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Abstract
In this paper, we propose and analyze a variant of the proximal point method for
obtaining weakly efficient solutions of convex vector optimization problems in real
Hilbert spaces, with respect to a partial order induced by a closed, convex and pointed
cone with nonempty interior. The proposed method is a hybrid scheme that combines
proximal point type iterations and projections onto some special halfspaces in order to
achieve the strong convergence to a weakly efficient solution. To the best of our knowl-
edge, this is the first time that proximal point type method with strong convergence
has been considered in the literature for solving vector/multiobjective optimization
problems in infinite dimensional Hilbert spaces.

Keywords Proximal method · Vector optimization · Projection methods · Strong
convergence
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1 Introduction

In this paper, we propose and analyze a proximal point type method for solving vector
optimization problems. We consider a closed, convex, and pointed cone K ⊂ R

m
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with nonempty interior, in order to define a partial order � (≺) in R
m , given by

z � z′ (or z ≺ z′) if and only if z′ − z ∈ K (or z′ − z ∈ int(K )). The partial
order � (�) is defined in a similar way. We are interested in the following vector
optimization problem:

minK F(x) subject to x ∈ H , (1)

where F : H → R
m is a K -convex function and H is a real Hilbert space. In the

case in which the objective function contains more than one component, i.e., F =
(F1, F2, . . . , Fm) with m > 1, in general, there is no point that minimizes all of them
at once. Hence, we are interested in obtaining weakly efficient solutions for problem
(1), i.e., points x∗ ∈ H such that there is no x ∈ H satisfying F(x) ≺ F(x∗). If
K = R

m+, (1) is called multiobjective optimization problem and the concept of weakly
efficient solution corresponds to the usually called weak Pareto solution.

Many methods have been proposed for solving problem (1). Most of them are “nat-
ural” extensions of classical ones for solving scalar optimization problems, which
corresponds to problem (1) with m = 1 and K = R+. The classical steepest descent
method was the first one to be adapted for solving continuously differentiable mul-
tiobjective problems in finite-dimensional spaces, see [23]. The latter method was
extended to the vectorial setting in [27] and further explored in [25] to deal with
constrained vector optimization problems. The full convergence of the multiobjective
projected gradient method was studied in [6] in the quasi-convex case. In [13], the
authors generalized the gradient method of [23] for solving multiobjective optimiza-
tion problems over a Riemannian manifold. The subgradient method was considered
in themultiobjective setting in [20] andmore generally for solving vector optimization
problems in [3]. Newton’s method was first introduced in the multiobjective setting
in [22] and further generalized for solving vector optimization problems in [26,32].
In [16], the authors proposed and analyzed the proximal point method in the vectorial
setting. A scalarized version of the latter method was studied in [11] for solving quasi-
convex multiobjective problems. The latter reference also analyzed finite termination
of the proposed scheme under some stronger assumptions. Variants of the vector prox-
imal point method for solving some classes of nonconvex multiobjective optimization
problems were considered in [12,15]. A hybrid approximate extragradient proximal
point method was also studied in [19] for obtaining a common solution of a variational
inequality problem and a vector optimization problem. Other variants of the proximal
gradient methodwere analyzed in themultiobjective and vector optimization setting in
[8,17,44]. See, for instance, [28] for a review about vector proximal point method and
some variants.Most recently, [34] proposed and analyzed a conjugate gradient method
for solving vector optimization problems using different line-search strategies. Finally,
most of the aforementioned multiobjective/vector methods have also been extended
to solve multiobjective/vector optimization problems on Riemannian manifolds; see,
for instance, [10,14,21] and references therein.

There exists a vast literature concerning proximal point type methods for solving
different classes of problems; see, for instance, [18,29,31,36,37,39–41], to name just
a few. The proximal point method for minimizing a convex function f : H → R
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consists of iteratively generating a sequence {xk} bymeans of the following procedure

xk+1 = arg min
x∈H

f (x) + αk

2
‖x − xk‖2, (2)

where {αk} ⊂ R++. The above scheme can be seen as a sequence of regularized
subproblems, since the objective function f may have several minimizers (or none),
whereas (2) has just one. This scheme has found many practical applications; see,
e.g., [38] and references therein. Inexact variants of the above scheme have been
extensively considered in the literature. In order to givemore details, we first recall that
the solutions of the convex optimization problem minx f (x) correspond to the zeroes
of the maximal monotone operator T = ∂ f , where ∂ f denotes the subdifferential
of f . The proximal point method applied to obtain zeroes of a general monotone
inclusion 0 ∈ T (x) consists of generating {xk} where y:=xk+1 is a solution of

0 ∈ T (y) + αk(y − xk).

