
Journal of Optimization Theory and Applications (2021) 190:108–129
https://doi.org/10.1007/s10957-021-01873-4

A Full-Newton Step Infeasible Interior-Point Method for the
Special Weighted Linear Complementarity Problem

Xiaoni Chi1 · Guoqiang Wang2

Received: 23 June 2020 / Accepted: 18 May 2021 / Published online: 8 June 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
As an extension of the complementarity problem (CP), the weighted complementarity
problem (wCP) is a large class of equilibrium problems with wide applications in
science, economics, and engineering. If the weight vector is zero, the wCP reduces
to a CP. In this paper, we present a full-Newton step infeasible interior-point method
(IIPM) for the special weighted linear complementarity problem over the nonnegative
orthant. One iteration of the algorithm consists of one feasibility step followed by
a few centering steps. All of them are full-Newton steps, and hence, no calculation
of the step size is necessary. The iteration bound of the algorithm is as good as the
best-known polynomial complexity of IIPMs for linear optimization.

Keywords Weighted linear complementarity problem · Infeasible interior-point
method · Full-Newton step · Polynomial complexity

Mathematics Subject Classification 90C51 · 90C33

1 Introduction

In 2012, Potra [22] first introduced the notion of a weighted complementarity problem
(wCP), which consists of finding a pair of vectors (x, s) belonging to the intersection
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of amanifold and a cone, such that the product of the vectors in a certain algebra equals
a given weight vector w. If w is the zero vector, wCP reduces to a complementarity
problem (CP) [22]. A wCP can be applied to a large variety of equilibrium problems
from science, economics, and engineering. For example, the Fishermarket equilibrium
problem can be reformulated as a weighted linear complementarity problem (wLCP)
model and can be solved more efficiently as a wLCP than a nonlinear CP model
[22]. The linear programming and weighted centering (LPWC) problem proposed by
Anstreicher [2] reduces to a monotone wLCP as well [23]. Moreover, wCP can be
used to model equilibrium problems in atmospheric chemistry [1,6,16] and multibody
dynamics [10,21,29].

Potra [22] introduced and analyzed two interior-pointmethods (IPMs) for themono-
tone wLCP. In 2016, Potra [23] gave some fundamental results about sufficient wLCP
and proposed a corrector–predictor IPM to solve it. Based on a parametric smooth-
ing function, Zhang [31] considered a smoothing Newton algorithm for wLCP. Tang
[28] proposed a variant nonmonotone smoothing algorithm with improved numerical
results for large-scale wLCP. Chi, Gowda, and Tao [7] established some existence
and uniqueness results of the weighted horizontal linear complementarity problem
(wHLCP) on aEuclidean Jordan algebra.Asadi et al. [3] presented the first full-Newton
step IPM for the monotone wLCP and derived the best iteration bound obtained for
these types of problems.

IPMs for linear optimization (LO) were initiated by the work of Karmarkar [13].
These IPMs have polynomial complexity and often perform with high efficiency in
practice. One may distinguish between feasible IPMs and infeasible IPMs (IIPMs).
IIPMs start with an arbitrary positive point, and their feasibility is reached as optimality
is approached. IIPMswere first presented by Lustig [18] and Tanabe [27], respectively.
The primal–dual full-Newton step feasible IPM for LO was first analyzed by Roos et
al. in [26] and was later extended to IIPM by Roos in [24]. Assuming that an optimal
solution exists, it shows that at most O(n) iterations suffice to reduce the duality gap
and the residuals by a factor 1 − θ , where θ ∈ (0, 1) is a barrier update parameter
[24]. In addition, Darvay [8] proposed a new full-Newton step feasible IPM for LO
based on the equivalent algebraic transformation of the central path. Subsequently, a
series of full-step IPMs are considered for various optimization problems and com-
plementarity problems, see, e.g., LO [5,9,11,25], semidefinite optimization (SDO)
[14,19], symmetric optimization (SO) [12], linear complementarity problems (LCP)
[20], horizontal linear complementarity problems (HLCP) [15,17], and the Cartesian
P∗(κ)-HLCP over symmetric cones (the Cartesian P∗(κ)-SCHLCP) [4].

Motivated by the recent work of Potra and Roos [22,24], in this paper, we present
a full-Newton step IIPM for the special wLCP that can start from an arbitrary “large"
positive point. The algorithm is based on only using full-Newton steps, and hence,
there is no need for a line search at each iteration. The iteration bound of the algorithm
is as good as the best-known polynomial complexity of IIPMs for LO.

Conventions. Let R,R+ and R++ denote the set of real, nonnegative real, and
positive real numbers, respectively. The 2-norm and the infinity norm are denoted
by ‖ · ‖ and ‖ · ‖∞, respectively. The symbol e represents the vector of all-ones
with dimension n. log2 � is the logarithm of �, with 2 as the base. We denote the
componentwise operations on vectors by the usual notation for real numbers. Thus,
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if x, s ∈ Rn, xs,
x

s
, etc., will denote the vectors with components xi si ,

xi
si

, etc.,

respectively, for i = 1, 2, . . . , n. For a vector u ∈ Rn,we denote by min u = min{ui :
i = 1, . . . , n}.

