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Abstract
In this paper, we propose a projected subgradient method for solving constrained non-
differentiable quasiconvex multiobjective optimization problems. The algorithm is
based on the Plastria subdifferential to overcome potential shortcomings known from
algorithms based on the classical gradient. Under suitable, yet rather general assump-
tions, we establish the convergence of the full sequence generated by the algorithm to
a Pareto efficient solution of the problem. Numerical results are presented to illustrate
our findings.
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1 Introduction

Multiobjective optimization, also known as multicriteria optimization, refers to the
process of optimizing several objective functions simultaneously over a feasible region.
Usually, for nontrivial problems, it is nearly impossible to find a single point that
individually optimizes all given objective functions at the same time. Therefore, the
concept of optimality is replaced by the concept of Pareto optimality or efficiency.

Multiobjective optimization problems have beenwidely applied inmany areas, such
as engineering [12], management science [31,35], environmental analysis [13] and
design [16] to name just a few. For more details on the applications of multiobjective
optimization in economy, industry, agriculture and many more, one can see [24,26].

Due to its various applications, the research on multiobjective optimization prob-
lems has captured a great amount of attention and great development has been made in
many aspects including the existence of solutions, the relationships between solutions
under different definitions, Farkas-type results, optimality conditions and numerical
optimization algorithms, see, for instance, [8,11,14,15,18,20,21,23,33,34] and the ref-
erences therein.

In the present paper, we focus on optimization algorithms for solvingmultiobjective
optimization problems with not necessarily differentiable or convex objectives over
a convex feasible region. Up to now, many classical (i.e., scalar-valued) optimization
methods have been successfully extended to the multiobjective optimization setting,
such as the projected gradient method [6,18], steepest descent method [4], Newton
method [34], proximal point method [8,27,28], trust-region method [33] and several
more.

Among these strategies, this paper is concerned with the projected gradient method.
As a classical and important basic scheme, the projected gradient method and its mod-
ified versions have been used frequently to solve nonsmooth optimization problems
[1,25,37–40]. For the multiobjective optimization case, Graña Drummond and Iusem
[18] considered two versions of projected gradient methods for constrained vector
optimization problems with continuously differentiable objective function. For one
version of the algorithm (with exogenously given square summable step lengths),
by using an Armijo-like rule, the authors established the convergence of the gener-
ated sequence to a weakly efficient optimum when the objective function is convex.
For another version of the algorithm (without exogenous step lengths and convexity
assumption), they just showed the stationarity of the cluster points (if any), whose
convergence to a weakly efficient optimum was established in [17] with the convexity
assumptionon theobjective function. For nondifferentiable convexvector optimization
problems, by exploring the structure of the vector problem, Bello Cruz [2] proposed
a projected subgradient method and showed that all cluster points of the generated
sequence are weakly efficient optimum points of the problem. Recently, Brito et al.
[6] and Bento et al. [5] have proposed projected subgradient methods for solving
constrained convex multiobjective optimization problems, where the multiobjective
function is componentwise convex. By employing a scalarization process, the authors
obtained the convergence of the generated sequence toward a Pareto optimal point.
Their method serves as the starting point for the algorithm presented in this work. It
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is, however, extended by means of a more general gradient concept on the one hand
and additional algorithmic degrees of freedom on the other hand.

It is worth pointing out that the above-cited work centers on convex optimization
models. Inmany real-life problems, one often encounters the situation that the involved
objective function is not necessarily convex. Thus, the study of nonconvex multiob-
jective optimization problems is of high importance from both the theoretical and the
application point of view.

In this paper, we consider constrained quasiconvex multiobjective optimization
problems, meaning that each objective function is a quasiconvex function. Our moti-
vation stems from the extensive applications of this type of models in fields like
microeconomy or location theory, see [19,27] and Example 5.4.

For the projected gradient method for quasiconvex multiobjective optimization, let
us mention the work in [3], where the objective function is assumed to be continuously
differentiable. In [3], the authors showed the convergence of the sequence generated by
the method introduced therein to a stationary point and furthermore to a weak Pareto
efficient solution when the components of the multiobjective function are pseudocon-
vex. As to unconstrained nondifferentiable quasiconvex multiobjective optimization
problems, by using the lower subdifferentials of the quasiconvex function [30,36],
Cruz Neto et al. [9] proposed a subgradient-type method to obtain the Pareto optimal
points. There are, however, no numerical examples to illustrate the implementation of
the method therein.

Inspired by the above-mentioned work, we aim to propose a projected subgradient
method for solving quasiconvex multiobjective optimization problems on nonempty
closed convex subsets of the Euclidean space. In this case, each objective function is
not necessarily differentiable. First order descent information regarding the objective
function is hereby based on the concept of the Plastria subdifferential, see [30] and
Definition 2.3. This subdifferentiability concept was chosen because (a) its actual
values can be obtained easily from the classical gradient and the Lipschitz constant of
the objective in the smooth case, (b) its definition relies on the lower level sets of the
function (making it particularly interesting for (nonsmooth) minimization problems)
and (c) albeit from being infinite (therefore well defined in a very general setting),
the norm of some elements of the Plastria subdifferential can be bounded from above,
which is important from the numerical viewpoint.

Under suitable hypotheses,weobtain total convergence for aPareto optimal solution
of the problem. Furthermore, the performance of ourmethod is illustrated by numerical
experiments.

