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Abstract
A framework for monitoring a target modeled as Dubins car using multiple UAVs is
proposed. The UAVs are subject to minimum and maximum speed, maximum angular
rate constraints, as well as inter-vehicle safety requirements and no-fly-zones. The
problem is formulated as a continuous time nonlinear optimal control problem. This
problem is first simplified by using a sequential approach, which significantly reduces
its complexity. Then, by defining the desired trajectories to be tracked by the UAVs
as Bernstein polynomials, it is transcribed into a nonlinear optimization problem. It
is shown through numerical simulations that the present approach is computationally
efficient, and thus it is well suited for trajectory planning/re-planning to monitor a
target of unknown speed, heading direction and unexpected detours. Moreover, the
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proposed method guarantees satisfaction of feasibility and safety constraints for the
whole planning time period, rather than only at discrete time points.

Keywords Multi-agent system · Target monitoring · Bernstein polynomials

1 Introduction

Monitoring a moving target in dynamic environments is a challenging problem with
manypractical applications such as studying and followingmarine animals [27], search
and rescue [38], convoy protection [13], or tracking the spread of wildfires [5]. A
collection of multiple agents can be demonstrably more powerful than a single unit of
the collective [15], however, this introduces additional complexities such as scheduling
and avoiding collisions. This paper addresses this problem by proposing a framework
for generating optimal trajectories for multiple autonomous agents to monitor a target.

The problem of tracking a target by autonomous systems has received a great deal
of attention in the research community, see [29,30] and citations therein. Methods for
tracking a target with a known position include cell decomposition methods [4], path
planning-based approach [24], Lyapunov-based nonlinear control [25], oscillatory
control [21], differential games [14], and dynamic programming-based methods [22].
Tracking a target with unknown motion and dynamics properties requires an approach
that takes the uncertainty into account. In [1] the target’s motion is assumed to be
described by a 2D stochastic process which is represented as 2D Brownian motion
and theMarkov chain approximationmethod is employed for numerically determining
the optimal control policy. The work presented in [28] seeks to continuously keep a
stochastic target in the viewof a gimbaled camerawhile avoiding blind spots, like those
produced by landing. A cutting-plane approach is presented in [34], which enables
multiple vehicles to seek and detect one or more uncertain targets. In [6] a temporal
and spatial discretization method is proposed to formulate the optimal target tracking
problem as a nonlinear programming problem subject to turn-rate constraints of the
monitoring agents. In [26] a monitoring agent is equipped with a camera on a gimbal
allowing the agent to monitor the target from several different line-of-sight angles.

When dealing with multi-vehicle tracking missions in a real-world environment,
control problems that arise from this application are very complex since they must
take into account vehicle’s dynamic constraints, inter-vehicle safety, multiple mission
objectives and environmental uncertainties. These lead to optimal control problems
with cost function and constraints that can be highly nonlinear, non-smooth, and non-
convex, and closed-loop solutions cannot be sought. Thus, solutions to these problems
must be found using numerical methods such as direct methods [31]. Direct methods
are based on approximating optimal control problems as nonlinear programming prob-
lems (NLPs) using some discretization scheme [2,3,12,31]. Then, these NLPs can be
solved using off-the-shelf optimization solvers (e.g., MATLAB, SNOPT, etc.). A wide
range of direct methods that use different discretization schemes have been developed,
which include Euler [16], Runge–Kutta [35,36], Pseudospectral [33], as well as meth-
ods based on Bernstein approximants [9,10].
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In the context of the existing literature on multi-vehicle target tracking, this work
differs from other approaches in a fundamental way. Rather than dealing with sim-
plified problems and designing closed-loop (reactive) controllers, we formulate the
multi-vehicle target tracking problem as a general nonlinear optimal planning prob-
lem and find a solution using a direct method. This approach allows us to consider the
cooperative target tracking problem in its full complexity, and rigorously ensure sat-
isfaction of dynamics and safety constraints and mission objectives. Furthermore, the
method enhances human operators’ trust through transparent and predictable oper-
ations, since the solutions are generated open loop, in one shot, for long temporal
windows.

