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Abstract

As an extension of the complementarity problem (CP), the weighted complementarity
problem (wCP) is a large class of equilibrium problems with wide applications in
science, economics, and engineering. If the weight vector is zero, the wCP reduces
to a CP. In this paper, we present a full-Newton step infeasible interior-point method
(ITPM) for the special weighted linear complementarity problem over the nonnegative
orthant. One iteration of the algorithm consists of one feasibility step followed by
a few centering steps. All of them are full-Newton steps, and hence, no calculation
of the step size is necessary. The iteration bound of the algorithm is as good as the
best-known polynomial complexity of IIPMs for linear optimization.

Keywords Weighted linear complementarity problem - Infeasible interior-point
method - Full-Newton step - Polynomial complexity

Mathematics Subject Classification 90C51 - 90C33

1 Introduction

In 2012, Potra [22] first introduced the notion of a weighted complementarity problem
(wCP), which consists of finding a pair of vectors (x, s) belonging to the intersection
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of amanifold and a cone, such that the product of the vectors in a certain algebra equals
a given weight vector w. If w is the zero vector, wCP reduces to a complementarity
problem (CP) [22]. A wCP can be applied to a large variety of equilibrium problems
from science, economics, and engineering. For example, the Fisher market equilibrium
problem can be reformulated as a weighted linear complementarity problem (WLCP)
model and can be solved more efficiently as a wLCP than a nonlinear CP model
[22]. The linear programming and weighted centering (LPWC) problem proposed by
Anstreicher [2] reduces to a monotone wLCP as well [23]. Moreover, wCP can be
used to model equilibrium problems in atmospheric chemistry [1,6,16] and multibody
dynamics [10,21,29].

Potra [22] introduced and analyzed two interior-point methods (IPMs) for the mono-
tone wLCP. In 2016, Potra [23] gave some fundamental results about sufficient wLCP
and proposed a corrector—predictor IPM to solve it. Based on a parametric smooth-
ing function, Zhang [31] considered a smoothing Newton algorithm for wLCP. Tang
[28] proposed a variant nonmonotone smoothing algorithm with improved numerical
results for large-scale wLCP. Chi, Gowda, and Tao [7] established some existence
and uniqueness results of the weighted horizontal linear complementarity problem
(WHLCP) on a Euclidean Jordan algebra. Asadi et al. [3] presented the first full-Newton
step [IPM for the monotone wLCP and derived the best iteration bound obtained for
these types of problems.

IPMs for linear optimization (LO) were initiated by the work of Karmarkar [13].
These IPMs have polynomial complexity and often perform with high efficiency in
practice. One may distinguish between feasible IPMs and infeasible IPMs (IIPMs).
ITPMs start with an arbitrary positive point, and their feasibility is reached as optimality
is approached. IIPMs were first presented by Lustig [ 18] and Tanabe [27], respectively.
The primal—dual full-Newton step feasible IPM for LO was first analyzed by Roos et
al. in [26] and was later extended to IIPM by Roos in [24]. Assuming that an optimal
solution exists, it shows that at most O (n) iterations suffice to reduce the duality gap
and the residuals by a factor 1 — 8, where 8 € (0, 1) is a barrier update parameter
[24]. In addition, Darvay [8] proposed a new full-Newton step feasible IPM for LO
based on the equivalent algebraic transformation of the central path. Subsequently, a
series of full-step IPMs are considered for various optimization problems and com-
plementarity problems, see, e.g., LO [5,9,11,25], semidefinite optimization (SDO)
[14,19], symmetric optimization (SO) [12], linear complementarity problems (LCP)
[20], horizontal linear complementarity problems (HLCP) [15,17], and the Cartesian
P, («)-HLCP over symmetric cones (the Cartesian Py (k)-SCHLCP) [4].

Motivated by the recent work of Potra and Roos [22,24], in this paper, we present
a full-Newton step IIPM for the special wLCP that can start from an arbitrary “large"
positive point. The algorithm is based on only using full-Newton steps, and hence,
there is no need for a line search at each iteration. The iteration bound of the algorithm
is as good as the best-known polynomial complexity of IIPMs for LO.

