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Abstract
We propose a proximal point method for quasiconvex pseudomonotone equilibrium
problems. The subproblems of the method are optimization problems whose objective
is the sum of a strongly quasiconvex function plus the standard quadratic regulariza-
tion term for optimization problems.We prove, under suitable additional assumptions,
convergence of the generated sequence to a solution of the equilibrium problem,when-
ever the bifunction is strongly quasiconvex in its second argument, thus extending the
validity of the convergence analysis of proximal point methods for equilibrium prob-
lems beyond the standard assumption of convexity of the bifunction in the second
argument.

Keywords Proximal point algorithms · Equilibrium problems ·
Pseudomonotonicity · Quasiconvexity · Strong quasiconvexity

1 Introduction

Equilibrium problems were introduced in the pioneer work of Ky Fan [9] and deeply
studied along the years (see [3,6,10,17,28,33] among others). They encompass sev-
eral problems found in fixed point theory, optimization and nonlinear analysis, like
minimization problems, linear complementary problems and variational inequalities.
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Equilibrium problems have been studied deeply in the last decades, with emphasis
on existence results and optimality conditions, especially in the convex case. In the
nonconvex case, some recent existence results and necessary and sufficient optimal-
ity conditions have been established (see [6,10,33]). Moreover, in [18], the authors
prove an existence result for the pseudomonotone equilibrium problem in the general
quasiconvex case.

Proximal point algorithms, introduced for dealing with maximal monotone opera-
tors and convex problems in [29,30,37], have been extended to equilibriumproblems in
the convex case (see [4,7,21,24–26,32,36] among others). Some of these algorithms
assume a generalized monotonicity notion on the bifunction, but none of them has
weakened the assumption of convexity of the bifunction in its second argument.

In this paper, we propose a proximal point type algorithms for solving pseudomono-
tone equilibrium problems, which allows us to relax the convexity assumption. More
specifically, we demand strong quasiconvexity, rather than convexity, in the second
argument of the bifunction. Additionally, we show that the convergence analysis of
another well-known proximal point method for equilibrium problems, presented in
[21], holds under the assumption of strong quasiconvexity, instead of convexity, in the
second argument of the bifunction.

At this point, it is appropriate to discuss the relevance of extending the analysis
of the proximal point algorithm to the case of quasiconvex bifunctions, rather than
plainly convex ones.

In the first place, quasiconvexity is a notionwith a very simple and geometric appeal:
while convex functions are those with a convex epigraph, quasiconvex functions are
those with convex sublevel sets, so that to some extent both notions are equally natural.

In the second place, a substantial number of applications deal with quasiconvex
functions which are not convex. We mention three of them.

A typical class of quasiconvex functions appears in fractional min–max program-
ming, where the objective function is the maximum of quotients with nonnegative
convex numerators and positive concave denominators. These functions are quasi-
convex, and no transformation is known which turns these problems into convex
ones. Instances of problems of these types in Economic Theory, Financial Theory and
Approximation Theory (in the sense of Chebyshev discrete rational approximation)
can be found in [12, Sect. 4].

Another class of quasiconcave functions can be found in Economic Theory, and
consists of the utility functions of consumers who maximize their utility under budget
constraints. Such utility functions are quasiconcave under very natural assumptions on
the consumer’s preferences,while preferenceswhich produce concave utility functions
turn out to be quite artificial; see, e.g., [31].

A third class of quasiconvex functions appears in a very natural way in Location
Theory, see [8, Chapter 6].

The structure of the paper is as follows. In Sect. 2, we set up notation, preliminaries
and basic definitions related to generalized convexity, generalized monotonicity and
asymptotic analysis. In Sect. 3, we analyze the assumptions that we will assume along
the paper and we propose our proximal point algorithm, based on the usual regular-
ization for the optimization case, applied to the bifunction in its second argument.
After proving the usual properties of the generated sequence, we establish sufficient

123



Journal of Optimization Theory and Applications (2022) 193:443–461 445

conditions which ensure the convergence of the generated sequence to a solution of the
pseudomonotone equilibrium problem, assuming strong quasiconvexity in the second
argument of the bifunction. We also show that the convergence results for a method
which uses another regularization term for the bifunction presented in [21], still hold,
assuming strong quasiconvexity of the bifunction in its second argument. Finally, in
Sect. 4 we present examples of equilibrium problems which satisfy our assumptions.

2 Preliminaries and Basic Definitions

The inner product of Rn and the Euclidean norm are denoted by 〈·, ·〉 and ‖·‖, respec-
tively. Let K be a nonempty set in R

n ; its closure is denoted by cl K , its boundary
by bd K , its topological interior by int K and its convex hull by conv K . We denote
R+ = [0,+∞[ and R++ =]0,+∞[.

Given any x, y, z ∈ R
n and any ζ ∈ R, the following relations hold:

〈x − z, y − x〉 = 1

2
‖z − y‖2 − 1

2
‖x − z‖2 − 1

2
‖y − x‖2, (2.1)

‖ζ x + (1 − ζ )y‖2 = ζ‖x‖2 + (1 − ζ )‖y‖2 − ζ(1 − ζ )‖x − y‖2. (2.2)

Given any extended-valued function h : R
n → R := R ∪ {±∞}, the effective

domain of h is defined by dom h := {x ∈ R
n : h(x) < +∞}. It is said that h is proper

if dom h is nonempty and h(x) > −∞ for all x ∈ R
n . The notion of properness is

important when dealing with minimization problems.
We denote as epi h := {(x, t) ∈ R

n ×R : h(x) ≤ t} the epigraph of h, as Sλ(h) :=
{x ∈ R

n : h(x) ≤ λ} the sublevel set of h at the height λ ∈ R and as argminRn h the
set of all minimal points of h. A function h is lower semicontinuous (lsc henceforth)
at x ∈ R

n if for any sequence {xk}k ∈ R
n with xk → x , h(x) ≤ lim infk→+∞ h(xk).