We employ the direct method based on Bernstein approximants that was initially
proposed in [8]. Bernstein polynomials (BPs) were originally introduced by Sergei
Natanovich Bernstein (1880–1968) as a means to develop a constructive proof of
the Weierstrass theorem. Due to their slow convergence as function approximants,
Bernstein polynomials were not widely used until two automotive engineers from
competing companies used them as a parametric representation for automotive bodies.
Today, Bernstein polynomials (sometimes referred to as Bézier curves) are frequently
used in graphics software and font representations. Bernstein polynomials enjoy the
benefit of low computational requirements since many of their properties can be dis-
cerned from their coefficients. For example, a Bernstein polynomial is guaranteed to
reside in the convex hull defined by its coefficients, leading to safe estimates of its
bounds at a low computational cost, allowing generation of trajectories in near real-
time fashion. Here we exploit the properties and algorithms of Bernstein polynomials
to address the problem of target tracking. This approach allows us to consider the
complex scenario where the vehicles must coordinate in order to ensure continuous
monitoring of a partially unknown moving target by gimbeled cameras mounted on-
board theUAVs. To ensure robustness to a target’s motion uncertainties, we propose an
event-triggered approach to re-plan trajectories using up-to-date measurements. For
more in depth discussion on the benefits of Bernstein polynomial-based approaches as
compared to other direct methods for trajectory generation, we refer to [8,11,17,19].

Our proposed method comprises three main parts: sequential planning, approxi-
mation via BPs, and target prediction re-planning. Sequential planning allows each
agent to plan their own trajectory which offers a lower computational expense and
does not require a centralized processor. BPs allow the optimal target tracking prob-
lem, an infinite dimensional optimal control problem, to be formulated as a finite
dimensional nonlinear optimization problem problem. The latter can be solved using
off-the-shelf solvers, e.g., fmincon, SciPy, SNOPT, and IPOPT. The target prediction
re-planning allows trajectories to be re-planned when the expected future position of
the target varies further than a predefined distance away from the original prediction
used to generate the initial optimal trajectory. A preliminary version of this problem
was approached in [37].

The paper beginswith the problem formulation of the trajectory generation for target
tracking in Sect. 2. Section 3 presents the polynomial and sequential approximations
to the problem at hand and describes both the sequential approach and the Bernstein
approximation method adopted. Section 4 presents numerical results of simulated
missions and Sect. 5 draws conclusions.
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2 Trajectory Generation for Target Tracking

In what follows, vectors are denoted by bold letters, e.g. p = [px , py]�. || · || denotes
the Euclidean norm (or magnitude), e.g., ||p|| =

√
p2x + p2y , and ∠· denotes the

direction angle with respect to the x axis, e.g., ∠p = tan−1 py
px
.

The objective of thiswork is tomaintain constant camera coverage of a ground target
using multiple unmanned aerial vehicles (UAVs) traveling at a constant altitude. The
UAVs are assumed to be of the fixed wing variety which allows for efficient power
usage. This means that the UAVs are both nonholonomic and lack the ability to hover.
The camera is assumed to be fixed in order to reduce both the cost and mechanical
complexity of the UAVs; therefore, the target will only lie in the camera footprint
when the UAV is facing towards the target.

Consider an example monitoring mission involving 2 UAVs which takes place over
the time interval [0, T ], T � 0, and let the target’s position be denoted as pτ (depicted
as a red star in Fig. 1). For the safety of the monitoring vehicles, a no-fly-zone with
radius RT is imposed around the target (depicted as a red circle in Fig. 1). Similarly, an
outer monitoring radius RO represents the maximum distance at which the monitoring
vehicles begin their monitoring trajectories (depicted as a black circle in Fig. 1). The
value for RO is user defined and can depend on several considerations, including the
cameras being used, the number of vehicles involved in the mission, or the target’s
dynamics. The initial monitoring points Ii lie on the outer monitoring circle and are
randomly chosen from a uniform distribution to mitigate the target predicting future
positions of the UAVs. At time t1, UAV1 must reach the point I1 while also facing
directly towards the target. Between times t1 and t2, UAV1 will follow the monitoring
trajectory depicted as a blue dotted line between points I1 and F1. At time t2, UAV1 will
reach final point F1 and simultaneously UAV2 will reach its initial point I2. Between
times t2 and t3, UAV1 will follow a trajectory (depicted as a greed dotted line in Fig. 1)
to its new initial point I3 while UAV2 will follow its monitoring trajectory between
points I2 and F2. At time t3, UAV1 will reach its initial monitoring point I3 and UAV2
will reach the end of its monitoring trajectory at point F2. From there, the process
begins anew and repeats until some final time T . The monitoring vehicles are given
a fixed time interval TΔ to complete their trajectories, e.g., t2 = t1 + TΔ. The fixed
time interval TΔ is a constant value which depends on the length of the monitoring
trajectory and the monitoring speed of the vehicle, i.e., TΔ = monitoring trajectory length

monitoring speed .

