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Abstract
This paper studies the minimization of a broad class of nonsmooth nonconvex objec-
tive functions subject to nonlinear functional equality constraints, where the gradients
of the differentiable parts in the objective and the constraints are only locally Lip-
schitz continuous. We propose a specific proximal linearized alternating direction
method of multipliers in which the proximal parameter is generated dynamically, and
we design an explicit and tractable backtracking procedure to generate it. We prove
subsequent convergence of the method to a critical point of the problem, and global
convergence when the problem’s data are semialgebraic. These results are obtained
with no dependency on the explicit manner in which the proximal parameter is gen-
erated. As a byproduct of our analysis, we also obtain global convergence guarantees
for the proximal gradient method with a dynamic proximal parameter under local Lip-
schitz continuity of the gradient of the smooth part of the nonlinear sum composite
minimization model.
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1 Introduction

Over the last few years, in many modern applications ranging from machine learning,
statistics to image/signal processing (see, e.g., [15,20,27] and references therein), it
has been observed that nonconvex models are often more faithful than their convex
relaxed/approximate counterparts and provide better quality solutions, even in spite of
the obvious difficulties in derivingmeaningful convergenceguarantees for a nonconvex
problem. This led to a strong renewed interest in nonconvex optimization methods and
their theoretical properties.

This study addresses a broad class of nonsmooth nonconvex minimization
problems with nonlinear functional equality constraints via the fundamental (aug-
mented) Lagrangian-based optimization methodology. The augmented Lagrangian
(AL) approach is a centerpiece in algorithmic optimization literature with a long his-
tory that can be traced back to the classical works of [18] and [24]. To this day,
it provides fertile ground for algorithmic frameworks, with prominent fundamental
algorithms such as the Proximal Method of Multipliers (PMM) [25] and the Alter-
nating Direction Method of Multipliers (ADMM) [16,17]. We refer the reader to the
monographs [3,5] for a comprehensive survey.

The recent literature on Lagrangian-based methods is quite voluminous and is
almost entirely devoted to the convex setting, see e.g., [3–5,11,17,29] and references
therein. Unlike the convex setup, the situation in the nonconvex setting is far from
being well-understood, especially global analysis of Lagrangian-based methods for
general nonlinear models remains scarce and very challenging.

The genuine nonconvex optimization model we study has been barely touched in
the literature. In fact, only very recently some progress has been initiated for certain
types of nonconvex models with linear constraints. Even in this simpler linearly
constraints setup, the analysis is challenging and is forced to rely on various types of
assumptions; see e.g., [19] and [10] for recent results, as well as relevant references,
therein.

To our knowledge, the class of nonsmooth nonconvex optimization models with
nonlinear equality constraints studied here within the Lagrangian-based scheme we
propose, has not been addressed in the literature. The only closely relatedmodel we are
aware of is the universal Lagrangian framework studied by [9], in which the authors
introduce a novel methodology to conduct global analysis of a nonsmooth nonlinear
composite optimization problem, within the framework of a broad Lagrangian-based
schemewith global convergence guarantees. The results developed in [9] have revealed
the fundamental theoretical difficulties involved in the global analysis of Lagrangian-
basedmethodswhen studying such an all-embracing nonsmooth nonconvex composite
minimization model; see, e.g., [28] for a brief summary of this approach, and the
underlying nontrivial assumptions needed in the analysis of [9]. Besides the theo-
retical front, another central issue is on the tractability side, namely, how to handle
the minimization step efficiently while preserving the convergence properties. In this
context, the approach suggested by [9] reduces in many scenarios to the optimization
of very difficult composite nonlinear problems.

Motivated by the recent general framework developed by [9], we seek to bypass
the limitations mentioned above by considering a more specific class of problems,
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whereby one can refine the theoretical analysis and design tractable minimization
steps by further exploiting structures and specific data information. Indeed, here we
focus our efforts on a class of nonconvex nonsmooth optimization models with data
assumptions which, on the one hand, are sufficiently broad to cover many applications,
and on the other hand, allow for the global convergence analysis of more tractable
schemes.

The paper is structured as follows. In the next section, we introduce the class of non-
convex nonsmooth problems with nonlinear constraints as well as some mathematical
preliminaries on our approach. Section 3 introduces the dynamic alternating directions
scheme (described by Algorithm 1), and Sect. 4 analyzes its global and subsequence
convergence guarantees. In Sect. 5, we provide an explicit and tractable backtracking
procedure (cf. Algorithm 2) to generate the proximal parameter used in Algorithm 1
and prove that it satisfies all the properties required by our analysis. Finally, as an
interesting byproduct of our analysis, in Sect. 6, we derive new results on global con-
vergence for the proximal gradient method with a dynamic proximal parameter when
applied to the nonconvex sum composite minimization model where the smooth part
is locally Lipschitz. Section 7 concludes this work, including a brief discussion on
additional algorithmic variants that could be obtained within our approach.
Notation. Unless otherwise specified, our notations are standard and can be found in
the classical monograph of [26].

2 Problem Formulation andMathematical Preliminaries

Weconsider the nonconvexnonsmoothmodel under the followingblanket assumptions
on the problem’s data:

min
u∈Rn ,v∈Rm

{Φ(u, v):= f (u) + g(u) + h(v) : F(u) = Gv} , (M)

where

– f : R
n → (−∞,∞] is a proper and lower-semicontinuous (lsc) function and

infu∈Rn f (u) > −∞;
– g : Rn → R is a continuously differentiable (C1) function with a locally Lipschitz
continuous gradient;

– h : Rm → R is a C1 function with an Lh-Lipschitz continuous gradient, Lh > 0;
– F : Rn → R

q is a C1 mapping with a locally Lipschitz continuous Jacobian;
– G ∈ R

q×m has full row rank, i.e., the minimal eigenvalue λmin(GGT ) > 0.

Model (M) encompasses a wide variety of problems arising in disparate statistical
and engineering applications see e.g., [15,20,21,27], as well as problems ranging
from nonlinear least squares to bi-level optimization. We briefly describe two specific
examples.

Example 2.1 (Nonconvex Stackelberg competition) In a Stackelberg competition (see,
e.g., [31]), firms optimize their utility function in a predetermined order. In the common
scenario, there is a leader firm which optimizes first and a follower firm that optimizes
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second based on the choices of the leader firm. Consequently, the leader firm takes
into account the implications of its decisions on the follower firm.Model (M) captures
Stackelberg competitions having the general form: Hleader(u; v) = f (u)+g(u)+h(v),
and Hfollower(v; u) = 1

2v
T Gv + F(u)T v; our model is obtained by applying the first-

order optimality conditions to the follower firm’s problem. Note that this model can
be considered as a bi-level optimization problem.

Example 2.2 (Sparsity-related approximations) Model (M) also captures the inter-
esting problem obtained from setting h to be a continuously differentiable sparsity
inducing function, such as the famous Smoothly Clipped Absolute Deviation (SCAD)
function proposed by [14]. This leads to a variety of possible sparsity-related prob-
lems, and nonlinear regression mimicking the �1-norm regression. Moreover, noting
that G can be chosen as a low row rank matrix, compressed sensing-type instances
are also captured by the model.

Model (M) also includes the so-called minimization of the sum composite model.

Example 2.3 (Nonlinear composite model) Letting g = 0, and G be the identity map
Iq×m , the model (M) reduces to the nonconvex sum composite minimization problem:

min
{
f (u) + h(F(u)) : u ∈ R

n} .

This model was studied in [9], but with the more general h being nonsmooth extended-
valued, through a general Lagrangian-based framework.1 Here, we assume that h is a
C1 function with an Lh-Lipschitz continuous gradient. As we shall see, as a byproduct
of our analysis, this allows us to tackle the sum composite problem directly, namely
via the so-called proximal gradient scheme [1], yet under the mild locally Lipschitz
assumptions and with a dynamic proximal parameter, and obtain global convergence
guarantees; see Sect. 6 for details.

Based on a variational analysis of the problem (see [26, Chapters 8 and 10]), we
define the following constraint qualification conditions for (M).We denote by∇F(·) ∈
R
q×n the Jacobian of F .

Definition 2.1 (Constraint qualification)Apoint u ∈ R
n is said to satisfy the constraint

qualification [CQ] conditions for problem (M) if the following hold true:

(i) The function f is subdifferential regular at u.
(ii) ∂∞ f (u) ∩ ran∇F(u)T = {0}.
For more details regarding regularity, see Definition 7.25 and Corollaries 8.11 and
8.19 in [26]. In Appendix A, we also give a more detailed account on subdifferentials
of nonconvex functions which are used here.

The [CQ] conditions provide both smoothness and regularity of the constraint set,
and the necessary subdifferential calculus rules which allow us to derive first-order
necessary optimality conditions for (M).

