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Abstract
In this paper, we study a first-order solution method for a particular class of set opti-
mizationproblemswhere the solution concept is givenby the set approach.Weconsider
the case in which the set-valued objective mapping is identified by a finite number
of continuously differentiable selections. The corresponding set optimization prob-
lem is then equivalent to find optimistic solutions to vector optimization problems
under uncertainty with a finite uncertainty set. We develop optimality conditions for
these types of problems and introduce two concepts of critical points. Furthermore,
we propose a descent method and provide a convergence result to points satisfying the
optimality conditions previously derived. Some numerical examples illustrating the
performance of the method are also discussed. This paper is a modified and polished
version of Chapter 5 in the dissertation by Quintana (On set optimization with set
relations: a scalarization approach to optimality conditions and algorithms, Martin-
Luther-Universität Halle-Wittenberg, 2020).
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1 Introduction

Set optimization is the class of mathematical problems that consists in minimizing
set-valued mappings acting between two vector spaces, in which the image space is
partially ordered by a given closed, convex and pointed cone. There are two main
approaches for defining solution concepts for this type of problems, namely the vector
approach and the set approach. In this paper, we deal with the last of these concepts.
The main idea of this approach lies on defining a preorder on the power set of the
image space and to consider minimal solutions of the set-valued problem accordingly.
Research in this area started with the works of Young [46], Nishnianidze [41] and
Kuroiwa [35,36], inwhich thefirst set relations for defining apreorderwere considered.
Furthermore, Kuroiwa [34] was the first who considered set optimization problems
where the solution concept is given by the set approach. Since then, research in this
direction has expanded immensely due to its applications in finance, optimization
under uncertainty, game theory and socioeconomics. We refer the reader to [29] for a
comprehensive overview of the field.

The research topic that concerns us in this paper is the development of efficient
algorithms for the solution of set optimization problems. In this setting, the current
approaches in the literature can be roughly clustered into four different groups:

• Derivative-free methods [23,24,30].
In this context, the derived algorithms are descentmethods and use a derivative-free
strategy [7]. These algorithms are designed to deal with unconstrained problems,
and they assume no particular structure of the set-valued objective mapping. The
first method of this type was described in [23]. There, the case in which both the
epigraphical andhypographicalmultifunctions of the set-valuedobjectivemapping
have convex values was analyzed. This convexity assumption was then relaxed in
[30] for the so-called upper set less relation. Finally, in [24], a new method with
this strategywas studied. An interesting feature of the algorithm in this reference is
that, instead of choosing only one descent direction at every iteration, it considers
several of them at the same time. Thus, the method generates a tree with the initial
point as the root and the possible solutions as leaves.

• Algorithms of a sorting type [17,18,31,32].
The methods in this class are specifically designed to treat set optimization
problems with a finite feasible set. Because of this, they are based on simple com-
parisons between the images of the set-valued objective mapping. In [31,32], the
algorithms are extensions of those by Jahn [21,26] for vector optimization prob-
lems. They use a so-called forward and backward reduction procedures that, in
practice, avoid making many of these previously mentioned comparisons. There-
fore, thesemethods performmore efficiently than a naive implementation in which
every pair of sets must be compared. More recently, in [17,18], an extension of the
algorithm by Günther and Popovici [16] for vector problems was studied. The idea
now is to, first, find an enumeration of the images of the set-valuedmapping whose
values by a scalarization using a strongly monotone functional are increasing. In a
second step, a forward iteration procedure is performed. Due to the presorting step,
these methods enjoy an almost optimal computational complexity, compare [33].
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• Algorithms based on scalarization [11,12,19,20,27,44].
The methods in this group follow a scalarization approach and are derived for
problems where the set-valued objective mapping has a particular structure that
comes from the so-called robust counterpart of a vector optimization problem
under uncertainty, see [20]. In [11,19,20], a linear scalarization was employed for
solving the set optimization problem. Furthermore, the ε- constraint method was
extended too in [11,19], for the particular case in which the ordering cone is the
nonnegative orthant. Weighted Chebyshev scalarization and some of its variants
(augmented, min-ordering) were also studied in [19,27,44].

• Branch and bound [12].
The algorithm in [12] is also designed for uncertain vector optimization problems,
but in particular it is assumed that only the decision variable is the source of uncer-
tainty. There, the authors propose a branch and bound method for finding a box
covering of the solution set.

The strategy that we consider in this paper is different to the ones previously
described and is designed for dealing with unconstrained set optimization problems
in which the set-valued objective mapping is given by a finite number of continuously
differentiable selections. Our motivation for studying problems with this particular
structure is twofold:

• Problems of this type have important applications in optimization under uncer-
tainty.
Indeed, set optimization problems with this structure arise when computing robust
solutions to vector optimization problems under uncertainty, if the so-called uncer-
tainty set is finite, see [20]. Furthermore, the solvability of problems with a finite
uncertainty set is an important component in the treatment of the general case with
an infinite uncertainty set, see the cutting plane strategy in [40] and the reduction
results in [3, Proposition 2.1] and [11, Theorem 5.9].

• Current algorithms in the literature pose different theoretical and practical diffi-
culties when solving these types of problems.
Indeed, although derivative-free methods can be directly applied in this setting,
they suffer from the same drawbacks as their counterparts in the scalar case. Specif-
ically, because they make no use of first-order information (which we assume is
available in our context), we expect them to perform slower in practice that a
method who uses these additional properties. Even worse, in the set-valued set-
ting, there is nowan increased cost on performing comparisons between sets,which
was almost negligible for scalar problems. On the other hand, the algorithms of
a sorting type described earlier cannot be used in our setting since they require a
finite feasible set. Similarly, the branch and bound strategy is designed for prob-
lems that do not fit the particular structure that we consider in this paper, and so it
cannot be taken into account. Finally, we can also consider the algorithms based
on scalarization in our context. However, the main drawback of these methods is
that, in general, they are not able to recover all the solutions of the set optimiza-
tion problem. In fact, the ε- constraint method, which is known to overcome this
difficulty in standard multiobjective optimization, will fail in this setting.
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Thus, we address in this paper the need of a first-order method that exploits the
particular structure of the set-valued objective mapping previously mentioned and
does not have the same drawbacks of the other approaches in the literature.

The rest of the paper is structured as follows. We start in Sect. 2 by introduc-
ing the main notations, basic concepts and results that will be used throughout the
paper. In Sect. 3, we derive optimality conditions for set optimization problems with
the aforementioned structure. These optimality conditions constitute the basis of the
descent method described in Sect. 4, where the full convergence of the algorithm is
also obtained. In Sect. 5, we illustrate the performance of the method on different test
instances. We conclude in Sect. 6 by summarizing our results and proposing ideas for
further research.

2 Preliminaries

We start this section by introducing the main notations used in the paper. First, the
class of all nonempty subsets of R

m will be denoted by P(Rm). Furthermore, for
A ∈ P(Rm), we denote by int A, cl A, bd A and conv A the interior, closure, boundary
and convex hull of the set A, respectively. All the considered vectors are column
vectors, and we denote the transpose operator with the symbol �. On the other hand,
‖ · ‖ will stand for either the Euclidean norm of a vector or for the standard spectral
norm of a matrix, depending on the context. We also denote the cardinality of a finite
set A by |A|. Finally, for k ∈ N, we put [k] := {1, . . . , k}.

We next consider the most important definitions and properties involved in the
results of the paper. Recall that a set K ∈ P(Rm) is said to be a cone if t y ∈ K for
every y ∈ K and every t ≥ 0. Moreover, a cone K is called convex if K + K = K ,

pointed if K ∩ (−K ) = {0}, and solid if int K �= ∅. An important related concept is
that of the dual cone. For a cone K , this is the set

K ∗ := {v ∈ R
m | ∀ y ∈ K : v�y ≥ 0}.

Throughout, we suppose that K ∈ P(Rm) is a cone.
It is well known (see [14]) that when K is convex and pointed, it generates a partial

order � on R
m as follows:

y � z :⇐⇒ z − y ∈ K . (1)

Furthermore, if K is solid, one can also consider the so-called strict order ≺ which is
defined by

y ≺ z :⇐⇒ z − y ∈ int K . (2)

In the following definition, we collect the concepts of minimal and weakly minimal
elements of a set with respect to � .