2 Special wLCP

In this paper, we consider the following special wLCP, which is to find vectors
(x, s, y) ∈ Rn × Rn × Rm such that

⎧
⎨

⎩

Ax = b, x ≥ 0,
AT y + s = c, s ≥ 0,
xs = w.

(1)

Here, A ∈ Rm×n is a given matrix, b ∈ Rm and c ∈ Rn are given vectors, and
w ∈ Rn+ is a given weight vector (the data of the problem). Systems of the type (1)
have appeared in IPMs for LO.

The special wLCP (1) is called feasible (or strictly feasible) if F �= ∅ (or F0 �= ∅
), where

F = {z = (x, s, y) ∈ Rn+ × Rn+ × Rm : Ax = b, AT y + s = c},

and

F0 = {z = (x, s, y) ∈ Rn++ × Rn++ × Rm : Ax = b, AT y + s = c}.

The solution set of the special wLCP (1) is given by

F∗ = {z = (x, s, y) ∈ F : xs = w}.

Throughout this paper, we make the following assumptions:
(i) F0 �= ∅;
(ii) the matrix A has full row rank.
Let

P =
(
A
0

)

, Q =
(
0
I

)

, R =
(

0
AT

)

, a =
(
b
c

)

.

Then, (1) can be written as the following wHLCP

⎧
⎨

⎩

Px + Qs + Ry = a,

xs = w,

x ≥ 0, s ≥ 0,
(2)

123



Journal of Optimization Theory and Applications (2021) 190:108–129 111

with a given weight vector w ∈ Rn+. Since the triplet (P, Q, R) is skew-symmetric
[22] and wLCP (2) is strictly feasible by assumption (i), it follows from Theorem 4 in
[23] that the special wLCP (1) is solvable.

3 Full-Newton Step IIPM for the Special wLCP

Choose an arbitrary starting point z0 := (x0, s0, y0) with x0 > 0, s0 > 0, such that
x0s0 = w0 for some vector w0 > 0. Let

t0 = (x0)T (s0)

n
, (3)

w(t) =
(

1 − t

t0

)

w + t

t0
w0, t ∈ (0, t0]. (4)

Replacing the weighted complementarity condition xs = w by a centering condi-
tion in the special wLCP (1) yields

⎧
⎨

⎩

Ax = b, x ≥ 0,
AT y + s = c, s ≥ 0,
xs = w(t),

(5)

where w(t) is given by (4) with t ∈ (0, t0]. The solution of (5) is called the t−center
of the special wLCP (1), and the set of all the t−centers is called the central path of
the special wLCP (1). Since the algorithm under consideration is an IIPM, we apply
Newton’s method to the perturbed problem of (5) and find approximate solutions of
the special wLCP (1).

Denote the initial residual vectors r0b and r0c , respectively, as

r0b := b − Ax0,
r0c := c − AT y0 − s0.

For any 0 < ν ≤ 1, we consider the perturbed problem (wLCPν) of the special wLCP
(1) as follows

⎧
⎨

⎩

b − Ax = νr0b , x ≥ 0,
c − AT y − s = νr0c , s ≥ 0,
xs = w.

(6)

Lemma 3.1 The original wLCP (1) is feasible, i.e., F �= ∅, if and only if for any
ν satisfying 0 < ν ≤ 1 the perturbed problem wLCPν (6) satisfies the interior-
point condition (IPC), i.e., wLCPν (6) has a feasible solution (x(ν), s(ν), y(ν)) with
x(ν) > 0 and s(ν) > 0.

Proof Using the same argument as Theorem 5.13 in [30], we obtain the desired result.

�
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We define the infeasible central path of wLCPν (6) emanating from z0 as the set of
all points (t, z) = (t, x, s, y) with t ∈ (0, t0], satisfying

⎧
⎨

⎩

b − Ax = νr0b , x ≥ 0,
c − AT y − s = νr0c , s ≥ 0,
xs = w(t).

(7)

By Proposition 3 in [23] and Lemma 3.1, (7) is strictly feasible with the skew-
symmetric triplet (P, Q, R) and has a unique solution (x(t, ν), s(t, ν), y(t, ν)) for
any t ∈ (0, t0].

Note that since x0s0 = w0 = w(t0), z0 = (x0, s0, y0) is the t0−center of the
perturbed problem wLCP1 (6), i.e., (x(t0, 1), s(t0, 1), y(t0, 1)) = (x0, s0, y0). In the
following analysis, the parameters t and ν always satisfy t = νt0.

To measure proximity of iterate (x, s, y) to the t−center of wLCPν , we define the
norm-based proximity measure as follows

δ(x, s; t) := δ(v) := 1

2
‖v − v−1‖, where v :=

√
xs

w(t)
. (8)

It is obvious that δ(x0, s0; t0) = 0 at the start of the algorithm.
By extending the feasibility step for LO [24], we obtain the following linear system

in the search direction (Δ f x,Δ f s,Δ f y) for the special wLCP (1):

⎧
⎨

⎩

AΔ f x = θνr0b , x ≥ 0,
ATΔ f y + Δ f s = θνr0c , s ≥ 0,
sΔ f x + xΔ f s = w(t) − xs,

(9)

with θ ∈ (0, 1). Since A has full row rank, the system (9) uniquely defines
(Δ f x,Δ f s,Δ f y) for any x > 0 and s > 0. The iterate after the feasibility step
is given by

x f = x + Δ f x, s f = s + Δ f s, y f = y + Δ f y (10)

which satisfy thefirst twoequations of the system (7),withν replacedbyν+ = (1−θ)ν.