Conventions. Let R, R} and R denote the set of real, nonnegative real, and
positive real numbers, respectively. The 2-norm and the infinity norm are denoted
by || - || and || - ||co, respectively. The symbol e represents the vector of all-ones
with dimension 7. log, o is the logarithm of o, with 2 as the base. We denote the
componentwise operations on vectors by the usual notation for real numbers. Thus,
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. X . . Xi
if x,s € R", xs, —, etc., will denote the vectors with components x;s;, —, etc.,
s S

1
respectively, fori = 1,2, ..., n.Foravectoru € R”, we denote by min # = min{u; :
i=1,...,n}

2 Special wLCP

In this paper, we consider the following special wLCP, which is to find vectors
(x,s,y) € R*" x R" x R" such that

Ax=b, x>0,
ATy +s=c, 5>0, (D
Xs =w.

Here, A € R"™*" is a given matrix, b € R” and ¢ € R" are given vectors, and
w € R’} is a given weight vector (the data of the problem). Systems of the type (1)
have appeared in IPMs for LO.

The special wLCP (1) is called feasible (or strictly feasible) if F # ¢ (or F° # ¢
), where

F={z=(x,5y) eRLXxRLxR": Ax =b, ATy +5 =0},
and
FO={z=(x,5.y) eR}, xR}, xR": Ax =D, ATy 45 =c}.
The solution set of the special WLCP (1) is given by
Fr={z=(x,5,y) € F:xs=w}
Throughout this paper, we make the following assumptions:

(1) FO +£ ;

(i1) the matrix A has full row rank.

=(0) o) w=(5) ()

Then, (1) can be written as the following wHLCP

Px + Qs+ Ry =a,
Xs =w, ()
x>0, 5s>0,
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with a given weight vector w € R’}.. Since the triplet (P, Q, R) is skew-symmetric
[22] and wLCP (2) is strictly feasible by assumption (i), it follows from Theorem 4 in
[23] that the special wLCP (1) is solvable.

3 Full-Newton Step IIPM for the Special wLCP

Choose an arbitrary starting point 0= (xO, 59, yo) with x° > 0, s° > 0, such that
x99 = w0 for some vector w® > 0. Let
(xT (s
fp = ———
n

w(t) = (1 _ i) wt Lwd te 0.1l @

0] 1o

, 3)

Replacing the weighted complementarity condition xs = w by a centering condi-
tion in the special wLCP (1) yields

Ax=b, x>0,
ATy +s=¢c, s>0, (5)
xs = w(t),

where w(?) is given by (4) with ¢ € (0, f]. The solution of (5) is called the t —center
of the special wLCP (1), and the set of all the 7 —centers is called the central path of
the special wLCP (1). Since the algorithm under consideration is an IIPM, we apply
Newton’s method to the perturbed problem of (5) and find approximate solutions of
the special wLCP (1).

Denote the initial residual vectors rg and r?, respectively, as

For any 0 < v < 1, we consider the perturbed problem (WLCP,),) of the special wLCP
(1) as follows

b—Ax:vrg, x>0,
c—ATy—s=vr2,s20, (6)
Xs = w.

Lemma 3.1 The original wLCP (1) is feasible, i.e., F # , if and only if for any
v satisfying 0 < v < 1 the perturbed problem wLCP,, (6) satisfies the interior-
point condition (IPC), i.e., wLCP,, (6) has a feasible solution (x(v), s(v), y(v)) with
x(v) > 0ands(v) > 0.

Proof Using the same argument as Theorem 5.13 in [30], we obtain the desired result.
O
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We define the infeasible central path of wLCP,, (6) emanating from z° as the set of
all points (¢, z) = (¢, x, s, y) with ¢ € (0, #], satisfying

b—Ax:vr,?, x>0,
c—ATy—s:vr?,szo, (7)
xs = w(t).

By Proposition 3 in [23] and Lemma 3.1, (7) is strictly feasible with the skew-
symmetric triplet (P, Q, R) and has a unique solution (x(z, v), s(¢, v), y(¢, v)) for
any t € (0, 7o].

Note that since x%s = w® = w(ty), z° = (x°, 5%, y0) is the ro—center of the
perturbed problem wLCP; (6), i.e., (x(fo, 1), s(t0, 1), y(t0, 1)) = (x?, 5%, y0). In the
following analysis, the parameters ¢ and v always satisfy ¢ = viy.