Definition 2.1 Let A ∈ P(Rm) and suppose that K is closed, convex, pointed and
solid.
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(i) The set of minimal elements of A with respect to K is defined as

Min(A, K ) := {y ∈ A | (y − K ) ∩ A = {y}}.

(ii) The set of weakly minimal elements of A with respect to K is defined as

WMin(A, K ) := {y ∈ A | (y − int K ) ∩ A = ∅}.

The following proposition will be often used.

Proposition 2.1 ([22, Theorem 6.3 c)]) Let A ∈ P(Rm) be compact, and K be closed,
convex and pointed. Then, A satisfies the so-called domination property with respect
to K , that is,

A + K = Min(A, K ) + K .

The Gerstewitz scalarizing functional will play also an important role in the main
results.

Definition 2.2 Let K be closed, convex, pointed and solid. For a given element e ∈
int K , the Gerstewitz functional associated with e and K is ψe : R

m → R defined as

ψe(y) := min{t ∈ R | te ∈ y + K }. (3)

Useful properties of this functional are summarized in the next proposition.

Proposition 2.2 ([29, Section 5.2]) Let K be closed, convex, pointed and solid, and
consider an element e ∈ int K. Then, the functional ψe satisfies the following prop-
erties:

(i) ψe is sublinear and Lipschitz on R
m .

(ii) ψe is both monotone and strictly monotone with respect to the partial order �,
that is,

∀ y, z ∈ R
m : y � z �⇒ ψe(y) ≤ ψe(z)

and

∀ y, z ∈ R
m : y ≺ z �⇒ ψe(y) < ψe(z),

respectively.
(iii) ψe satisfies the so-called representability property, that is,

−K = {y ∈ R
m | ψe(y) ≤ 0}, −int K = {y ∈ R

m | ψe(y) < 0}.

We next introduce the set relations between the nonempty subsets of R
m that will

be used in the definition of the set optimization problem we consider. We refer the
reader to [25,28] and the references therein for other set relations.
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Definition 2.3 [37] For the given cone K , the lower set less relation �� is the binary
relation defined on P(Rm) as follows:

∀ A, B ∈ P(Rm) : A �� B :⇐⇒ B ⊆ A + K .

Similarly, if K is solid, the strict lower set less relation≺� is the binary relation defined
onP(Rm) by:

∀ A, B ∈ P(Rm) : A ≺� B :⇐⇒ B ⊆ A + int K .

Remark 2.1 Note that for any two vectors y, z ∈ R
m the following equivalences hold:

{y} �� {z} ⇐⇒ y � z, {y} ≺� {z} ⇐⇒ y ≺ z.

Thus, the restrictions of �� and ≺� to the singletons in P(Rm) are equivalent to �
and ≺, respectively.

We are now ready to present the set optimization problem together with a solution
concept based on set relations.

Definition 2.4 Let F : R
n ⇒ R

m be a given set-valuedmapping taking only nonempty
values, and suppose that K is closed, convex, pointed and solid. The set optimization
problem with these data is formally represented as

�� - min
x∈Rn

F(x), (SP�)

and a solution is understood in the following sense: We say that a point x̄ ∈ R
n is a

local weakly minimal solution of (SP�) if there exists a neighborhood U of x̄ such
that the following holds:

� x ∈ U : F(x) ≺� F(x̄).

Moreover, if we can chooseU = R
n above, we simply say that x̄ is a weakly minimal

solution of (SP�).

Remark 2.2 A related problem to (SP�) that is relevant in our paper is the so-called
vector optimization problem [22,38]. There, for a vector-valued mapping f : R

n →
R
m, one considers

� - min
x∈Rn

f (x),

where a point x̄ is said to be a weakly minimal solution if

f (x̄) ∈ WMin( f [Rn], K )

(corresponding to Definition 2.1). Taking into account Remark 2.1, it is easy to verify
that this solution concept coincides with ours for (SP�) when the set-valued mapping
F is given by F(x) := { f (x)} for every x ∈ R

n .
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We conclude the section by establishing the main assumption employed in the rest
of the paper for the treatment of (SP�):

Assumption 1 Suppose that K ∈ P(Rm) is a closed, convex, pointed and solid cone
and that e ∈ int K is fixed. Furthermore, consider a reference point x̄ ∈ R

n, given
vector-valued functions f 1, f 2, . . . , f p : R

n → R
m that are continuously differen-

tiable, and assume that the set-valued mapping F in (SP�) is defined by

F(x) :=
{
f 1(x), f 2(x), . . . , f p(x)

}
.

3 Optimality Conditions

In this section, we study optimality conditions for weakly minimal solutions of (SP�)
under Assumption 1. These conditions are the foundation on which the proposed algo-
rithm is built. In particular, because of the resemblance of our method with standard
gradient descent in the scalar case, we are interested in Fermat rules for set optimiza-
tion problems. Recently, results of this type were derived in [5], see also [2]. There,
the optimality conditions involve the computation of the limiting normal cone [39] of
the set-valued mapping F at different points in its graph. However, this is a difficult
task in our case because the graph of F is the union of the graphs of the vector-valued
functions f i , and to the best of our knowledge, there is no exact formula for finding
the normal cone to the union of sets (at a given point) in terms of the initial data. Thus,
instead of considering the results from [5], we exploit the particular structure of F and
the differentiability of the functionals f i to deduce new necessary conditions.

We start by defining some index-related set-valued mappings that will be of impor-
tance. They make use of the concepts introduced in Definition 2.1.

Definition 3.1 The following set-valued mappings are defined:

(i) The active index of minimal elements associated with F is I : R
n ⇒ [p] given

by

I (x) := {
i ∈ [p] | f i (x) ∈ Min(F(x), K )

}
.

(ii) The active index of weakly minimal elements associated with F is IW : R
n ⇒ [p]

defined as

IW (x) := {
i ∈ [p] | f i (x) ∈ WMin(F(x), K )

}
.

(iii) For a vector v ∈ R
m, we define Iv : R

n ⇒ [p] as

Iv(x) := {i ∈ I (x) | f i (x) = v}.
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It follows from the definition that Iv(x) = ∅whenever v /∈ Min(F(x), K ) and that

∀ x ∈ R
n : I (x) =

⋃
v∈Min(F(x),K )

Iv(x). (4)

Definition 3.2 The mapω : R
n → R is defined as the cardinality of the set of minimal

elements of F , that is,

ω(x) := |Min(F(x), K )|.

Furthermore, we set ω̄ := ω(x̄).

From now on, we consider that, for any point x ∈ R
n, an enumeration

{vx1 , . . . , vxω(x)} of the set Min(F(x), K ) has been chosen in advance.

Definition 3.3 Let x ∈ R
n, and consider the enumeration {vx1 , . . . , vxω(x)} of the set

Min(F(x), K ). The partition set of x is defined as

Px :=
ω(x)∏
j=1

Ivxj (x),

where Ivxj (x) is given in Definition 3.1 (i i i) for j ∈ [ω(x)].

The optimality conditions for (SP�) wewill present are based on the following idea:
from the particular structure of F, we will construct a family of vector optimization
problems that, together, locally represent (SP�) (in a sense to be specified) around the
point which must be checked for optimality. Then, (standard) optimality conditions
are applied to the family of vector optimization problems. The following lemma is the
key step in that direction.

Lemma 3.1 Let K̃ ∈ P
(
R
mω̄
)
be the cone defined as

K̃ :=
ω̄∏
j=1

K , (5)

and let us denote by�K̃ and≺K̃ the partial order and the strict order in R
mω̄ induced

by K̃ , respectively (see (2)). Furthermore, consider the partition set Px̄ associatedwith
x̄ and define, for every a = (a1, . . . , aω̄) ∈ Px̄ , the function f̃ a : R

n → ∏ω̄
j=1 R

m as

f̃ a(x) :=
⎛
⎜⎝

f a1(x)
...

f aω̄ (x)

⎞
⎟⎠ . (6)
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Then, x̄ is a local weakly minimal solution of (SP�) if and only if, for every a ∈ Px̄ ,
x̄ is a local weakly minimal solution of the vector optimization problem

�K̃ - min
x∈Rn

f̃ a(x). (VPa)

Proof We argue by contradiction in both cases. First, assume that x̄ is a local weakly
minimal solution of (SP�) and that, for some a ∈ Px̄ , x̄ is not a local weakly minimal
solution of (VPa). Then, we could find a sequence {xk}k≥1 ⊆ R

n such that xk → x̄
and

∀ k ∈ N : f̃ a(xk) ≺K̃ f̃ a(x̄). (7)

Hence, we deduce that

∀ k ∈ N : F(x̄)
(Proposition 2.1)⊆ { f a1(x̄), . . . , f aω̄ (x̄)} + K

(7)⊆ { f a1(xk), . . . , f aω̄ (xk)} + int K + K

⊆ F(xk) + int K .