This general scheme was first considered by Martinet in [36,37] and further explored
by Rockafellar in [39,40]. Since then, many authors have investigated this scheme
in different contexts. In [40] it was proved that the sequence {xk} generated by the
proximal point method converges to a zero of T in the weak topology ofH , whenever
such a zero exists. The latter reference posed, as an open question, the issue of whether
or not this scheme is strongly convergent. Güller in [29] exhibited an optimization
problem for which the proximal point method is weakly convergent but not strongly.
A few years later, a new proximal-type method for solving monotone inclusions,
enjoying the strong convergence property,was introduced in [42]. This scheme consists
of combining proximal iterations with projection steps onto the intersection of two
halfspaces. More precisely, given x0 ∈ H and {αk} ⊂ R++, it computes an “inexact
solution" (yk, vk) of the following problem:

0 ∈ T (y) + αk(y − xk), (3)

and obtains xk+1 as

xk+1 = PHk∩Wk (x
0), (4)

where

Hk = {x ∈ H | 〈x − yk, vk〉 ≤ 0},
Wk = {x ∈ H | 〈x − xk, x0 − xk〉 ≤ 0}. (5)

Here, PD(x) denotes the projection of x onto a nonempty, closed and convex set D ⊂
H . Since then, many works concerning with methods possessing strong convergence
properties have been considered in the literature for solving different kind of problems;
see, for instance, [1,5,7,9,24,35,43], to name just a few. Most of the aformentioned
papers deal with variants of the above “hybrid” proximal point method.
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In this paper,we propose and analyze a hybrid proximal pointmethod for computing
a weakly efficient solution for the vector optimization problem (1). The proposed
scheme combines some ideas of the proximal point method of [16] and the technique
introduced in [42] (described in (3)-(5)) for guaranteeing the strong convergence.
Under some mild conditions, we prove that the whole sequence generated by the
proposed scheme is strongly convergent to a weakly efficient solution for problem
(1). To the best of our knowledge, this is the first time that a proximal point type
method with strong convergence has been considered in the literature for solving
multiobjective/vector optimization problems in infinite dimensional spaces. It is worth
mentioning that a key ingredient for proving strong convergence of algorithms based
on the technique of [42] is the convexity of the solution set of the problem under
consideration. Since, in general, the weak efficient solutions set for problem (1) is
not convex, the extension of the aforementioned technique to the vector setting is not
immediate. Moreover, an interesting feature of the proposed hybrid vector proximal
point method is that its subproblems do not need to be solved restricted to the sublevel
sets of the objective function F , namely, �k = {x ∈ H | F(x) � F(xk)}, k ≥
1. The latter condition does not necessarily hold to multiobjective/vector proximal
point methods, and it has been considered in the related literature in order to prove
convergence of the whole sequence generated by these schemes.

The paper is organized as follows: Section 2 contains notation, definitions and some
basic results. Section 3 formally describes the proposed vector proximal point method.
Section 4 is devoted to the convergence analysis of the method and is divided into
two subsections. The first one presents some technical results and basic properties,
whereas the second subsection establishes the main convergence results. The last
section contains a conclusion.

2 Notation and Preliminary Results

In this section, we formally state some notations, basic definitions, and preliminary
results used in the paper.

We denote the inner product inH by 〈·, ·〉 and its induced norm by ‖·‖. The closed
ball centered at x ∈ H with radius ρ is denoted by B[x, ρ], i.e., B[x, ρ]:={y ∈
H | ‖y− x‖ ≤ ρ}. Now, we recall some definitions and properties of scalar functions
(i.e., problem (1) with m = 1). A function f : H → R is said to be μ-strongly
convex with μ ≥ 0 if and only if

f (t x + (1 − t)y) ≤ t f (x) + (1 − t) f (y) − t(1 − t)
μ

2
‖x − y‖2,

∀x, y ∈ H ,∀t ∈ [0, 1].

If μ = 0 in the above inequality, then f is said to be convex. The subdifferential of f
at x ∈ H is defined by

∂ f (x):={v ∈ H | f (y) ≥ f (x) + 〈v, y − x〉, ∀y ∈ H }. (6)
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Now, let us recall a well-known inequality which will be needed later on. Assume that
f is μ-strongly convex (not necessarily differentiable) for some μ ≥ 0 and let x∗ be
a minimizer of f . Then the following inequality holds

f (x) ≥ f (x∗) + μ

2
‖x − x∗‖2, ∀x ∈ H . (7)

We also need the followingwell-known result on projections, see [2, Theorem3.14].

Proposition 2.1 Let D be a nonempty, closed and convex set in H . Then, for all
x ∈ H and y ∈ D, 〈y − PD(x), x − PD(x)〉 ≤ 0.

The image of a function F : H → R
m is the set Im F :={z ∈ R

m | z = F(x), x ∈
H }. The positive dual cone of K is K ∗:={w ∈ R

m | 〈u, w〉 ≥ 0, ∀u ∈ K }.
In this paper, we assume that there exists a compact set C ⊂ K ∗ \ {0} such that

cone(conv(C)) = K ∗ and 0 /∈ C . Since K = K ∗∗ (see [33, Theorem 14.1]), we have

K :={z ∈ R
m | 〈z, w〉 ≥ 0, ∀w ∈ C}, int(K ):={z ∈ R

m | 〈z, w〉 > 0, ∀w ∈ C}.