Furthermore, the current convention sup∅ h := −∞ and inf∅ h := +∞ is adopted.
A function h with convex domain is said to be:

(a) convex if, given any x, y ∈ dom h, then

h(λx + (1 − λ)y) ≤ λh(x) + (1 − λ)h(y), ∀ λ ∈ [0, 1]; (2.3)

(b) semistrictly quasiconvex if, given any x, y ∈ dom h, with h(x) �= h(y), then

h(λx + (1 − λ)y) < max{h(x), h(y)}, ∀ λ ∈ ]0, 1[; (2.4)

(c) quasiconvex if, given any x, y ∈ dom h, then

h(λx + (1 − λ)y) ≤ max{h(x), h(y)}, ∀ λ ∈ [0, 1]. (2.5)

It is said that h is strictly convex (resp. strictly quasiconvex) if the inequality in
(2.3) (resp. (2.5)) is strict.
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Note that every (strictly) convex function is (strictly) quasiconvex and semistrictly
quasiconvex, and every lsc and semistrictly quasiconvex function is quasiconvex (see
[5, Theorem 2.3.2]). The continuous function h : R → R, with h(x) := min{|x |, 1},
is quasiconvex without being semistrictly quasiconvex. Recall that

h is convex ⇐⇒ epi h is a convex set;
h is quasiconvex ⇐⇒ Sλ(h) is a convex set for all λ ∈ R.

For algorithmic purposes, the following notions from [35] are very useful (see also
[1,38,39]). We use the notation of [2, Definition 5.16] for simplicity.

A function h with a convex domain is said to be:

(a) strongly convex on dom h if there exists γ ∈ ]0,+∞[ such that for all x, y ∈ dom h
and all λ ∈ [0, 1], we have

h(λy + (1 − λ)x) ≤ λh(y) + (1 − λ)h(x) − λ(1 − λ)
γ

2
‖x − y‖2, (2.6)

(b) strongly quasiconvex on dom h if there exists γ ∈ ]0,+∞[ such that for all x, y ∈
dom h and all λ ∈ [0, 1], we have

h(λy + (1 − λ)x) ≤ max{h(y), h(x)} − λ(1 − λ)
γ

2
‖x − y‖2. (2.7)

In these cases, it is said that h is strongly convex (resp. quasiconvex) with modulus
γ > 0. Note that every strongly convex function is strongly quasiconvex with the
same modulus, and every strongly quasiconvex function is strictly quasiconvex. The
Euclidean norm h1(x) = ‖x‖ is strongly quasiconvex on any bounded convex set
K ⊆ R

n (see [23, Theorem 2]) without being strongly convex, and the function
h2 : R → R given by h2(x) = max{√|x |, 2} is semistrictly quasiconvex without
being strongly quasiconvex.

Summarizing (quasiconvex is denoted by qcx):

strongly convex �⇒ strict convex �⇒ convex �⇒ qcx
⇓ ⇓ ⇓

strongly qcx �⇒ strict qcx �⇒ semistrictly qcx
⇓
qcx

The function h : Rn → R given by h(x) = √‖x‖ is strongly quasiconvex on every
bounded and convex set (see [27, Theorem 16]).

A proper function h : Rn → R is said to be:

(i) 2-supercoercive, if

lim inf‖x‖→+∞
h(x)

‖x‖2 > 0, (2.8)
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(ii) supercoercive, if

lim‖x‖→+∞
h(x)

‖x‖ = +∞, (2.9)

(iii) 1-supercoercive, if

lim inf‖x‖→+∞
h(x)

‖x‖ > 0, (2.10)

(iv) coercive, if

lim‖x‖→+∞ h(x) = +∞. (2.11)

or equivalently, if Sλ(h) is bounded for all λ ∈ R.
Clearly, (i) ⇒ (i i) ⇒ (i i i) ⇒ (iv), but the converse statements do not hold.

Indeed, the function h(x) = |x |3/2 is supercoercive without being 2-supercoercive, the
function h(x) = |x | is 1-supercoercive without being supercoercive and the function
h(x) = √

x is coercive without being 1-supercoercive.
Recently, it was proved in [27] that every strongly quasiconvex function is 2-

supercoercive, namely,

Lemma 2.1 ([27, Theorem 1]) Let K be a convex set in R
n and h : K → R be a

strongly quasiconvex function. Then, h is 2-supercoercive (in particular, supercoer-
cive).

As a consequence, every lsc and strongly quasiconvex function has exactly one
minimizer on every closed and convex subset K of Rn (see [27, Corollary 3]). There-
fore, Lemma 2.1 is useful for analyzing proximal point algorithms for classes of
quasiconvex functions (see [27]).

Let K be a closed and convex set in Rn and h : Rn → R be a proper function with
K ⊆ dom h. Then, the proximity operator on K of parameter β > 0 of h at x ∈ R

n

is defined as Proxβh : Rn ⇒ R
n where

Proxβh(K , x) = argminy∈K
{
h(y) + 1

2β
‖y − x‖2

}
. (2.12)

If K = R
n , then Proxβh(R

n, x) = Proxβh(x).
The properties of proximity operators are essential for studying proximal point

algorithms. In the quasiconvex case, the following result was obtained in [27]. We
remark that if h is strongly quasiconvex, then γ > 0, and if h is quasiconvex, then
γ = 0.