1 It should be mentioned that our general model (M) could formally be reformulated through this more
general model. However, by doing so, the specific data information and structure of our model (M) above
will be lost and cannot anymore be beneficially exploited.
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Lemma 2.1 (First-order optimality conditions) Let (u∗, v∗) ∈ R
n × R

m be a local
minimizer of (M), where u∗ satisfies the [CQ] conditions of Definition 2.1. Then,

(i) (u∗, v∗) is a feasible point, i.e., 0 = F(u∗) − Gv∗, and
(ii) there exists y∗ ∈ R

q such that

0 ∈ ∂ f (u∗) + ∇g(u∗) + ∇F(u∗)T y∗ and 0 = ∇h(v∗) − GT y∗. (2.1)

The Lagrangian L : Rn × R
m × R

q → (−∞,∞] associated with problem (M) is
defined by

L(u, v, y):= f (u) + g(u) + h(v) + 〈y, F(u) − Gv〉. (2.2)

We note that

∂L(u, v, y) =
(
∂ f (u) + {∇g(u) + ∇F(u)T y}

)

×{∇h(v) − GT y} × {F(u) − G(v)}, (2.3)

where the subdifferential calculus rules which justify (2.3) always hold and do not
depend on the [CQ] conditions (see [26, Exercise 8.8]). Thus, it can be easily verified
that the first-order optimality conditions of Lemma 2.1 are equivalent to requiring the
point (u∗, v∗, y∗) to be a critical point of the Lagrangian, i.e., (u∗, v∗, y∗) ∈ critL :=
{(u∗, v∗, y∗) : 0 ∈ ∂L(u∗, v∗, y∗)}. The main purpose of this work is to devise an
algorithm that converges to such a point.

To achieve our goal, we rely on an augmented Lagrangian approach (see, e.g., [2,
Chapter 4.2]), in which the Lagrangian associated with (M) (cf. (2.2)) is penalized by
a quadratic term, with a penalty parameter ρ > 0, to obtain the augmented Lagrangian
function

Lρ(u, v, y):= f (u) + g(u) + h(v) + 〈y, F(u) − Gv〉 + ρ

2
‖F(u) − Gv‖2 , (2.4)

where ‖·‖ denotes the usual Euclidean l2-norm. It will be convenient in the sequel to
distinguish between the smooth and nonsmooth elements of Lρ . For this purpose, let
ϕ : Rn × R

m × R
q → R be defined by

ϕ(u, v, y):=g(u) + 〈y, F(u) − Gv〉 + ρ

2
‖F(u) − Gv‖2

= g(u) + 1

2ρ
‖y + ρ(F(u) − Gv)‖2 − 1

2ρ
‖y‖2 ,

(2.5)

so that

Lρ(u, v, y) = f (u) + h(v) + ϕ(u, v, y).

Akeymotivation behind the Augmented Lagrangian approach is that any critical point
(u∗, v∗, y∗) of Lρ satisfies that (u∗, v∗) is a critical point of (M); this can easily be
established via the characterization of the critical set of Lagrangian function (2.2); see
also Proposition 4.1 in Sect. 4.3.
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Algorithm 1 Dynamic linearized alternating direction method of multipliers (DAM)

Input: (u0, v0, y0) ∈ R
n × R

m × R
q , θ > 0.

For k = 0, 1, 2, . . .

1. Generate a proximal parameter σk+1 > 0;
2. Set

uk+1 ∈ argminu∈Rn

{
Φk (u):= f (u) + 〈∇uϕ(uk , vk , yk ), u〉 + σk+1

2

∥∥∥u − uk
∥∥∥
2
}

; (3.1)

vk+1 = argminv∈Rm

{
Ψk (v):=ϕ(uk+1, v, yk ) + 〈∇h(vk ), v〉 + θ

2

∥∥∥v − vk
∥∥∥
2
}

; (3.2)

yk+1 = yk + ρ
(
F(uk+1) − Gvk+1

)
; (3.3)

3 A Dynamic Alternating Directions of Multipliers

For the purpose of obtaining a critical point ofLρ , we propose theDynamic linearized
Alternating direction method of Multipliers (DAM) described by Algorithm 1. As its
name suggests, this method relies on an ADMM-based scheme whereby we use here
a specific linearization of the augmented Lagrangian and proximal regularization.

Several comments regarding Algorithm 1 are in order.

Remark 3.1 (On the proximal parameter σk) The proximal parameter σk+1 is gener-
ated dynamically according to the information obtained at the current iterate; hence
the dynamic nature of Algorithm 1. The analysis of Algorithm 1 requires that the
sequence {σk}k≥1 will satisfy two conditions: (i) that it will facilitate a descent prop-
erty with respect to the u-update step; and, (ii) that it will be bounded. In Sect. 5, we
provide a detailed backtracking procedure to generate σk+1 in a tractable manner (cf.
Algorithm 2) so that both of these conditions are met under our model’s assumptions
and boundedness of the generated sequence of iterates. However, we emphasize that
our convergence guarantees (stated in Sect. 4) are independent of the explicit manner
in which the proximal parameter is generated.

Remark 3.2 (On the u-update) u-update step (3.1) is in fact a proximal gradient step:

uk+1 ∈ argminu∈Rn

{
f (u) + 〈∇uϕ(uk, vk, yk), u〉 + σk+1

2

∥∥∥u − uk
∥∥∥
2
}

= prox
σ−1
k+1 f

(
uk − σ−1

k+1∇uϕ(uk, vk, yk)
)

.

A preliminary requirement for the validity of the u-update step is that the solution set
of theminimization problem in (3.1) is nonempty. The results in [26, p. 21], concerning
the Moreau envelopes and proximal mappings of proper and l.s.c (but not necessarily
convex) functions, together with the fact that infu∈Rn f (u) > −∞, guarantee that
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the proximal mapping is nonempty and compact; this is stated formally below in
Lemma 4.2.

Remark 3.3 (On the v-update) Noting that Ψk is a strongly convex function, due to the
fact that ρGTG + θ I � 0 for any θ > 0, we can derive from the first-order optimality
conditions of (3.2) an explicit expression for the v-update step:

vk+1 = (ρGTG + θ I )−1
(
θvk + GT (yk + ρF(uk+1)) − ∇h(vk)

)
. (3.4)

Since the matrix GTG + θ I remains unchanged throughout the execution of Algo-
rithm 1, its inversion needs to be calculated only once.

In the next section we establish the subsequence and global convergence guarantees
of Algorithm 1.

4 Convergence Analysis of DAM

4.1 Preliminaries

Our analysis will revolve around the function ϕ and its derivatives; these are recorded
below for ease of use.

∇uϕ(u, v, y) = ∇g(u) + ∇FT (u)(y + ρ(F(u) − Gv)), (4.1)

∇vϕ(u, v, y) = −GT (y + ρ(F(u) − Gv)), (4.2)

∇yϕ(u, v, y) = F(u) − Gv. (4.3)

Mainly, we utilize the local Lipschitz continuity of the gradients above; the proof is
rather technical and so is deferred to Appendix C.

Lemma 4.1 (Local Lipschitz continuity of ∇ϕ) The function

ϕ(u, v, y) = g(u) + 〈y, F(u) − Gv〉 + ρ

2
‖F(u) − Gv‖2

satisfies that for every nonempty and compact set C ⊆ R
n × R

m × R
q there exists

LC ≥ 0 such that

‖∇ϕ(x) − ∇ϕ(z)‖ ≤ LC ‖x − z‖ , ∀x, z ∈ C . (4.4)

That is, ∇ϕ is locally Lipschitz continuous.

Let us recall the well-definedness of the proximal mapping operator with respect to a
nonconvex function (cf. [26, page 21]).
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Lemma 4.2 (Properties of the proximal mapping) Let ζ : R
d → (−∞,∞] be a

proper lower semi-continuous function with infRn ζ > −∞, x ∈ R
d , and t > 0. The

proximal map associated to ζ/t given by

proxζ/t (x) = argmin

{
ζ(z) + t

2
‖z − x‖2 : z ∈ R

d
}

,

is a nonempty and compact set.

The infrastructure for the forthcoming analysis of Algorithm 1 comprises the fol-
lowing assumptions related to the proximal parameter.

Assumption A (Proximal parameter implies descent)Theproximal parameters {σk}k≥1
are chosen so that there exists ν > 0 such that for every k ≥ 1,

ϕ(uk+1, vk, yk) − ϕ(uk, vk, yk) − 〈∇uϕ(uk, vk, yk), uk+1 − uk〉
≤ σk+1 − ν

2

∥∥∥uk+1 − uk
∥∥∥
2
. (4.5)

Assumption B (Proximal parameter sequence is bounded) The proximal parameter’s
sequence {σk}k≥1 is bounded, i.e.,

σ̄ := sup
k≥1

σk < ∞. (4.6)

We will also utilize the celebrated descent lemma.

Lemma 4.3 (Descent lemma [2]) Let φ : Rn → R be a function with an LS-Lipschitz
continuous gradient ∇φ over a given convex set S, with LS ∈ R+. Then,

|φ(x) − φ(z) − 〈∇φ(z), x − z〉| ≤ LS

2
‖x − z‖2 , ∀x, z ∈ S. (4.7)

Our analysis is based on the methodology and terminology introduced by [7], and
refined in the more recent [8]; see [30] for a summary of these results. Accordingly,
we begin by defining the notion of gradient-like descent sequence [8, Definition 6.1].

Definition 4.1 (Gradient-like descent sequence) A sequence {xk}k≥1 ⊆ R
d is called

a gradient-like descent sequence with respect to a proper and lsc function Γ : Rd →
(−∞,∞] if it satisfies the following three conditions:

(C1) Sufficient decrease property. There exists c1 > 0 such that

Γ (xk+1) − Γ (xk) ≤ −c1
∥∥∥xk+1 − xk

∥∥∥
2
, ∀k ≥ 1.

