄) = ∂h(·, Sy) (x̄) − Sy.

��
Corollary 14 Let X , S, and h be as in Proposition 13. If y ∈ E is such that h(·, Sy)
is differentiable on Ph

X (y), then

x̄ ∈ Ph
X (y) ⇐⇒ 〈x − x̄, Sy − ∇h(·, Sy) (x̄)〉 ≤ 0 ∀x ∈ X .

The following proposition is a special case of [19, Example 7.2], but we give its
proof in order to make the paper self-contained.
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Proposition 15 (Continuity of S) If S : E ⇒ E∗ is maximally monotone and single-
valued on dom(S), then S is norm-to-weak∗ continuous.

Proof Wefirst observe that dom(S) is open, since, for every x ∈ dom(S), the recession
cone of Sx coincides with the normal cone to the closure of dom(S) at x (see [20,
Theorem 1] for the case when E = R

n, and notice that the proof of this result
extends to arbitrary Banach spaces in a straightforward way). Let x ∈ dom(S), and
let {xn}n∈N be a sequence converging to x . Since S is locally bounded at x , there exists
a neighborhood U of x such that S(U ) is bounded. Without loss of generality, we
assume that {xn}n∈N is contained in U ; then the sequence {Sxn}n∈N is bounded. Let{
Sxnk

}
k∈N be any weakly∗ convergent subsequence, and denote its limit by x∗. Then,

the sequence
{(
xnk , Sxnk

)}
k∈N converges to (x, x∗); hence, since the graph of S is

closed (because of the maximal monotonicity of S), one has x∗ = Sx . Thus, in view
of the Banach–Alaoglu Theorem, using the well-known fact that if all the convergent
subsequences of a sequence in a compact space converge to a common limit then the
whole sequence converges, we conclude that {Sxn}n∈N converges to Sx , thus proving
continuity of S at x . ��

Our next theorem will be a generalization of [15, Theorem 2]. To prove it, we will
need the following lemma.

Lemma 16 Let S and h be as is Definition 2. If X ⊆ E, the operator S is single-
valued on dom(S), and h is norm×weak∗ continuous, then, for any norm-to-norm
continuous f : X → dom(S), the function X × X � (x, y) �→ Dh(x, f (y)) ∈ R is
jointly strongly continuous.

Proof Let {(xn, yn)}n∈N be a sequence in X × X strongly converging to (x, y) ∈
X × X . Similarly to the proof of Proposition 15, without loss of generality we may
assume that the sequence {S f (yn)}n∈N is bounded. Then, since {xn}n∈N strongly
converges to x and {S f (yn)}n∈N weakly∗ converges to S f (y) , from the inequality
|〈xn, S f (yn)〉 − 〈x, S f (y)〉| ≤ |〈xn − x, S f (yn)〉| + |〈x, S f (yn) − S f (y)〉| we can
easily deduce that {〈xn, S f (yn)〉}n∈N converges to 〈x, S f (y)〉 . This, together with
the norm-to-norm continuity of f , Proposition 15, and the norm×weak∗ continuity
of h, proves that {Dh(xn, f (yn))}n∈N converges to Dh(x, f (y)). ��
Theorem 17 (Fixed point theorem for the composition of Ph

X with continuous map-
pings) Let S and h be as is Definition 2. If X ⊆ E is nonempty, convex, and
compact in the strong topology of E , the set dom(S) is convex, S is single-valued on
dom(S), and h is norm×weak∗ continuous, then, for any norm-to-norm continuous
f : X → dom(S), the mapping Ph

X ◦ f has a fixed point.

Proof The set

A := {(x, y) ∈ X × X : Dh(x, f (y)) ≥ Dh(y, f (y))}

is closed by Lemma 16, and it obviously satisfies (i) of Lemma 1. It also satisfies ii),
since h is convex. Hence, by Lemma 1, there exists x0 ∈ X such that X × {x0} ⊆ A,
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that is,

Dh(x0, f (x0)) ≤ Dh(x, f (x0)) ∀x ∈ X;

equivalently,

Dh(x0, f (x0)) = min
x∈X Dh(x, f (x0)), (2)

which means that x0 ∈ Ph
X ( f (x0)) ; thus, x0 is a fixed point of Ph

X ◦ f . ��
Toderive a (finite dimensional) result on classical Bregman distances fromTheorem

17, we need the following lemma.

Lemma 18 If g : Rn → R∪ {+∞} is convex, continuous and supercoercive, then the
function hg defined by (1) is continuous on R

n × R
n.

Proof By [2, Theorem 3.4], the conjugate function g∗ is finite-valued; hence, since it
is convex, it is continuous (see, e.g., [21, Corollary 10.1.1]). Consequently, as hg is a
separable function with both terms being continuous, it is continuous, too. ��

Corollary 19 (Fixed point theorem for the composition of P
hg
X with continuous map-

pings) Let X ⊆ R
n be nonempty, convex and compact, and g : Rn → R ∪ {+∞}

be proper, strictly convex, continuous, supercoercive, and differentiable on dom(g).
Then, for any continuous mapping f : X → dom(g), there exists a point x0 ∈ X such
that

Dg(x0, f (x0)) = min
x∈X Dg(x, f (x0)). (3)

Proof We apply Theorem 17 with S := ∇g, followed by Proposition 4. By
Proposition 15, the mapping ∇g is continuous. We set h := hg, with hg defined by
(1). By Lemma 18, the function hg is continuous. Therefore, given that dom(∇g) =
dom(g) is convex, all the assumptions of Theorem 17 are satisfied; hence, we conclude

that P
hg
X ◦ f has a fixed point x0. By Proposition 4, we obtain (3). ��

4 Conclusions

We have obtained convergence properties for Bregman-type distances associated with
convex representations of maximally monotone operators. Such Bregman-type dis-
tances were introduced in [9] in such a way that when the maximally monotone
operator is the (single-valued) subdifferential of a differentiable convex function f
and its convex representation h is given by h (x, x∗) := f (x) + f ∗ (x∗) , the asso-
ciated Bregman-type distance reduces to the classical Bregman distance induced by
f . When we consider this particular situation, we recover some convergence results
obtained earlier by Bauschke and Combettes [4].
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Our Bregman-type distances induce, in a natural way, a notion of projection onto
nonempty sets. Among other results for such projections, we prove a fixed point the-
orem for their compositions with continuous mappings, which generalizes a classical
result of Fan [15] for ordinary projections in normed spaces.
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