Lemma 2.2 ([27, Proposition 7]) Let K be a closed and convex set inRn, h : Rn → R

be a proper, lsc, strongly quasiconvex function with modulus γ ≥ 0 and such that
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K ⊆ dom h, β > 0 and x ∈ K. If x ∈ Proxβh(K , x), then

h(x) − max{h(y), h(x)} ≤ λ

β
〈x − x, y − x〉 + λ

2

(
λ

β
− γ + λγ

)
‖y − x‖2,

∀ y ∈ K , ∀ λ ∈ [0, 1]. (2.13)

For analyzing our algorithms, the following result due to Opial [34] will be useful:

Lemma 2.3 Let {xk}k be a sequence inRn. If there exists a nonempty closed set S ⊆ R
n

such that:

(a) for every z ∈ S, we have limk→+∞‖xk − zk‖ exists;
(b) any cluster point of {xk}k belongs to S;

Then, there exists x ∈ S such that xk → x.

Given a nonempty set C in Rn and a bifunction f : Rn ×R
n → R, f is said to be:

(i) monotone on C , if for all x, y ∈ C , we have

f (x, y) + f (y, x) ≤ 0. (2.14)

(ii) pseudomonotone on C , if for all x, y ∈ C , we have

f (x, y) ≥ 0 �⇒ f (y, x) ≤ 0. (2.15)

(iii) quasimonotone on C , if for all x, y ∈ C , we have

f (x, y) > 0 �⇒ f (y, x) ≤ 0. (2.16)

Every monotone bifunction is pseudomonotone, and every pseudomonotone bifunc-
tion is quasimonotone. The reverse statements are not true in general (see, for instance,
[15]).

Now, we recall the following asymptotic function, introduced in [18] for proving
existence results for pseudomonotone equilibrium problems in the quasiconvex case
(see [11,16] for theminimization problem). Note that the definition refers to the second
argument of f .

Definition 2.1 Assume that the bifunction f satisfies that f (x, x) = 0 for all x ∈ K .
The q-asymptotic function of f at u ∈ K∞ is defined as:

f ∞
q (u) := sup

y∈K
sup
t>0

f (y, y + tu)

t
. (2.17)

Clearly, f ∞
q (0) = 0. If f (y, y+ tu) = h(y+ tu)−h(y), then for every u ∈ R

n we
have f ∞

q = h∞
q , which is the q-asymptotic function for the scalar case (see [11,16]).
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If h is lsc and convex, then f ∞
q = h∞

q = h∞ coincides with the usual asymptotic
(recession) function from convex analysis:

h∞(u) := sup
t>0

h(y + tu) − h(y)

t
= lim

t→+∞
h(y + tu) − h(y)

t
. (2.18)

For each x ∈ K , we extend f (x, ·) to the whole R
n by setting f (x, y) = +∞ if

y ∈ R
n\K . Hence, if u /∈ K∞, then f ∞

q (u) = +∞.
For additional results on strongly quasiconvex functions, generalized convexity and

generalized monotonicity, refer to [5,15,23,27,38,39].

3 A Proximal Point Algorithm for Equilibrium Problems

Let K be a closed and convex set in R
n and f : K × K → R be a bifunction. The

equilibrium problem is defined by

find x ∈ K : f (x, y) ≥ 0, ∀ y ∈ K . (3.1)

Its solution set is denoted by S(K , f ).
We discuss next the assumptions on the equilibrium problem which will be used in

the analysis of our algorithm.

(A1) For every x ∈ K , the function f (x, ·) is lsc, and for every y ∈ K , the function
f (·, y) is usc.

(A2) f is pseudomonotone on K .
(A3) f is lsc (jointly in both arguments).
(A4) For every x ∈ K , the function f (x, ·) is strongly quasiconvex on K withmodulus

γ > 0.
(A5) f satisfies the following Lipschitz condition: There exists η > 0 such that

f (x, z) − f (x, y) − f (y, z) ≤ η
(
‖x − y‖2 + ‖y − z‖2

)
, ∀ x, y, z ∈ K .

(3.2)

(A6) The Lipschitz constant η and the modulus of quasiconvexity γ are such that
12η < γ .

We will state an additional assumption, which is standard in the theory of equi-
librium problems. In our case, it is a consequence of (A2) and (A5), as shown in
Remark 3.1(i), so that we chose to exclude it from the basic list, in order to avoid
redundant hypotheses. We’ll use it in some intermediate results which do not require
(A5).

(A0) f (x, x) = 0 for all x ∈ K .

We mention that (A1), (A2) and (A3) are rather standard assumptions in the lit-
erature on our subject. On the other hand, (A4), (A5) and (A6) substitute for the
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standard hypothesis of convexity of f in its second argument, and are specific to our
presentation.

We discuss next these assumptions.

Remark 3.1 (i) Note that (A2) and (A5) imply (A0). Indeed, setting x = y = z in
(A5) gives f (x, x) ≥ 0. On the other hand, (A2) implies f (x, x) ≤ 0, so that
f (x, x) = 0 for all x ∈ K .

(ii) If f (x, y) = 〈T (x), y − x〉, where T : K → R
n is a L-Lipschitz and continuous

operator with L > 0 (i.e., ‖T (x) − T (y)‖ ≤ L‖x − y‖ for all x, y ∈ K ), then f
satisfies (3.2) with constant η = L

2 . Indeed, for all x, y, z ∈ K , we have

f (x, y) + f (y, z) − f (x, z) = −〈T (y) − T (x), y − z〉 ≥ −2η‖y − x‖‖y − z‖
≥ −η

(
‖y − x‖2 + ‖y − z‖2

)
.

(iii) It is relevant to exhibit instances of equilibrium problems which satisfy (Ai) (i =
1, 2, 3, 4, 5, 6). We present them in Sect. 4.

We recall the following existence result, which will be useful in the sequel; other
existence results for classes of nonconvex equilibrium problems may be found in
[6,18,28,33].