(C2) A subgradient lower bound for the iterates gap. There exists c2 > 0 such
that, for every k ≥ 1, there exists ξ k+1 ∈ ∂Γ (xk+1) which satisfies

∥∥∥ξ k+1
∥∥∥ ≤ c2

∥∥∥xk+1 − xk
∥∥∥ .
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(C3) Continuity condition. Let {xk}k∈K be a subsequence converging to a point x̄ .
Then,

lim sup
k∈K⊆N

Γ (xk) ≤ Γ (x̄).

A bounded gradient-like descent sequence has the following convergence guarantees
(cf. [7] and [8]).

Lemma 4.4 (Subsequence convergence) Let {xk}k≥1 be a bounded gradient-like
descent sequence with respect to the proper and lsc function Γ . Denote Ω as the
set of cluster points of {xk}k≥1. Then, Ω is a nonempty and compact subset of crit Γ ;
limk→∞ dist(xk,Ω) = 0; and Γ is finite and constant on Ω .

In order to obtain a global convergence result,we assume thatΓ satisfies the nonsmooth
Kurdyka-Łojasiewicz (KL) property [6], which is in particular true when Γ is a semi-
algebraic function. For further details, see [7] and references therein.

Theorem 4.1 (Global convergence) [8, Theorem 6.2] Let {xk}k≥1 be a bounded
gradient-like descent sequence with respect to the proper and lsc function Γ . If
Γ satisfies the KL property, then the sequence {xk}k≥1 has a finite length, i.e.,∑∞

k=1

∥∥xk+1 − xk
∥∥ < ∞, and it converges to a critical point x∗ ∈ crit Γ .

In light of Lemma 4.4 and Theorem 4.1, our goal boils down to establishing that
the sequence generated by Algorithm 1 is a gradient-like descent sequence.

4.2 The Descent-ascent and v-y Relations

Before we establish that the sequence generated by Algorithm 1 is indeed a gradient-
like descent sequence, two results are required: (i) links between the primal variable
v and the multiplier y (Lemma 4.5 ); (ii) a descent-ascent relation (Lemma 4.6).

Lemma 4.5 (v and y relation) It holds that

GT yk+1 = ∇h(vk) + θ(vk+1 − vk), for all k ≥ 0

(4.8)
∥∥∥yk+1 − yk

∥∥∥
2 ≤ 2θ2

λmin(GGT )

∥∥∥vk+1 − vk
∥∥∥
2 + 2(θ + Lh)

2

λmin(GGT )

∥∥∥vk − vk−1
∥∥∥
2
, for all k ≥ 1.

(4.9)

Proof We begin by proving Equation 4.8. Recall that (cf. (4.2))

∇vϕ(uk+1, vk+1, yk) = −GT (yk + ρ(F(uk+1) − Gvk+1)) = −GT yk+1,

where the last equality is due to multiplier update step (3.3). Applying the first-order
optimality condition to the minimization problem of v-update step (3.2), we obtain
that
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0 = ∇vϕ(uk+1, vk+1, yk) + ∇h(vk) + θ(vk+1 − vk)

= −GT yk+1 + ∇h(vk) + θ(vk+1 − vk),

meaning that Equation 4.8 holds true for any k ≥ 0.
We continue with proving relation (4.9). The matrix GGT is positive definite and

hence λ:=λmin(GGT ) > 0. Additionally, for every y ∈ R
q , we have

λ−1
∥∥∥GT y

∥∥∥
2 = λ−1〈GT y,GT y〉 = λ−1〈y,GGT y〉 ≥ λ−1〈y, λy〉 = ‖y‖2 .

Thus, for every k ≥ 1,

∥∥∥yk+1 − yk
∥∥∥ ≤ λ−1/2

∥∥∥GT (yk+1 − yk)
∥∥∥ . (4.10)

Combining (4.10) with (4.8), we obtain for every k ≥ 1 that

∥∥∥yk+1 − yk
∥∥∥
2 ≤ 1

λ

∥∥∥∇h(vk) − ∇h(vk−1) + θ(vk+1 − vk) − θ(vk − vk−1)

∥∥∥
2

≤ 1

λ

(∥∥∥∇h(vk) − ∇h(vk−1)

∥∥∥ + θ

∥∥∥vk+1 − vk
∥∥∥ + θ

∥∥∥vk − vk−1
∥∥∥
)2

≤ 1

λ

(
θ

∥∥∥vk+1 − vk
∥∥∥ + (θ + Lh)

∥∥∥vk − vk−1
∥∥∥
)2

,

where for the second inequality we apply the triangle inequality, and the subsequent
inequality is due to the Lh-Lipschitz continuity of ∇h . We finally complete the proof
by utilizing the relation (s + t)2 ≤ 2s2 + 2t2. ��
Lemma 4.6 (Descent-ascent relation) Suppose that Assumption A holds. Then, for
every k ≥ 1, it holds that

ΔLρ,k :=Lρ(uk+1, vk+1, yk+1) − Lρ(uk, vk, yk)

≤ −ν

2

∥∥∥uk+1 − uk
∥∥∥
2 − (2θ − Lh)

2

∥∥∥vk+1 − vk
∥∥∥
2 + 1

ρ

∥∥∥yk+1 − yk
∥∥∥
2
.
(4.11)

Proof We will prove the required by establishing bounds following from the three
update steps in Algorithm 1, starting with y-update step (3.3). From (3.3), we trivially
have that

δy,k :=Lρ(uk+1, vk+1, yk+1) − Lρ(uk+1, vk+1, yk)

= 〈yk+1 − yk, F(uk+1) − Gvk+1〉 = 1

ρ

∥∥∥yk+1 − yk
∥∥∥
2
.

(4.12)

By the u-update step (3.1),

uk+1 ∈ argminu∈Rn f (u) + 〈∇uϕ(uk, vk, yk), u〉 + σk+1

2

∥∥∥u − uk
∥∥∥
2
,
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we have that

f (uk+1) + 〈∇uϕ(uk, vk, yk), uk+1 − uk〉
+σk+1

2

∥∥∥uk+1 − uk
∥∥∥
2 ≤ f (uk). (4.13)

Assumption A then ensures that decrease property (4.5) holds true, which combined
with (4.13) results in

f (uk+1) + ϕ(uk+1, vk, yk) − f (uk) − ϕ(uk, vk, yk) ≤ −ν

2

∥∥∥uk+1 − uk
∥∥∥
2
.

Hence, setting δu,k :=Lρ(uk+1, vk, yk) − Lρ(uk, vk, yk), yields

δu,k ≤ −ν

2

∥∥∥uk+1 − uk
∥∥∥
2
. (4.14)

Now, let us consider the implications of the v-update (3.2). For any k ≥ 1, we have
from the y update step (3.3) and the definition of λmin(·) that

δv,k :=Lρ(uk+1, vk+1, yk) − Lρ(uk+1, vk , yk)

= h(vk+1) − h(vk) − 〈GT yk , vk+1 − vk〉
+ ρ

2

(∥∥∥Gvk+1 − F(uk+1)

∥∥∥
2 −

∥∥∥Gvk − F(uk+1)

∥∥∥
2
)

= h(vk+1) − h(vk) −
〈
yk + ρ(F(uk+1) − Gvk+1) + ρ

2
G(vk+1 − vk),G(vk+1 − vk)

〉

≤ h(vk+1) − h(vk) − 〈GT yk+1, vk+1 − vk〉 − ρλmin(GTG)

2

∥∥∥vk+1 − vk
∥∥∥
2
.

Applying identity (4.8) from Lemma 4.5, we obtain that

δv,k ≤ h(vk+1) − h(vk) − 〈∇h(vk), vk+1 − vk〉

− 2θ + ρλmin(GTG)

2

∥∥∥vk+1 − vk
∥∥∥
2
.

(4.15)

Since h has an Lh-Lipschitz continuous gradient, it holds that (cf. Lemma 4.3)

h(vk+1) − h(vk) − 〈∇h(vk), vk+1 − vk〉 ≤ Lh

2

∥∥∥vk+1 − vk
∥∥∥
2
. (4.16)

Thus, by summing (4.15) and (4.16), and noting that λmin(GTG) ≥ 0, we obtain that

δv,k ≤ −ρλmin(GTG) + 2θ − Lh

2

∥∥∥vk+1 − vk
∥∥∥
2

≤ −2θ − Lh

2

∥∥∥vk+1 − vk
∥∥∥
2
. (4.17)
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Finally, by summing our three bounds (4.12), (4.14), and (4.17), and using the
relation

ΔLρ,k = δu,k + δv,k + δy,k,

we obtain stated inequality (4.11). ��
Remark 4.1 (On the descent-ascent of the scheme) A prominent difficulty in the
Lagrangian-based approach is the ascent property that is induced by the multiplier
update, as expressed by Lemma 4.6. In the nonconvex setup, this nullifies a funda-
mental tool of descent methods for nonconvex optimization—the sufficient decrease
property. We overcome this challenge in the forthcoming section.

By combining Lemma 4.5 and Lemma 4.6, we can derive a bound on ΔLρ,k given
in terms of the primal variables u and v.