Since this is equivalent to F(xk) ≺� F(x̄) for every k ∈ N and xk → x̄, it contradicts
the weak minimality of x̄ for (SP�).

Next, suppose that x̄ is a local weakly minimal solution of (VPa) for every a ∈ Px̄ ,
but not a local weakly minimal solution of (SP�). Then, we could find a sequence
{xk}k≥1 ⊆ R

n such that xk → x̄ and F(xk) ≺� F(x̄) for every k ∈ N. Consider the
enumeration {v x̄1 , . . . , v x̄ω̄} of the set Min(F(x̄), K ). Then,

∀ j ∈ [ω̄], k ∈ N, ∃ i( j,k) ∈ [p] : f i( j,k) (xk) ≺ v x̄j . (8)

Since the indexes i( j,k) are being chosen on the finite set [p], we can assume without
loss of generality that i( j,k) is independent of k, that is, i( j,k) = ī j for every k ∈ N

and some ī j ∈ [p]. Hence, taking the limit in (8) when k → +∞, we get

∀ j ∈ [ω̄] : f ī j (x̄) � v x̄j . (9)

Because v x̄j ∈ Min(F(x̄), K ), it follows from (9) that f ī j (x̄) = v x̄j and that ī j ∈ I (x̄)

for every j ∈ [ω̄]. Consider now the tuple ā := (ī1, . . . , īω̄). Then, it can be verified
that ā ∈ Px̄ . Moreover, from (8) we deduce that f̃ ā(xk) ≺K̃ f̃ ā(x̄) for every k ∈ N.

Since xk → x̄ , this contradicts the weak minimality of x̄ for (VPa) when a = ā.

��

We now establish the necessary optimality condition for (SP�) that will be used in
our descent method.
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Theorem 3.1 Suppose that x̄ is a local weakly minimal solution of (SP�). Then,

∀ a ∈ Px̄ , ∃ μ1, μ2, . . . , μw̄ ∈ K ∗ :
ω̄∑
j=1

∇ f a j (x̄)μ j = 0, (μ1, . . . , μw̄) �= 0.(10)

Conversely, assume that f i is K - convex for each i ∈ I (x̄), that is,

∀ i ∈ I (x̄), x1, x2 ∈ R
n, t ∈ [0, 1] : f i (t x1 + (1 − t)x2) � t f i (x1) + (1 − t) f i (x2).

Then, condition (10) is also sufficient for the local weak minimality of x̄ .

Proof By Lemma 3.1, we get that x̄ is a local weakly minimal solution of (VPa) for
every a ∈ Px̄ . Applying now [38, Theorem 4.1] for every a ∈ Px̄ , we get

∀ a ∈ Px̄ , ∃ μ ∈ K̃ ∗ \ {0} : ∇ f̃ a(x̄)μ = 0. (11)

Since K̃ ∗ =
ω̄∏
j=1

K ∗, it is easy to verify that (11) is equivalent to the first part of the

statement.
In order to see the sufficiency under convexity, assume that x̄ satisfies (10). Note

that for any a ∈ Px̄ , the function f̃ a is K̃ -convex, provided that each f i is K - convex
for every i ∈ I (x̄). Then, in this case, it is well known that (11) is equivalent to x̄
being a local weakly minimal solution of (VPa) for every a ∈ Px̄ , see [15]. Applying
now Lemma 3.1, we obtain that x̄ is a local weakly minimal solution of (SP�).

��
Based on Theorem 3.1, we define the following concepts of stationarity for (SP�).

Definition 3.4 We say that x̄ is a stationary point of (SP�) if there exists a nonempty
set Q ⊆ Px̄ such that the following assertion holds:

∀ a ∈ Q, ∃ μ1, μ2, . . . , μw̄ ∈ K ∗ :
ω̄∑
j=1

∇ f a j (x̄)μ j = 0, (μ1, . . . , μw̄) �= 0.

(12)

In that case, we also say that x̄ is stationary with respect to Q. If, in addition, we can
choose Q = Px̄ in (12), we simply call x̄ a strongly stationary point.

Remark 3.1 It follows from Definition 3.4 that a point x̄ is stationary for (SP�) if and
only if

∃ a ∈ Px̄ , μ1, μ2, . . . , μw̄ ∈ K ∗ :
ω̄∑
j=1

∇ f a j (x̄)μ j = 0, (μ1, . . . , μw̄) �= 0.
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Furthermore, a strongly stationary point of (SP�) is also stationary with respect to
Q for every nonempty set Q ⊆ Px̄ . Moreover, from Theorem 3.1, it is clear that
stationarity is also a necessary optimality condition for (SP�).

In the following example, we illustrate a comparison of our optimality conditions
with previous ones in the literature for standard optimization problems.

Example 3.1 Suppose that in Assumption 1 we have m = 1, K = R+. Furthermore,
consider the functional f : R

n → R defined as

f (x) := min
i∈[p] f

i (x)

and problem (SP�) associated with these data. Hence, in this case,

Px̄ = I (x̄) = {i ∈ [p] | f i (x̄) = f (x̄)}.

It is then easy to verify that the following statements hold:

(i) x̄ is strongly stationary for (SP�) if and only if

∀ i ∈ I (x̄) : ∇ f i (x̄) = 0.

(ii) x̄ is stationary for (SP�) if and only if

∃ i ∈ I (x̄) : ∇ f i (x̄) = 0.

On the other hand, it is straightforward to verify that x̄ is a weakly minimal solution
of (SP�) if and only if x̄ is a solution of the problem

min
x∈Rn

f (x). (P)

Moreover, if we denote by ∂̂ f (x̄) and ∂ f (x̄) the Fréchet and Mordukhovich subd-
ifferential of f at point x̄ , respectively (see [39]), it follows from [39, Proposition
1.114] that the inclusions

0 ∈ ∂̂ f (x̄) (13)

and

0 ∈ ∂ f (x̄) (14)

are necessary for x̄ being a solution of (P). A point x̄ satisfying (13) and (14) is said
to be Fréchet and Mordukhovich stationary for (P), respectively. Furthermore, from
[10, Proposition 5] and [39, Proposition 1.113], we have

∂̂ f (x̄) =
⋂

i∈I (x̄)
{∇ f i (x̄)} (15)
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and

∂ f (x̄) ⊆
⋃

i∈I (x̄)
{∇ f i (x̄)}, (16)

respectively. Thus, from (13), (15) and (i), we deduce that

(iii) x̄ is strongly stationary for (SP�) if and only if x̄ is Fréchet stationary for (P).

Similarly, from (14), (16) and (i i), we find that:

(iii) If x̄ is Mordukhovich stationary for (P), then x̄ is stationary for (SP�).

We close the section with the following proposition that presents an alternative char-
acterization of stationary points.

Proposition 3.1 Let Q ⊆ Px̄ be given. Then, x̄ is stationary for (SP�) with respect to
Q if and only if

∀ a ∈ Q, u ∈ R
n, ∃ j ∈ [ω̄] : ∇ f a j (x̄)�u /∈ −int K . (17)

Proof Suppose first that x̄ is stationary with respect to Q. Fix now a ∈ Q, u ∈ R
n, and

consider the vectorsμ1, μ2, . . . , μω̄ ∈ K ∗ that satisfy (12).We argue by contradiction.
Assume that

∀ j ∈ [ω̄] : ∇ f a j (x̄)�u ∈ −int K . (18)

From (18) and the fact that (μ1, . . . , μω̄) ∈
(

ω̄∏
j=1

K ∗
)

\ {0}, we deduce that

(
μ�
1

(
∇ f a1(x̄)�u

)
, . . . , μ�̄

ω

(
∇ f aω̄ (x̄)�u

))
∈ −R

ω̄+ \ {0}. (19)

Hence, we get

0
(12)=

⎛
⎝ ω̄∑

j=1

∇ f a j (x̄)μ j

⎞
⎠

�
u =

ω̄∑
j=1

μ�
j

(
∇ f a j (x̄)�u

)
(19)
< 0,

a contradiction.
Suppose now that (17) holds, and fix a ∈ Q. Consider the functional f̃ a and the

cone K̃ from Lemma 3.1, together with the set

A :=
{
∇ f̃ a(x̄)�u | u ∈ R

n
}

.