To measure proximity of iterate (x, s, y) to the t—center of wLCP,,, we define the
norm-based proximity measure as follows

5(x, 51 1) = 8(v) :=%||v—u*1||, where v := /%. (8)

It is obvious that S(xo, 50 to) = 0 at the start of the algorithm.
By extending the feasibility step for LO [24], we obtain the following linear system
in the search direction (Afx, Afs, AT y) for the special wLCP (1):

AATx = Gvrg, x>0,
ATAfy—i—Afs:@vr?, s >0, )
sA x +xATs = w(t) — xs,

with 6 € (0, 1). Since A has full row rank, the system (9) uniquely defines
(Afx, Afs, ATy) for any x > 0 and s > 0. The iterate after the feasibility step
is given by

xf=x+alx, s =s+als, y =y+ ATy (10)

which satisfy the first two equations of the system (7), with v replaced by vy = (1-6)v.
In a centering step, the search direction (Ax, As, Ay) is (uniquely) defined by

AAx =0, x>0,
ATAy 4+ As =0, s>0, (11)
SAx + xAs = w(t) — xs,

which is the usual Newton search direction for feasible primal-dual IPMs. The new
iterate after a centering step is given by

xt=x4Ax, sT =5+ As, yt =y + Ay. (12)
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Algorithm 3.1 A full-Newton step IIPM for the special wLCP

Input:
Accuracy parameter ¢ > 0;
barrier update parameter 6, 0 < 6 < 1;
threshold parameter 7 > 0.
begin
2:=2">0;5:=5">0;y:=y% w® =20 t :=¢ty = 7(1“):““): v=1;
while max{d(x,s;t), |lw(t) —wl|, ||b — Az, |[c = ATy —s||} > ¢ do
begin
feasibility step:
feasibility direction is calculated using (9);
(x,8,9) := (z,5,y) + (Afz, Afs, Afy);
update of t and v:
t:=(1-0)t
v:=(1-0)v;
centering steps:
while (z,s;t) > 7 do
begin
centering direction is calculated using (11);
(z,s,y) := (z,s,9) + (Az, As, Ay);
end
end
end

Fig.1 The algorithm

Now, we outline one main iteration of the full-Newton step IIPM. Suppose that for
some ¢t € (0, fp] and a threshold parameter T € (0, 1), we have an iterate (x, s, y)
satisfying the feasibility conditions, i.e., the first two equations in (6) for v = ¢ /#¢, and
such that [|w(r) — w| = v||x%s° — w| and §(x, 5; ) < 7. We reduce both 7 and v by
a barrier parameter 0 € (0, 1), i.e.,ty = (1 —0)t and v4 = (1 — 0)v = 11 /tg. Then,
we find a new iterate (x*, s, yT) that satisfies the first two equations in (6), with v
replaced by v, and such that |w(ty) — w| = vy |[x%° —w| and S(x T, s 14) < 7.

More precisely, each main iteration consists of a feasibility step followed by several
centering steps. The feasibility step moves from wLCP,, to wLCP,, , which is strictly
feasible for wLCP,,, and close to its t-center (x (4, vy), s(ty, v4), y(t+, v4)). In
fact, the feasibility step (xf, st yf) is designed in such a way that 8(xf, st ty) <

L ie., (x Iost, yf ') belongs to the quadratic convergence neighborhood with respect

tcﬁhe ty-center of WLCP,,, (see Lemma 3.2). The centering steps are then performed
in wLCP,, starting from (x/,s7,y/) until the t-neighborhood is reached, i.e., we
can get a new iterate (x™, s, y*) that is strictly feasible for wLCP,, and satisfies
S(xT, st <t < % An algorithmic description of our method is given in Fig. 1.

The following lemma describes the effect on §(x, s; ) of a centering step, which
will play an important role in the analysis of Algorithm 3.1. Its proof is similar to the
proof of Theorem I1.50 in [26].
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Lemma3.2 If§ := &(x, s;t) < 1, then the primal-dual Newton step is feasible, i.e.,

xT and sT are nonnegative. Moreover, if § := 8(x, s;1t) < E then §(xt,sT;1) <

82,

1
In fact, the feasibility step is designed such that §(x/, s/ 1) < ﬁ’ i.e., the iterate
(x, s/, yT)is within the region where the Newton process targeting at the 7. —center
of wLCP,, is quadratically convergent. After k centering steps, we will have feasible

iterate (x*, s*; ;) for wLCP,, satisfying

k
1 2
S(xt,stiry) < (— <rt,
<(5) =

which implies

1
k > log, <10g2 —2> .
T

. 1 o . .
Assuming T = 3’ each main iteration consists of at most

1
(10g2 ;) + 1 =log,(log, 64) +1 <4 (13)

inner iterations.