Lemma 3.1 ([18, Theorem 3.1]) Suppose that K is a closed and convex set, that f
satisfies (Ai) with i = 0, 1, 2, 4 and that for every x ∈ K, f (x, ·) is quasiconvex (in
particular, strongly quasiconvex) on K . If f ∞

q (u) > 0 for all u �= 0, then S(K , f ) �= ∅
and compact.

We emphasize that f ∞
q (u) > 0 for all u �= 0 does not imply that f is coercive on

the second argument as the function f (x, y) = h(y) − h(x) with h : Rn → R given
by h(x) = ‖x‖

1+‖x‖ shows.
Next we present our algorithm, where at each step we use the standard proximal

point method for optimization, applied for minimizing the bifunction f in its second
algorithm, with the first argument taken as the previous iterate.

The precise statement of Algorithm 1 is given below:

Algorithm 1 PPA-1 for Strongly Quasiconvex EP’s

Step 0. Take x1 ∈ K , k = 0 and a sequence {βk }k∈N ⊆ R++ bounded away from 0.
Step 1. Take k = k + 1, and

xk+1 ∈ argminx∈K
(
f (xk , x) + 1

2βk
‖xk − x‖2

)
. (3.3)

Step 2. If xk+1 = xk , then STOP: {xk } = S(K , f ). Otherwise, go to Step 1.

Wemention that (3.3) is just the iterative step of the standard proximal point method
for optimization applied to the function f k defined as f k(y) = f (xk, y). As a first
result, we have:

123



Journal of Optimization Theory and Applications (2022) 193:443–461 451

Proposition 3.1 Let K be a closed and convex set in R
n and suppose that f satisfies

(A0), (A1), (A2) and (A4). Then, S( f , K ) is a singleton.

Proof By (A1) and (A4), f is lsc and strongly quasiconvex in its second argument.We
conclude from Lemma 2.2 that f is lsc and 2-supercoercive in its second argument.
Hence, f ∞

q (u) > 0 for all u �= 0. Therefore, S(K , f ) is nonempty and compact by
Lemma 3.1.

Now, take x1, x2 ∈ S(K , f ) with x1 �= x2, then f (x1, x2) ≥ 0 and f (x2, x1) ≥ 0.
By pseudomonotonicity, f (x2, x1) = 0. Using (A0) and strong quasiconvexity of
f (x2, ·), we get f (x2, x2+x1

2 ) < 0, a contradiction. Therefore, S( f , K ) is a singleton.
��

Now, we validate the stopping criteria.

Proposition 3.2 Let K be a closed and convex set inRn, {βk}k be a sequence of positive
numbers, {xk}k be the sequence generated by Algorithm 1 and suppose that f satisfies
(A0), (A1) and (A4). If xk+1 = xk , then xk ∈ S(K , f ).

Proof If xk+1 = xk , then it follows from (3.3) that

f (xk, xk+1) + 1

2βk
‖xk − xk+1‖2 ≤ f (xk, x) + 1

2βk
‖xk − x‖2, ∀ x ∈ K

�⇒ 0 ≤ f (xk, x) + 1

2βk
‖xk − x‖2, ∀ x ∈ K . (3.4)

Take x = λy + (1 − λ)xk with y ∈ K\{x} and λ ∈ [0, 1]. Since f is strongly
quasiconvex with modulus γ > 0 in its second argument,

0 ≤ f (xk, λy + (1 − λ)xk) + 1

2βk
‖λ(xk − y)‖2

≤ max{ f (xk, y), 0} + λ

2

(
λ

βk
− γ + λγ

)
‖xk − y‖2, ∀ y ∈ K , ∀ λ ∈ ]0, 1].

Since {βk}k is a positive sequence bounded away from zero, we take λ such that
0 < λ <

βkγ
1+βkγ

for all k ∈ N. Then, λ
βk

− γ + λγ < 0 for all k, thus,

0 < max{ f (xk, y), 0} = f (xk, y), ∀ y ∈ K\{xk},

i.e., xk ∈ S(K , f ). ��
In the case when xk+1 �= xk , we have the following result.

Proposition 3.3 Let K be a closed and convex set in Rn, {βk}k a sequence of positive
numbers, {xk}k the sequence generated by Algorithm 1, and suppose that f satisfies
(Ai) with i = 0, 1, 2. If xk+1 �= xk , then f (xk, xk+1) < 0.

Proof Take x = xk in (3.4) and the result follows. ��
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Remark 3.2 If h : Rn → R is a lsc and strongly quasiconvex function with modulus
γ > 0, then taking f (x, y) = h(y) − h(x), we recover [27, Proposition 8] and [27,
Theorem 15], from Propositions 3.2 and 3.3, respectively.

For establishing the boundedness of the sequence {xk}k generated by Algorithm 1,
we start with the following result.

Proposition 3.4 Let K be a closed and convex set inRn, {βk}k be a sequence of positive
numbers, {xk}k be the sequence generated by Algorithm 1 and suppose that f satisfies
(Ai) with i = 1, 2, 4, 5. Take x ∈ S(K , f ). Then, for every k ∈ N, at least one of the
following inequalities holds:

(
1 + γβk

2

)
‖xk+1 − x‖2 ≤ ‖xk − x‖2 − ‖xk+1 − xk‖2, (3.5)

(
1 + γβk

8βk
− η

)
‖xk+1 − x‖2 ≤ 1

4βk
‖xk − x‖2 −

(
1

4βk
− η

)
‖xk+1 − xk‖2.