Then, we deduce from (17) that

A ∩ int K̃ = ∅.

123



Journal of Optimization Theory and Applications (2021) 190:711–743 723

Applying now Eidelheit’s separation theorem for convex sets [22, Theorem 3.16], we

obtain some (μ1, . . . , μω̄) ∈
(∏ω̄

j=1 R
m
)

\ {0} such that

∀ u ∈ R
n, v1, . . . , vω̄ ∈ K :

⎛
⎝ ω̄∑

j=1

∇ f a j (x̄)μ j

⎞
⎠

�
u ≤

ω̄∑
j=1

μ�
j v j . (20)

By fixing j̄ ∈ [ω̄] and substituting u = 0, v j = 0 for j �= j̄ in (20), we obtain

∀ v j̄ ∈ K : μ�̄
j
v j̄ ≥ 0.

Hence, μ j̄ ∈ K ∗. Since j̄ was chosen arbitrarily, we get that (μ1, . . . , μω̄) ∈(
ω̄∏
j=1

K ∗
)

\ {0}. Define now

ū :=
ω̄∑
j=1

∇ f a j (x̄)μ j .

To finish the proof, we need to show that ū = 0. In order to see this, substitute u = ū
and v j = 0 for each j ∈ [ω̄] in (20). Then, we obtain

∥∥∥∥∥∥
ω̄∑
j=1

∇ f a j (x̄)μ j

∥∥∥∥∥∥
2

≤ 0.

Hence, it can only be ū = 0, and statement (12) is true. ��

4 Descent Method and Its Convergence Analysis

Now, we present the solution approach. It is clearly based on the result shown in
Lemma 3.1. At every iteration, an element a in the partition set of the current iterate
point is selected, and then, a descent direction for (VPa) will be found using ideas from
[6,15]. However, one must be careful with the selection process of the element a in
order to guarantee convergence. Thus, we propose a specific way to achieve this. After
the descent direction is determined, we follow a classical backtracking procedure of
Armijo type to determine a suitable step size, and we update the iterate in the desired
direction. Algorithm 1 formally describes our method.

Remark 4.1 Algorithm 1 extends the approaches proposed in [6,15] for vector opti-
mization optimization problems to case (SP�). The main difference is that, in Step 2,
the authors use the well knownHiriart-Urruty functional and the support of a so-called
generator of the dual cone instead of ψe, respectively. However, in our framework,
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Algorithm 1 Descent Method in Set Optimization
Step 0. Choose x0 ∈ R

n , β, ν ∈ (0, 1), and set k := 0.
Step 1. Compute

Mk := Min(F(xk ), K ), Pk := Pxk , ωk := |Min(F(xk ), K )|.
Step 2. Find

(ak , uk ) ∈ argmin
(a,u)∈Pk×Rn

max
j∈ [ωk ]

{
ψe
(∇ f a j (xk )

�d
)}+ 1

2
‖u‖2.

Step 3. If uk = 0, Stop. Otherwise, go to Step 4.
Step 4. Compute

tk := max
q∈N∪{0}

{
νq | ∀ j ∈ [ωk ] : f ak, j (xk + νquk ) � f ak, j (xk ) + βνq∇ f ak, j (xk )

�uk

}
.

Step 5. Set xk+1 := xk + tkuk , k := k + 1 and go to Step 2.

the functional ψe is a particular case of those employed in the other methods, see [4,
Corollary 2]. Thus, the equivalence in the case of vector optimization problems of the
three algorithms is obtained.

Now, we start the convergence analysis of Algorithm 1. Our first lemma describes
local properties of the active indexes.

Lemma 4.1 Under our assumptions, there exists a neighborhood U of x̄ such that
the following properties are satisfied (some of them under additional conditions to be
established below) for every x ∈ U :
(i) IW (x) ⊆ IW (x̄),
(ii) I (x) ⊆ I (x̄), provided that Min(F(x̄), K ) = WMin(F(x̄), K ),

(iii) ∀ v ∈ Min(F(x̄), K ) : Min
({ f i (x)}i∈Iv(x̄), K

) ⊆ Min(F(x), K ),

(iv) For every v1, v2 ∈ Min(F(x̄), K ) with v1 �= v2 :

Min
(
{ f i (x)}i∈Iv1 (x̄), K

)
∩ Min

(
{ f i (x)}i∈Iv2 (x̄), K

)
= ∅,

(v) ω(x) ≥ ω(x̄).

Proof It suffices to show the existence of the neighborhood U for each item indepen-
dently, as we could later take the intersection of them to satisfy all the properties.

(i) Assume that this is not satisfied in any neighborhood U of x̄ . Then, we could
find a sequence {xk}k≥1 ⊆ R

n such that xk → x̄ and

∀ k ∈ N : IW (xk) \ IW (x̄) �= ∅. (21)

Because of the finite cardinality of all possible differences in (21), we can assume
without loss of generality that there exists a common ī ∈ [p] such that

∀ k ∈ N : ī ∈ IW (xk) \ IW (x̄). (22)
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In particular, (22) implies that ī ∈ IW (xk). Hence, we get

∀ k ∈ N, i ∈ [p] : f i (xk) − f ī (xk) ∈ − (
R
m \ int K ) .

Since R
m \ int K is closed, taking the limit when k → +∞ we obtain

∀ i ∈ [p] : f i (x̄) − f ī (x̄) ∈ − (
R
m \ int K ) .

Hence, we deduce that f ī (x̄) ∈ WMin(F(x̄), K ) and ī ∈ IW (x̄), a contradiction to
(21).

(i i) Consider the same neighborhood U on which statement (i) holds. Note that,
under the given assumption, we have IW (x̄) = I (x̄). This, together with statement
(i), implies:

∀ x ∈ U : I (x) ⊆ IW (x) ⊆ IW (x̄) = I (x̄).

(i i i) For this statement, it is also sufficient to show that the neighborhood U can be
chosen for any point in the set Min(F(x̄), K ). Hence, fix v ∈ Min(F(x̄), K ) and
assume that there is no neighborhoodU of x̄ on which the statement is satisfied. Then,
we could find sequences {xk}k≥1 ⊆ R

n and {ik}k≥1 ⊆ Iv(x̄) such that xk → x̄ and

∀ k ∈ N : f ik (xk) ∈ Min({ f i (xk)}i∈Iv(x̄), K ) \ Min(F(xk), K ). (23)

Since Iv(x̄) is finite, we deduce that there are only a finite number of different elements
in the sequence {ik}. Hence, we can assume without loss of generality that there exists
ī ∈ Iv(x̄) such that ik = ī for every k ∈ N. Then, (23) is equivalent to

∀ k ∈ N : f ī (xk) ∈ Min({ f i (xk)}i∈Iv(x̄), K ) \ Min(F(xk), K ). (24)

From (24), we get in particular that f ī (xk) /∈ Min(F(xk), K ) for every k ∈ N. This,
together with the domination property in Proposition 2.1 and the fact that the sets
I (xk) are contained in the finite set [p], allows us to obtain without loss of generality
the existence of ĩ ∈ I (x̄) such that

∀ k ∈ N : f ĩ (xk) � f ī (xk), f ĩ (xk) �= f ī (xk). (25)

Now, taking the limit in (25) when k → +∞,we obtain f ĩ (x̄) � f ī (x̄) = v. Since
v is a minimal element of F(x̄), it can only be f ĩ (x̄) = v and, hence, ĩ ∈ Iv(x̄). From
this, the first inequality in (25), and the fact that f ī (xk) ∈ Min({ f i (xk)}i∈Iv(x̄), K ) for

every k ∈ N, we get that f ī (xk) = f ĩ (xk) for all k ∈ N. This contradicts the second
part of (25), and hence, our statement is true.

(iv) It follows directly from the continuity of the functionals f i , i ∈ [p].
(v) The statement is an immediate consequence of (i i i) and (iv). ��
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For the main convergence theorem of our method, we will need the notion of
regularity of a point for a set-valued mapping.