Corollary 4.1 Suppose that Assumption A holds. Then, for every k ≥ 1,

ΔLρ,k ≤ −ν

2

∥∥∥uk+1 − uk
∥∥∥
2 −

(
2θ − Lh

2
− 2θ2

ρλmin(GGT )

) ∥∥∥vk+1 − vk
∥∥∥
2

+ 2(θ + Lh)
2

ρλmin(GGT )

∥∥∥vk − vk−1
∥∥∥
2
. (4.18)

The bound in Corollary 4.1 is utilized in the next section to establish a sufficient
decrease property for a Lyapunov function.

4.3 The Lyapunov Function and Convergence Guarantees

To reach our goal of convergence to a critical point, we adopt the approach formulated
by [9] and introduce the Lyapunov function Eβ : Rn ×R

m ×R
q ×R

m → (−∞,∞],
with β > 0, defined by

Eβ(u, v, y, w):=Lρ(u, v, y) + β

2
‖v − w‖2 . (4.19)

The following relationship between the critical points of Eβ , Lρ , and L justifies refer-
ring to Eβ as a Lyapunov function for (M).

Proposition 4.1 (Critical points relationships) For any u ∈ R
n, v,w ∈ R

m, and
y ∈ R

q , it holds that

(u, v, y, w) ∈ crit Eβ �⇒ (u, v, y) ∈ critLρ and Eβ(u, v, y, w) = Lρ(u, v, y),

(u, v, y) ∈ critLρ �⇒ (u, v, y) ∈ critL and Lρ(u, v, y) = L(u, v, y).

Proof Let (u, v, y, w) ∈ crit Eβ , then by the definitions of Eβ and Lρ , we have

0 ∈ ∂uEβ(u, v, y, w) = ∂uLρ(u, v, y), (4.20)
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0 = ∇vEβ(u, v, y, w) = ∇vLρ(u, v, y) + β(v − w), (4.21)

0 = ∇yEβ(u, v, y, w) = ∇yLρ(u, v, y), (4.22)

0 = ∇wEβ(u, v, y, w) = β(w − v). (4.23)

Thus, we obtain that w = v by (4.23), and together with (4.21), it follows
that ∇vLρ(u, v, y) = 0. Combined with (4.20) and (4.22), we obtain that
(u, v, y) ∈ critLρ(u, v, y). Having w = v and the definition of Eβ also imply that
Eβ(u, v, y, w) = Lρ(u, v, y).

Next, assume that (u, v, y) ∈ critLρ(u, v, y). Then, by the definitions of Lρ and
L, we have

0 ∈ ∂uLρ(u, v, y) = ∂uL(u, v, y) + ρ∇F(u)T (F(u) − Gv) (4.24)

0 = ∇vLρ(u, v, y) = ∇vL(u, v, y) − ρGT (F(u) − Gv), (4.25)

0 = ∇yLρ(u, v, y) = ∇yL(u, v, y) = F(u) − Gv. (4.26)

So, by (4.26), we obtain that ∇yL(u, v, y) = 0 and that F(u) − Gv = 0. Together,
with (4.24) and (4.25), we also obtain that 0 ∈ ∂uL(u, v, y) and that∇vL(u, v, y) = 0,
and it follows that (u, v, y) ∈ critL. Having F(u) = Gv and the definition of Lρ also
imply that Lρ(u, v, y) = L(u, v, y). ��

At this point, we are ready to prove that the sequence {zk :=(uk, vk, yk, vk−1)}k≥1
is a gradient-like descent sequence with respect to the Lyapunov function Eβ , for
appropriate choices of ρ, θ , and β. In the following three lemmas we prove that the
conditions of Definition 4.1 are satisfied. We begin with proving the sufficient descent
property of the sequence {zk}k≥1 with respect to Eβ(·).
Lemma 4.7 (Sufficient decrease for Eβ ) Suppose that Assumption A holds and that

ρ = 4ηLh

λmin(GGT )
and β = θ = (η − 1)Lh

2
, (4.27)

for some η > 2 + √
5. Then, there exists c1 > 0 such that, for every k ≥ 1, we have

Eβ(zk+1) − Eβ(zk) ≤ −c1
∥∥∥zk+1 − zk

∥∥∥
2
. (4.28)

Proof Let k ≥ 1 and ν be as defined in Assumption A. Recalling the bound of ΔLρ,k
(cf. (4.18)), we observe that

ΔEβ ,k :=Eβ(uk+1, vk+1, yk+1, vk) − Eβ(uk, vk, yk, vk−1)

= ΔLρ,k + β

2

(∥∥∥vk+1 − vk
∥∥∥
2 −

∥∥∥vk − vk−1
∥∥∥
2
)

≤ −ν

2

∥∥∥uk+1 − uk
∥∥∥
2 − α1

∥∥∥vk+1 − vk
∥∥∥
2 − α2

∥∥∥vk − vk−1
∥∥∥
2
,
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with

λ = λmin(GGT ), α1 = 2θ − Lh − β

2
− 2θ2

ρλ
and α2 = β

2
− 2(θ + Lh)

2

ρλ
.

Substituting ρ, θ , and β according to (4.27) followed by simple algebra, we obtain
that

α1 = α2 = Lh

8η
(η2 − 4η − 1).

As the solutions for the quadratic equation η2 − 4η − 1 = 0 are η1,2 = 2 ± √
5, it

follows that α1 > 0 for every η > 2 + √
5.

Following Lemma 4.5 (cf. (4.9)), we have

∥∥∥yk+1 − yk
∥∥∥
2 ≤ 2(θ + Lh)

2

λ

(∥∥∥vk+1 − vk
∥∥∥
2 +

∥∥∥vk − vk−1
∥∥∥
2
)

.

Adding
∥∥vk+1 − vk

∥∥2 + ∥∥vk − vk−1
∥∥2 to both sides and setting

α3 = 1 + 2(θ + Lh)
2/λ = 1 + 1

2
((η + 1)Lh)

2 /λ,

we obtain

∥∥∥vk+1 − vk
∥∥∥
2 +

∥∥∥vk − vk−1
∥∥∥
2 +

∥∥∥yk+1 − yk
∥∥∥
2

≤ α3

(∥∥∥vk+1 − vk
∥∥∥
2 +

∥∥∥vk − vk−1
∥∥∥
2
)

.

Therefore, with c1 = min{ν/2, α1/α3}, we have

ΔEβ ,k ≤ −c1

(∥∥∥uk+1 − uk
∥∥∥
2 +

∥∥∥vk+1 − vk
∥∥∥
2 +

∥∥∥yk+1 − yk
∥∥∥
2 +

∥∥∥vk − vk−1
∥∥∥
2
)

.

��

We continue with proving the subgradient lower bound and the continuity condi-
tion (cf. conditions (C2) and (C3) of Definition 4.1). This requires the boundedness
assumption on the proximal parameter sequence stated by Assumption B .

Remark 4.2 The proximal parameter backtracking procedure we devise in Sect. 5 sat-
isfies Assumption A, and it also satisfies Assumption B under a standard boundness
assumption with respect to the sequence generated by DAM.
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Lemma 4.8 (Subgradient bound for Eβ ) Suppose that Assumption B holds and assume
that the sequence {ωk :=(uk, vk, yk)}k≥1 is bounded. Then, there exists c2 > 0, such
that, for every k ≥ 1, there exists ξ k+1 ∈ ∂Eβ(zk+1) satisfying

∥∥∥ξ k+1
∥∥∥ ≤ c2

∥∥∥zk+1 − zk
∥∥∥ . (4.29)

Proof Let k ≥ 1. We note that for every ξ k+1 = (ξ k+1
u , ξ k+1

v , ξ k+1
y , ξ k+1

w ) ∈
∂Eβ(zk+1), we have

ξ k+1
u ∈ ∂uE(uk+1, vk+1, yk+1, vk) = ∂u f (u

k+1) + ∇uϕ(uk+1, vk+1, yk+1), (4.30)

ξ k+1
v = ∇vE(uk+1, vk+1, yk+1, vk)

= ∇h(vk+1) + ∇vϕ(uk+1, vk+1, yk+1) + β(vk+1 − vk), (4.31)

ξ k+1
y = ∇yE(uk+1, vk+1, yk+1, vk) = F(uk+1) − Gvk+1, (4.32)

ξ k+1
w = ∇wE(uk+1, vk+1, yk+1, vk) = −β(vk+1 − vk). (4.33)

Furthermore, we recall that u-step (3.1) is stated as the following minimization prob-
lem:

uk+1 ∈ argminu∈Rn

{
f (u) + 〈∇uϕ(uk, vk, yk), u〉 + σk+1

2

∥∥∥u − uk
∥∥∥
2
}

.

Thus, we apply the first-order optimality condition and obtain that there exists ζ k+1 ∈
∂ f (uk+1) such that

ζ k+1 = −∇uϕ(uk, vk, yk) − σk+1(u
k+1 − uk).

It follows that there exists ξ k+1
u as in (4.30), such that

∥∥∥ξ k+1
u

∥∥∥ =
∥∥∥∇uϕ(uk+1, vk+1, yk+1) − ∇uϕ(uk, vk, yk) − σk+1(u

k+1 − uk)
∥∥∥

≤
∥∥∥∇uϕ(uk+1, vk+1, yk+1) − ∇uϕ(uk, vk, yk)

∥∥∥ + σk+1

∥∥∥uk+1 − uk
∥∥∥

≤
∥∥∥∇uϕ(uk+1, vk+1, yk+1) − ∇uϕ(uk, vk, yk)

∥∥∥ + σk+1

∥∥∥zk+1 − zk
∥∥∥ .