Remark 3.1 Since in each iteration all the residuals ||w(t) — w||, |b — Ax|| and |c —
ATy — 5| are reduced by the same rate 1 — @, we expect that we can get iterate
(x, s, y; t) such that

max{llw(t) — wl, b — Ax|, [lc — ATy —s||} < e.

If 8(x,s;t) > e still holds, then after one feasibility step and one update of ¢ and

1
v, we have S(xf st ty) < —2 It follows from Lemma 3.2 that by performing a
few centering steps starting from (x7, s/, y/) until §(x T, s*; 1,) < &, Algorithm 3.1
finds an e —solution of the special wLCP (1).
4 Analysis of the Algorithm
In this section, we first analyze the feasibility of the full-Newton step. Then, we

establish an upper bound for w (v) defined by (16). Finally, the polynomial complexity
of Algorithm 3.1 is derived.
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4.1 Analysis of the Feasibility Step

At the beginning of the feasibility step, we have an iterate (x, s, y) that is strictly

feasible for wLCP,, (6), with v = /9, such that [|w(t) — w| = v[x%° — w||
and 8(x,s;t) <t < % We reduce r and vtoty = (1 —6)trand vy = (1 — ),
respectively, with @ € (0, 1). As we established in Sect. 3, the feasibility step produces
anewiterate (x/, s/, y/), whichsatisfies || w(ty.)—w|| = v [|x*s®—w|| and is feasible
for wLCP,,_, except possibly the nonnegative constraints. The crucial element in the

analysis is to show that with a proper choice of the values of the parameter 6, both x/
and s/ are positive such that S(xf, st t4) < %

Define

Al Af
d,o=22r g =2 (14)
X S

By (8), (9), (10) and (14), we have

xfsf = (x + Afx)(s + Afs)
=xs+ (sAfx +fos) + A xASs
xs 15
= w(t) + S5 dxds (15)
= w(t)(e + dxdy).
The following lemma provides the sufficient and necessary condition for the strict
feasibility of the new iterate (x/, s/, y/).

Lemma 4.1 (Lemma 4.1 in [24]) The iterate (x', s/, y/) is strictly feasible if and
only if e +d,ds; > 0.

From Lemma 4.1, we can easily obtain the following corollary, which yields a
sufficient condition for the strict feasibility of the new iterate (x/, s/, y/).

Corollary 4.1 The iterate (7, s, yT) is strictly feasible if ||dydy | 0o < 1.
Let

1
@) =5V lldx 1> + llds 2. (16)

Then, we have ||d, || < 2w ((v), ||d;]| < 2w(v), and

dlds < |ldelllldsl < 20(v)?, (17)
Ideds oo < Iy llllds |l < 20 (v)*. (18)

From Corollary 4.1 and (18), we obtain another sufficient condition, which depends
on w(v), for the strict feasibility of the new iterate 7, s, y7h).

1 T,
—, then the iterate (x/, s7, y/) is strictly feasible.

V2

Lemma4.2 Ifw(v) <
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Since t+ = (1 — 0)zt, it follows from (4) that

w(ty) =[1—1(1 = 60)/to]w + [1(1 — 6)/10]w® — 6w + 6w 19)

=(1—-0)w(t) + Obw.

Using (8), we get
xfstf
(20)

1
8(xf, sf; ty) = 8(vf) = §||vf — vif”’ where v/ = W)’

guarantees strict feasibility of the

Due to Lemma 4.2, the assumption o (v) < 7
iterate (x It yf ). Now, we derive an upper bound for §(x It ty).

1
, then the following inequality holds

Lemmad4.3 Ifw(v) < 7
(21)

2 2
4s(wh)? < % +(1-0)2+0EQ +6%1G,

where
20(v)?
2 =—"—, 22
1 —2w(v)? (22)
E := max [1&0} (23)
1<i<n wl.
2 2
w? w; 1
F := max —+—-1) , == s—= - (24)
I<i<n w; w; 1—6
O

Proof See Appendix.
By choosing the suitable parameter 6, the following lemma guarantees that the new
1

iterate (x/, s/, y/) is strictly feasible and satisfies s < —

1
Lemma4.4 If w(v) < 7 and

1
< (25)

0<6<86:=
VE-1D24+2Fn+1+E

)

| =

where E is given by (23) and
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0 2 2
w; ;
F := max (—’—1),(1—w—6>,1 , (26)
1<i<n wi w;

satisfying Fn — E + 1 > 0, then the iterate (x', s, yl) is strictly feasible and
1
5(vf) < —. Farticularly, if E = 1, then
7 y, if

_ 1
0<0 <l i=—"o—o-ou-—. 27
V2Fn+1+1 7)

1 1
Proof Since w(v) < 7 < —, itfollows from Lemma 4.2 that the iterate (x/, s/, yf)

V2

1
is strictly feasible. By (23), (26) and Lemma 4.3, s(wl) < E holds if

1 —2w(v)? I<i<n 1 —2w(v)?