(3.6)

Proof Since f satisfies (Ai) with i = 1, 2, 4, 5, f satisfies (A0), thus S(K , f ) is a
singleton by Proposition 3.1. Then, applying Lemma 2.2 with γ > 0 to f as a function
of its second argument, in step (3.3) for k + 1, we have

f (xk, xk+1) − max{ f (xk, xk+1), f (xk, x)} ≤ λ

βk
〈xk+1 − xk, x − xk+1〉

+ λ

2

(
λ

βk
− γ + λγ

)
‖x − xk+1‖2, ∀ x ∈ K , ∀ λ ∈ [0, 1]. (3.7)

Taking x = x ∈ S(K , f ) in Eq. (3.7) with γ > 0, we have

f (xk, xk+1) − max{ f (xk, xk+1), f (xk, x)} ≤ λ

βk
〈xk+1 − xk, x − xk+1〉

+ λ

2

(
λ

βk
− γ + λγ

)
‖xk+1 − x‖2, ∀ λ ∈ [0, 1].

We consider two cases:

(i) If f (xk, xk+1) ≥ f (xk, x), then

0 ≤ 1

βk
〈xk+1 − xk, x − xk+1〉 + 1

2

(
λ

βk
− γ + λγ

)
‖xk+1 − x‖2, ∀ λ ∈ ]0, 1].

Taking λ = 1
2 and using (2.1),

1 + γβk

2βk
‖xk+1 − x‖2 ≤ 1

βk
‖xk − x‖2 − 1

βk
‖xk+1 − xk‖2,

�⇒ 1 + γβk

2
‖xk+1 − x‖2 ≤ ‖xk − x‖2 − ‖xk+1 − xk‖2,
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and the inequality (3.5) hold.
(ii) If f (xk, xk+1) < f (xk, x), then

0 ≤ λ

βk
〈xk+1 − xk, x − xk+1〉 + λ

2

(
λ

βk
− γ + λγ

)
‖xk+1 − x‖2

+ f (xk, x) − f (xk, xk+1)

≤ λ

βk
〈xk+1 − xk, x − xk+1〉 + λ

2

(
λ

βk
− γ + λγ

)
‖xk+1 − x‖2

+ f (xk+1, x) + η
(
‖xk+1 − xk‖2 + ‖xk+1 − x‖2

)
,

where the last inequality follows from assumption (A5). Furthermore, since x ∈
S(K , f ) and f is pseudomonotone, f (xk+1, x) ≤ 0, so that

0 ≤ λ

βk
〈xk+1 − xk, x − xk+1〉 + λ

2

(
λ

βk
− γ + λγ

)
‖xk+1 − x‖2

+ η
(
‖xk+1 − xk‖2 + ‖xk+1 − x‖2

)
, ∀ λ ∈ [0, 1].

Using (2.1), we have

0 ≤ λ

2βk
‖xk − x‖2 + λ

2

(
λ

βk
− γ + λγ − 1

βk

)
‖xk+1 − x‖2

− λ

2βk
‖xk+1 − xk‖2 + η

(
‖xk+1 − xk‖2 + ‖xk+1 − x‖2

)
, ∀ λ ∈ [0, 1].

Take λ = 1
2 . Then,

(
1 + γβk

8βk
− η

)
‖xk+1 − x‖2 ≤ 1

4βk
‖xk − x‖2 −

(
1

4βk
− η

)
‖xk+1 − xk‖2,

and (3.6) hold.

Therefore, for every k ∈ N, at least one among (3.5) and (3.6) holds. ��
In the following proposition, we present sufficient conditions for the boundedness

of the sequence {xk}k generated by Algorithm 1.

Proposition 3.5 Let K ⊂ R
n be a closed and convex set and suppose that assumptions

(Ai) with i = 1, 2, 4, 5, 6 hold. Assume that {βk}k ⊂] 1
γ−8η , 1

4η [. Then, the sequence
{xk}k generated by Algorithm 1 is bounded.

Proof First note that Assumption (A6) ensures that 1
γ−8η < 1

4η , so that the prescribed
choice of the regularization parameters βk is possible. In view of Proposition 3.1,
S(K , f ) is a singleton. Take {x} = S(K , f ). Then, for every k ∈ N, byProposition 3.4,
one among (3.5) and (3.6) holds. We have two cases:
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(i) Suppose that Eq. (3.5) hold. Since βk > 1
γ−8η > 1

γ
for all k, we have

‖xk+1 − x‖2 <
1 + γβk

2
‖xk+1 − x‖2 ≤ ‖xk − x‖2. (3.8)

(ii) Suppose that Eq. (3.6) hold. Since βk < 1
4η , we have

(
1 + γβk

8βk
− η

)
‖xk+1 − x‖2 ≤ 1

4βk
‖xk − x‖2 −

(
1

4βk
− η

)
‖xk+1 − xk‖2

≤ 1

4βk
‖xk − x‖2.

Since βk > 1
γ−8η > 1

γ
for all k, it follows that

1

4βk
‖xk − x‖2 ≥

(
1 + γβk

8βk
− η

)
‖xk+1 − x‖2

≥
(
1 + γβk

8βk
− γβk − 1

8βk

)
‖xk+1 − x‖2 = 1

4βk
‖xk+1 − x‖2.

Then,

‖xk+1 − x‖2 ≤ ‖xk − x‖2. (3.9)

Therefore, in both cases the sequence {‖xk − x‖2}k is nonnegative and nonincreas-
ing, hence is bounded. It follows that the sequence {xk}k is also bounded. ��

Our first main result, which shows that the sequence generated by Algorithm 1
converges to a solution of problem (3.1), is given next.

Theorem 3.1 Let K ⊂ R
n be a closed and convex set in R

n. Assume that {βk}k ⊂
] 1
γ−8η , 1

4η [ and that assumptions (Ai) with i = 1, 2, 3, 4, 5, 6 hold. Let {xk}k be the
sequence generated by Algorithm 1. Then, {xk}k converges to a point x ∈ S(K , f ).