Hence, given z, z′ ∈ R
m , we have the following equivalences:

z � z′ ⇐⇒ z′ − z ∈ K ⇐⇒ 〈z′ − z, w〉 ≥ 0, ∀w ∈ C, (8)

z ≺ z′ ⇐⇒ z′ − z ∈ int(K ) ⇐⇒ 〈z′ − z, w〉 > 0, ∀w ∈ C . (9)

For a general cone K , the generator set C can be chosen as C = {w ∈ K ∗ | ‖w‖ =
1}. Note that if K is a polyhedral cone then K ∗ is also a polyhedral cone, and hence
C can be chosen as a normalized finite set of its extreme rays. In scalar optimization,
i.e., K = R+, one may consider C = {1}. For multiobjective optimization, K and
K ∗ are the positive orthant of R

m denoted by R
m+, and a natural choice for C is the

canonical basis of R
m .

A vector functionG : H → R
m is called K -convex if and only if for all x, y ∈ H

and t ∈ [0, 1],

G(t x + (1 − t)y) � tG(x) + (1 − t)G(y). (10)

Note that if the partial order is given by the cone R
m+, i.e., K = R

m+, then G is K -
convex if and only if each coordinate Gi is a convex function in the usual sense.
More generally, it follows from (8) and (10) that, for every w ∈ C , the function
φw : H → R given by φw(·):=〈G(·), w〉 is convex. Moreover, G is said to be
positively lower semicontinuous if the scalar function φw(·) is lower semicontinuous
for all w ∈ C .

Throughout the paper, the objective function F : H → R
m in (1) is assumed to

be K -convex and positively lower semicontinuous.
Next, we present an elementary result needed in our analysis. We include its proof

just for the sake of completeness.

Lemma 2.1 The following statements hold:
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a) if F is a K -convex function, then the set LF,K (v):={x ∈ H | F(x) � v} is convex,
for all v ∈ R

m;
b) a point x ∈ H is weakly efficient for problem (1) if and only if

max
w∈C 〈F(y) − F(x), w〉 ≥ 0, ∀y ∈ H .

Proof a) Let v ∈ R
m be given and consider x, y ∈ LF,K (v). It follows from the

K -convexity of F and (8) that for all t ∈ [0, 1] and w ∈ C , we have

0 ≤ 〈t F(x) + (1 − t)F(y) − F(t x + (1 − t)y), w〉
≤ 〈tv + (1 − t)v − F(t x + (1 − t)y), w〉
= 〈v − F(t x + (1 − t)y), w〉,

which, in viewof (8), imply that F(t x+(1−t)y) � v, i.e., t x+(1−t)y ∈ LF,K (v).
b) A point x is a weakly efficient solution for problem (1) if and only if there is no

y ∈ H satisfying F(y) ≺ F(x) which, in view of (9), is equivalent to say that
for every y ∈ H there exists wy ∈ C such that 〈F(y) − F(x), wy〉 ≥ 0. Since C
is a compact set, the statement of (b) follows.

��
Next, we introduce some useful concepts for stating and analyzing our method, to

be studied in Section 3. Let x ∈ H and ξ ∈ R
m be given, and define the functions

ψξ , θx,ξ : H → R as

ψξ (u):=max
w∈C 〈F(u) − ξ,w〉, ∀u ∈ H , (11)

and

θx,ξ (u):=ψξ (u) + α

2
‖u − x‖2, ∀u ∈ H , (12)

where α > 0 is a given parameter. Since F is K -convex, it follows easily from (8)–
(11) that ψξ is convex. Hence, θx,ξ is α-strongly convex and, therefore, has a unique
minimizer

x̃ = x̃(x, ξ):=arg min
u∈H

θx,ξ (u). (13)

In view of (11)–(13), we have that 0 ∈ ∂ψξ (x̃) + α(x̃ − x), or equivalently,

ṽ:=α(x − x̃) ∈ ∂ψξ (x̃). (14)

Remark 2.1 The method stated in the next section chooses ξ iteratively according
to a decreasing condition of the objective value on the solution obtained from the
proximal subproblem (13). It is worth mentioning that a key ingredient in our method
and its analysis is the appropriate choice of ξ during the execution of the method. It
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is interesting to note that if ξ1 �= ξ2 then the subdifferential ∂ψξ1(x) may differ from
∂ψξ2(x). Indeed, consider

H = R, m = 2, K = R
2+, F(x) = (x2, x2 + 2x).

Choosing ξ1 = (0, 0) and ξ2 = (−1,−4), we have ψξ1(0) = F1(0) − ξ11 = F2(0) −
ξ21 = 0, which implies that ∂ψξ1(0) = [0, 2]; see, for example, [30, Proposition 4.3.2].
Moreover, it can also be easily seen that ψξ2(0) = F2(0)− ξ22 = 4 > F1(0)− ξ12 = 1,
which implies that ∂ψξ2(0) = {2}.

Next, we show that if x is the solution of the proximal subproblem (13), then x is
a weakly efficient solution for problem (1). This result will be essential for justifying
the stopping criterion of our method.