2 2
ot max (L) (- :
1<i<n wi ’ w? ’ 1—-6

+(1—6)+06 max {1%}
w

2 . 2
45(v7)? < ( ) -0 2 ) max {1%} 20w)
w;

<
- 2(1 —9) I<i<n i
2 2
LI N L T PO
X - - 3 - T 3
1—06 1<i<n w; w?
< +(1—0)+Ef+ Fn6”
=20-0 1=

<2

for some 6 € (0, %]. Then, it is sufficient to show that

2

Fno
+(1—9)—|—E9+1 2 <2

1
2(1 — )
S 1420 —60)2+2E0(1 —0) +2FnH? <4(1 —6)
&340 4207 +2E0 —2EQ” +2Fnb* <4 — 46
& 2Fn—E+1)0%+2E0 —1<0. (28)

By (23) and (26), we get E > 1, F > 1. Next, we only consider the case when
Fn—FE+1 > 0. Since

A=4E>+8Fn—E+1)=4(E—1)>+8Fn+4> 0,
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we have

 R2E+(=D'VA  —E+(DV(E-1D>+2Fn+1
T 4Fn—-E+1) 20Fn—E+1)

fori = 1,2, and (28) is equivalent to

—E—(E-1)2+2Fn+1 —pe —E+(E-1)2+2Fn+1
2Fn—E+1) =7 = 2Fn—E+1)

Taking into account the fact that & € (0, 1), we obtain

—E+J(E-D2+2Fn+1
2Fn—E+ 1)
|

 J(E-1)2+2Fn+1+E

0<6<8:=

1
=< ~
-2
which finishes the proof. O

4.2 An Upper Bound for @ (v)
To obtain an upper bound for w (v), we consider the vectors dy and d. It follows from

(8) and (14) that the system (9), which defines the search direction (Afx, AT s, Afy),
can be expressed in terms of the scaled search directions d, and d; as follows

Ad, = erg,
W) AT ATy +dy = Gvus 10, (29)
de+d;, =v! — v,

where 6 € (0, 1) and

A= AV_IX, V :=diag(v), X :=diag(x), W(r) := diag(w(t)).

By the above definition of A, wehave A = AD./ W (t), where

-1
D := diag (%) = diag ( ;—C> = diag <\/w(t)vs*1) .

Then, the system (29) could be reformulated as

ADJW(t)d, = Ovr),
VWO 'DAT ATy + dy = ovvs—1r0, (30)
dy +dy = v —v.
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Now, the orthogonality of the scaled search directions dy and dy defined by (31)
immediately follows.

Lemma4.5 Let (Cz;, c?;, ATy) be the solution of the system

ADJYW()d, =0,

(VW) 'DATATy +d, =0, 31)
do+d, =7,

with7 € R”. Then, d." d, = 0.

——

Proof Let£ := —Af y. By eliminating dy from the second relation in (31), we get
W) 'DATE +d, =T (32)

Multiplying both sides of (32) from the left with AD/W (¢), it follows from the first
relation in (31) that

AD?>ATE = ADW()F.
Therefore,
E=AD*ATY 'ADYW )T,
Substituting it into (32) yields
dy =7 — (/W®) 'DAT(AD*ATY"'ADW ()7 = (I — P)F, (33)
where
P:= /W) 'DAT(AD*AT)'AD/W(1).
By (31) and (33), we have
dy =7 —dy = PF. (34)
It follows from the definition of P that
PU—P)=P— [(/W)_IDAT(ADZAT)_IAD/W]z -0,
which together with (33) and (34) implies LZCTLTY = 0. This completes the proof. 0O
Let
L:={neR":An=0}.
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Then, the affine space {n € R" : Ap = er,?} equals dy + L. It follows from
Lemma 4.5, (29) and (30) that d; € 9vvs‘1r£ + £+ Since £ () £+ = {0}, suppose
that ¢ is the unique solution of the system

Ag = Gvrg,
W(t)’IZTé +q = vis’lr?.
The following lemma provides an upper bound for w(v) depending on | ¢|| and
8(v).