Recalling that ∇uϕ is locally Lipschitz continuous (cf. Lemma 4.1) and noting that
the sequence {ωk :=(uk, vk, yk)}k≥1 is bounded, it follows (cf. Proposition B.1) that
there exists Lϕ ∈ R+ such that, for every k ≥ 1, we have

∥∥∥∇uϕ(ωk+1) − ∇uϕ(ωk)

∥∥∥ ≤ Lϕ

∥∥∥ωk+1 − ωk
∥∥∥ ≤ Lϕ

∥∥∥zk+1 − zk
∥∥∥ .

Together with Assumption B, it follows that

∥∥∥ξ k+1
u

∥∥∥ ≤ (Lϕ + σ̄ )

∥∥∥zk+1 − zk
∥∥∥ ,
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with σ̄ := supk≥1 σk < ∞.
Next, we note that

∇vϕ(uk+1, vk+1, yk+1)

= −GT
(
yk+1 + ρ(F(uk+1) − Gvk+1)

)
= −GT (2yk+1 − yk), (4.34)

where the second equality is due to multiplier update step (3.3). Together with identity
(4.8) proven in Lemma 4.5, we obtain that,

∇vϕ(uk+1, vk+1, yk+1) = −GT (yk+1 − yk) − ∇h(vk) − θ(vk+1 − vk). (4.35)

So together with (4.31), we have
∥∥∥ξ k+1

v

∥∥∥ =
∥∥∥∇h(vk+1) + ∇vϕ(uk+1, vk+1, yk+1) + β(vk+1 − vk)

∥∥∥

=
∥∥∥∇h(vk+1) − ∇h(vk) − GT (yk+1 − yk) + (β − θ)(vk+1 − vk)

∥∥∥

≤
∥∥∥h(vk+1) − ∇h(vk)

∥∥∥ + ‖G‖
∥∥∥yk+1 − yk

∥∥∥ + |β − θ |
∥∥∥vk+1 − vk

∥∥∥

≤ (Lh + |β − θ |)
∥∥∥vk+1 − vk

∥∥∥ + ‖G‖
∥∥∥yk+1 − yk

∥∥∥

≤ (Lh + |β − θ | + ‖G‖)
∥∥∥zk+1 − zk

∥∥∥ ,

(4.36)

where the second inequality is due to the Lh-Lipschitz continuity of ∇h.
Finally, we note that

∥∥∥ξ k+1
y

∥∥∥ =
∥∥∥F(uk+1) − Gvk+1

∥∥∥ = ρ−1
∥∥∥yk+1 − yk

∥∥∥ ≤ ρ−1
∥∥∥zk+1 − zk

∥∥∥ (4.37)

and
∥∥∥ξ k+1

w

∥∥∥ = β

∥∥∥vk+1 − vk
∥∥∥ ≤ β

∥∥∥zk+1 − zk
∥∥∥ , (4.38)

where the second equality in (4.37) is due to multiplier update step (3.3). Thus, by

summing the bounds for
∥∥ξ k+1

u

∥∥,
∥∥ξ k+1

v

∥∥,
∥∥∥ξ k+1

y

∥∥∥, and
∥∥ξ k+1

w

∥∥, we obtain that

∥∥∥ξ k+1
∥∥∥ ≤

∥∥∥ξ k+1
u

∥∥∥ +
∥∥∥ξ k+1

v

∥∥∥ +
∥∥∥ξ k+1

y

∥∥∥ +
∥∥∥ξ k+1

w

∥∥∥ ≤ c2
∥∥∥zk+1 − zk

∥∥∥ ,

with c2 = Lϕ + σ̄ + Lh + |β − θ | + ‖G‖ + ρ−1 + β > 0. ��
Lemma 4.9 (Continuity condition for Eβ ) Suppose that Assumptions A and B hold
and that ρ, θ , and β are as in Lemma 4.7. Let {zk+1}k∈K be a subsequence of {zk}k≥1
which converges to a point z̄ = (ū, v̄, ȳ, w̄). Then,

lim sup
k→∞
k∈K

Eβ(zk+1) ≤ Eβ(z̄). (4.39)
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Proof The Lyapunov function Eβ can be written as Eβ(u, v, y, w) = f (u) +
Ψ (u, v, y, w), where the function Ψ is defined by

Ψ (u, v, y, w):=g(u) + h(v) + 〈y, F(u) − Gv〉 + ρ

2
‖F(u) − Gv‖2 + β

2
‖v − w‖2 .

Obviously, Ψ is a continuous function and, as f is proper and lsc, it follows that
Eβ is also proper and lsc. Furthermore, we have limk→∞

k∈K
Ψ (uk+1, vk+1, yk+1, vk) =

Ψ (ū, v̄, ȳ, w̄), and hence inequality (4.39) can be stated as

lim sup
k→∞
k∈K

Eβ(uk+1, vk+1, yk+1, vk) = lim sup
k→∞
k∈K

f (uk+1) + lim
k→∞
k∈K

Ψ (uk+1, vk+1, yk+1, vk)

= lim sup
k→∞
k∈K

f (uk+1) + Ψ (ū, v̄, ȳ, w̄)

≤ f (ū) + Ψ (ū, v̄, ȳ, w̄) = E(ū, v̄, ȳ, w̄).

Therefore, it remains to prove the following inequality

lim sup
k→∞
k∈K

f (uk+1) ≤ f (ū). (4.40)

Let k ∈ K.We recall that u-step (3.1) is given by the followingminimization problem:

uk+1 ∈ argminu∈Rn

{
f (u) + 〈∇uϕ(uk, vk, yk), u〉 + σk+1

2

∥∥∥u − uk
∥∥∥
2
}

,

which immediately implies that

f (uk+1) + 〈∇uϕ(uk, vk, yk), uk+1〉 + σk+1

2

∥∥∥uk+1 − uk
∥∥∥
2

≤ f (ū) + 〈∇uϕ(uk, vk, yk), ū〉 + σk+1

2

∥∥∥ū − uk
∥∥∥
2
.

After some algebra we can state the above inequality as

f (uk+1) ≤ f (ū) +
〈
∇uϕ(uk , vk , yk) + σk+1

2
(ū − uk + uk+1 − uk), ū − uk+1

〉

≤ f (ū) +
∥∥∥∇uϕ(uk , vk , yk) + σk+1

2
(ū − uk + uk+1 − uk)

∥∥∥
∥∥∥ū − uk+1

∥∥∥

≤ f (ū) + αk

∥∥∥ū − uk+1
∥∥∥ ,

(4.41)

with

αk :=
∥∥∥∇uϕ(uk, vk, yk)

∥∥∥ + σk+1

2

(∥∥∥ū − uk
∥∥∥ +

∥∥∥uk+1 − uk
∥∥∥
)

≥ 0. (4.42)

The second and third inequalities in (4.41) are due to the Cauchy–Schwarz and triangle
inequalities, respectively.
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Taking lim sup over K, we obtain that

lim sup
k→∞
k∈K

f (uk+1) ≤ f (ū) + lim sup
k→∞
k∈K

(
αk

∥∥∥ū − uk+1
∥∥∥
)

.

Thus, proving inequality (4.40) reduces to proving that limk→∞
k∈K

(
αk

∥∥ū − uk+1
∥∥) = 0.

We assume that limk→∞
k∈K

uk+1 = ū , and so it is sufficient to prove that

lim sup
k→∞
k∈K

αk < ∞,

which requires that we analyze the subsequence {(uk, vk, yk}k∈K. To this end, we
recall the sufficient descent result of Lemma 4.7 (cf. (4.28)), i.e., that there exists
c1 > 0 such that

Eβ(zk+1) − Eβ(zk) ≤ −c1
∥∥∥zk+1 − zk

∥∥∥
2
, ∀k ≥ 1.

Thus, summing
∥∥zk+1 − zk

∥∥2 over K, we obtain that

∑

k∈K

∥∥∥zk+1 − zk
∥∥∥
2 ≤ lim

N→∞
N∈K

N∑

k=1

∥∥∥zk+1 − zk
∥∥∥
2 ≤ lim sup

N→∞
N∈K

c−1
1

N∑

k=1

(
Eβ(zk) − Eβ(zk+1))

)

= c−1
1

⎛

⎝Eβ(z1) − lim inf
N→∞
N∈K

Eβ(zN+1)

⎞

⎠ ≤ c−1
1

(Eβ(z1) − Eβ(z̄)
)

< ∞,

(4.43)

where the first inequality is due to the sufficient descent and the second inequality is
justified by the fact that limk→∞

k∈K

∥∥zk+1
∥∥ = z̄ and that Eβ is proper and lsc, which

implies that

lim inf
k→∞
k∈K

Eβ(zk+1) ≥ Eβ(z̄) > −∞.