In a centering step, the search direction (Δx,Δs,Δy) is (uniquely) defined by

⎧
⎨

⎩

AΔx = 0, x ≥ 0,
ATΔy + Δs = 0, s ≥ 0,
sΔx + xΔs = w(t) − xs,

(11)

which is the usual Newton search direction for feasible primal–dual IPMs. The new
iterate after a centering step is given by

x+ = x + Δx, s+ = s + Δs, y+ = y + Δy. (12)
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Fig. 1 The algorithm

Now, we outline one main iteration of the full-Newton step IIPM. Suppose that for
some t ∈ (0, t0] and a threshold parameter τ ∈ (0, 1), we have an iterate (x, s, y)
satisfying the feasibility conditions, i.e., the first two equations in (6) for ν = t/t0, and
such that ‖w(t) − w‖ = ν‖x0s0 − w‖ and δ(x, s; t) ≤ τ . We reduce both t and ν by
a barrier parameter θ ∈ (0, 1), i.e., t+ = (1 − θ)t and ν+ = (1 − θ)ν = t+/t0. Then,
we find a new iterate (x+, s+, y+) that satisfies the first two equations in (6), with ν

replaced by ν+, and such that ‖w(t+) − w‖ = ν+‖x0s0 − w‖ and δ(x+, s+; t+) ≤ τ .
More precisely, each main iteration consists of a feasibility step followed by several

centering steps. The feasibility step moves from wLCPν to wLCPν+ , which is strictly
feasible for wLCPν+ and close to its t+-center (x(t+, ν+), s(t+, ν+), y(t+, ν+)). In
fact, the feasibility step (x f , s f , y f ) is designed in such a way that δ(x f , s f ; t+) ≤
1√
2
, i.e., (x f , s f , y f ) belongs to the quadratic convergence neighborhood with respect

to the t+-center of wLCPν+ (see Lemma 3.2). The centering steps are then performed
in wLCPν+ starting from (x f , s f , y f ) until the τ -neighborhood is reached, i.e., we
can get a new iterate (x+, s+, y+) that is strictly feasible for wLCPν+ and satisfies
δ(x+, s+; t+) ≤ τ < 1√

2
. An algorithmic description of our method is given in Fig. 1.

The following lemma describes the effect on δ(x, s; t) of a centering step, which
will play an important role in the analysis of Algorithm 3.1. Its proof is similar to the
proof of Theorem II.50 in [26].
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Lemma 3.2 If δ := δ(x, s; t) ≤ 1, then the primal–dual Newton step is feasible, i.e.,

x+ and s+ are nonnegative. Moreover, if δ := δ(x, s; t) ≤ 1√
2
, then δ(x+, s+; t) ≤

δ2.

In fact, the feasibility step is designed such that δ(x f , s f ; t+) ≤ 1√
2
, i.e., the iterate

(x f , s f , y f ) is within the region where the Newton process targeting at the t+−center
of wLCPν+ is quadratically convergent. After k centering steps, we will have feasible
iterate (x+, s+; t+) for wLCPν+ satisfying

δ(x+, s+; t+) ≤
(

1√
2

)2k

≤ τ,

which implies

k ≥ log2

(

log2
1

τ 2

)

.

Assuming τ = 1

8
, each main iteration consists of at most

(

log2
1

τ 2

)

+ 1 = log2(log2 64) + 1 ≤ 4 (13)

inner iterations.

Remark 3.1 Since in each iteration all the residuals ‖w(t) − w‖, ‖b − Ax‖ and ‖c −
AT y − s‖ are reduced by the same rate 1 − θ , we expect that we can get iterate
(x, s, y; t) such that

max{‖w(t) − w‖, ‖b − Ax‖, ‖c − AT y − s‖} ≤ ε.

If δ(x, s; t) > ε still holds, then after one feasibility step and one update of t and

ν, we have δ(x f , s f ; t+) ≤ 1√
2
. It follows from Lemma 3.2 that by performing a

few centering steps starting from (x f , s f , y f ) until δ(x+, s+; t+) ≤ ε,Algorithm 3.1
finds an ε−solution of the special wLCP (1).

4 Analysis of the Algorithm

In this section, we first analyze the feasibility of the full-Newton step. Then, we
establish an upper bound forω(v) defined by (16). Finally, the polynomial complexity
of Algorithm 3.1 is derived.
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4.1 Analysis of the Feasibility Step

At the beginning of the feasibility step, we have an iterate (x, s, y) that is strictly
feasible for wLCPν (6), with ν = t/t0, such that ‖w(t) − w‖ = ν‖x0s0 − w‖
and δ(x, s; t) ≤ τ < 1√

2
. We reduce t and ν to t+ = (1 − θ)t and ν+ = (1 − θ)ν,

respectively, with θ ∈ (0, 1). As we established in Sect. 3, the feasibility step produces
a new iterate (x f , s f , y f ),which satisfies‖w(t+)−w‖ = ν+‖x0s0−w‖ and is feasible
for wLCPν+ , except possibly the nonnegative constraints. The crucial element in the
analysis is to show that with a proper choice of the values of the parameter θ , both x f

and s f are positive such that δ(x f , s f ; t+) ≤ 1√
2
.