Definition 4.1 We say that x̄ is a regular point of F if the following conditions are
satisfied:

(i) Min(F(x̄), K ) = WMin(F(x̄), K ),

(ii) the cardinality functional ω introduced in Definition 3.2 is constant in a neighbor-
hood of x̄ .

Remark 4.2 Since we will analyze the stationarity of the regular limit points of the
sequence generated by Algorithm 1, the following points must be addressed:

• Notice that, by definition, the regularity property of a point is independent of our
optimality concept. Thus, by only knowing that a point is regular, we cannot infer
anything about whether it is optimal or not.

• The concept of regularity seems to be linked to the complexity of comparing sets
in a high-dimensional space. For example, in case m = 1 or p = 1, every point
in R

n is regular for the set-valued mapping F . Indeed, in these cases, we have
ω(x) = 1 and

Min(F(x), K ) = WMin(F(x), K ) =
⎧⎨
⎩
{
min
i∈ [p] f

i (x)

}
if m = 1,

{ f 1(x)} if p = 1

for all x ∈ R
n .

Anatural question is whether regularity is a strong assumption to impose on a point.
In that sense, given the finite structure of the sets F(x), condition (i) in Definition
4.1 seems to be very reasonable. In fact, we would expect that, for most practical
cases, this condition is fulfilled at almost every point. For condition (i i), a formalized
statement is derived in Proposition 4.1.

Proposition 4.1 The set

S := {x ∈ R
n | ω is locally constant at x}

is open and dense in R
n .

Proof (i) The openness is trivial. Suppose now that S is not dense in R
n . Then,

R
n \ (cl S) is nonempty and open. Furthermore, since ω is bounded above, the real

number

p0 := max
x∈Rn\(cl S)

ω(x)

is well defined. Consider the set

A :=
{
x ∈ R

n | ω(x) ≤ p0 − 1

2

}
.
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From Lemma 4.1 (v), it follows that ω is lower semicontinuous. Hence, A is closed
as it is the sublevel set of a lower semicontinuous functional, see [43, Lemma 1.7.2].
Consider now the set

U := (
R
n \ (cl S)

) ∩ (Rn \ A
)
.

Then, U is a nonempty open subset of R
n \ (cl S). This, together with the definition

of A, gives us ω(x) = p0 for every x ∈ U . However, this contradicts the fact that ω

is not locally constant at any point of R
n \ (cl S). Hence, S is dense in R

n . ��
An essential property of regular points of a set-valued mapping is described in the

next lemma.

Lemma 4.2 Suppose that x̄ is a regular point of F . Then, there exists a neighborhood
U of x̄ such that the following properties hold for every x ∈ U:

(i) ω(x) = ω̄,

(ii) there is an enumeration {wx
1 , . . . , w

x
ω̄} of Min(F(x), K ) such that

∀ j ∈ [ω̄] : Iwx
j
(x) ⊆ Iv x̄j

(x̄).

In particular, without loss of generality, we have Px ⊆ Px̄ for every x ∈ U .

Proof Let U be the neighborhood of x̄ from Lemma 4.1. Since x̄ is a regular point of
F,we assumewithout loss of generality thatω is constant onU .Hence, property (i) is
fulfilled. Fix now x ∈ U and consider the enumeration {v x̄1 , . . . , v x̄ω̄} ofMin(F(x̄), K ).

Then, from properties (i i i) and (iv) in Lemma 4.1 and the fact that ω(x) = ω̄, we
deduce that

∀ j ∈ [ω̄] :
∣∣∣∣Min

(
{ f i (x)}i∈I

v x̄j
(x̄), K

)∣∣∣∣ = 1. (26)

Next, for j ∈ [ω̄], we define wx
j as the unique element of the set

Min

(
{ f i (x)}i∈I

v x̄j
(x̄), K

)
.

Then, from (26), property (i i i) in Lemma 4.1 and the fact that ω is constant onU , we
obtain that {wx

1 , . . . , w
x
ω̄} is an enumeration of the set Min(F(x), K ).

It remains to show now that this enumeration satisfies (i i). In order to see this, fix
j ∈ [ω̄] and ī ∈ Iwx

j
(x). Then, from the regularity of x̄ and property (i i) in Lemma

4.1, we get that I (x) ⊆ I (x̄). In particular, this implies ī ∈ I (x̄). From this and (4),
we have the existence of j ′ ∈ [ω̄] such that ī ∈ Iv x̄

j ′
(x̄). Hence, we deduce that

wx
j = f ī (x) ∈

{
f i (x)

}
i∈I

v x̄
j ′

(x̄)
. (27)
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Then, from (26), (27) and the definition of wx
j ′, we find that wx

j ′ � wx
j . Moreover,

because wx
j ′, w

x
j ∈ Min(F(x), K ), it can only be wx

j ′ = wx
j . Thus, it follows that

j = j ′, since {wx
1 , . . . , w

x
ω̄} is an enumeration of the set Min(F(x), K ). This shows

that ī ∈ Iv x̄j
(x̄), as desired. ��

For the rest of the analysis, we need to introduce the parametric family of functionals
{ϕx }x∈Rn , whose elements ϕx : Px × R

n → R are defined as follows:

∀ a ∈ Px , u ∈ R
n : ϕx (a, u) := max

j∈ [ω(x)]
{
ψe
(∇ f a j (x)�u

)}+ 1

2
‖u‖2, (28)

where the functional ψe is given by (3). It is easy to see that, for every x ∈ R
n and

a ∈ Px , the functional ϕx (a, ·) is strongly convex inR
n, that is, there exists a constant

α > 0 such that the inequality

ϕx
(
a, tu + (1 − t)u′)+ αt(1 − t)‖u − u′‖2 ≤ tϕx (a, u) + (1 − t)ϕx

(
a, u′)

is satisfied for every u, u′ ∈ R
n and t ∈ [0, 1]. According to [13, Lemma 3.9], the

functional ϕx (a, ·) attains its minimum over R
n, and this minimum is unique. In

particular, we can check that

∀ x ∈ R
n, a ∈ Px : min

u∈Rn
ϕx (a, u) ≤ 0 (29)

and that, if ua ∈ R
n is such that ϕx (a, ua) = min

u∈Rn
ϕx (a, u), then

ϕx (a, ua) = 0 ⇐⇒ ua = 0. (30)

Taking into account that Px is finite, we also obtain that ϕx attains its minimum over
the set Px × R

n . Hence, we can consider the functional φ : R
n → R given by

φ(x) := min
(a,u)∈Px×Rn

ϕx (a, u). (31)

Then, because of (29), it can be verified that

∀ x ∈ R
n : φ(x) ≤ 0. (32)

Furthermore, if (a, u) ∈ Px × R
n is such that φ(x) = ϕx (a, u), it follows from (30)

(see also [15]) that

φ(x) = 0 ⇐⇒ u = 0. (33)

In the following two propositions, we show that Algorithm 1 is well defined. We start
by proving that, if Algorithm 1 stops in Step 3, a stationary point was found.
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Proposition 4.2 Consider the functionalsϕx̄ andφ given in (28) and (31), respectively.
Furthermore, let (ā, ū) ∈ Px̄ × R

n be such that φ(x̄) = ϕx̄ (ā, ū). Then, the following
statements are equivalent:

(i) x̄ is a strongly stationary point of (SP�),
(ii) φ(x̄) = 0,
(iii) ū = 0.

Proof The result will be a consequence of [6, Proposition 2.2] where, using theHiriart-
Urruty functional, a similar statement is proved for vector optimization problems.