This monitoring scenario can be extended to an arbitrary number of UAVs, where
UAVi begins its monitoring trajectory at time ti = ti−1 + TΔ, when the previous
agent, namely UAVi−1, completes its monitoring maneuver. To minimize agents pre-
dictability, the points Ii are selected randomly on the outer circle. Furthermore, since
the agents are assumed to be equipped with non-gimballed sensors, the heading angle
of the agents at Ii must be equal to the line-of-sight angle to the target. Similarly,
in order to guarantee monitoring, the difference between the UAVs’ heading angle
and the line-of-sight angle to the target must be minimized throughout the execution
of the monitoring maneuvers. The problem of trajectory generation for multi-vehicle

123



Journal of Optimization Theory and Applications (2021) 191:899–916 903

Fig. 1 Graphical depiction of the problem

continuous target monitoring missions can be formulated as a general optimal control
problem, i.e.,

Consider a mission involving m UAVs. Find m trajectories to be tracked by the
UAVs over the time interval [t0, t f ], that minimize a cost function, J (·), subject to
boundary conditions, feasible flight constraints, and mission specific constraints.

Notice that the proposed formulation accounts for re-planning during mission exe-
cution in order to react to unpredicted events (i.e. external obstacles, target’s unknown
dynamics, etc.). In fact, the above problem is defined over the time interval [t0, t f ],
where the initial time t0 is the time at which planning occurs (different from the initial
time of the overall monitoring mission, t = 0).

In order to formulate the trajectory generation problem mathematically, let the
trajectory assigned to the i th vehicle be defined as p[i] : R+ → R

2. Moreover, let
the position of the target be defined as pT : R+ × Θ → R

2. The target’s position
is supposed to be conditionally deterministic, i.e. there exists a stochastic variable
θ = [θ1, θ2]� ∈ Θ ⊂ R

2 such that the target’s position conditioned on θ at time t is
given by pT (t, θ), with dynamics governed by ṗT (t, θ) = [θ1 cos(θ2), θ1 sin(θ2)]�.

The variables θ1 and θ2 represent the stochastic speed and heading angle of the target,
respectively.

We assume that the probability density of θ over Θ is known and is denoted by
pθ : Θ → R. Then, assuming that the position of the target at t0 is known, the expected
position of the target at t > t0 is given by

E[pT (t, θ)] =
∫

Θ

(∫ t

t0
ṗT (τ, θ)dτ

)
pθ (θ)dθ . (1)

For notation simplicity, let us define EpT (t0, t) ≡ E[pT (t, θ)], in order to highlight
the dependency of the expected position of the target on the initial position (measured
at t0). Moreover, we denote the expected line-of-sight angle to the target at time t
by Eλ[i](t0, t) ≡ ∠

(
EpT (t0, t) − p[i](t)

)
. The target’s position (and, therefore, the

line-of-sight angle) can be measured on-line, and the planning algorithm is triggered if
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the actual position of the target deviates from its expected value, computed previously
when planning occurred.

Let

I[i] =
{
t [i]1 , t [i]2 , . . . , t [i]nm

}
, nm ≥ 1, t0 ≤ t [i]1 < t [i]nm + TΔ ≤ T (2)

be the set of time points at which UAVi is required to start a monitoring maneuver,
where TΔ > 0 is the pre-specified monitoring time. In order to maximize the proba-
bility that, at time t [i]j , UAVi is positioned along a circle of radius Ro centered around
the target, the cost function

JI j (p
[i](t)) =

∥∥∥p[i] (t [i]j
)

− EpT

(
t0, t

[i]
j

)
+ Ro

∥∥∥
2

(3)

must be minimized, where Ro = Ro[cos(αr ), sin(αr )]�, and αr ∈ [0, 2π ] is a uni-
formly random angle generated before the flight trajectory is planned, in order to
minimize agents’ predictability. Finally, one additional objective is to maximize the
probability that, for the interval of time t ∈ [t [i]j , t [i]j +TΔ], the heading angle of UAVi ,

denoted by ψ [i](t), is equal to the line-of-sight angle to the target. This is captured by
the following cost:

JFj (p
[i](t)) =

∫ t [i]j +TΔ

t [i]j

∥∥∥Eλ[i](t0, τ ) − ψ [i](τ )

∥∥∥
2
dτ. (4)

With this setup, the cost function to be minimized is

J (p1(t), . . . ,pm(t)) = w1 JFj (p
[i](t)) + w2

m∑
i=1

nm∑
j=1

JI j (p
[i](t)), (5)

where w1, w2 > 0 are weights.
Boundary conditions on the trajectories can be imposed, such as initial position,

speed, heading angle, and angular rate constraints:

p[i](t0) = p[i]
0 , ||ṗ[i](t0)|| = v

[i]
0 , ψ [i](t0) = ψ

[i]
0 , ψ̇

[i]
(t0) = ω

[i]
0

(6)