Define

dx := vΔ f x

x
, ds := vΔ f s

s
. (14)

By (8), (9), (10) and (14), we have

x f s f = (x + Δ f x)(s + Δ f s)
= xs + (sΔ f x + xΔ f s) + Δ f xΔ f s

= w(t) + xs

v2
dxds

= w(t)(e + dxds).

(15)

The following lemma provides the sufficient and necessary condition for the strict
feasibility of the new iterate (x f , s f , y f ).

Lemma 4.1 (Lemma 4.1 in [24]) The iterate (x f , s f , y f ) is strictly feasible if and
only if e + dxds > 0.

From Lemma 4.1, we can easily obtain the following corollary, which yields a
sufficient condition for the strict feasibility of the new iterate (x f , s f , y f ).

Corollary 4.1 The iterate (x f , s f , y f ) is strictly feasible if ‖dxds‖∞ < 1.

Let

ω(v) := 1

2

√
‖dx‖2 + ‖ds‖2. (16)

Then, we have ‖dx‖ ≤ 2ω(v), ‖ds‖ ≤ 2ω(v), and

dTx ds ≤ ‖dx‖‖ds‖ ≤ 2ω(v)2, (17)

‖dxds‖∞ ≤ ‖dx‖‖ds‖ ≤ 2ω(v)2. (18)

FromCorollary 4.1 and (18), we obtain another sufficient condition, which depends
on ω(v), for the strict feasibility of the new iterate (x f , s f , y f ).

Lemma 4.2 If ω(v) <
1√
2
, then the iterate (x f , s f , y f ) is strictly feasible.
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Since t+ = (1 − θ)t, it follows from (4) that

w(t+) = [1 − t(1 − θ)/t0]w + [t(1 − θ)/t0]w0 − θw + θw

= (1 − θ)w(t) + θw.
(19)

Using (8), we get

δ(x f , s f ; t+) := δ(v f ) := 1

2
‖v f − e

v f
‖, where v f :=

√

x f s f

w(t+)
. (20)

Due to Lemma 4.2, the assumption ω(v) <
1√
2
guarantees strict feasibility of the

iterate (x f , s f , y f ). Now, we derive an upper bound for δ(x f , s f ; t+).

Lemma 4.3 If ω(v) <
1√
2
, then the following inequality holds

4δ(v f )2 ≤ 2ω(v)2

1 − θ
+ (1 − θ)Ω + θEΩ + θ2nG, (21)

where

Ω := 2ω(v)2

1 − 2ω(v)2
, (22)

E := max
1≤i≤n

{

1,
wi

w0
i

}

, (23)

F := max
1≤i≤n

⎧
⎨

⎩

(
w0
i

wi
− 1

)2

,

(

1 − wi

w0
i

)2

,
1

1 − θ

⎫
⎬

⎭
. (24)

Proof See Appendix. 
�

By choosing the suitable parameter θ , the following lemma guarantees that the new

iterate (x f , s f , y f ) is strictly feasible and satisfies δ(v f ) ≤ 1√
2
.

Lemma 4.4 If ω(v) ≤ 1

2
and

0 ≤ θ ≤ θ := 1
√

(E − 1)2 + 2Fn + 1 + E
≤ 1

2
, (25)

where E is given by (23) and
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F := max
1≤i≤n

⎧
⎨

⎩

(
w0
i

wi
− 1

)2

,

(

1 − wi

w0
i

)2

, 1

⎫
⎬

⎭
, (26)

satisfying Fn − E + 1 > 0, then the iterate (x f , s f , y f ) is strictly feasible and

δ(v f ) ≤ 1√
2
. Particularly, if E = 1, then

0 < θ < θ := 1√
2Fn + 1 + 1

. (27)

Proof Sinceω(v) ≤ 1

2
<

1√
2
, it follows fromLemma 4.2 that the iterate (x f , s f , y f )

is strictly feasible. By (23), (26) and Lemma 4.3, δ(v f ) ≤ 1√
2
holds if

4δ(v f )2 ≤ 2ω(v)2

1 − θ
+ (1 − θ)

2ω(v)2

1 − 2ω(v)2
+ θ max

1≤i≤n

{

1,
wi

w0
i

}
2ω(v)2

1 − 2ω(v)2

+θ2n max
1≤i≤n

⎧
⎨

⎩

(
w0
i

wi
− 1

)2

,

(

1 − wi

w0
i

)2

,
1

1 − θ

⎫
⎬

⎭

≤ 1

2(1 − θ)
+ (1 − θ) + θ max

1≤i≤n

{

1,
wi

w0
i

}

+ θ2n

1 − θ
max
1≤i≤n

⎧
⎨

⎩

(
w0
i

wi
− 1

)2

,

(

1 − wi

w0
i

)2

, 1

⎫
⎬

⎭

≤ 1

2(1 − θ)
+ (1 − θ) + Eθ + Fnθ2

1 − θ

≤ 2

for some θ ∈ (0, 1
2 ]. Then, it is sufficient to show that

1

2(1 − θ)
+ (1 − θ) + Eθ + Fnθ2

1 − θ
≤ 2

⇔ 1 + 2(1 − θ)2 + 2Eθ(1 − θ) + 2Fnθ2 ≤ 4(1 − θ)