Lemma 2.2 Let x ∈ H , ξ ∈ R
m, and a scalar α > 0 be given and consider x̃ as in

(13). If x̃ = x, then x is a weakly efficient solution for problem (1).

Proof Since x = x̃ , it follows from (14) that 0 ∈ ∂ψξ (x), which in turn implies that x
minimizes ψξ , in view of the convexity of ψξ . From (11) and the compactness of C ,
we see that, for every y ∈ H , there existswy ∈ C such thatψξ (y) = 〈F(y)−ξ,wy〉.
Hence, for every y ∈ H , we have

〈F(y) − ξ,wy〉 = ψξ (y) ≥ ψξ (x) ≥ 〈F(x) − ξ,wy〉,

which in turn implies that

max
w∈C 〈F(y) − F(x), w〉 ≥ 0, ∀y ∈ H .

Therefore, it follows from Lemma 2.1 (b) that x is a weakly efficient solution for
problem (1). ��

3 A Hybrid Vector Proximal Point Method

In this section, we present the hybrid vector proximal point method for computing
weakly efficient solutions for problem (1).We also establish two basic results showing,
in particular, that the intersection of two special halfspaces is nonempty. The latter fact
immediately implies that the projection step required by the method is well-defined.

Next, we state the hybrid vector proximal point method.

Hybrid Vector Proximal Point Method (HVPPM)
Step 0. Let x0 ∈ H , a bounded sequence {αk} such that infk αk > 0, and set
Flev−1 :=F(x0), k:=0;
Step 1. Compute x̃ k :=x̃(xk, Flev

k−1) as in (11)–(13);
Step 2. If x̃ k = xk then stop and output xk ;
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Step 3. Define

Flev
k :=

{
F(x̃ k), ifF(x̃ k) � Flev

k−1
Flev
k−1, otherwise;

Step 4. Let ṽk :=αk(xk − x̃ k) and define

Hk :=
{
x ∈ H | 〈ṽk, x − x̃ k〉 + ψFlev

k
(x̃ k) ≤ 0

}
, (15)

Wk :=
{
x ∈ H | 〈x − xk, x0 − xk〉 ≤ 0

}
; (16)

Step 5. Compute

xk+1:=PHk∩Wk (x
0),

set k:=k + 1 and return to Step 1.
End

Some remarks about the HVPPM follow. First, the computation of x̃ k as in Step 1
requires to solve the proximal subproblem (13) with (x, ξ) = (xk, Flev

k−1). This vector
is then used to check the stopping criterion in Step 2 which if satisfied, implies that
xk is a weakly efficient solution for problem (1), in view of Lemma 2.2. Second, the
vector x̃ k is also needed for defining the level value Flev

k and the vector ṽk , which in
turn, are used to construct the halfspace Hk as in (15). Third, it is worth mentioning
that ṽk corresponds to ṽ computed as in (14) with (x, ξ, α) = (xk, Flev

k−1, αk), and
hence it holds that

ṽk ∈ ∂ψFlev
k−1

(x̃ k). (17)

Fourth, from the definition of Flev
k in Step 3, we immediately see that Flev

k � Flev
k−1.

This nonincreasing property in the order given by the cone K will be very important
in our analysis. Fifth, it will be shown in Lemma 3.2 that the set Hk ∩Wk is nonempty,
and hence xk+1 as in Step 5 is well-defined. Finally, the extra projection step required
to compute xk+1 does not entail a significant computational cost and is fundamental
for guaranteeing the strong convergence property of HVPPM.

Next we present a basic result which will be useful in our analysis.

Lemma 3.1 Let (x̃ k, Flev
k ) be generated by HVPPM and consider ψFlev

k
as in (11).

Then, ψFlev
k

(x̃ k) ≥ 0 and the following equivalence holds

Flev
k = F(x̃ k) ⇐⇒ ψFlev

k
(x̃ k) = 0.

Proof It is immediate that if Flev
k = F(x̃ k) then ψFlev

k
(x̃ k) = 0, in view of (11). Now

if Flev
k �= F(x̃ k), then it follows from Step 3 that Flev

k = Flev
k−1 and F(x̃ k) � Flev

k .
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Hence, using (8) and (11), we have

ψFlev
k

(x̃ k) = max
w∈C 〈F(x̃ k) − Flev

k , w〉 > 0,

concluding the proof of the lemma. ��
As previously mentioned, if HVPPM stops at some iteration k, then xk is a weakly

efficient solution for problem (1). Hence, in order to analyze the convergence of the
HVPPM, we assume from now on that the stopping criterion in Step 2 of HVPPM is
never satisfied.

Given k ≥ 0, consider the sub-level set Sk given by

Sk :={x ∈ H | F(x) � Flev
k }. (18)

The next result shows a fundamental property of Sk , which immediately implies that
xk+1 as in Step 5 is well-defined.