∀i = 1, . . . ,m, where p[i]
0 , v[i]

0 , ψ [i]
0 , and ω

[i]
0 are the actual position, speed, heading

angle, and angular rate of UAVi at time t0.
Feasible and flyable trajectories are trajectories that can be tracked by the UAVs

without having them exceed pre-specified bounds on the vehicles’ states and control
inputs and that ensure collision avoidance. The feasibility and flyability constraints
considered are minimum and maximum speed, maximum angular rate, and inter-

123



Journal of Optimization Theory and Applications (2021) 191:899–916 905

vehicle safety:

vmin ≤ ||ṗ[i](t)|| ≤ vmax, (7)

||ψ̇ [i]
(t)|| ≤ ωmax, (8)

||p[ j](t) − p[i](t)|| ≥ Ds, (9)

∀t ∈ [t0, t f ] and ∀i, j = 1, . . . ,m, i �= j , where vmax > vmin > 0, ωmax > 0, and
Ds > 0.

Finally, in order to prevent detection by the target, we impose no-fly-zone con-
straints, namely the trajectory cannot enter a circle of radius RT around the target,
which can be expressed as follows:

||p[i](t) − EpT (t0, t)|| ≥ RT , ∀t ∈ [t0, t f ], ∀i = 1, . . . ,m. (10)

With the equations defined above, we now formulate the trajectory generation prob-
lem.

Problem 2.1 (Trajectory generation) Given the prespecified parameters R0, T , and TΔ

find m trajectories for the UAVs to track over the time interval [t0, t f ] that minimize
the cost function J (p1(t), . . . ,pm(t)) (Eq. 5) subject to boundary conditions (Eq. 6),
feasible flight constraints (Eqs. 7, 8, and 9), and mission specific constraints (Eq. 10).

Remark 2.1 Problem 2.1 is concerned with the generation of desired trajectories to be
tracked by the UAVs. We consider UAVs that are equipped with controllers that stabi-
lize the vehicles’ dynamics and provide trajectory tracking capabilities (for example,
see [7,18,32]). Notice that these capabilities are provided by most commercially avail-
able autonomous vehicle platforms. For simplicity, in this paper we assume that the
on-board controllers provide ideal tracking performance, i.e. the UAVs’ position and
attitude coincide with the desired ones for all times. Nevertheless, the present method
can be easily extended to the more realistic case on non-ideal tracking performance
by properly including additional constraints in Problem 2.1.

3 Polynomial and Sequential Problem Approximation

This section is divided into two parts. First, we present our approach to separate the
overall trajectory generation problem into different sub-problems that can be solved
sequentially in a decentralized fashion, in order to handle scalability issues and the
problem’s uncertainties. Second, we introduce a method based on Bernstein polyno-
mials that approximates the cost function and constraints at hand, in order to transcribe
the trajectory generation problems into nonlinear programming (NLP) problems.

3.1 Sequential Planning

The trajectory generation problem formulated inSect. 2minimizes the cost function for
all vehicles simultaneously over the mission duration [0, T ]. Consequently, scalability
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issues arise when the time interval and the number of vehicles involved in the mission
become large. To address this issue, we propose a sequential approach, wherein the
trajectories for each vehicle are computed independently from the other vehicles’
trajectories. Moreover, each UAV trajectory is divided into two components, each
of which is computed separately. These two components are the trajectory from the
current UAV position to the outer-circle centered around the target and themonitoring
trajectory.

Recall that Eq. (2) is the set of time instants at which UAVi is required to start a
monitoring maneuver. Then, F [i] = {t [i]j + TΔ}nmj=1 is the set of time points at which
the same UAV is required to end its monitoring maneuver. Given a monitoring mission
involving m UAVs, each UAV is tasked with solving nm flight trajectory generation
problems, and nm monitoring trajectory generation problems. The j th flight trajectory
generation problem for UAVi is stated as follows:

Problem 3.1 (Flight trajectory generation) At given time t0 < t [i]j , find p[i](t), t ∈
[t0, t f ], t f = t [i]j that minimizes the following:

∥∥∥p[i](t f ) − EpT (t0, t f ) + Ri,p

∥∥∥
2 +

∥∥∥Eλ[i](t0, t f ) − ψ [i](t f )
∥∥∥
2
, (11)

subject to the boundary conditions described in Eqs. (6)–(10).