⇔ 3 − 4θ + 2θ2 + 2Eθ − 2Eθ2 + 2Fnθ2 ≤ 4 − 4θ

⇔ 2(Fn − E + 1)θ2 + 2Eθ − 1 ≤ 0. (28)

By (23) and (26), we get E ≥ 1, F ≥ 1. Next, we only consider the case when
Fn − E + 1 > 0. Since

Δ = 4E2 + 8(Fn − E + 1) = 4(E − 1)2 + 8Fn + 4 > 0,
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we have

θi = −2E + (−1)i
√

Δ

4(Fn − E + 1)
= −E + (−1)i

√
(E − 1)2 + 2Fn + 1

2(Fn − E + 1)

for i = 1, 2, and (28) is equivalent to

−E −√
(E − 1)2 + 2Fn + 1

2(Fn − E + 1)
≤ θ ≤ −E +√

(E − 1)2 + 2Fn + 1

2(Fn − E + 1)
.

Taking into account the fact that θ ∈ (0, 1), we obtain

0 < θ ≤ θ := −E +√
(E − 1)2 + 2Fn + 1

2(Fn − E + 1)

= 1
√

(E − 1)2 + 2Fn + 1 + E
≤ 1

2
,

which finishes the proof. 
�

4.2 An Upper Bound for!(v)

To obtain an upper bound for ω(v), we consider the vectors dx and ds . It follows from
(8) and (14) that the system (9), which defines the search direction (Δ f x,Δ f s, Δ f y),
can be expressed in terms of the scaled search directions dx and ds as follows

⎧
⎨

⎩

Adx = θνr0b ,

W (t)−1A
T
Δ f y + ds = θνvs−1r0c ,

dx + ds = v−1 − v,

(29)

where θ ∈ (0, 1) and

A := AV−1X , V := diag(v), X := diag(x), W (t) := diag(w(t)).

By the above definition of A, we have A = AD
√
W (t), where

D := diag

(
xv−1

√
w(t)

)

= diag

(√
x

s

)

= diag
(√

w(t)vs−1
)

.

Then, the system (29) could be reformulated as

⎧
⎨

⎩

AD
√
W (t)dx = θνr0b ,

(
√
W (t))−1DATΔ f y + ds = θνvs−1r0c ,

dx + ds = v−1 − v.

(30)
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Now, the orthogonality of the scaled search directions d̃x and d̃s defined by (31)
immediately follows.

Lemma 4.5 Let (d̃x , d̃s, ˜Δ f y) be the solution of the system

⎧
⎨

⎩

AD
√
W (t)d̃x = 0,

(
√
W (t))−1DAT ˜Δ f y + d̃s = 0,

d̃x + d̃s = r̃ ,

(31)

with r̃ ∈ Rn . Then, d̃x
T
d̃s = 0.

Proof Let ξ̃ := −˜Δ f y. By eliminating d̃s from the second relation in (31), we get

(
√
W (t))−1DAT ξ̃ + d̃x = r̃ . (32)

Multiplying both sides of (32) from the left with AD
√
W (t), it follows from the first

relation in (31) that

AD2AT ξ̃ = AD
√
W (t )̃r .

Therefore,

ξ̃ = (AD2AT )−1AD
√
W (t )̃r .

Substituting it into (32) yields

d̃x = r̃ − (
√
W (t))−1DAT (AD2AT )−1AD

√
W (t )̃r = (I − P )̃r , (33)

where

P := (
√
W (t))−1DAT (AD2AT )−1AD

√
W (t).

By (31) and (33), we have

d̃s = r̃ − d̃x = Pr̃ . (34)

It follows from the definition of P that

P(I − P) = P −
[
(
√
W (t))−1DAT (AD2AT )−1AD

√
W (t)

]2 = O,

which together with (33) and (34) implies d̃x
T
d̃s = 0. This completes the proof. 
�

Let

L := {η ∈ Rn : Aη = 0}.
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Then, the affine space {η ∈ Rn : Aη = θνr0b } equals dx + L. It follows from
Lemma 4.5, (29) and (30) that ds ∈ θνvs−1r0c + L⊥. Since L⋂L⊥ = {0}, suppose
that q is the unique solution of the system

{
Aq = θνr0b ,

W (t)−1A
T
ξ + q = θνvs−1r0c .

The following lemma provides an upper bound for ω(v) depending on ‖q‖ and
δ(v).

Lemma 4.6 (Lemma 4.6 in [24]) Let q be the unique point in the intersection of the
affine spaces dx + L and ds + L⊥. Then,

2ω(v) ≤
√

‖q‖2 + (‖q‖ + 2δ(v))2.

Now, we derive an upper bound for ‖q‖. Suppose that w > 0 in the following
analysis.

Let ζ > 0 be a constant such that max{‖x∗‖∞, ‖s∗‖∞} ≤ ζ for some optimal
solution (x∗, s∗, y∗) of the special wLCP (1), which implies

ζ 2 ≥ x∗
i s

∗
i = wi > 0, for i = 1, . . . , n.

We start the algorithm with the specified initial point

x0 = s0 = ζe, y0 = 0.