Consider the cone K̃ given by (5) , the vector ẽ :=
⎛
⎜⎝
e
...

e

⎞
⎟⎠ ∈ int K̃ , and the scalarizing

functional ψẽ associated with ẽ and K̃ , see Definition 2.2. Then, for any v1, . . . , vω̄ ∈

R
m and v :=

⎛
⎜⎝

v1
...

vω̄

⎞
⎟⎠ , we get

ψẽ(v) = min{t ∈ R | t ẽ ∈ v + K̃ }
= min{t ∈ R | ∀ j ∈ [ω̄] : te ∈ v j + K }
= max

j∈ [ω̄] ψe(v j ). (34)

From [4, Theorem 4], we know that ψẽ is an Hiriart-Urruty functional. Hence, for a
fixed a ∈ Px̄ we can apply [6, Proposition 2.2] to (VPa) to obtain that

x̄ is a stationary point of (VPa) ⇐⇒ min
u∈Rn

ψẽ

(
∇ f̃ a(x̄)�u

)
+ 1

2
‖u‖2 = 0. (35)

Thus, we deduce that

x̄ is strongly stationary
( Remark 3.1)⇐⇒ ∀ a ∈ Px̄ : x̄ is stationary for (VPa)

((35)+(28) + (34))⇐⇒ ∀ a ∈ Px̄ : min
u∈Rn

ϕx̄ (a, u) = 0

⇐⇒ min
(a,u)∈Px̄×Rn

ϕx̄ (a, u) = 0

(31)⇐⇒ φ(x̄) = 0
(33⇐⇒ ū = 0,

as desired. ��
Remark 4.3 Asimilar statement to the one in Proposition 4.2 can bemade for stationary
points of (SP�). Indeed, for a set Q ⊆ Px̄ , consider a point

(
āQ, ūQ

) ∈ Q × R
n such

that ϕx̄
(
āQ, ūQ

) = min(a,u)∈Q×Rn ϕx̄ (a, u). Then, by replacing Px̄ by Q in the proof
of Proposition 4.2, we can show that the following statements are equivalent:
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(i) x̄ is stationary for (SP�) with respect to Q,

(ii) min
(a,u)∈Q×Rn

ϕx̄ (a, u) = 0,

(iii) ūQ = 0.

Next, we show that the line search in Step 4 of Algorithm 1 terminates in finitely
many steps.

Proposition 4.3 Fix β ∈ (0, 1) and consider the functionals ϕx̄ andφ given in (28) and
(31) , respectively. Furthermore, let (ā, ū) ∈ Px̄ × R

n be such that φ(x̄) = ϕx̄ (ā, ū)

and suppose that x̄ is not a strongly stationary point of (SP�). The following assertions
hold:

(i) There exists t̃ > 0 such that

∀ t ∈ (0, t̃ ], j ∈ [ω̄] : f ā j (x̄ + t ū) � f ā j (x̄) + βt∇ f ā j (x̄)�ū.

(ii) Let t̃ be the parameter in statement (i). Then,

∀ t ∈ (0, t̃ ] : F(x̄ + t ū) ��
{
f ā j (x̄) + βt∇ f ā j (x̄)�ū

}
j∈[ω̄] ≺� F(x̄).

In particular, ū is a descent direction of F at x̄ with respect to the preorder �� .

Proof (i) Assume that (i) does not hold. Then, we could find a sequence {tk}k≥1 and
j̄ ∈ [ω̄] such that tk → 0 and

∀ k ∈ N : f ā j̄ (x̄ + tk ū) − f ā j̄ (x̄) − βtk∇ f ā j̄ (x̄)�ū /∈ −K . (36)

As (Rm \ −K ) ∪ {0} is a cone, we can multiply (36) by 1
tk
for each k ∈ N to obtain

∀ k ∈ N : f ā j̄ (x̄ + tk ū) − f ā j̄ (x̄)

tk
− β∇ f ā j̄ (x̄)�ū /∈ −K . (37)

Taking now the limit in (37), when k → +∞ we get

(1 − β)∇ f ā j̄ (x̄)�ū /∈ −int K .

Since β ∈ (0, 1), this is equivalent to

∇ f ā j̄ (x̄)�ū /∈ −int K . (38)

On the other hand, since x̄ is not strongly stationary, we can apply Proposition 4.2 to
obtain that ū �= 0 and that φ(x̄) < 0. This implies that ϕx̄ (ā, ū) < 0, and hence,

max
j∈[ω̄]

{
ψe

(
∇ f ā j (x̄)�ū

)}
< −1

2
‖ū‖2 < 0.
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From this, we deduce that

∀ j ∈ [ω̄] : ψe

(
∇ f ā j (x̄)�ū

)
< 0

and, by Proposition 2.2 (iii),

∀ j ∈ [ω̄] : ∇ f ā j (x̄)�ū ∈ −int K . (39)

However, this is a contradiction to (38), and hence, the statement is proven.
(i i) From (39), we know that

∀ j ∈ [ω̄], t ∈ (0, t̃ ] : f ā j (x̄) + βt∇ f ā j (x̄)�ū ≺ f ā j (x̄). (40)

Then, it follows that

∀ t ∈ (0, ¯t ] : F(x̄)
(Proposition 2.1)⊆

{
f ā1(x̄), . . . , f āω̄ (x̄)

}
+ K

(40)⊆
{
∇ f ā j (x̄) + βt∇ f ā j (x̄)�ū

}
j∈[ω̄] + int K

(Statement (i))⊆
{
f ā j (x̄ + t ā1), . . . , f ā j (x̄ + t āω̄)

}
j∈[ω̄] + int K

⊆ F(x̄ + t ū) + int K ,

as desired. ��
We are now ready to establish the convergence of Algorithm 1.

Theorem 4.1 Suppose that Algorithm 1 generates an infinite sequence for which x̄
is an accumulation point. Furthermore, assume that x̄ is regular for F . Then, x̄ is a
stationary point of (SP�). If in addition |Px̄ | = 1, then x̄ is a strongly stationary point
of (SP�).

Proof Consider the functional ζ : P(Rm) → R ∪ {−∞} defined as

∀ A ∈ P(Rm) : ζ(A) := inf
y∈A

ψe(y).

The proof will be divided in several steps:
Step 1: We show the following result:

∀ k ∈ N ∪ {0} : (ζ ◦ F)(xk+1) ≤ (ζ ◦ F)(xk) + βtk

[
φ(xk) − 1

2
‖uk‖2

]
. (41)

Indeed, because of the monotonicity property of ψe in Proposition 2.2 (ii), the
functional ζ is monotone with respect to the preorder ��, that is,

∀ A, B ∈ P(Rm) : A �� B �⇒ ζ(A) ≤ ζ(B).
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On the other hand, from Proposition 4.3 (i i), we deduce that

∀ k ∈ N ∪ {0} : F(xk + tkuk) ��
{
f ak, j (xk) + βtk∇ f ak, j (xk)

�uk
}
i∈[ωk ]

.

Hence, using the monotonicity of ζ and the sublinearity of ψe from Proposition 2.2
(i), we obtain for any k ∈ N ∪ {0} :

(ζ ◦ F)(xk+1) ≤ min
j∈ [ωk ]

{
ψe

(
f ak, j (xk) + βtk∇ f ak, j (xk)

�uk
)}

≤ min
j∈ [ωk ]

{
ψe
(
f ak, j (xk)

)+ βtkψe

(
∇ f ak, j (xk)

�uk
)}

≤ min
j∈ [ωk ]

{
ψe
(
f ak, j (xk)

)+ βtk max
j ′∈ [ωk ]

{
ψe

(
∇ f ak, j ′ (xk)

�uk
)}}

= (ζ ◦ F)(xk) + βtk max
j∈ [ωk ]

{
ψe

(
∇ f ak, j (xk)

�uk
)}

.

The above inequality, together with the definition of φ in (31), implies (41).
On the other hand, since x̄ is an accumulation point of the sequence {xk}k≥0, we

can find a subsequence K in N such that xk
K→ x̄ .

Step 2: The following inequality holds

∀ k ∈ N ∪ {0} : F(x̄) �� F(xk). (42)

Indeed, from Proposition 4.3 (i i), we can guarantee that the sequence {F(xk)}k≥0 is
decreasing with respect to the preorder ��, that is,

∀ k ∈ N ∪ {0} : F(xk+1) �� F(xk). (43)

Fix now k ∈ N, and i ∈ [p]. Then, according to (43), we have

∀ k′ ∈ K, k′ ≥ k, ∃ ik′ ∈ [p] : f ik′ (xk′) � f i (xk). (44)

Since there are only a finite number of possible values for ik′ , we assume without loss
of generality that there is ī ∈ [p] such that ik′ = ī for every k′ ∈ K, k′ ≥ k. Hence,
(44) is equivalent to

∀ k′ ∈ K, k′ ≥ k : f ī (xk′) − f i (xk) ∈ −K . (45)

Taking the limit now in (45) when k′ K→ +∞, we find that

f i (xk) ∈ f ī (x̄) + K .