As the nonnegative series
∑

k∈K
∥∥zk+1 − zk

∥∥2 is finite, it follows that
limk→∞

k∈K

∥∥zk+1 − zk
∥∥ = 0, which implies that the subsequence {zk}k∈K also con-

verges to z̄. This result has several consequences. First, as ϕ is C1, it follows that ∇uϕ

is continuous over Rn × R
m × R

q and therefore

lim
k→∞
k∈K

∥∥∥∇uϕ(uk, vk, yk)
∥∥∥ = ‖∇uϕ(ū, v̄, ȳ)‖ < ∞. (4.44)
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Second, noting that limk→∞
k∈K

uk = limk→∞
k∈K

uk+1 = ū, we have

lim
k→∞
k∈K

∥∥∥uk+1 − uk
∥∥∥ = 0 and lim

k→∞
k∈K

∥∥∥ū − uk
∥∥∥ = 0.

Together with Assumption B which states that supk≥1 σk < ∞, it follows that

lim
k→∞
k∈K

σk+1

2

(∥∥∥ū − uk
∥∥∥ +

∥∥∥uk+1 − uk
∥∥∥
)

= 0. (4.45)

Summing (4.44) and (4.45) and recalling the definition of αk (cf. (4.42)) we obtain
that

lim sup
k→∞
k∈K

αk = lim
k→∞
k∈K

αk < ∞.

��
Equipped with Lemma 4.7, Lemma 4.8, and Lemma 4.9, we can now apply Lemma

4.4 and Theorem 4.1 followed by Proposition 4.1, to establish that Algorithm 1
achieves criticality, given that the parameters ρ and θ are chosen accordingly to (4.27).

Theorem 4.2 (Subsequence and global convergence) Suppose that Assumption A and
Assumption B hold true, and that the sequence {ωk :=(uk, vk, yk)}k≥1 is bounded. Let
ρ and θ be chosen such that

ρ = (4ηLh)/λmin(GGT ) and θ = (η − 1)Lh/2 for some η > 2 + √
5.

Then the following implications hold:

(i) LetΩ be the set of cluster points of the sequence {ωk}k≥1. Then,Ω is a nonempty
and compact set; Ω ⊂ critL; limk→∞ dist(ωk,Ω) = 0; and L is finite and
constant on Ω .

(ii) Assume, in addition, that the functions f , g, and h, and the mapping F are semi-
algebraic. Then, {ωk}k≥1 has a finite length, i.e.,

∑∞
k=1

∥∥ωk+1 − ωk
∥∥ < ∞, and

it converges to a critical point ω∗ ∈ critL.
Remark 4.3 Recall that as proved in [6], a semi-algebraic function satisfies the KL
property, and that the semi-algebraic property is preserved for most useful operations
e.g., finite sumandproduct of semi-algebraic functions, and their composition (see e.g.,
[7] for examples and references). The class of problems modeled by semi-algebraic
functions is ubiquitous in applications, and hence the global convergence result in
Theorem 4.2 is applicable to a wide variety of models.

Remark 4.4 Asymptotic convergence rates of the sequence {ωk}k≥1 could also be
established; see e.g., [8, Theorem 6.3].
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Algorithm 2 Proximal parameter backtracking procedure
Parameters: ν > 0, μ > 1, and σ0 > 0.
Input: uk , vk , yk , and σk .
Compute:
set σk,0 ∈ [σ0, σk ]; (5.1)
repeat for j = 1, 2, . . .

σk, j = μ j−1σk,0; (5.2)

uk, j ∈ prox
σ−1
k, j f

(uk − σ−1
k, j ∇uϕ(uk , vk , yk )); (5.3)

until

ϕ(uk, j , vk , yk ) − ϕ(uk , vk , yk ) − 〈∇uϕ(uk , vk , yk ), uk, j − uk 〉 ≤ σk, j − ν

2

∥∥∥uk, j − uk
∥∥∥
2 ; (5.4)

Output: σk+1 = σk,Jk , u
k+1 = uk,Jk , where Jk is the index j of the last loop iteration.

5 The Proximal Parameter Backtracking Procedure

In this section we propose a tractable backtracking procedure to generate proximal
parameters that meet the requirements posed by our analysis in Sect. 4.1 (note that
(R2) is an implicit requirement):

(R1) The sequence {σk}k≥1 satisfies the descent condition of Assumption A.
(R2) The backtracking procedure completes in a finite time.
(R3) The sequence {σk}k≥1 is guaranteed to be bounded, i.e., Assumption B holds

true whenever the sequence {(uk, vk, yk)}k≥1 is bounded.

The backtracking procedure is described by Algorithm 2, which comprises a loop
that increases the candidate for the proximal parameter until a sufficient decrease
property is met.

The generated proximal parameter satisfies (R1) by definition. We will focus now
on proving that it also meets requirements (R2) and (R3), starting with (R2). Our
derivations rely on the theory of Lipschitz functions, mainly on the fact that ∇ϕ is
locally Lipschitz continuous (cf. Lemma 4.1); we defer the reader to some useful
review/results on Lipschitz and local Lipschitz continuity in Appendix B.

Lemma 5.1 (Finite termination) The backtracking procedure in Algorithm 2 termi-
nates in a finite number of iterations.

Proof Let k ≥ 1. For every j ≥ 0, define

Sk, j := prox
σ−1
k, j f

(uk − σ−1
k, j ∇uϕ(uk, vk, yk))

= argminu∈Rn

{
f (x) + 〈∇uϕ(uk, vk, yk), u〉 + σk, j

2

∥∥∥u − uk
∥∥∥
2
}

.

Note that σk, j ≥ σ0 > 0, as can be easily verified by steps (5.1) and (5.2). Thus, Sk, j is
nonempty and compact (cf. Remark 3.2); specifically, with rk, j := sup{∥∥x − uk

∥∥ : x ∈
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Sk, j }, we have rk, j < ∞.Wewill now show that aswe increase the proximal parameter
σk, j → σk, j+1, the distance from the solution set Sk, j to uk does not increase, i.e.,
rk, j ≤ rk,1 for any j ≥ 0.

For any j > 1, set x j ∈ Sk, j . Then

f (xi ) + 〈∇uϕ(uk, vk, yk), xi 〉 + σk,i

2

∥∥∥xi − uk
∥∥∥
2

≤ f (x1) + 〈∇uϕ(uk, vk, yk), x1〉 + σk,i

2

∥∥∥x1 − uk
∥∥∥
2

and

f (x1) + 〈∇uϕ(uk, vk, yk), x1〉 + σk,1

2

∥∥∥x1 − uk
∥∥∥
2

≤ f (xi ) + 〈∇uϕ(uk, vk, yk), xi 〉 + σk,1

2

∥∥∥xi − uk
∥∥∥
2
.

Consequently, noting that σk, j > σk,1, we can sum the equations above, divide by
(σk, j − σk,1)/2, and obtain that

∥∥∥x j − uk
∥∥∥ ≤

∥∥∥x1 − uk
∥∥∥ ≤ rk,1.

Thus,

{(uk, j , vk, yk)} j≥0 ⊆ B[(uk, vk, yk), rk,1],

where B[(uk, vk, yk), rk,1] is the Euclidean norm ball centered at (uk, vk, yk) with
radius rk,1. Since∇ϕ is locally Lipschitz continuous (cf. Lemma 4.1), we in particular
have that for the nonempty, convex, and compact set B[(uk, vk, yk), rk,1], there exists
Lk ≥ 0 such that

‖∇uϕ(x) − ∇uϕ(z)‖ ≤ Lk ‖x − z‖ , ∀x, z ∈ B[(uk, vk, yk), rk,1].

Subsequently, the descent lemma (cf. Lemma 4.3) holds true overB[(uk , vk, yk), rk,1],
meaning that the procedure terminates after at most 1 + max{0, �(log(Lk + ν) −
log σk,0)/ logμ�} iterations, with σk+1 ≤ max{σk, μ(Lk + ν)}, as the iteration prior
to the last must satisfy that σk,Jk/μ − ν = σk,Jk−1 − ν < Lk . ��

Next we establish that the proximal parameters generated via Algorithm 2 satisfy
(R3) whenever the sequence {uk, vk, yk}k≥1 is bounded.

Lemma 5.2 (Boundedness of the proximal parameter) Suppose that the sequence
{uk, vk, yk}k≥1 is bounded. Additionally, for Uk :={uk, j : j = 1, 2, . . . , Jk}, assume
that

⋃∞
k=0 Uk is bounded. Then, the proximal parameter sequence {σk}k≥1 is bounded.
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Proof It is clear that infk≥1 σk ≥ σ0 > 0 (cf. (5.1) and (5.2)), and therefore it is enough
to prove that

sup
k≥1

σk < ∞. (5.5)

First note that uk+1 ∈ Uk as uk+1 = uk,Jk , for every k ≥ 1. Next, set
Cu := cl conv

({u0} ∪ ⋃∞
k=0 Uk

)
, Cv = cl {vk}k≥0 and Cy = cl {yk}y≥0. Then, the

set C :=Cu × Cv × Cy is nonempty and compact and as ∇uϕ is locally Lipschitz
continuous (cf. Lemma 4.1) it follows (cf. Proposition B.1) that there exists LC ∈ R+
such that ∇uϕ is LC -Lipschitz continuous over C , and specifically, for every k ≥ 0,
∇uϕ(·, vk, yk) is LC -Lipschitz continuous over the convex and compact set Cu .
Hence, we can apply the descent Lemma (cf. Lemma 4.3) and obtain that, for every
σ ≥ LC + ν, every k ≥ 1, and every j ∈ {1, 2, . . . , Jk}, we have

ϕ(uk, j , vk, yk) − ϕ(uk, vk, yk) − 〈∇uϕ(uk, vk, yk), uk, j − uk〉
≤ σ − ν

2

∥∥∥uk, j − uk
∥∥∥
2
. (5.6)

To obtain (5.5), we prove by induction that, for every k ≥ 1, we have

σk ≤ max{σ0, μ(LC + ν)}. (5.7)

For k = 0, we have σk = σ0 and so (5.7) trivially holds. Next, consider the call to the
backtracking procedure by DAM at iteration k and assume by contradiction that

σk+1 > max{σ0, μ(LC + ν)}. (5.8)

Steps (5.1) and (5.2) together with the induction hypothesis imply that

σk,1 ≤ σk ≤ max{σ0, μ(LC + ν)}. (5.9)

As σk+1 = σk,Jk then (5.8) and (5.9) imply that Jk ≥ 2. In addition, as σk,Jk−1 =
σk,Jk/μ (cf. (5.2)), inequality (5.8) implies that σk,Jk−1 > LC +ν. Then, together with
(5.6), it follows that procedure’s termination condition (5.4) holds true for j = Jk − 1
which is obviously a contradiction as it should hold true only for j = Jk . ��
We conclude this section with the following remark when global Lipschitz constants
are available.