Then,

w0 = x0s0 = ζ 2e > w, t0 = (x0)T (s0)

n
= ζ 2,

and

0 ≤ x0 − x∗ ≤ x0 = ζe, 0 ≤ s0 − s∗ ≤ s0 = ζe.

Therefore, we obtain from (4), (23) and (26) that

minw(t) = min

[(

1 − t

t0

)

wi + t

t0
ζ 2
]

≥ minw > 0, (35)

w(νt0) =
(

1 − νt0
t0

)

w + νt0
t0

ζ 2e = (1 − ν)w + νζ 2e, (36)

E = max
1≤i≤n

{

1,
wi

ζ 2

}

= 1, (37)

F = max
1≤i≤n

{(
ζ 2

wi
− 1

)2

,

(

1 − wi

ζ 2

)2

, 1

}

= max
1≤i≤n

{(
ζ 2

wi
− 1

)2

, 1

}

.

(38)
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The following lemma provides an upper bound for ‖q‖, which is important in the
complexity analysis of Algorithm 3.1.

Lemma 4.7 The following inequality holds

‖q‖ ≤ θνζ

√

eT
(

x

sw(t)
+ s

xw(t)

)

. (39)

Proof By following the proof of Lemma 4.7 in [24], we obtain the desired result. 
�

Let τ = 1

8
and δ(v) ≤ τ at the start of an iteration. By Corollary A.10 [24], we

have

√
x

s
≤ √

2
x(t, ν)√

w(t)
,

√
s

x
≤ √

2
s(t, ν)√

w(t)
. (40)

Substituting (40) into (39) yields

‖q‖ ≤ θνζ

√

2eT
(
x(t, ν)2 + s(t, ν)2

w(t)2

)

. (41)

By (27) and (37), we have

θ = α√
2Fn + 1 + 1

≤ θ = 1√
2Fn + 1 + 1

(42)

with 0 < α ≤ 1. Then, it follows from (35), (41) and (42) that

‖q‖ ≤
θνζ

√

2eT
(
x(t, ν)2 + s(t, ν)2

)

minw(t)

≤
ανζ

√

2eT
(
x(t, ν)2 + s(t, ν)2

)

(
√
2Fn + 1 + 1)minw

= ανζ
√
2(‖x(t, ν)‖2 + ‖s(t, ν)‖2)

(
√
2Fn + 1 + 1)minw

. (43)

Notice that (x(t, ν), s(t, ν), y(t, ν)) ∈ Rn ×Rn ×Rm is the unique solution of the
system

⎧
⎨

⎩

b − Ax = ν(b − Aζe), x ≥ 0,
c − AT y − s = ν(c − ζe), s ≥ 0,
xs = w(νt0),
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where w(νt0) is defined by (36) with 0 < ν ≤ 1. Then, by following the proof for

the LO case in [24], we obtain ‖x(t, ν)‖1 + ‖s(t, ν)‖1 ≤ 2nζ

ν
. Combining the last

inequality and (43) gives

‖q‖ ≤ ανζ
√
2(‖x(t, ν)‖2 + ‖s(t, ν)‖2)

(
√
2Fn + 1 + 1)minw

≤
√
2ανζ(‖x(t, ν)‖1 + ‖s(t, ν)‖1)

(
√
2Fn + 1 + 1)minw

≤ 2
√
2αnζ 2

(
√
2Fn + 1 + 1)minw

= √
2αρ(ζ ), (44)

where

ρ(ζ ) := 2nζ 2

(
√
2Fn + 1 + 1)minw

. (45)

4.3 Complexity Analysis

Recall from Lemma 4.4 that in order to guarantee that δ(v f ) ≤ 1√
2
, we want to have

ω(v) ≤ 1

2
. By Lemma 4.6, this will be satisfied if

‖q‖2 + (‖q‖ + 2δ(v))2 ≤ 1.

Taking into account the fact that δ(v) ≤ τ = 1

8
, we have δ(v f ) ≤ 1√

2
if ‖q‖ ≤ 1

2
. It

follows from (44) that the latter inequality certainly holds if we take

α := 1

2
√
2ρ(ζ )

.

By (38), (42) and (45), direct calculations yield

θ = α√
2Fn + 1 + 1

= 1

2
√
2(

√
2Fn + 1 + 1)ρ(ζ )

= minw

4
√
2nζ 2

≤ 1

4
√
2Fn

< θ := 1√
2Fn + 1 + 1

,
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and

1

θ
:= 4

√
2nζ 2

minw
. (46)

The above discussion leads to the following main result, which provides an upper
bound on the number of iterations for Algorithm 3.1.

Theorem 4.1 Assume that the special wLCP (1) is strictly feasible with w > 0, and A
has full row rank. If ζ > 0 and max{‖x∗‖∞, ‖s∗‖∞} ≤ ζ for some optimal solution
(x∗, s∗, y∗) of the special wLCP (1), then after at most

⌈
16

√
2nζ 2

minw
log

max{‖ζ 2e − w‖, ‖r0b‖, ‖r0c ‖}
ε

⌉

+
⌈

log2

(

log2
1

ε2

)⌉

+ 1 (47)

iterations, Algorithm 3.1 finds an ε−solution of the special wLCP (1).

Proof From (4), we have

‖w(t+) − w‖ = t+
t0

‖w0 − w‖ = (1 − θ)
t

t0
‖ζ 2e − w‖.