Since i was chosen arbitrarily in [p], this implies the statement.
Step 3: We prove that the sequence {uk}k∈K is bounded.
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In order to see this, note that, since xk is not a stationary point, we have by Propo-
sition 4.2 that φ(xk) < 0 for every k ∈ N ∪ {0}. By the definition of ak and uk, we
then have

∀ k ∈ N ∪ {0} : ϕxk (ak, uk) < 0. (46)

Let ρ be the Lipschitz constant of ψe from Proposition 2.2 (i). Then, we deduce that

∀ k ∈ N ∪ {0} : ‖uk‖2 ((46)+(28))
< −2 max

j∈ [ωk ]

{
ψe

(
∇ f ak, j (x̄)�uk

)}

= 2 max
j∈ [ωk ]

{∣∣∣ψe

(
∇ f ak, j (x̄)�uk

)∣∣∣}

(Proposition 2.2 (i))≤ 2ρ max
j∈[ωk ]

{∥∥∥∇ f ak, j (x̄)�uk
∥∥∥}

≤ 2ρ‖uk‖ max
j∈ [ωk ]

{‖∇ f ak, j (xk)‖
}
.

Hence,

∀ k ∈ N ∪ {0} : ‖uk‖ ≤ 2ρ max
j∈ [ωk ]

{‖∇ f ak, j (xk)‖
}
. (47)

Since {xk}k∈K is bounded, the statement follows from (47).
Step 4: We show that x̄ is stationary.
Fix κ ∈ N. Then, it follows from (41) that

∀ k ∈ N : −βtk max
j∈ [ωk ]

{
ψe

(
∇ f ak, j (xk)

�uk
)}

≤ (ζ ◦ F)(xk) − (ζ ◦ F)(xk+1).

(48)

Adding this inequality for k = 0, . . . , κ, we obtain

− β

κ∑
k=0

tk max
j∈ [ωk ]

{
ψe

(
∇ f ak, j (xk)

�uk
)}

≤ (ζ ◦ F)(x0) − (ζ ◦ F)(xκ+1). (49)

On the other hand, similarly to (39) in the proof of Proposition 4.3 (i), we obtain that

∀ k ∈ N ∪ {0}, j ∈ [ωk] : ∇ f ak, j (xk)
�uk ∈ −int K . (50)

In particular, applying Proposition 2.2 (iii) in (50), we find that

∀ k ∈ N ∪ {0}, j ∈ [ωk] : ψe

(
∇ f ak, j (xk)

�uk
)

< 0. (51)
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We then have

0
(51)
< −

κ∑
k=0

tk max
j∈ [ωk ]

{
ψe

(
∇ f ak, j (xk)

�uk
)} (49)≤ (ζ ◦ F)(x0) − (ζ ◦ F)(xκ+1)

β

(42)≤ (ζ ◦ F)(x0) − (ζ ◦ F)(x̄)

β
.

Taking now the limit in the previous inequality when κ → +∞, we deduce that

0 ≤ −
∞∑
k=0

tk max
j∈ [ωk ]

{
ψe

(
∇ f ak, j (xk)

�uk
)}

< +∞.

In particular, this implies

lim
k→∞ tk max

j∈ [ωk ]

{
ψe

(
∇ f ak, j (xk)

�uk
)}

= 0. (52)

Since there are only a finite number of subsets of [p] and x̄ is regular for F, we can
apply Lemma 4.2 to obtain, without loss of generality, the existence of Q ⊆ Px̄ and
ā ∈ Q such that

∀ k ∈ K : ωk = ω̄, Pxk = Q, ak = ā. (53)

Furthermore, since the sequences {tk}k≥1, {uk}k∈K are bounded, we can also assume
without loss of generality the existence of t̄ ∈ R, ū ∈ R

n such that

tk
K→ t̄, uk

K→ ū. (54)

The rest of the proof is devoted to show that x̄ is a stationary point with respect to Q.

First, observe that by (53) and the definition of ak, we have

∀ a ∈ Q, k ∈ K, u ∈ R
n : φ(xk) = ϕxk (ā, uk) ≤ ϕxk (a, u).

Then, taking into account that ωk = ω̄ in (53), we can take the limit when k
K→ +∞

in the above expression to obtain

∀ a ∈ Q, u ∈ R
n : ϕx̄ (ā, ū) ≤ ϕx̄ (a, u).

Equivalently, we have

(ā, ū) ∈ argmin
(a,u)∈Q×Rn

ϕx̄ (a, u). (55)

Next, we analyze two cases:
Case 1: t̄ > 0.
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According to (52) and (53), we have in this case

lim
k
K→+∞

max
j∈[ω̄]

{
ψe

(
∇ f ā j (xk)

�uk
)}

= 0. (56)

Then, it follows that

0 ≤ 1

2
‖ū‖2

((53) + (54) + (56))= lim
k
K→+∞

max
j∈ [ω̄]

{
ψe

(
∇ f ā j (xk)

�uk
)}

+ 1

2
‖uk‖2

= lim
k
K→+∞

φ(xk)

(32)≤ 0,

from which we deduce ū = 0. This, together with (55) and Remark 4.3, implies that
x̄ is a stationary point with respect to Q.

Case 2: t̄ = 0.
Fix an arbitrary κ ∈ N. Since tk

K→ 0, for k ∈ K large enough νκ does not satisfy
Armijo’s line search criteria in Step 4 of Algorithm 1. By (53) and the finiteness of ω̄,

we can assume without loss of generality the existence of j̄ ∈ [ω̄] such that

∀ k ∈ K : f ā j̄ (xk + νκuk) � f ā j̄ (xk) + βνκ∇ f ā j̄ (xk)
�uk .

From this, it follows that

∀ k ∈ K : f ā j̄ (xk + νκuk) − f ā j̄ (xk)

νκ
− β∇ f ā j̄ (xk)

�uk /∈ −K .

Now, taking the limit when k
K→ +∞, we obtain

f ā j̄ (x̄ + νκ ū) − f ā j̄ (x̄)

νκ
− β∇ f ā j̄ (x̄)�ū /∈ −int K .

Next, taking the limit when κ → +∞, we get

(1 − β)∇ f ā j̄ (x̄)�ū /∈ −int K .

Since β ∈ (0, 1),we deduce that∇ f ā j̄ (x̄)�ū /∈ −int K and, according to Proposition
2.2 (iii), this is equivalent to

ψe(∇ f ā j̄ (x̄)�ū) ≥ 0. (57)
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Finally, we find that

0
(57)≤ ψe(∇ f ā j̄ (x̄)�ū) ≤ ϕx̄ (ā, ū)

(55)= min
(a,u)∈Q×Rn

ϕx̄ (a, u)
(29)≤ 0,

which implies

min
(a,u)∈Q×Rn

ϕx̄ (a, u) = 0. (58)

The stationarity of x̄ follows then from (58) and Remark 4.3. The proof is complete.
��

5 Implementation and Numerical Illustrations

In this section, we report some preliminary numerical experience with the proposed
method. Algorithm 1 was implemented in Python 3 and the experiments were done in
a PC with an Intel(R) Core(TM) i5-4200U CPU processor and 4.0 GB of RAM. We
describe in the following some details of the implementation and the experiments:

• We considered instances of problem (SP�) only for the case in which K is the
standard ordering cone, that is, K = R

m+. In addition, we choose the parameter
e ∈ int K for the scalarizing functional ψe as e = (1, . . . , 1)�.

• The parameters β and ν for the line search in Step 4 of the method were chosen
as β = 0.0001, ν = 0.500.

• The stopping criteria employed were that ‖uk‖ < 0.0001, or a maximum number
of 200 iterations were reached.

• For finding the set Min(F(xk), K ) at the kth- iteration in Step 1 of the algorithm,
we implemented the method developed by Günther and Popovici in [16]. This
procedure requires a strongly monotone functional ψ : R

m → R with respect to
the partial order � for a so-called presorting phase. In our implementation, we
used ψ defined as follows:

∀ v ∈ R
m : ψ(v) :=

m∑
i=1

vi .

The other possibility for finding the setMin(F(xk), K )would be to use themethod
introduced by Jahn in [21,22,26] with ideas from [45]. However, as mentioned in
“Introduction,” the first approach has better computational complexity. Thus, the
algorithm proposed in [16] was a clear choice.