Lemma 3.2 For every k ≥ 0, we have

∅ �= Sk ⊂ Hk ∩ Wk, (19)

where Hk, Wk, and Sk are as in (15), (16), and (18), respectively. As a consequence,
xk+1 as in Step 5 is well-defined, for every k ≥ 0.

Proof We first prove that

∅ �= Sk ⊂ Hk, ∀k ≥ 0. (20)

Let k ≥ 0 be given. In view of Step 3, there exits yk ∈ {x0, x̃0, x̃1, . . . , x̃ k} such that
Flev
k = F(yk), which implies that Sk given in (18) is nonempty. Take an arbitrary

x̂ ∈ Sk . In view of (11) and the compactness of C , there exists ŵk ∈ C such that
ψFlev

k−1
(x̂) = 〈F(x̂) − Flev

k−1, ŵ
k〉. Now, note that (17) yields ṽk ∈ ∂ψFlev

k−1
(x̃ k). It

follows from the latter two facts, subgradient inequality in (6), and the definition of
ψFlev

k−1
(see (11)), that

〈ṽk, x̂ − x̃ k〉 + 〈F(x̃ k) − Flev
k−1, ŵ

k〉 ≤ 〈ṽk, x̂ − x̃ k〉 + ψFlev
k−1

(x̃ k)

≤ ψFlev
k−1

(x̂) = 〈F(x̂) − Flev
k−1, ŵ

k〉, (21)

and hence

〈ṽk, x̂ − x̃ k〉 ≤ 〈F(x̂) − F(x̃ k), ŵk〉.

Now, suppose that Flev
k = F(x̃ k). Hence, Lemma 3.1 implies that ψFlev

k
(x̃ k) = 0,

which in view of the above inequality and the fact that x̂ ∈ Sk , yields

〈ṽk, x̂ − x̃ k〉 + ψFlev
k

(x̃ k) = 〈ṽk, x̂ − x̃ k〉 ≤ 〈F(x̂) − Flev
k , ŵk〉 ≤ 0. (22)
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On the other hand, if Flev
k �= F(x̃ k), then Flev

k = Flev
k−1 (see Step 3). Hence, in view

of the second inequality in (21) and the fact that x̂ ∈ Sk , we have

〈ṽk, x̂ − x̃ k〉 + ψFlev
k

(x̃ k) ≤ ψFlev
k

(x̂) ≤ 0.

Therefore, in view of the latter inequality, (22), and the definition of Hk in (15), we
conclude that x̂ ∈ Hk . Since x̂ ∈ Sk is arbitrary, the proof of (20) follows. Now
we proceed to prove that Sk ⊂ Wk , for every k ≥ 0. This inclusion will be proved
by induction. From (16), we immediately see that W0 = H and then the inclusion
S0 ⊆ W0 trivially holds. Assume that Sk ⊂ Wk , for some k ≥ 0. Hence, in view of
(20), we have ∅ �= Sk ⊂ Hk ∩ Wk . Then, xk+1 as in Step 5 is well-defined, and hence
by Proposition 2.1, we have

〈y − xk+1, x0 − xk+1〉 ≤ 0, ∀y ∈ Hk ∩ Wk . (23)

Now note that ∅ �= Sk+1 ⊂ Sk due to (18), (20), and the fact that Flev
k+1 � Flev

k . Hence,
since Sk ⊆ Hk ∩ Wk , we obtain that the inequality in (23) holds for any y ∈ Sk+1.
Then, it follows from the definition of Wk+1 in (16) that Sk+1 ⊆ Wk+1, which by
induction argument, proves that Sk ⊆ Wk for every k ≥ 0. Therefore, in view of (20),
we conclude that (19) holds for every k ≥ 0. The last statement of the lemma follows
immediately from the first one and the definition of xk+1 in Step 5. ��

4 Convergence Analysis of HVPPM

This section is devoted to the convergence analysis of HVPPM. It is is divided into
two subsections. The first one presents some basic properties of the proposed method
as well as some technical results. The second one establishes the main convergence
results of HVPPM.

In order to ensure the convergence of HVPPM, we need the following assumption:
(A1) The set S:={x ∈ H | F(x) � Flev

k ,∀k ≥ 0} is nonempty.
Since F is positively lower semicontinuous and K -convex, we see that S is a closed

and convex set, see Lemma2.1 (a). A standard assumption in the related literature is the
so called completeness of Im F , meaning that for every sequence {yk} ⊂ H satisfying
F(yk+1) � F(yk) for all k ≥ 0, there exists y ∈ H such that F(y) � F(yk) for
all k ≥ 0. The completeness of Im F ensures the existence of weakly efficient points
for vector optimization problems (see [33, Section 3]). As previously mentioned,
{Flev

k } satisfies Flev
k � Flev

k−1,∀k ≥ 0. Moreover, for every k ≥ 0, there exists yk ∈
{x0, x̃0, x̃1, . . . , x̃ k} such that Flev

k = F(yk) ∈ Im F . Hence, the completeness of
Im F implies that (A1) holds. Note that in the scalar case, if the solution set for
problem (1) is nonempty then (A1) is immediately satisfied.