Since at each iteration the norms of the residual vectors are also reduced by the factor
1−θ,we can find a solution such that max{‖w(t)−w‖, ‖b−Ax‖, ‖c−AT y−s‖} ≤ ε

after at most

1

θ
log

max
{‖ζ 2e − w‖, ‖r0b‖, ‖r0c ‖}

ε

main iterations. It follows from (13) and (46) that the number of the inner iterations
is bounded above by

⌈
16

√
2nζ 2

minw
log

max{‖ζ 2e − w‖, ‖r0b‖, ‖r0c ‖}
ε

⌉

.

If δ(x, s; t) > ε still holds, after one feasibility step and k centering steps we have
iterate (x+, s+; t+) such that

δ(x+, s+; t+) ≤
(

1√
2

)2k

≤ ε,

which gives the smallest integer

k :=
⌈

log2

(

log2
1

ε2

)⌉

≥ log2

(

log2
1

ε2

)

.

Therefore, we obtain the desired complexity result (47). 
�
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Before starting Algorithm 3.1, it is important to choose the number ζ > 0 to deter-
mine the initial point x0 = s0 = ζe, y0 = 0. If the special wLCP (1) is solvable, there
exists a binary input size L such that any optimal solution (x∗, s∗, y∗) of the special
wLCP (1) satisfies max{‖x∗‖∞, ‖s∗‖∞} ≤ 2L . Thus, when starting the algorithm
with ζ = 2L , Algorithm 3.1 can find an ε−solution of the special wLCP (1) after at
most

⌈
4L+2

√
2n

minw
log

max
{‖4Le − w‖, ‖b − 2L Ae‖, ‖c − 2Le‖}

ε

⌉

+
⌈

log2

(

log2
1

ε2

)⌉

+ 1

iterations.

5 Conclusions

We have proposed a full-Newton step IIPM for the special wLCP, which is a notion
first introduced by Potra [22]. The algorithm generalizes the full-Newton step IIPM of
Roos for LO [24] and possesses the following good properties. First, the algorithm can
start from an arbitrary “large" positive point, without having to use another method
to achieve a better-centered starting point. Second, we reduce the parameters t in the
definition of the central path and ν in the definition of the feasibility residuals at the
same rate for wLCP. Third, under suitable assumptions, the iterates always lie in the
quadratic convergence neighborhood of the central path. Finally, the iteration bound
of the algorithm is as good as the best-known result of IIPM for LO.
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A Proof of Lemma 4.3

By (15), (19) and (20), we have

(v f )2 = w(t)(e + dxds)

w(t+)
= w(t)(e + dxds)

(1 − θ)w(t) + θw
.
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Since ω(v) <
1√
2
, we obtain from (18) that ‖dxds‖∞ ≤ 2ω(v)2 < 1, and hence

e + dxds > 0. By letting u := √
e + dxds, we have v f =

√
w(t)

(1 − θ)w(t) + θw
u.

Then, from (20),

4δ(v f )2 =
∥
∥
∥
∥
∥

√
w(t)

(1 − θ)w(t) + θw
u −

√
(1 − θ)w(t) + θw

w(t)
u−1

∥
∥
∥
∥
∥

2

=
∥
∥
∥
∥
∥

θ(w(t) − w)√
w(t)[(1 − θ)w(t) + θw]u +

√
(1 − θ)w(t) + θw

w(t)
(u − u−1)

∥
∥
∥
∥
∥

2

= θ2eT
[

(w(t) − w)2

w(t)((1 − θ)w(t) + θw)
u2
]

+ eT
[

((1 − θ)w(t) + θw)

w(t)
(u − u−1)2

]

+2θeT
[

(w(t) − w)

w(t)
u(u − u−1)

]

.

Taking into account the fact that u2 = e + dxds, the three terms in the last relation
can be written, respectively, as follows:

θ2eT
[

(w(t) − w)2

w(t)((1 − θ)w(t) + θw)
u2
]

= θ2eT
[

(w(t) − w)2

w(t)((1 − θ)w(t) + θw)
(e + dxds)

]

= θ2eT
[

(w(t) − w)2

w(t)((1 − θ)w(t) + θw)

]

+ θ2eT
[

(w(t) − w)2

w(t)((1 − θ)w(t) + θw)
dxds

]

,

eT
[

((1 − θ)w(t) + θw)

w(t)
(u − u−1)2

]

= eT
[

((1 − θ)w(t) + θw)

w(t)
(u2 + u−2 − 2e)

]

= eT
[

((1 − θ)w(t) + θw)

w(t)
(dxds + e

e + dxds
− e)

]

= eT
[

((1 − θ)w(t) + θw)

w(t)
dxds

]

+ eT
[

((1 − θ)w(t) + θw)

w(t)
· e

e + dxds

]

−eT
[

(1 − θ)w(t) + θw

w(t)

]

,

and

2θeT
[
(w(t) − w)

w(t)
u(u − u−1)

]

= 2θeT
[
(w(t) − w)

w(t)
u2
]

− 2θeT
[
w(t) − w

w(t)

]

= 2θeT (eu2) − 2θeT
[

w

w(t)
u2
]

− 2θeT e + 2θeT
[

w

w(t)

]

= 2θeT (e + dxds) − 2θeT
[

w

w(t)
(e + dxds)

]

− 2θn + 2θeT
[

w

w(t)

]
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= 2θn + 2θdTx ds − 2θeT
[

w

w(t)

]

− 2θeT
[

w

w(t)
dxds

]

− 2θn + 2θeT
[

w

w(t)

]

= 2θeT
[
(w(t) − w)

w(t)
dxds

]

.