Proof The sequence {xk}k is bounded by Proposition 3.5. Let x̂ ∈ K be any cluster
point of {xk}k , so that there exists a subsequence {xk�}� ⊆ {xk}k such that xk� → x̂
as � → +∞. It follows from step (3.3) that

f (xk, xk+1) + 1

2βk
‖xk − xk+1‖2 ≤ f (xk, x) + 1

2βk
‖xk − x‖2, ∀ x ∈ K

�⇒ f (xk, xk+1) ≤ f (xk, x) + 1

2βk
‖xk − x‖2, ∀ x ∈ K .
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Take x = λy + (1 − λ)̂x with y ∈ K and λ ∈ [0, 1]. Then,

f (xk, xk+1) ≤ f (xk, λy + (1 − λ)̂x) + 1

2βk
‖λ(xk − y) + (1 − λ)(xk − x̂)‖2

≤ max{ f (xk, y), f (xk, x̂)} − λ(1 − λ)γ

2
‖y − x̂‖2

+ λ

2βk
‖xk − y‖2 + (1 − λ)

2βk
‖xk − x̂‖2 − λ(1 − λ)

2βk
‖y − x̂‖2

= max{ f (xk, y), f (xk, x̂)} + λ

βk
〈̂x − xk, y − x̂〉 + 1

2βk
‖xk − x̂‖2

+ λ

2

(
λ

βk
− γ + λγ

)
‖y − x̂‖2, ∀ y ∈ K , ∀ λ ∈ [0, 1].

For the sake of a shorter notation, define β̂ := 1
γ−8η . Replace k by k� in the previous

inequalities. Then, taking lim sup�→+∞ and using Assumption (A3), we have

0 = f (̂x, x̂) ≤ lim inf
�→+∞ f (xk� , xk�+1) ≤ lim sup

�→+∞
f (xk� , xk�+1)

≤ max{ f (̂x, y), 0} + λ

2

(
λ

β̂
− γ + λγ

)
‖y − x̂‖2, ∀ y ∈ K , ∀ λ ∈ [0, 1].

Since γ > 0, we take λ <
ˆβγ

1+β̂γ
. Then, ( λ

β̂
− γ + λγ ) < 0. Thus,

0 < max{ f (̂x, y), 0} = f (̂x, y), ∀ y ∈ K\{̂x}.

Therefore, x̂ ∈ S(K , f ).
Since f is strongly quasiconvex in its second argument, S(K , f ) is a singleton by

Proposition 3.1. Thus, the whole sequence {xk}k converges to x ∈ S(K , f ) and the
proof is complete. ��

In particular, we recover [27, Theorem 15], which establishes convergence of the
proximal point algorithm for minimizing problem of strongly quasiconvex functions,
as we show next.

Corollary 3.1 Let K be a convex and closed set in R
n, h : R

n → R be a lsc and
strongly quasiconvex function on K with modulus γ > 0 and {βk}k be a sequence of
positive numbers bounded away from 0. Let us consider the problem:

min
x∈K h(x), (3.10)

and the bifunction fh : K × K → R given by:

fh(x, y) := h(y) − h(x), ∀ x, y ∈ K . (3.11)
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Then, the sequence {xk}k , generated by Algorithm 1 applied to fh, converges to the
unique minimizer of h in K .

Proof Note that for fh , assumptions (A2) and (A4) hold immediately. Furthermore,
since h is lsc, fh is lsc on its first argument and usc on its second argument, so
assumption (A1) holds, which easily entails that (A3) also holds. Finally, by definition
of fh , we have

fh(x, z) − fh(x, y) − fh(y, z) = h(z) − h(x) − (h(y) − h(x)) − (h(z) − h(y)) = 0,

i.e., assumption (A5) holds with η = 0, and hence assumption (A6) also holds, since
γ > 0. Hence, all assumptions needed for our previous results are valid in this case.

Therefore, it follows from Propositions 3.2 and 3.3 that if xk+1 = xk , then xk ∈
argminK h, and that if xk+1 �= xk , then h(xk+1) < h(xk). Moreover, since h is lsc
and strongly quasiconvex and K is closed and convex, argminK h is nonempty by
Lemma 2.1. Therefore, by Theorem 3.1, xk → x = argminK h. ��
Remark 3.3 Strongly quasiconvex functions are not restricted to “prox-convex” func-
tions (see [13]). Take K := [−ρ, ρ] with ρ ≥ 2, and h : K → R with h(x) = √|x |.
Here h is strongly quasiconvex by [27, Proposition 15] without being prox-convex.
Indeed, take α = 1 and z = 1, 5, then Proxαh(K , z) = {0, 1} is not a singleton, thus
h is not prox-convex.

In [32] (see also [4,21,28]), another regularization procedure was introduced for
defining aproximal point algorithm. Insteadof regularizing the function f (x, ·),weuse
a regularization bifunction on the bifunction f (see Algorithm 2). In [21], convergence
of this algorithm to the solution of the equilibrium problem was proved under (A0),
(A1), (A2), (A3) and convexity of f (x, ·) for all x ∈ K . We will show that the result
holds assuming (A1)-(A6). The precise statement of this method, to be denoted as
Algorithm 2, follows.

Algorithm 2 Iusem-Sosa [21] for Strongly Quasiconvex EP’s

Step 0. Take x1 ∈ K , k = 0, θ > 0 and a sequence {βk }k∈N ⊂ R++ such that βk ≥ θ for all k.
Step 1. Take k = k + 1, define fk (x, y) = f (x, y) + 1

βk
〈x − xk , y − x〉 and take

xk+1 ∈ S(K , fk ). (3.12)

Step 2. If xk+1 = xk , then STOP, xk ∈ S(K , f ). Otherwise, go to Step 1.