Remark 5.1 (Global Lipschitz continuity) If the function g has an Lg-Lipschitz con-
tinuous gradient, and the mapping F is lF -Lipschitz continuous with an LF -Lipschitz
continuous Jacobian. Then the backtracking procedure in Algorithm 2 can be replaced
with

σk+1 = ν + Lg + LF

∥∥∥yk + ρ(F(uk) − Gvk)

∥∥∥ + ρl2F .
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It can easily be verified that the above proximal parameter generator satisfies the
descent condition of Assumption A, and that when the sequence {(uk, vk, yk)}k≥1 is
bounded, then Assumption B also holds, i.e., {σk}k≥1 is bounded.

6 Implication to the Proximal Gradient Method Under Locally
Lipschitz Data

As an interesting byproduct of our analysis, we can immediately obtain convergence
results of the proximal gradient scheme with locally Lipschitz data. More precisely, in
this sectionwe briefly review the special casewhen h ≡ 0, F ≡ 0,meaning that model
described through (M) reduces to the minimization of the nonconvex sum composite
minimization problem

min
u∈Rn

f (u) + g(u),

where f : R
n → (−∞,∞] is a proper and lsc function, and g : R

n → R is
a continuously differentiable function with a locally Lipschitz continuous gradient.
Alternatively, by setting G to be the identity map, the model (M) reduces to the
nonlinear composite model min{ f (u) + g(u) + h(F(u)) : u ∈ R

n}. In the later case,
one can verify that under our local Lipschitz assumptions for (M), the gradient of the
composite term h◦F is also locally Lipschitz. Thus in both special cases, weminimize
the sum composite model:

min{ f (u) + ψ(u) : u ∈ R
n},

where ψ(u) := g(u) or ψ(u) := g(u) + h(F(u)), both having a locally Lipschitz
gradient.

In this case, Algorithm 1 is effectively a proximal gradient scheme with a dynamic
proximal parameter, described below.

Prox-Grad with locally Lipschitz gradient (PG-Loc).

1. Generate a proximal parameter σk+1 > 0;

2. Set uk+1 ∈ argminu∈Rn

{
f (u) + 〈∇ψ(uk), u〉 + σk+1

2

∥∥u − uk
∥∥2

}
.

According to our convergence result in Theorem 4.2, this scheme has global con-
vergence guarantees even though ψ only has a local Lipschitz continuous gradient.

Theorem 6.1 (Subsequence and global convergence of PG-Loc) Suppose that Assump-
tionAandAssumptionBhold true, and that the sequence {uk}k≥1 generated byPG-Loc
is bounded. Then the following implications hold.

(i) Let Ω be the set of cluster points of the sequence {uk}k≥1. Then, Ω is a nonempty,
compact, and connected set; Ω ⊂ crit( f + ψ); limk→∞ dist(uk,Ω) = 0; and
( f + ψ) is finite and constant on Ω .
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(ii) Assume, in addition, that the functions f andψ are semi-algebraic. Then, {uk}k≥1
has a finite length, i.e.,

∑∞
k=1

∥∥uk+1 − uk
∥∥ < ∞, and it converges to a critical

point of the objective function u∗ ∈ crit( f + ψ).

We can then invoke Algorithm 2 as the proximal parameter generator in this case to
derive a tractable, globally convergent, proximal gradient method with a backtracking
procedure, for composite problems with locally Lipschitz continuous gradient.

7 Concluding Remarks

Under mild, yet specific, data assumptions and structure, we have established subse-
quence and global convergence results by using a dynamic backtracking mechanism
to determine the proximal parameter. The suggested algorithm DAM, together with a
minor refinement of the analysis, can also be applied to a model where G has only full
column rank, i.e., GTG is positive definite, but GGT is rank deficient. In this case,
we should explicitly require having that the range of the mapping F is contained in
the range of the matrix G. One may also consider other alternatives for the v-update
step: (i) linearize ϕ(uk+1, ·, yk) and leave h intact; (ii) linearize Ψk , i.e., linearize both
h and ϕ(uk+1, ·, yk). However, these alternatives are less attractive since they impose
substantial additional restrictions on the model at hand and specifically on the matrix
G. Finally, let us mention that if we do not linearize h in the optimization process, then
h must be ’prox-friendly’, a requirement that limits the cases where the step’s mini-
mization subproblem is tractable. Actually, in that scenario, it can be easily verified
that the convergence analysis we conduct in Sect. 4 can even be further simplified.

Acknowledgements The research of E. Cohen was supported by a Ph.D fellowship under ISF Grants 1844-
16 and 2619-20 and DFG grant 800240. The research of M. Teboulle was partially supported by the Israel
Science Foundation, under ISF Grants 1844-16 and 2619-20, and by the German Research Foundation
under DFG Grant 800240.

A Appendix A: Subdifferential Calculus and the Lagrangian

Model (M) is nonconvex and nonsmooth in general, and so we turn to subdifferential
calculus for nonconvex functions. Specifically, we recall the definition of subdiffer-
entials, critical points, and a few related results. For a more detailed presentation, see
[22,23,26].

Definition A.1 (Subdifferentials) Let E be an Euclidean vector space, ψ : E →
(−∞,∞] be a proper and lsc function, and z ∈ domψ .

(i) The Fréchet (regular) subdifferential of ψ at z, denoted by ∂̂ψ(z), is the set of
all vectors v ∈ E satisfying

ψ(x) ≥ ψ(z) + 〈v, x − z〉 + o (‖x − z‖) . (A.1)
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(ii) TheMordukhovich (limiting) subdifferential of ψ at z, denoted by ∂ψ(z), is the
set of all vectors v ∈ E such that there exist sequences {zk}k∈N and {vk}k∈N
where zk → z, ψ(zk) → ψ(z), vk ∈ ∂̂ψ(zk), and vk → v.

(iii) The horizon subdifferential ofψ at z, denoted by ∂∞ψz, has a similar definition
to that in (ii), but instead of vk → v we have tkvk → v for some real sequence
tk ↘ 0.

For z /∈ domψ we set ∂̂ψ(z) = ∂ψ(z) = ∂∞ψ(z) = ∅.
Note that (A.1) is equivalent to

lim inf
x→z
x �=z

ψ(x) − ψ(z) − 〈v, x − z〉
‖x − z‖ ≥ 0.

Remark A.1 (Closedness of graph of ∂ψ) We note, as in [7, Remark 1(ii)], that
given a convergent sequence (xk, wk) −−−→

k→∞ (x, w), such that wk ∈ ∂ψ(xk) and

limk→∞ ψ(xk) = ψ(x), it holds that w ∈ ∂ψ(x).

Proposition A.1 (see Exercise 8.8(c), p.304 in [26]) Let ψ : Rd → (−∞,∞] be an
extended valued function and φ : Rd → R be a smooth function. Then,

∂(ψ + φ)(x) = ∂ψ(x) + ∇φ(x), ∀x ∈ R
d ,

where for x /∈ domψ , we note that ∅ + ∇φ(x) = ∅.
Definition A.2 (Critical points) Let E be an Euclidean vector space, ψ : E →
(−∞,∞] be a proper and lsc function. Then, the set of critical points of ψ is defined
by

critψ :={x : 0 ∈ ∂ψ(x)}.

B Appendix B: Lipschitz and Local Lipschitz Continuity

We review the notion of Lipschitz and local Lipschitz continuity in the context of
model (M). Thus, we restrict our discussion to Euclidean vector spaces and in the
following X and Y denote such spaces.

We begin with the basic definition.