Substitution yields

4δ(v f )2 = θ2eT
[

(w(t) − w)2

w(t)((1 − θ)w(t) + θw)

]

+ θ2eT
[

(w(t) − w)2

w(t)((1 − θ)w(t) + θw)
dxds

]

+eT
[

((1 − θ)w(t) + θw)

w(t)
dxds

]

+ eT
[

((1 − θ)w(t) + θw)

w(t)
· e

e + dxds

]

−eT
[

((1 − θ)w(t) + θw)

w(t)

]

+ 2θeT
[

(w(t) − w)

w(t)
dxds

]

= eT
{[

θ2(w(t) − w)2

w(t)((1 − θ)w(t) + θw)
+ (1 + θ)w(t) − θw

w(t)

]

dxds

}

+eT
[

θ2(w(t) − w)2

w(t)((1 − θ)w(t) + θw)
− (1 − θ)w(t) + θw

w(t)

]

+eT
{[

(1 − θ)e + θ
w

w(t)

]
e

e + dxds

}

.

Since

θ2(w(t) − w)2

w(t)((1 − θ)w(t) + θw)
+ (1 + θ)w(t) − θw

w(t)

= θ2(w(t)2 + w2 − 2w(t)w) + ((1 + θ)w(t) − θw)((1 − θ)w(t) + θw)

w(t)((1 − θ)w(t) + θw)

= θ2w(t)2 + θ2w2 − 2θ2w(t)w + (1 − θ2)w(t)2 − θ2w2 + 2θ2w(t)w

w(t)((1 − θ)w(t) + θw)

= w(t)

(1 − θ)w(t) + θw

and

θ2(w(t) − w)2

w(t)((1 − θ)w(t) + θw)
− (1 − θ)w(t) + θw

w(t)

= θ2(w(t) − w)2 − ((1 − θ)w(t) + θw)2

w(t)((1 − θ)w(t) + θw)

= [θ(w(t) − w) + (1 − θ)w(t) + θw][θ(w(t) − w) − (1 − θ)w(t) − θw]
w(t)((1 − θ)w(t) + θw)

= θ(w(t) − w) − (1 − θ)w(t) − θw

(1 − θ)w(t) + θw

= θ(w(t) − w)

(1 − θ)w(t) + θw
− e,
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we have

4δ(v f )2 = eT
[

w(t)

(1 − θ)w(t) + θw
dxds

]

+ eT
[

θ(w(t) − w)

(1 − θ)w(t) + θw
− e

]

+eT
{[

(1 − θ)e + θ
w

w(t)

]
e

e + dxds

}

= eT
[

w(t)

(1 − θ)w(t) + θw
dxds

]

+ eT
[

θ(w(t) − w)

(1 − θ)w(t) + θw
− e

]

−eT
{[

(1 − θ)e + θ
w

w(t)

]
dxds

e + dxds

}

+ eT
[

(1 − θ)e + θ
w

w(t)

]

= eT
[

w(t)

(1 − θ)w(t) + θw
dxds

]

+ eT
[

θ(w(t) − w)

(1 − θ)w(t) + θw
+ θ

w

w(t)
− θe

]

−(1 − θ)eT
(

dxds
e + dxds

)

− θeT
[

w

w(t)
· dxds
e + dxds

]

= eT
[

w(t)

(1 − θ)w(t) + θw
dxds

]

+ θ2eT
[

(w(t) − w)2

w(t)((1 − θ)w(t) + θw)

]

−(1 − θ)eT
(

dxds
e + dxds

)

− θeT
[

w

w(t)
· dxds
e + dxds

]

.

Hence, it follows from (4), (17) and (18) that

4δ(v f )2 ≤ 1

1 − θ

n∑

i=1

|dxi dsi | + (1 − θ)

n∑

i=1
|dxi dsi |

1 − 2ω(v)2
+ θ

n∑

i=1

wi

wi (t)
· |dxi dsi |
1 − 2ω(v)2

+θ2
n∑

i=1

(
t

t0

)2

· (w0
i − wi )

2

wi (t)((1 − θ)wi (t) + θwi )

≤ 2ω(v)2

1 − θ
+ (1 − θ)

2ω(v)2

1 − 2ω(v)2
+ θ max

1≤i≤n

{

1,
wi

w0
i

}
2ω(v)2

1 − 2ω(v)2

+θ2n max
1≤i≤n

⎧
⎨

⎩

(
w0
i

wi
− 1

)2

,

(

1 − wi

w0
i

)2

,
1

1 − θ

⎫
⎬

⎭
.

Moreover, in the case of wi = 0 for some i, we have

(
t

t0

)2

· (w0
i − wi )

2

wi (t)((1 − θ)wi (t) + θwi )
=
(
t

t0

)2

· (w0
i )

2

(1 − θ) ·
(
t

t0
w0
i

)2 = 1

1 − θ
,

which implies that relation (21) holds for w ≥ 0. 
�
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