We prove next that under our assumptions the sequence generated by Algorithm 2
is well defined.

Proposition 3.6 Take θ ∈ R++. Let K be a convex and closed set in R
n and {βk}k

be a sequence such that βk ≥ θ for all k. Suppose that assumptions (Ai) with i =
1, 2, 3, 4, 5 are satisfied. Then, S(K , f ) is nonempty and the sequence {xk}k generated
by Algorithm 2 is well defined.
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Proof By Lemma 2.1, (A4) implies that f (x, y) is 2-supercoercive in y, and since
(A1) holds, S(K , f ) is nonempty. It remains to check that S(K , fk) �= ∅ for all k ∈ N.
Since the regularization term 1

β
〈x − z, y − x〉 is linear in y for all z ∈ K , β > 0,

it follows easily that f (x, y) + 1
β
〈x − z, y − x〉 is also 2-supercoercive in y for all

z ∈ K , β > 0, so that fz,β(x, ·) attains its minimum on K and hence S(K , fz,β) �= ∅
for all z ∈ K and all β > 0. Hence, S(K , fk) �= ∅ for all k ∈ N. ��

As a corollary, a convergence result for Algorithm 2 in the strongly quasiconvex
case is obtained.

Corollary 3.2 Take θ ∈ R++. Let K be a convex and closed set in R
n and {βk}k

be a sequence such that βk > θ for all k and {xk}k be the sequence generated by
Algorithm 2. Suppose that assumptions (Ai) with i = 1, 2, 3, 4, 5 hold. Then, xk →
x ∈ S(K , f ).

Proof In [21, Theorem 1], convergence of the sequence generated by Algorithm 2 to
point in S(K , f ) was proved under the following assumptions: (A0), (A1), (A2), and
in addition existence of solutions of the equilibrium problems and convexity of f in
its second argument. In our setting, (A0) follows from (A2) and (A5), as shown in
Remark 3.1(i), and nonemptiness of S(K , f ) follows from Proposition 3.6, so that
we only need to deal with the assumption of convexity of f (x, ·). A careful perusal
of the analysis dealing to [21, Theorem 1] shows that such assumption was used only
for proving existence of solutions of the subproblems, i.e., nonemptiness of S(K , fk)
for all k, which in our case holds by Proposition 3.6. ��

Another consequence of our analysis is the following convergence result for the
classical proximal point algorithm for optimization, applied to strongly quasiconvex
minimization problems.

Corollary 3.3 Take θ ∈ R++. Let K be a convex and closed set in R
n, h : Rn → R

be a lsc and strongly quasiconvex function on K with modulus γ > 0 and {βk}k be a
sequence such that βk ≥ θ for all k. Let us consider the problem:

min
x∈K h(x), (3.13)

and the bifunction fh : K × K → R given by:

fh(x, y) := h(y) − h(x), ∀ x ∈ K , ∀ y ∈ K . (3.14)

Then, the sequence {xk}k , generated by Algorithm 2 applied to fh, converges to a
minimizer of h in K .

Proof Observe that assumptions (Ai) with i = 0, 1, 2 and (A4) hold for fh . By
Corollary 3.2, xk → x ∈ S(K , f ) = argminK h. In addition, it follows from [21,
Theorem 1, equation (16)] that ‖xk+1 − x‖ ≤ ‖xk − x‖.

It follows from Proposition 3.6 that h(xk+1) ≤ h(xk) for all k ∈ N and that if
xk+1 = xk , then xk ∈ argminK h. Furthermore, applying Corollary 3.2, xk → x ∈
S(K , fh) = argminK h. ��
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Remark 3.4 Even when f is assumed to be strongly quasiconvex in its second argu-
ment, we cannot use Proposition 3.1 in the proofs of Proposition 3.6 and Corollary 3.2
because fk is the sum of two quasiconvex functions, which in general is not quasicon-
vex. Instances in which sums of quasiconvex functions are quasiconvex can be found
in [22].

4 Examples of Equilibrium Problems Satisfying Our Assumptions

In this section presenting instances of equilibrium problemswhich satisfy the hypothe-
ses required in the convergence analysis of our algorithm, namely (Ai) with i =
1, 2, 3, 4, 5, 6 . All these instances are indeed mixed variational inequalities, i.e., the
bifunction f is of the form f (x, y) = h(y) − h(x) + 〈T (x), y − x〉 with h : K → R

and T : R
n → R

n . See, e.g., [19,20] for more information on mixed variational
inequalities.

Example 4.1 Take symmetric and positive definite matrices A, B ∈ R
n×n , and define

f (x, y) = yt Ay − xt Ax + xt B(y − x). (4.1)

It is easy to check that f satisfies (Ai) with i = 1, 2, 3. Let now ρ(B) be the largest
eigenvalue of B (i.e., its spectral radius), andμ(A) the smallest eigenvalue of A. By the
positive definiteness assumption, both ρ(B) and μ(A) are positive. Since f (x, ·) is a
quadratic function with matrix A, it is strongly convex with modulus μ(A), and hence
strongly quasiconvex with the same modulus, and (A4) holds. An easy computation
shows that f is Lipschitz continuous with constant ρ(B)/2, so that (A5) holds. If we
assume that 6ρ(B) < μ(A), then (A6) holds.

Wemention that the equilibriumproblem inExample 4.1 is not a variational inequal-
ity one, because f is not affine on y; asmentioned above, it is indeed amixedvariational
inequality problem.

We continue with a nonconvex (albeit one-dimensional) example, meaning that
f (x, ·) is strongly quasiconvex but not convex.