Lemma 4.6 (Lemma 4.6 in [24]) Let g be the unique point in the intersection of the
affine spaces dy + L and dg + L. Then,

20) = 917 + (g1 + 282,

Now, we derive an upper bound for |¢g||. Suppose that w > 0 in the following
analysis.

Let ¢ > 0 be a constant such that max{||x*| o0, [[$*|lcc} < ¢ for some optimal
solution (x*, s*, y*) of the special wLCP (1), which implies

;22x;“si*=w,->0, for i=1,...,n.

We start the algorithm with the specified initial point

x0=s0=§e, yO:O.

Then,
ONT (0
(x*)" (%)
wO:x0s0=§26>w, t():—:{z,
n
and
0<x'—x*<x"=c¢e, 0<s'—s*<s"=ce.

Therefore, we obtain from (4), (23) and (26) that

min w(¢) = min |:<1 — L) w; + L§2i| > minw > 0, 35)
0 o
w(vig) = (1 — ”—t°> w+ ”—t"gze = (1= v)w+v’e, (36)
In) o
wj
T
2 2 N2 2 2
F = max {(§——1> ,(1—%) ,1,: max {({__1> ,1}
1<i<n w;j ¢ 1<i<n w;
(38)
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The following lemma provides an upper bound for ||g||, which is important in the
complexity analysis of Algorithm 3.1.

Lemma 4.7 The following inequality holds

N 5
||61||59V§\/€ (sw(t)+xw(t)>' (39)

Proof By following the proof of Lemma 4.7 in [24], we obtain the desired result. O

1
Lett = 3 and §(v) < t at the start of an iteration. By Corollary A.10 [24], we
have

X x(t,v s s(t,v
B _ s

s TVwo Vx T T Vw)

Substituting (40) into (39) yields

2 2
1l 56m;\/zeT (x(t,v) +5(t,v) ) 4D

(40)

w(t)?

By (27) and (37), we have

o — 1
g% G- -
V2Fn+ 141" V2Fn+1+1

with 0 < « < 1. Then, it follows from (35), (41) and (42) that

(42)

91);‘\/26T (x(t,v)2 +5(1,v)?)

min w(z)

gl =

avg\/zeT (x(t. )2 + 5(1, v)2)
= W2Fn+ 14+ 1)minw

_ gy 2(x(t w2+ [s @ v 1?)
(W2Fn+141)minw ’

(43)

Notice that (x(z, v), s(t, v), y(t, v)) € R" x R" x R™ is the unique solution of the
system

b—Ax =v(b— Ate), x >0,
c—ATy—s=v(c—§e), s >0,

xs = w(vtp),
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where w(v1y) is defined by (36) with 0 < v < 1. Then, by following the proof for

2
the LO case in [24], we obtain |[x (¢, v) |1 + ||s(t, v)|1 < Lg Combining the last
v
inequality and (43) gives

lqll < avey/2(x @, v [12 + [Is(z, v)[I2)
=~ (V2Fn+ 1+ Dminw

- V2 (lx (@, v) [ + s, vl
W2Fn+ 14+ 1)minw

- Zﬁané‘z
T W2Fn+ 1+ 1)minw

= V2ap(£), (44)

where

2ne?

. 45
(V2Fn+ 1+ D)minw )

(&) =

4.3 Complexity Analysis

1
Recall from Lemma 4.4 that in order to guarantee that § (v/) < —, we want to have

/2

1
o) < > By Lemma 4.6, this will be satisfied if

lgl? + (gl +28()* < 1.

1 1 1
Taking into account the fact that §(v) < 7 = 3 we have 8(v«f) < —2 if |lg] < 7 It
follows from (44) that the latter inequality certainly holds if we take

1
T

By (38), (42) and (45), direct calculations yield

o 1
6 = =
V2En+1+1  2V2(/2Fn+1+ 1D)p(?)

min w 1

= <
4/2nt2 T 442Fn
_ 1

V2Fn+1+1

<0 :=
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and
1 4V2nc?
L 4ane? (46)
0 min w

The above discussion leads to the following main result, which provides an upper
bound on the number of iterations for Algorithm 3.1.