• At the kth iteration in Step 2 of the algorithm, we worked with the modeling
language CVXPY 1.0 [1,8] for the solution of the problem

min
(a,u)∈Pk×Rn

ϕxk (a, u).

123



Journal of Optimization Theory and Applications (2021) 190:711–743 737

Since the variable a is constrained to be in the discrete set Pk, we proceeded as
follows: Using the solver ECOS [9] within CVXPY, we compute for every a ∈ Pk
the unique solution ua of the strongly convex problem

min
u∈Rn

ϕxk (a, u).

Then, we set

(ak, uk) := argmin
a∈Pk

ϕxk (a, ua).

• For each test instance considered in the experimental part, we generated initial
points randomly on a specific set and run the algorithm. We define as solved those
experiments in which the algorithm stopped because ‖uk‖ < 0.0001, and declared
that a strongly stationary point was found. For a given experiment, its final error
is the value of ‖uk‖ at the last iteration. The following variables are collected for
each test instance:

– Solved: this value indicates the number of initial points for which the problem
was solved.

– Iterations: this is a 3-tuple (min, mean, max) that indicates the minimum, the
mean and the maximum of the number of iterations in those instances reported
as solved.

– Mean CPUTime: Mean of the CPU time(in seconds) among the solved cases.

Furthermore, for clarity, all the numerical values will be displayed for up to four
decimal places.

Now, we proceed to the different instances on which our algorithm was tested. Our
first test instance can be seen as a continuous version of an example in [17].

Test Instance 5.1 We consider F : R ⇒ R
2 defined as

F(x) :=
{
f 1(x), . . . , f 5(x)

}
,

where, for i ∈ [5], f i : R → R
2 is given as

f i (x) :=
(

x
x
2 sin(x)

)
+ sin2(x)

[
(i − 1)

4

(
1

−1

)
+
(
1 − (i − 1)

4

)(−1
1

)]
.

The objective values in this case are discretized segments moving around a curve and
being contracted (dilated) by a factor dependent on the argument. We generated 100
initial points x0 randomly on the interval [−5π, 5π ] and run our algorithm. Some of
the metrics are listed in Table 1. As we can see, in this case all the runs terminated
finding a strongly stationary point. Moreover, we observed that for this problem not
too many iterations were needed.
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Table 1 Performance of
Algorithm 1 in Test Instance 5.1

Test instance 5.1

Solved Iterations Mean CPU time

100 (0, 13.97, 71) 0.1872

Fig. 1 Sequence generated in the image space by Algorithm 1 for a selected starting point in Test Instance
5.1

In Fig. 1, the sequence {F(xk)}k∈{0}∪[7] generated by Algorithm 1 for a selected
starting point is shown. In this case, strong stationarity was declared after seven iter-
ations. The traces of the curves f i for i ∈ [5] are displayed, with arrows indicating
their direction of movement. Moreover, the sets F(x0) and F(x7) are represented by
black and red points, respectively, and the elements of the sets F(xk) with k ∈ [6]
are in gray color. The improvements of the objective values after every iteration are
clearly observed.

Test Instance 5.2 In this example, we start by taking a uniform partition U1 of 10
points of the interval [−1, 1], that is,

U1 = {−1, −0.7778, −0.5556, −0.3333, −0.1111, 0.1111, 0.3333, 0.5556, 0.7778, 1}.

Then, the set U := U1 × U1 is a mesh of 100 points of the square [−1, 1] × [−1, 1].
Let {u1, . . . , u100} be an enumeration of U and consider the points

l1 :=
(
0
0

)
, l2 :=

(
8
0

)
, l3 :=

(
0
8

)
.
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Table 2 Performance of
Algorithm 1 in Test Instance 5.2

Test instance 5.2

Solved Iterations Mean CPU time

100 (0, 1.32, 2) 0.0637

We define, for i ∈ [100], the functional f i : R
2 → R

3 as

f i (x) := 1

2

⎛
⎝‖x − l1 − ui‖2

‖x − l2 − ui‖2
‖x − l3 − ui‖2

⎞
⎠ .

Finally, the set-valued mapping F : R
2 ⇒ R

3 is defined by

F(x) :=
{
f 1(x), . . . , f 100(x)

}
.

Note that problem (SP�) corresponds in this case to the robust counterpart of a
vector-valued facility location problem under uncertainty [20], where U represents
the uncertainty set with respect to the facility sites l1, l2, l3. Furthermore, with the aid
of Theorem 3.1, it is possible to show that a point x̄ is a local weakly minimal solution
of (SP�) if and only if

x̄ ∈ conv
{
l j + ui | (i, j) ∈ I (x̄) × {1, 2, 3}} .

Thus, in particular, the local weakly minimal solutions lie on the set

C := conv ((l1 + U) ∪ (l2 + U) ∪ (l3 + U)) . (59)

In this test instance, 100 initial points x0 were generated in the square [−50, 50] ×
[−50, 50], andAlgorithm 1was ran in each case. A summary of the results is presented
in Table 2.Again, for any initial point, the sequence generated by the algorithm stopped
with a local solution to our problem. Perhaps, the most noticeable parameter recorded
in this case is the number of iterations required to declare the solution. Indeed, in most
cases, only 1 iteration was enough, even when the starting point was far away from
the locations l1, l2, l3.

In Fig. 2, the set of solutions found in this experiment are shown in red. The locations
l1, l2, l3 are represented byblackpoints and the elements of the set (l1 + U)∪(l2 + U)∪
(l3 + U) are colored in gray. We can observe, as expected, that all the local solutions
found are contained in the set C given in (59).

Our last test example comes from [24].

Test Instance 5.3 For i ∈ [100], we consider the functional f i : R
2 → R

2 defined
as

f i (x) :=
⎛
⎝e

x1
2 cos(x2) + x1 cos(x2) cos3

(
2π(i−1)

100

)
− x2 sin(x2) sin3

(
2π(i−1)

100

)
e
x2
20 sin(x1) + x1 sin(x2) cos3

(
2π(i−1)

100

)
+ x2 cos(x2) sin3

(
2π(i−1)

100

)
⎞
⎠ .
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Fig. 2 Solutions found (in red) in the argument space for Test Instance 5.2

Table 3 Performance of
Algorithm 1 in Test Instance 5.3

Test instance 5.3

Solved Iterations Mean CPU time

88 (0, 11.9091 , 110) 0.8492

Hence, F : R
2 ⇒ R

2 is given by

F(x) := { f 1(x), . . . , f 100(x)}.

The images of the set-valued mapping in this example are discretized, shifted,
rotated and deformed rhombuses, as shown in Fig. 3. We generated randomly 100
initial points in the square [−10π, 10π ] × [−10π, 10π ] and ran our algorithm. A
summary of the results is given in Table 3. In this case, only for 88 initial points a
solution was found. In the rest of the occasions, the algorithm stopped because the
maximum number of iterations was reached. Further examination in these unsolved
cases revealed that, except for two of the initial points, the final error was of the order
of 10−1 (even 10−3 and 10−4 in half of the cases). Thus, perhaps only a few more
iterations were needed in order to declare strong stationarity.

Figure 3 illustrates the sequence {F(xk)}k∈{0}∪[18] generated by Algorithm 1 for a
selected starting point. Strong stationaritywas declared after 18 iterations in this exper-
iment. The sets F(x0) and F(x18) are represented by black and red points, respectively,
and the elements of the sets F(xk) with k ∈ [17] are in gray color. Similarly to the
other test instances, we can observe that at every iteration the images decrease with
respect to the preorder �� .
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Fig. 3 Sequence generated in the image space by Algorithm 1 for a selected starting point in Test Instance
5.3

6 Conclusions

In this paper, we considered set optimization problems with respect to the lower less
set relation, where the set-valued objective mapping can be decomposed into a finite
number of continuously differentiable selections. The main contributions are the tai-
lored optimality conditions derived using the first-order information of the selections
in the decomposition, together with an algorithm for the solution of the problems with
this structure. An attractive feature of our method is that we are able to guarantee
convergence toward points satisfying the previously mentioned optimality conditions.
To the best of our knowledge, this would be the first procedure having such property
in the context of set optimization. Finally, because of the applications of problems
with this structure in the context of optimization under uncertainty, ideas for further
research include the development of cutting plane strategies for general set optimiza-
tion problems, as well as the extension of our results to other set relations.
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