The j th monitoring trajectory generation problem for UAVi is formulated as fol-
lows:

Problem 3.2 (Monitoring trajectory generation) At given time t0 ≥ t [i]j , find p[i](t),
t ∈ [t0, t f ], t f = t [i]j + TΔ that minimizes

∫ t f

t0

∥∥∥Eλ[i](t0, τ ) − ψ [i](τ )

∥∥∥
2
dτ (12)

subject to Eqs. (6)–(10).

Under nominal conditions, the initial time, t0, of the monitoring trajectory is equal
to the final time, t f , of the previous flight trajectory. Similarly, the initial time of a
flight trajectory corresponds to the final time of the previous monitoring trajectory.
However, in the presence of unpredicted events, such as unexpected target detours,
the (flight or monitoring) trajectory planner can be triggered, with the initial time set
as the current time. In this work, re-planning is triggered when the expected value of
the future position of the target deviates more than a certain distance from the original
expected value. In particular, recall that EpT (t0, t f ) is the expected position of the
target computed when planning occurred, while the expected position computed at
current time t is EpT (t, t f ). If at time t the distance between the two values is greater
than a pre-defined constant ε, then re-planning is triggered.
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3.2 Bernstein Approximation

Inwhat follows,wepresent amethodbasedon the use ofBPs to transcribeProblems3.1
and 3.2 into discrete, finite-dimensional optimization problems. For additional details
on the transcription method, the reader is referred to [9]. Let the position of the i th
UAV involved in the monitoring mission be defined over an arbitrary interval [t0, t f ]
by a 2-dimensional nth order BP, i.e.,

p[i](t) � p[i]
n (t) =

n∑
k=0

p̄[i]
k,nbk,n(t), (13)

where p̄[i]
k,n ∈ R

2 is kth Bernstein coefficients, and bk,n(t) is the Bernstein basis (see

Eq. (24) in the Appendix). The derivative of p[i](t), i.e. ṗ[i](t), is a 2-dimensional nth
order Bernstein polynomial computed as

ṗ[i](t) =
n∑

�=0

(
n∑

k=0

p̄[i]
k,nDk,�

)
b�,n(t) =

n∑
�=0

p̄[i]′
�,nb�,n(t), , (14)

where Dk,� is the the (k, �)th entry of the (n + 1) by (n + 1) differentiation matrix
Dn = Dn−1En

n−1 that is obtained by combining the differentiation and degree elevation
properties of BPs (see Properties A.3 and A.4). Note that higher order derivatives of
BPs can be computed similarly. The speed, v[i], and the heading angle, ψ [i](t), are

v[i](t) = ||ṗ[i](t)||, ψ [i](t) = ∠ṗ[i](t), (15)

and the angular rate, ω[i](t), is given by

ω[i](t) = ṗ[i](t) × p̈[i](t)∥∥ṗ[i](t)
∥∥2 =

n∑
j=0

ω̄
[i]
j,nb j,n . (16)

The Bernstein coefficients ω̄
[i]
j,n , j = 0, . . . , n, can be easily computed from the

Bernstein coefficients of ṗ[i](t) and p̈[i](t) by using the arithmetic properties of BPs
(Property A.5).

Using BPs, the cost function in Eq. (11) can be approximated as follows:

∥∥∥p̄[i]
n,n − EpT (t0, t f ) + Ri,p

∥∥∥
2 +

∥∥∥Eλ[i](t0, t f ) − ∠p̄[i]′
n,n

∥∥∥
2
, (17)

with Eλ[i](t0, t f ) = ∠
(
EpT (t0, t f ) − p[i]

n,n

)
, where we used the end point value

property of BPs (Property A.1). Moreover, we notice that the cost function in Eq. (12)
can be rewritten as

∫ t f

t0

∥∥∥∠
(
EpT (t0, τ ) − p[i](τ )

)
− ∠ṗ[i](τ )

∥∥∥
2
dτ.
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Minimization of the above cost function is equivalent to minimizing

∫ t f

t0
η[i](τ )dτ �

∫ t f

t0

∥∥∥
(
EpT (t0, τ ) − p[i](τ )

)
× ṗ[i](τ )

∥∥∥
2
dτ. (18)

It is straightforward to show that the argument of the integral above is a Bernstein
polynomial of order n, i.e., η[i](t) = ∑n

j=0 η̄
[i]
j,nb j,n , and the integral reduces to the

sum of its Bernstein coefficients by virtue of Property A.2, namely
∫ t f
t0

η[i](τ )dτ =∑n
j=0 η̄

[i]
j,n . The Bernstein coefficients η̄

[i]
j,n , j = 0, . . . , n, can be computed using

Property A.5 of BPs.
The boundary conditions can be easily enforced by using the end point value prop-

erty as follows:

p̄[i]
0,n = p[i]