Ourmain goal now is to show the strong convergence of the sequence {xk} generated
by HVPPM to a weakly efficient solution for problem (1). First, we present several
technical results establishing some properties of HVPPM.
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4.1 Some Basic and Technical Results

This subsection contains some basic and technical results which are useful for estab-
lishing the strong convergence of HVPPM.

We start by showing that {xk} is contained in the intersection of two certain balls,
obtaining, in particular, that {xk} is bounded.
Lemma 4.1 Assume that (A1) holds. Then, the sequence {xk} generated by HVPPM
satisfies

{xk} ⊂ B[x0, ρ] ∩ B[x̂, ρ],

where x̂ :=PS(x0) and ρ:=‖x0 − x̂‖.
Proof Since S is a nonempty, closed and convex set, x̂ :=PS(x0) is well-defined. Note
that S ⊂ Sk for every k ≥ 0, in view of the definitions of Sk and S given in (18) and
(A1), respectively. Thus, by Lemma 3.2, we have S ⊂ Hk ∩ Wk for all k ≥ 0. Hence,
it follows from Step 5 and Proposition 2.1 that

0 ≥ 〈x̂ − xk+1, x0 − xk+1〉 = 1

2
(‖x̂ − xk+1‖2 − ‖x̂ − x0‖2 + ‖xk+1 − x0‖2),

for all k ≥ 0. The above inequality immediately yields

max{‖xk+1 − x̂‖, ‖xk+1 − x0‖} ≤ ‖x̂ − x0‖ = ρ, ∀k ≥ 0,

which clearly proves the lemma. ��
We remark that, similarly to the proof in [4, Lemma 2.10], it can be shown that the

inclusion in Lemma 4.1 can be strengthened to {xk} ⊂ B
[
x0+x̂
2 ,

ρ
2

]
.

Next, we present some basic results about the sequences {xk} and {x̃ k} generated
by HVPPM.

Lemma 4.2 Let {(xk, x̃ k)} be generated byHVPPMand assume that (A1) holds. Then,
it holds that

‖xk − x̃ k‖ ≤ ‖xk+1 − xk‖, ∀k ≥ 0, (24)
+∞∑
k=0

‖x̃ k − xk‖2 ≤
+∞∑
k=0

‖xk+1 − xk‖2 ≤ ρ2, (25)

where ρ is as in Lemma 4.1. As a consequence, the sequence {‖xk − x̃ k‖} converges
to zero.

Proof For every k ≥ 0, we have xk+1 ∈ Hk (see Step 5). Hence,

‖PHk (x
k) − xk‖ ≤ ‖xk+1 − xk‖, ∀k ≥ 0. (26)
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Since it is assumed that the stopping criterion in Step 2 is never satisfied, we have
ṽk �= 0 for every k ≥ 0, due to Step 2, the definition of ṽk in Step 4, and the fact that
αk �= 0. Hence, in view of the definition of Hk in (15), we easily see that

PHk (x
k) = xk −

〈ṽk, xk − x̃ k〉 + ψFlev
k

(x̃ k)

‖ṽk‖2 ṽk,

which combined with (26), the fact that ψFlev
k

(x̃ k) ≥ 0 (see Lemma 3.1), and the

definition of ṽk in Step 4, yields

‖xk+1 − xk‖ ≥
|〈ṽk, xk − x̃ k〉 + ψFlev

k
(x̃ k)|

‖ṽk‖

=
αk‖xk − x̃ k‖2 + ψFlev

k
(x̃ k)

αk‖xk − x̃ k‖ ≥ ‖xk − x̃ k‖,

proving (24). Now, in view of (16) and the fact that xk+1 ∈ Wk (see Step 5), we obtain

0 ≥ 〈xk+1 − xk, x0 − xk〉 = 1

2
(‖xk+1 − xk‖2 − ‖xk+1 − x0‖2 + ‖xk − x0‖2).

Thus, ‖xk+1 − xk‖2 ≤ ‖xk+1 − x0‖2 −‖xk − x0‖2, which combined with Lemma 4.1
imply that

j∑
k=0

‖xk+1 − xk‖2 ≤ ‖x j+1 − x0‖2 ≤ ρ2.

The proof of (25) then follows from the latter conclusion and (24). The last statement
of the lemma immediately follows from (25). ��

Next, we present a technical result containing some inequalities which will be used
to prove that all weak cluster points of the sequence {xk} generated by HVPPM are
weakly efficient solutions for problem (1) and belong to the set S defined in (A1).

Lemma 4.3 Let {(xk, x̃ k, αk)} be generated by HVPPM and assume that (A1) holds.
For any y ∈ H and k ≥ 0, define γ k

y as

γ k
y :=αk

2

(
‖y − x̃ k‖2 − ‖y − xk‖2

)
. (27)

Then, for every y ∈ H , the following statements hold:

a) the sequence {γ k
y } converges to zero;

b) for every k ≥ 0, it holds that

ψFlev
k−1

(y) ≥ ψFlev
k−1

(x̃ k) + γ k
y . (28)
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As a consequence, for every x̂ ∈ S and w ∈ C, we have

〈Flev
k−1, w〉 ≥ 〈F(x̃ k), w〉 + γ k

x̂ ,

〈F(y), wk
y〉 ≥ 〈F(x̃ k), wk

y〉 + γ k
y , ∀k ≥ 0, (29)

where wk
y ∈ C is such ψFlev

k−1
(y) = 〈F(y) − Flev

k−1, w
k
y〉.