Example 4.2 Take α, δ ∈ R++, K = [0, δ]. Let T : K → R be given by T (x) = αx
and h : K → R be the continuous function given by h(x) = √

x . Define the bifunction
f Th : K × K → R by

f Th (x, y) := h(y) − h(x) + 〈T (x), y − x〉. (4.2)

Clearly, S( f Th , K ) = {0} for all α > 0 and all δ > 0.

Note that assumptions (A1) and (A3) trivially hold.
For (A2), take x, y ∈ K be such that

f Th (x, y) = αx(y − x) + √
y − √

x ≥ 0 �⇒ −αx(y − x) − √
y + √

x ≤ 0.
(4.3)
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Since α > 0, we have −α(y − x)2 ≤ 0, so that (4.3) implies

αy(x − y) − h(y) + h(x) ≤ −αx(y − x) − h(y) + h(x) ≤ 0.

Therefore, for every α > 0, the bifunction f Th is pseudomonotone on K , i.e., assump-
tion (A2) holds.

For (A5), observe that f Th satisfies (A5) with parameter η = α
2 > 0 because T is

Lipschitz continuous with constant α > 0.
Regarding (A4), since the functions y �→ 〈T (x), y− x〉 and h are increasing on K ,

its sum y �→ 〈T (x), y − x〉 + h(y) is increasing too, so that f Th is quasiconvex in its
second argument by [14, Proposition 4.9]. We claim that f Th is strongly quasiconvex
in its second argument with modulus γ = 1

2
√

δ3
> 0. Indeed, take t1, t2 ∈ K with

t1 < t2 and t = λt1 + (1 − λ)t2 with λ ∈]0, 1[. Then, for all x ∈ K , we have

max{ f Th (x, t1), f Th (x, t2)} − f Th (x, t)

= αx(t2 − x) + √
t2 − √

x − (αx(t − x) + √
t − √

x)

= αxλ(t2 − t1) + (
√
t2 − √

t) ≥ (
√
t2 − √

t), (4.4)

because x ≥ 0, α > 0, λ > 0 and t2 > t1.
Now, since h is strongly quasiconvex with modulus γ = 1

2
√

δ3
by [27, Proposition

15], it follows from (4.4) that

max{ f Th (x, t1), f Th (x, t2)} − f Th (x, t) ≥ (
√
t2 − √

t) ≥ γ

2
λ(1 − λ)(t2 − t1)

2.

Therefore, f Th is strongly quasiconvex in its second argument with modulus γ =
1

2
√

δ3
> 0 and assumption (A4) holds.

Finally, if 0 < α < 1
12

√
δ3
, then (A6) holds and all the assumptions needed in the

convergence analysis of Algorithm 1 are satisfied.
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23. Jovanović, M.: A note on strongly convex and quasiconvex functions. Math. Notes 60, 584–585 (1996)
24. Kassay, G., Hai, T.N., Vinh, N.T.: Coupling Popov’s algorithm with subgradient extragradient method

for solving equilibrium problems. J. Nonlinear Conv. Anal. 19, 959–986 (2018)
25. Khatibzadeh, H., Mohebbi, V.: Proximal point algorithm for infinite pseudo-monotone bifunctions.

Optimization 65, 1629–1639 (2016)
26. Konnov, I.V.: Application of the proximal point method to nonmonotone equilibrium problems. J.

Optim. Theory Appl. 119, 317–333 (2003)
27. Lara, F.: On strongly quasiconvex functions: existence results and proximal point algorithms. Submit-

ted, (2021)
28. López, R.: Approximations of equilibrium problems. SIAM J. Optim. 50, 1038–1070 (2012)
29. Martinet, B.: Regularisation d’inequations variationelles par approximations successives. Rev. Fr. Inf.

Rech. Oper., 154–159 (1970)
30. Martinet, B.: Determination approchée d’un point fixe d’une application pseudo-contractante. C. R.

Acad. Sci. Paris 274, 163–165 (1972)
31. Mas-Colell, A.,Whinston,M.D.,Green, J.R.:MicroeconomicTheory.OxfordUniversity Press,Oxford

(1995)
32. Moudafi, A., Théra, M.: Proximal and Dynamical Approaches to Equilibrium Problems, in Lecture

Notes in Econom. and Math. Systems 477, M. Théra and T. Tichatschke (eds.), Springer, Berlin,
187–201, (1999)

33. Oettli, W.: A remark on vector-valued equilibria and generalized monotonicity. Acta Math. Vietnam.
22, 213–221 (1997)

34. Opial, Z.:Weak convergence of the sequence of successive approximations for nonexpansivemappings.
Bull. Am. Math. Soc. 73, 591–597 (1967)

123



Journal of Optimization Theory and Applications (2022) 193:443–461 461

35. Poljak, B.T.: Existence theorems and convergence of minimizing sequences in extremum problems
with restrictions. Sov. Math. 7, 72–75 (1966)

36. Quoc, T.D., Muu, L.D., Hien, N.V.: Extragradient algorithms extended to equilibrium problems. Opti-
mization 57, 749–766 (2008)

37. Rockafellar, R.T.: Monotone operators and proximal point algorithms. SIAM J. Control Optim. 14,
877–898 (1976)

38. Vial, J.P.: Strong convexity of sets and functions. J. Math. Econ. 9, 187–205 (1982)
39. Vial, J.P.: Strong and weak convexity of sets and functions. Math. Oper. Res. 8, 231–259 (1983)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Proximal Point Algorithms for Quasiconvex Pseudomonotone Equilibrium Problems
	Abstract
	1 Introduction
	2 Preliminaries and Basic Definitions
	3 A Proximal Point Algorithm for Equilibrium Problems
	4 Examples of Equilibrium Problems Satisfying Our Assumptions
	Acknowledgements
	References