0 ,

∥∥∥p̄[i]′
0,n

∥∥∥ = v
[i]
0 , ∠p̄[i]′

0,n = ψ
[i]
0 , ω̄

[i]
0,n = ω

[i]
0 , (19)

To impose the feasible and flyable constraints, we notice that the square of the speed
of the UAV (see Eq. (15)) is a 2nth order Bernstein polynomial, and its coefficients can
be computed from the coefficients ṗ[i]. Thus, it is convenient to express the constraint
in Eq. (7) as follows:

v2min ≤ ||ṗi,n(t)||2 ≤ v2max, ∀t ∈ [t0, t f ]. (20)

The latter can be enforced using the Evaluating Bounds and Evaluating Extrema
algorithms presented in [19]. Similarly, the angular rate constraint

||ω[i](t)|| ≤ ωmax, ∀t ∈ [t0, t f ], (21)

can be enforced using the same methods, since the angular rate is a rational BP (see
Eq. (16) and Property A.5). The inter-vehicle safety constraint

||p[ j](t) − p[i](t)|| ≥ Ds, (22)

∀i, j = 1, . . . ,m, i �= j , and the no-fly-zone constraint

||p[i](t) − EpT (t0, t)|| ≥ RT , (23)

∀i = 1, . . . ,m, can be efficiently imposed using theMinimum Distance and Collision
Detection algorithms presented in [19].

Then, the continuous-time j th flight and monitoring trajectory generation prob-
lems for UAVi (Problem 3.1) can be reformulated as finite dimensional optimization
problems as follows:

Flight Trajectory Generation For given t0 and t f = t [i]j , find p[i]
j,n , j = 0, . . . , n,

that minimize the cost function given by Eq. (17) subject to Eq0. (19)–(23).
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Similarly, the (continuous-time) j th monitoring trajectory generation problem for
UAVi (Problem 3.2) can be reformulated as follows:
Monitoring Trajectory Generation For given t0 and t f = t [i]j + TΔ, find p[i]

j,n ,
j = 0, . . . , n, that minimize the cost function given by Eq. (18) subject to Eqs. (19)–
(23).

Remark 3.1 Due to the geometric properties of BPs (see Appendix and [7,19]), con-
straints (20)–(22) can be enforced for the whole trajectories (i.e. ∀t ∈ [t0, t f ]) by
means of arithmetic operations on the Bernstein coefficients, independently of the
order of the polynomials. This also implies that, to guarantee inter-vehicle safety,
each vehicle must communicate only a finite (possibly small) number of coefficients
to the rest of the fleet.

Remark 3.2 The above reformulated flight and monitoring trajectory generation prob-
lems can be solved using an off-the-shelf optimization solver such as MATLAB’s
fmincon or SNOPT. The computation time required to solve is in the order of millisec-
onds, and this makes it feasible for real time implementation. This, in turn, guarantees
robustness and safety of the mission even with unpredictable target movements.

4 Results

The BeBOT library [19] as well as Scipy’s Optimize subpackage, Numpy, Matplotlib,
and Numba are used to generate the following results. The tests were run on a Lenovo
Thinkpad P52s laptop with 8 GB of RAM and an Intel Core i7-8550U processor
running at 1.8 GHz. The implementation used to run the tests is available on GitHub
at https://github.com/caslabuiowa/stochastic_target.

Consider a mission involving three UAVs. At t [1]1 = 30s, UAV1 is tasked with
starting its monitoring trajectory. The prescribed monitoring maneuver mission is
TΔ = 10s. Thus, we have I[1] = {30, 60, 90, . . .}s, I[2] = {40, 70, 100, . . .}s, and
I[3] = {50, 80, 110, . . .}s. The minimum safe distance, Ds = 1m, outer monitoring
radius, RO = 75m, maximum speed, vmax = 10m

s , minimum speed, vmin = 1m
s ,

maximum angular rate, ωmax = 0.6 rad
s , and re-planning radius, ε = 5m are selected.

The UAVs are initially positioned at p[1]
0 = [0, 0]�m, p[2]

0 = [0, 25]�m, and p[3]
0 =

[0, 50]�m, respectively. They have initial headings ψ
[1]
0 = ψ

[2]
0 = ψ

[3]
0 = 0 rad,

initial speeds v
[1]
0 = v

[2]
0 = v

[3]
0 = 3m

s , and initial angular rates ω
[1]
0 = ω

[2]
0 = ω

[3]
0 =

0 rad
s .