Proof a) From (27) and the Cauchy-Schwarz inequality, we have, for every y ∈ H
and k ≥ 0,

|γ k
y | = αk

2

∣∣∣‖xk − x̃ k‖2 + 2〈y − xk, xk − x̃ k〉
∣∣∣

≤ αk

2

(
‖xk − x̃ k‖2 + 2‖y − xk‖‖xk − x̃ k‖

)
.

We then conclude that {γ k
y } converges to zero, because {αk} and {xk} are bounded,

and {‖xk − x̃ k‖} converges to zero, in view of Step 0, Lemma 4.1, and the last
statement in Lemma 4.2, respectively.

b) In view of (12), one can see that θxk ,Flev
k−1

is αk-strongly convex. It follows from

(7) with f = θxk ,Flev
k−1

and (13) that, for every y ∈ H and k ≥ 0,

θxk ,Flev
k−1

(y) ≥ θxk ,Flev
k−1

(x̃ k) + αk

2
‖y − x̃ k‖2,

and hence, in view of (12), we have

ψFlev
k−1

(y) + αk

2
‖y − xk‖2 ≥ ψFlev

k−1
(x̃ k) + αk

2
‖y − x̃ k‖2.

Therefore, (28) follows from the above inequality and (27). We proceed to prove
that the inequalities in (29) holds. For any x̂ ∈ S, we have ψFlev

k−1
(x̂) ≤ 0, in view of

the definition of S in (A1), (8), and (11). Hence, by combining (28) with y = x̂ and
the definition of ψFlev

k−1
(x̃ k) in (11), we obtain, for every w ∈ C and k ≥ 0,

0 ≥ ψFlev
k−1

(x̂) ≥ ψFlev
k−1

(x̃ k) + γ k
x̂ ≥ 〈F(x̃ k) − Flev

k−1, w〉 + γ k
x̂ ,

which immediately implies that the first inequality in (29) holds. Now, first note that
from the compactness of C and (11), there exists, indeed, wk

y ∈ C as in the last
statement of the lemma. Hence, from (11) and (28), we have

〈F(y) − Flev
k−1, w

k
y〉 = ψFlev

k−1
(y) ≥ ψFlev

k−1
(x̃ k) + γ k

y ≥ 〈F(x̃ k) − Flev
k−1, w

k
y〉 + γ k

y ,

which immediately implies that last inequality in (29) holds. ��
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4.2 Main Convergence Results

This subsection establishes the main convergence results about the sequence {xk}
generated by HVPPM.

We start by analyzing the weak cluster points of {xk}, showing, in particular, that
they are weakly efficient solutions for problem (1).

Proposition 4.1 Assume that (A1) holds. Then, the sequence {xk} generated by
HVPPM is bounded and all its weak cluster points belong to S and are weakly efficient
solutions for problem (1).

Proof In view of Lemma 4.1, the sequence {xk} is bounded and hence it has a weak
cluster point. Let x̄ be an arbitrary weak cluster point of {xk} and take a subsequence
{xik } weakly convergent to x̄ . In view of the last statement in Lemma 4.2, {‖xk − x̃ k‖}
converges to zero, and so we conclude that {x̃ ik } is also weakly convergent to x̄ . It
follows from Lemma 4.3 (a) that for every y ∈ H , the sequence {γ k

y } given in (27)
converges to zero. Then, from the above facts, the first inequality in (29) and the
positive lower semicontinuity of F , we see that, for all w ∈ C ,

lim inf
k→+∞ 〈Flev

ik−1, w〉 ≥ lim inf
k→+∞ 〈F(x̃ ik ), w〉 ≥ 〈F(x̄), w〉. (30)

Since, in view of Step 3, Flev
k � Flev

k−1 for every k ≥ 0, we obtain by (8) that, for all
w ∈ C , the sequence {〈Flev

k , w〉} is nonincreasing. Hence, it follows from (30) that

〈Flev
k , w〉 ≥ 〈F(x̄), w〉, ∀w ∈ C, ∀k ≥ 0.