Definition B.1 (Lipschitz and locally Lipschitz continuity) Let S ⊆ X be a nonempty
set and φ : S → Y be a continuous mapping over S. Then,

(i) φ is L-Lipschitz continuous over S with L ≥ 0 if the following holds

‖φ(x) − φ(z)‖ ≤ L ‖x − z‖ , ∀x, z ∈ S. (B.1)

123



Journal of Optimization Theory and Applications (2022) 193:324–353 349

(ii) φ is locally Lipschitz continuous over S if for every z ∈ S there exist ε(z) > 0,
Lε(z) ≥ 0, and a neighborhoodNε(y):={x ∈ S : ‖x − z‖ < ε(z)}, such that φ is
Lε(z)-Lipschitz continuous over Nε(z), i.e.,

‖φ(x) − φ(z)‖ ≤ Lε(z) ‖x − z‖ , ∀x, z ∈ Nε(z). (B.2)

When (i) or (ii) hold with S ≡ X then φ is referred to as L-Lipschitz continuous or
locally Lipschitz continuous, respectively. In addition, note that when φ(x) − φ(z) is
a matrix then ‖φ(x) − φ(z)‖ is the spectral norm.

We also recall the following characterization of locally Lipschitz continuous map-
pings.

Proposition B.1 (Local Lipschitz continuity and compact sets (Theorem 2.1.6 in [13]))
Let S ⊆ X be a nonempty set. Then, a mapping φ : X → Y is locally Lipschitz
continuous over S if and only if for every nonempty and compact set C ⊆ S there
exists LC ≥ 0 such that φ is LC-Lipschitz continuous over C, i.e.,

‖φ(x) − φ(z)‖ ≤ LC ‖x − z‖ , ∀x, z ∈ C . (B.3)

We conclude with a proposition which deals with Lipschitz continuity properties
of C1 mappings.

Proposition B.2 (Differential mappings and Lipschitz continuity) Let φ : X → Y be
a C1 mapping. Then the following claims hold.

(i) φ is locally Lipschitz continuous;
(ii) Let B ⊆ X be a closed ball, i.e., B = {x : ‖x − z‖ ≤ r}, for some z ∈ X and

r ∈ (0,∞], and assume that φ is LB-Lipschitz continuous over B, with LB ≥ 0.
Then,

‖∇φ(x)‖ ≤ LB, ∀x ∈ B.

Proof For the first claim, see, e.g., [12, Corollary, p. 32]. The second claim can be
easily obtained using the definition of the Gâteaux derivative, see [12, p. 30], and the
continuity of ∇φ. ��

C Appendix C: Proof of Lemma 4.1

Proof of Lemma 4.1 We prove that ∇ϕ is locally Lipschitz continuous by utilizing
the local Lipschitz continuity characterization stated in Proposition B.1, i.e., given a
nonempty and compact set C ⊂ R

n × R
m × R

q we prove that there exists LC ∈ R+
such that for every ω = (u, v, y), ω̂ = (û, v̂, ŷ) ∈ C , we have

∥∥∇ϕ(ω̂) − ∇ϕ(ω)
∥∥ ≤ LC

∥∥ω̂ − ω
∥∥ . (C.1)
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With∇ϕ(ω) = (∇uϕ(ω),∇vϕ(ω),∇yϕ(ω)
)
, we intend to prove that there exist LC,u ,

LC,v , and LC,y ∈ R+, such that

∥∥∇uϕ(ω̂) − ∇uϕ(ω)
∥∥ ≤ LC,u

∥∥ω̂ − ω
∥∥ , (C.2)

∥∥∇vϕ(ω̂) − ∇vϕ(ω)
∥∥ ≤ LC,v

∥∥ω̂ − ω
∥∥ , (C.3)

∥∥∇yϕ(ω̂) − ∇yϕ(ω)
∥∥ ≤ LC,y

∥∥ω̂ − ω
∥∥ . (C.4)

and as

∥∥∇ϕ(ω̂) − ∇ϕ(ω)
∥∥ ≤ ∥∥∇uϕ(ω̂) − ∇uϕ(ω)

∥∥

+ ∥∥∇vϕ(ω̂) − ∇vϕ(ω)
∥∥ + ∥∥∇yϕ(ω̂) − ∇yϕ(ω)

∥∥ ,

we can set LC = LC,u + LC,v + LC,y .
We begin with ∇uϕ (cf. (4.1)) and note that for every (u, v, y), (û, v̂, ŷ) ∈ R

n ×
R
m × R

q , we have

∥∥∇uϕ(û, v̂, ŷ) − ∇uϕ(u, v, y)
∥∥

=
∥∥∥∇g(û)+∇F(û)T

(
y + ρ(F(û)−Gv̂)

) − ∇g(u) − ∇F(u)T (y + ρ(F(u) − Gv))

∥∥∥

≤ ∥∥∇g(û) − ∇g(u)
∥∥ + ∥∥∇F(û)T

(
ŷ + ρ(F(û) − Gv̂)

) − ∇F(u)T (y + ρ(F(u) − Gv))
∥∥,

(C.5)

where the inequality is due to the triangle inequality.
Next, let Cu be the projection of C on R

n and Bu be a compact ball such that
Cu ⊆ Bu . Then, as ∇g is locally Lipschitz continuous and Bu is compact, we can
apply Proposition B.1 and obtain that there exists Lg ≥ 0 such that

∥∥∇g(û) − ∇g(u)
∥∥ ≤ Lg

∥∥û − u
∥∥ , ∀u, û ∈ Bu .

Next, recall that F is C1 and hence, by Proposition B.2(i), F is locally Lipschitz
continuous. In addition, ∇F is also locally Lipschitz continuous. Thus, there exist
lF ≥ 0 and LF ≥ 0, such that for every u, û ∈ Bu , we have

∥∥F(û)−F(u)
∥∥≤ lF

∥∥û−u
∥∥ ,

∥∥∇F(û)−∇F(u)
∥∥≤ LF

∥∥û−u
∥∥ , and ‖∇F(u)‖≤ lF ,

where the first two inequalities are due to Proposition B.1 and the last is due to
Proposition B.2(ii). Applying the above inequalities, we obtain that, for every u, û ∈
Bu , v, v̂ ∈ R

m , and y, ŷ ∈ R
q , we have
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∥∥∥∇F(û)T
(
ŷ + ρ(F(û) − Gv̂)

) − ∇F(u)T (y + ρ(F(u) − Gv))

∥∥∥

= ∥∥
(
∇F(û)T − ∇F(u)T

)
(y + ρ(F(u) − Gv))

+ ∇F(û)T
(
ŷ − y + ρ(F(û) − F(u)) − ρG(v̂ − v)

) ∥∥

≤ ∥∥∇F(û) − ∇F(u)
∥∥ ∥∥y + ρ(F(u) − Gv)

∥∥

+ ∥∥∇F(û)
∥∥ (∥∥ŷ − y

∥∥ + ρ
∥∥F(û) − F(u)

∥∥ + ρ
∥∥G

∥∥∥∥v̂ − v
∥∥)

≤
(
LF

∥∥y+ρ(F(u) − Gv)
∥∥ + ρl2F

) ∥∥û − u
∥∥+lF

(∥∥ŷ − y
∥∥ + ρ

∥∥G
∥∥ ∥∥v̂ − v

∥∥)
,

Combining the results above, and noting that C ⊆ Bu ×R
m ×R

q , we obtain that, for
every ω = (u, v, y), ω̂ = (û, v̂, ŷ) ∈ C , we have

∥∥∇uϕ(ω̂) − ∇uϕ(ω)
∥∥ ≤

(
Lg + LF ‖y + ρ(F(u) − Gv)‖ + ρl2F

)

∥∥û − u
∥∥ + lF

(∥∥ŷ − y
∥∥ + ρ ‖G‖ ∥∥v̂ − v

∥∥)

≤ Lϕ(u, v, y)
∥∥ω̂ − ω

∥∥ ,

with Lϕ(u, v, y):= (
Lg + LF ‖y + ρ(F(u) − Gv)‖ + lF (1 + ρlF + ρ ‖G‖)) ∥∥ω̂ − ω

∥∥ .

We complete the proof for ∇uϕ and obtain inequality (C.2) by setting LC,u =
sup(u,v,y)∈C Lϕ(u, v, y) and noting that LC,u < ∞ as Lϕ is continuous and C is
compact.

Next, we examine ∇vϕ (cf. (4.2)). For every ω, ω̂ ∈ C , we have

∥∥∇vϕ(ω̂) − ∇vϕ(ω̂)
∥∥ =

∥∥∥GT (
ŷ − y + ρ(F(û) − F(u)) − ρ(G(v̂ − v))

)∥∥∥

≤ ‖G‖ (∥∥ŷ − y
∥∥ + ρ

∥∥F(û) − F(u)
∥∥ + ρ ‖G‖ ∥∥v̂ − v

∥∥)

≤ ‖G‖ (∥∥ŷ − y
∥∥ + ρlF

∥∥û − u
∥∥ + ρ ‖G‖ ∥∥v̂ − v

∥∥)

≤ LC,v

∥∥ω̂ − ω
∥∥ ,

with LC,v = ‖G‖ (1 + ρ(lF + ‖G‖)).
Finally, with ∇yϕ (cf. (4.3)), for every ω, ω̂ ∈ C , we have

∥∥∇yϕ(ω̂) − ∇yϕ(ω)
∥∥ = ∥∥F(û) − F(u) − G(v̂ − v)

∥∥

≤ ∥∥F(û) − F(u)
∥∥ + ∥∥G(v̂ − v)

∥∥

≤ lF
∥∥û − u

∥∥ + ‖G‖ ∥∥v̂ − v
∥∥

≤ LC,y
∥∥ω̂) − ω

∥∥ ,

with LC,y = lF + ‖G‖. ��
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