Scenario 1 Consider a static target, with pT (t) = [25, 25]�m. The flight trajectories
are computed at t0 = 0, see Fig. 2a. The red dotted lines show the outermonitoring radii
of the target at specified times. The gray circle in the center represents the no-fly-zone.
The red star is the target and the solid colored lines are the agent flight trajectories. As
the mission progresses, the agents generate and follow optimal monitoring trajectories
(dashed lines), Fig. 2b. The previous flight trajectories are shown in light cyan, light
green, and light blue. At t = 60s in Fig. 2b, Agent 1 is about to start its monitoring
trajectorywhileAgent 3 is finishing itsmonitoring trajectory. On the other hand, Agent
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Fig. 2 Mission Scenario #1

2 is on its way to the outer radius and will begin its monitoring trajectory once Agent
1 completes its monitoring trajectory. Agent 2 had been monitoring the target before
Agent 3. As expected, the monitoring trajectories all face radially inward towards the
static target.

Newflight trajectories are planned and bring themonitoring agents to a new, random
position on the outer monitoring radius. The time history of the speeds and angular
rates of the vehicles remain within the prescribed bounds, as shown in Fig. 2c, d.

Scenario 2 Consider a target initially positoned at pT (0) = [25, 25]�m, with initial
heading angle of 0rad, initial speed of 3m

s , and initial angular rate of 0 rad
s . At time

t = 1s, the target starts moving with speed 3m
s , ∀t ≥ 1s. It is assumed that the UAVs

can only measure the target’s state once per second. Thus, it is not until t = 2 s that
the expected future position of the target is found to be outside of the radius ε. As a
result, re-planning is triggered, see Fig. 3. Note that the new trajectories still retain
the same final time as the original flight trajectories, but were simply re-planned to
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Fig. 3 Mission Scenario #2 for t = 2s

Fig. 4 Mission Scenario #2 for t = 50s and t = 60s

accommodate the new motion of the target. As the mission progresses, the agents
continue to monitor the target. At time t = 50s, the monitoring trajectories track the
position of the target, shown in Fig. 4a. Unfilled star symbols are used to show the
past positions of the target at times t = 30s and t = 40s. The previously computed
flight trajectories are shown in light cyan, light green, and light blue. At time t = 60s,
Fig. 4b, UAV3 finishes its monitoring trajectory.

Scenario 3 The target is initially positioned at pT (0) = [25, 25]�m, with initial
heading angle of 0 radians, initial speed of 3m

s , and initial angular rate of 0
rad
s . At time

t = 1s, the target quickly changes its heading from 0 radians to π
4 radians. Similarly

to Scenario 2, the agents detect the change in the predicted future position of the target
and re-plan their trajectories. At time t = 60s the agents can be seen to be following
the new trajectory of the target, shown in Fig. 5b.
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Fig. 5 Mission Scenario #3

5 Conclusions

The problem of monitoring a stochastic target using a team of autonomous agents
was formulated as a continuous time infinite dimensional optimal control problem.
This problem was simplified using the sequential approach and then transcribed into a
nonlinear optimization problem by restricting to the class of solutions defined byBern-
stein polynomials. Two separate trajectories were computed for each agent: a flight
trajectory and amonitoring trajectory. The flight trajectory aimed to safely navigate the
agent to the outer monitoring radius and the monitoring trajectory optimized the line
of sight with respect to the target position. To improve the success of monitoring the
uncertain target, the trajectories were re-planned any time the predicted future position
of the target deviated more than a radius of ε from the original predicted position. The
proposed method was demonstrated in simulation using three monitoring agents. The
agents were able to safely reach the outer monitoring radius and then produced optimal
monitoring trajectories. When the expected position of the target was predicted to lie
outside the radius, ε, of the original prediction, a new flight trajectory was generated
to guarantee monitoring without lapses. Plots of these simulations were shown along
with plots of the speed and angular rates to verify that constraints were satisfied.

While the examples shown only include a team of three vehicles, this method can
be extended to a team with more or less vehicles. In the case for a team of two, one
vehicle would be monitoring the trajectory while the second vehicle travels to its
initial monitoring position. Two vehicles would provide a cheaper mission cost at the
expense of less redundancy in monitoring. Similarly, a team of four vehicles could be
employed to improve the chances of a successful mission and provide more time for
each vehicle to reach the initial monitoring position. Depending on hardware being
used, the number of monitoring vehicles can be increased even further. The interested
reader is referred to [20], where numerical results involving multiple vehicle missions
with larger number of agents are presented.
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The direct method approach using Bernstein polynomials provides the user with an
intuitive interface for including additional mission objectives or constraints by simply
tweaking the cost and constraint functions. In addition to that, Bernstein polynomials
provide computationally efficient properties and algorithms with which the cost and
constraint functions can be computed. Due to the curse of dimensionality, this method
does not scale to swarms of hundreds or more vehicles. However, the cost and fea-
sibility of such a swarm for monitoring an individual target would likely limit this
approach.