From the above inequality and (8) we conclude that F(x̄) � Flev
k for every k ≥ 0,

which is equivalent to say that x̄ ∈ S.
Now, we proceed to prove that x̄ is a weakly efficient solution for problem (1). Let

an arbitrary y ∈ H and consider the sequence {wk
y} ⊂ C as in the last statement of

Lemma 4.3. Since C is compact, we may assume without loss of generality that the
subsequence {wik

y } converges to some w̄ ∈ C . In view of Step 3, we may consider
two cases: i) there exists k0 such that Flev

ik
= F(x̃ ik ) for all k ≥ k0; ii) there exists an

infinite set N ⊂ N such that Flev
ik

�= F(x̃ ik ) for every k ∈ N .
If the statement in (i) holds, then it follows from the last inequality in (29) that

〈F(y), wik
y 〉 ≥ 〈Flev

ik , wik
y 〉 + γ k

y , ∀k ≥ k0. (31)

Now, if the statement in (ii) holds, then Flev
ik

= Flev
ik−1 for every k ∈ N (see Step 3).

Hence, it follows from (28), the first statement of Lemma 3.1, and the definition of
w
ik
y (see the last statement in Lemma 4.3), that

〈F(y) − Flev
ik , wik

y 〉 = ψFlev
ik

(y) ≥ γ k
y , ∀k ∈ N ,

123



Journal of Optimization Theory and Applications (2021) 190:183–200 197

which implies that, in the case (ii), the inequality in (31) holds for all k ∈ N . Therefore,
in view of (8) and the fact that x̄ ∈ S, we conclude that, in both cases, we have

〈F(y), wik
y 〉 ≥ 〈F(x̄), wik

y 〉 + γ k
y , ∀k ∈ N , k ≥ k0.

Using that {γ ik
y } converges to zero and {wik

y } converges to w̄ ∈ C , it follows
from the above inequality that 〈F(y), w̄〉 ≥ 〈F(x̄), w̄〉, which clearly implies that
maxw∈C 〈F(y) − F(x̄), w〉 ≥ 0. Since y is an arbitrary vector inH , Lemma 2.1 (b)
implies that x̄ is a weakly efficient solution for problem (1), concluding the proof of
the theorem. ��

The next result shows, in particular, that the sequence {xk} generated by HVPPM is
strongly convergent to a weakly efficient solution for problem (1). Although its proof
is similar to the one of [42, Theorem 1], we consider it for the sake of completeness.

Theorem 4.1 Assume that (A1) holds. Then, the sequence {xk} generated by HVPPM
is strongly convergent to x̂ :=PS(x0), which is a weakly efficient solution for problem
(1).

Proof It follows from Proposition 4.1 that {xk} is bounded and that any weak cluster
point of it belongs to S. Now, we proceed to prove that every weakly convergent
subsequence of {xk} converges strongly to x̂ . Let an arbitrary subsequence {xik }weakly
convergent to some x̄ ∈ S. In view of Lemma 4.1, we have ‖xk − x0‖ ≤ ‖x0 − x̂‖
for all k ≥ 0, where x̂ = PS(x0). Thus, we obtain

‖xik − x̂‖2 = ‖xik − x0 + x0 − x̂‖2
= ‖xik − x0‖2 + ‖x0 − x̂‖2 + 2〈xik − x0, x0 − x̂〉
≤ 2‖x0 − x̂‖2 + 2〈xik − x0, x0 − x̂〉.

Hence, since {xik } is weakly convergent to x̄ , we have

lim sup
k→∞

‖xik − x̂‖2 ≤ 2(‖x0 − x̂‖2 + 〈x̄ − x0, x0 − x̂〉)

= 2〈x̄ − x̂, x0 − x̂〉 ≤ 0,

where the last inequality is due to Proposition 2.1, x̂ = PS(x0), and the fact that x̄ ∈ S.
Hence, {xik } is strongly convergent to x̂ . It then follows that any weakly convergent
subsequence of {xk}, is strongly convergent to x̂ . Therefore, since {xk} is bounded and
hence has weak cluster point, one can easily conclude that the whole sequence {xk} is
strongly convergent to x̂ , which is a weakly efficient solution of problem (1) in view
of Proposition 4.1. ��

5 Conclusion

This paper proposes and analyzes a hybrid vector proximal point method for finding
weakly efficient solutions for vector optimization problems in real Hilbert spaces.
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The proposed method combines proximal point iterations with projections onto the
intersection of two special halfspaces. Two interesting features of this method are: the
proximal subproblems are unconstrained and the sequence generated by the method
is proven to be strongly convergent to a weakly efficient solution of the vector opti-
mization problem, under standard assumptions. To the best of our knowledge, none
proximal point type method proposed in the literature for solving vector optimization
problems in infinite dimensional Hilbert spaces has this strong convergence prop-
erty. Moreover, this property seems to be new even in the multiobjective setting. The
proposed method can be seen as an extension of the hybrid proximal point method
of Solodov and Svaiter to compute weak efficient solutions of multiobjective/vector
optimization problems. It is worth mentioning that this extension is not immediate.
The main difficulty is due to the fact that the set of weak efficient solutions of multi-
objective/vector optimization problems may not be convex even if the problem itself
is. It can be easily seen that such a property is fundamental to this kind of technique
(projections onto special halfspaces) for forcing strong convergence of proximal type
methods. In order to overcome this drawback, a sequence of nonincreasing (in the
order given by the cone) functional values is specially defined during the process and
used to solve the proximal subproblems.
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