Theorem 4.1 Assume that the special wLCP (1) is strictly feasible with w > 0, and A
has full row rank. If { > 0 and max{||x*||co, [[$*llcc} < ¢ for some optimal solution
(x*, 5™, y*) of the special wLCP (1), then after at most

16:/2 2 2, , 0 , 0 1
[ Vang tog Mxtl”e = wll Wiy . Ire ”}—‘+{10g2 (logz ;ﬂﬂ 47

min w e

iterations, Algorithm 3.1 finds an e —solution of the special wLCP (1).

Proof From (4), we have
_ 40 _ .2
lwiy) —wll=—lw —wl|l=(1-0)—[¢"e—wl.
fo fo

Since at each iteration the norms of the residual vectors are also reduced by the factor
1—6, we can find a solution such that max{||w(t) —w]||, ||b— Ax||, ||c—ATy—s I} <e
after at most

1 max {122 —wl. 9. 17211}
510g e

main iterations. It follows from (13) and (46) that the number of the inner iterations
is bounded above by

Pﬁﬁngz log max{[|c2e — w]l, |21, ||r3||}w

min w e

If 5(x, s;¢) > ¢ still holds, after one feasibility step and k centering steps we have
iterate (x*, s*; ;) such that

k
1 2
S(xt sty < <— <e,
V2

which gives the smallest integer

1 1
k= [log2 (log2 8—2>—‘ > log, (log2 8—2) .

Therefore, we obtain the desired complexity result (47). O
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Before starting Algorithm 3.1, it is important to choose the number ¢ > 0 to deter-
mine the initial point x* = 5O = ¢e, y© = 0. If the special WLCP (1) is solvable, there
exists a binary input size L such that any optimal solution (x*, s*, y*) of the special
wLCP (1) satisfies max{|[x*|loo, [s*[lco} < 2%. Thus, when starting the algorithm
with ¢ = 2F, Algorithm 3.1 can find an e—solution of the special wLCP (1) after at
most

4L+2 /op max {||4Le — w s b—2LAe , c—2Le 1
[ log {Il (] Il 1 I} n [logQ <log2 :2)—‘ +1

min w £

iterations.

5 Conclusions

We have proposed a full-Newton step IIPM for the special wLCP, which is a notion
first introduced by Potra [22]. The algorithm generalizes the full-Newton step IIPM of
Roos for LO [24] and possesses the following good properties. First, the algorithm can
start from an arbitrary “large" positive point, without having to use another method
to achieve a better-centered starting point. Second, we reduce the parameters ¢ in the
definition of the central path and v in the definition of the feasibility residuals at the
same rate for wLCP. Third, under suitable assumptions, the iterates always lie in the
quadratic convergence neighborhood of the central path. Finally, the iteration bound
of the algorithm is as good as the best-known result of ITPM for LO.
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A Proof of Lemma 4.3

By (15), (19) and (20), we have

w(t)(e +dyds)  w(t)(e +dydy)
w(ty) (I =0w() + 0w’

w/)? =
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1
Since w(v) < —, we obtain from (18) that ||dyds|lcc < 2w (v)? < 1, and hence

V2
w(t)

e + dydg > 0. By letting u := /e + d.d;, we have v/ = \/(1 0wl +9wu.
Then, from (20),

2
45l = H\/ w(r) "y \/(1 — w(t) +9wu_1

(I =0)w(t) + 0w w(r)

B O(w(t) — w) N (1—9)w(t)+0w( e
~ VeI = 0w + owl - w(t) e

:926T|: (w(t) —w)? uz] er[«l—e)w(r>+ew>(u_u_1)2]
w()((1 —0)w(t) + Ow) w(t)

2

+260eT [Mu(u — uil)] .

w(t)

Taking into account the fact that u? = e + dyd;, the three terms in the last relation
can be written, respectively, as follows:

g1 [ (w(t) — w)? uz] 2T [ (w(r) - w)? (e + dxds)]
w(@O) (1= O)w(t) + ow) w®H = Hw@) +6w)
T [ W) — w)? ] 42T [ w®-—w? ]
wO((1— )w(o) + 6w) w()((T=0)w(n) +6w) " |”
o [w(u - u—1)2]
w(t)
—r [COO 0 o2 gy
w(t)

Y [((1 —Ow() + ow)

e
did -
w(t) (dads + =00 e)]