Future work includes incorporating stochastic dynamics of the target into the cost
function. This will potentially be achieved by leveraging Wiener’s Polynomial Chaos
[40] and Gaussian Process Regression (e.g. [39]) to express the future position of an
unknown target in polynomial form, which can be easily incorporated into the problem
formulation presented in this paper. We are also interested in developing methods to
make the systemmore robust with respect to challenges such as an unreliable commu-
nication network, a target actively evading monitoring, and limited fuel availability.

Acknowledgements This research was supported by the Office of Naval Research, Grant N000142112091,
with Ms. Christine Buzzell program officer.

A Appendix

An nth order Bernstein polynomial, pn(t), is defined as

pn(t) =
n∑

k=0

p̄k,nbk,n(t), bk,n(t) =
(
n

k

)
(t − t0)k(t f − t)n−k

(t f − t0)n
, (24)

t ∈ [t0, t f ], where p̄k,n ∈ R
N is the kth control point, bk,n(t), k = 0, . . . , n, is the

Bernstein basis, and
(n
k

)
is the binomial coefficient. Bernstein polynomials (BPs) can

be used to describe 2D (or 3D) spatial curves. In this case, BPs are often referred to
as Bézier curves.

Furthermore, an nth order rational Bernstein polynomial, rn(t) is defined as

rn(t) =
∑n

k=0 p̄k,nw̄k,nbk,n(t)∑n
k=0 w̄k,nbk,n(t)

, t ∈ [t0, t f ], (25)

where w̄k,n ∈ R, k = 0, . . . , n are referred to as weights.
Next, we provide a review of relevant properties of (rational) BPs, which are used

in this paper. For an extensive review on BPs, the reader is referred to [9,17,19].

Property A.1 End Point Values
The first and last control points of a (rational) Bernstein polynomial are its end-

points, i.e., pn(t0) = p̄0,n and pn(t f ) = p̄n,n .
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Property A.2 Integration
The definite integral of a Bernstein polynomial is computed as

∫ t f

t0
pn(t)dt = w

n∑
k=0

p̄k,n , w = t f − t0
n + 1

. (26)

Property A.3 Differentiation
The derivative of a Bernstein polynomial is an (n − 1)th order Bernstein poly-

nomial with vector of control points p̄′
n−1 = [p̄′

0,n−1, . . . , p̄
′
n−1,n−1] given by

p̄′
n−1 = p̄nDn−1, where Dn−1 is the R(n−1)×n differentiation matrix (see [19]).

Property A.4 Degree Elevation
Any Bernstein polynomial of degree n can be expressed as a Bernstein polynomial

of degree m, m > n. The vector of control points of the degree elevated Bernstein
polynomial, namely p̄m = [ p̄0,m, . . . , p̄m,m], can be calculated as p̄m = p̄nEm

n ,where
Em
n = {e j,k} ∈ R

(n+1)×(m+1) is the degree elevation matrix with elements given by

ei,i+ j = (m−n
j )(ni)

( m
i+ j)

, where i = 0, . . . , n and j = 0, . . . ,m − n, all other values in the

matrix are zero, and p̄n = [ p̄0,n, . . . , p̄n,n] is the vector of control points of the curve
being elevated (see [23]).

Property A.5 Arithmetic Operations
The sum (difference) of two polynomials of the same order can be performed by

simply adding (subtracting) their control points.
Let fm(t) and gn(t) be two 1-dimensional BPs of degreem and n, respectively, with

control points ā0,m, . . . , ām,m and b̄0,n, . . . , b̄n,n . The product hm+n(t) = fm(t)gn(t)
is a Bernstein polynomial of degree (m + n) with control points p̄k,m+n, k ∈
{0, . . . ,m + n} given by

p̄k,m+n =
min(m,k)∑

j=max(0,k−n)

(m
j

)( n
k− j

)
(m+n

k

) ā j,mb̄k− j,n . (27)

The ratio between two 1-dimensional BPs, fn(t) and gn(t), with control points
ā0,n, . . . , ān,n and b̄0,n, . . . , b̄n,n , i.e., rn(t) = fn(t)/gn(t), can be expressed as a
rational Bernstein polynomial as defined in (25), with control points and weights
p̄i,n = āi,n

b̄i,n
, w̄i,n = b̄i,n, respectively.
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