[ (d=0)w() +6w) 7| (I —O)w() + Ow) ) e
¢ [ w(t) dxds] te |: w(t) e +dxds]
o7 |:(1 —w(t) +9w]
¢ w(t)

and

20¢T [Wu(u — u_l):|

= 20¢7 [—(w(t) — w)u2] — 20" [—wm — w}
w(t) w(r)

=20e" (eu®) — 20e” [Luz} —20eTe 4+ 20" [L:I
w(t) w(t)

oot e[ - e
=20¢" (e +dydy) — 20e |:w(t)(e+dxds)i| 20n + 20e |:w(t)]
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=200 +20d7d, —20eT | 22— | —20eT | 2—d.d, | — 26n + 207 | —2—
n+ x Ys € |:w(t):| e w(t) x Qs n+ 20e ()

= 20¢7 [deds] .
w(t)

Substitution yields

2 _ 2,7 (w(t) — w)? ] 5 T [ (w() — w)? ]
o= [w(r)«l “own +ow | T | v = owe 1 ow =

[ fe)w(t)+6‘w)dxds] yol [((1 —Ow@) +6w) e ]
w(t) w(t) e+ d.ds
[ (1 =B0)w®) +9w)] 42007 [(w(t) — w)dxds]
w(t) w(r)
T {[ 02 (w(t) — w)? N (1+6)w() — Gw] dxds}
w®) (1 — O w(t) + Ow) w(t)
02 (w(t) — w)? (L =0)w) + Gw]
Lw () (1 = O)w(r) 4 Ow) w(t)

T _ v ¢
+e [(1 9)e+9w(l)] e—i—dxds}'

+eT

Since

02 (w(t) — w)? (1 +6)w(t) — ow
w(t)(1 — O)w(t) + dw) w(r)
02w + w? — 2w)w) + (1 +O)w() — Ow) (1 — Ow(r) + Hw)
B w()((1 = Hw() + Ow)
02w 4+ 02w? — 202ww + (1 — 0Hw (1) — 0%w? +20%w(Hw
B w(®)((1 — w(r) + Ow)

_ w(t)
T =0)w() + 6w

and

02 (w(t) — w)? (1 —-0)w() +ow
wt) (1 —Ow(t) +0w) w(t)

_ 02 (w() —w)? — (1 — Ow() + Ow)?
B w@®) (1 = NHw(t) + Ow)
_[B(w(@) —w) + (I = 0)w(@) + Ow][6(w(r) —w) — (1 —O)w(r) — w]
B w@®) (1 = Ow(t) + ow)

O(w(t) —w) — (1 —O)w(r) — ow
- (I —0)w() + Ow

O(w(t) —w)

T d—0w) +0w

)
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we have

48(vf)2=eT[ W) dxds:|+eT|: OGwr) — w) _e}
(1= 0w() + ow (1= 0w() + ow

e

e {[(1_9)”9 <r>]e+dxds

T [ w(?) dxds] Lol [ Ow@) —w) e}
(1 —Ow() + 0w (1 —0)w() + ow

{[(1 —O)e+6— ] _deds | [(1 —fe+ 9—}

w(t) | e+dydy ()
_ T [ w(t) i Lot [ O(w(r) — w) oY —9e:|
T LA =-0wr) +ow A—Ow) +0w  w()

|
~

T( dxds) T w ddy ]

T—0)el [ =255 ) _gel | — .

e+ dds L w(t) e+ dyds |

_or w() ded, | + 0% [ (w® —w) }
| (1 —O)w(r) + 0w w@) (1 —)w() + Ow)

dod CTw  dd ]
—(1—-90 T x s —QT ) x s
(1=0)e <e+dxds) “ v etdd |

Hence, it follows from (4), (17) and (18) that

Z |dx1dst n W |d d |
48 f2<— dy.d 19—9 P e
') Zu, sl A =O) s + ;wm e
+6? Z (L) . (wf —wi)?
— \1o w; (D) (1 — Ow; () + w;)
- 2a)(v)2 +a _0) 20 (v)? tom < 20(v)?
1-— —2w(v)? 15, 1 —2w(v)?
2 2
2 w? w; 1
+6“n max — =1 , 1——0 ,—
1<i<n w; w; 1-6
Moreover, in the case of w; = 0 for some i, we have
<t>2 (w? — w;)? B <t>2 (w))? 1
fo w; (D) (1 — Ow; (t) + Ow;) fo t o 2 1-9¢’
(I=0) | —w,
fo
which implies that relation (21) holds for w > 0. O
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