The outline of this article is as follows. In Sect. 2, we recall some basic definitions
and preliminary materials that are used in the sequel. We also provide some examples
for the proposed subdifferential calculus to prepare the numerical problems and make
the paper self-contained. In Sect. 3, we present the algorithm and prove its well-
definedness. Sect. 4 contains the convergence analysis of this algorithm. Specifically,
the convergence of the sequence produced by the algorithm to a Pareto optimal point of
the problem is established under some reasonable assumptions. Numerical examples
are presented in Sect. 5 to demonstrate the performance of this method. Finally, we
provide some concluding remarks in Sect. 6.
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2 Preliminaries and Auxiliary Results

In this section, we recall some notations and results that are used throughout our
presentation. We denote by 〈·, ·〉 the usual inner product of Rn and by ‖ · ‖ its corre-
sponding norm. If A is countable, we denote by #A the number of its elements. Let
R
m+ and Rm++ denote the nonnegative orthant and positive orthant of Rm , respectively.

We consider the partial orders � (≺) in Rm , defined by

x � y (resp. x ≺ y) ⇔ y − x ∈ R
m+ (resp. y − x ∈ R

m++).

Consider the function F : Rn→R
m , given by F(x) = ( f1(x), f2(x), · · · , fm(x)).

We are interested in the following multiobjective optimization problem

min
x∈C F(x), (1)

where C ⊆ R
n is a nonempty closed convex set.

Definition 2.1 A point x∗ ∈ C is called a weak Pareto optimal point or weak Pareto
efficient solution for the problem (1), if there does not exist x ∈ C such that F(x) ≺
F(x∗). If there does not exist x ∈ C satisfying F(x) � F(x∗) and F(x) �= F(x∗),
then x∗ is said to be a Pareto optimal point or Pareto efficient solution for (1).

Wewill denote the set of Pareto (resp.weakPareto) efficient solutions of the problem
by E (resp. Ew). For a given x ∈ R

n and a closed convex set D ⊆ R
n , recall that the

orthogonal projection of x onto D, denoted by PD(x), is the unique point in D such
that ‖x − PD(x)‖ = inf y∈D ‖x − y‖; moreover, one has

〈x − PD(x), y − PD(x)〉 ≤ 0, y ∈ D. (2)

A function f : Rn → R is said to be quasiconvex if for every x, y ∈ R
n andα ∈ [0, 1],

f (αx + (1 − α)y) ≤ max{ f (x), f (y)}.

It is clear that a convex function is also a quasiconvex function. Following [24, Corol-
lary 6.6], the above definition can be adapted to multiobjective functions as follows.

Definition 2.2 Let the multiobjective function F : Rn → R
m be given by F =

( f1, f2, · · · , fm). Then F is quasiconvex if each component function fi is quasi-
convex.

For a given z ∈ R and a function f : Rn → R, denote by

S≤
f (z) = {x ∈ R

n : f (x) ≤ f (z)} and S<
f (z) = {x ∈ R

n : f (x) < f (z)}

the level set and the strict level set of f at z. The following notion of lower subd-
ifferentiability and strict lower subdifferentiability were introduced by Plastria [30],
which extend the notion of the Fenchel–Moreau subdifferentials
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∂F−M f (z) = {s ∈ R
n : 〈s, x − z〉 ≤ f (x) − f (z) ∀x ∈ R

n},

of the convex function (see [32]).

Definition 2.3 Given a function f : Rn → R and a point z ∈ R
n , the lower subdiffer-

ential, respectively, the strict lower subdifferential (in the sense of Plastria [30]) of f
at z are defined by

∂< f (z) = {s ∈ R
n : 〈s, x − z〉 ≤ f (x) − f (z) ∀x ∈ S<

f (z)}

and

∂≤ f (z) = {s ∈ R
n : 〈s, x − z〉 ≤ f (x) − f (z) ∀x ∈ S≤

f (z)}.

The function f is said to be lower subdifferentiable (resp. strictly lower subdifferen-
tiable) at z if ∂< f (z) �= ∅ (resp. ∂≤ f (z) �= ∅).
It is clear that ∂≤ f (z) ⊂ ∂< f (z). Moreover, note that (also one can see [30, Theorem
3.1] or [9]) for any s ∈ ∂≤ f (z) and any λ ≥ 1, one has λs ∈ ∂≤ f (z), which shows
that the set ∂≤ f (z) is unbounded. Thus, the lower subdifferential (or the strict lower
subdifferential) is generally different from the Fenchel–Moreau subdifferential, even
for convex functions. However, from the definition it is already clear that the inclusion
∂F−M f (z) ⊆ ∂≤ f (z) holds for any convex function.

The following property of the strict lower subdifferential can be obtained easily
from the definition, and one can also refer to [36, Proposition 2.2(a)].

Proposition 2.1 For a function f : Rn → R and z ∈ R
n, 0 ∈ ∂≤ f (z) if and only if z

is a global minimizer of f .

Some other useful properties of the (strict) lower subdifferential for quasiconvex
and Lipschitz continuous functions are listed in the following proposition, for (i), one
can see [30, Theorem 2.3], while for (ii), one can see [36, Propositions 2.4 and 2.6].
But before stating it, let us first recall that a quasiconvex function f is said to be
essentially quasiconvex if each local minimizer of f is global.

Proposition 2.2 Let f : Rn → R be a quasiconvex and Lipschitz continuous function
with Lipschitz constant L. Then the following assertions hold:

(i) For each z ∈ R
n, there exists s ∈ ∂< f (z) such that ‖s‖ ≤ L.

(ii) Suppose further that f is essentially quasiconvex. Then ∂≤ f (z) �= ∅ for every
z ∈ R

n, and ∂< f (z) = ∂≤ f (z) for every nonminimizer z of f .

Example 2.1 Consider the function (see [9, Example 1] for a similar example and
Fig. 1) f : R → R given by

f (x) =

⎧
⎪⎨

⎪⎩

− 1
3 − (x − (−1)) for x ≤ −1

x3
3 for x ∈ (−1, 1)
1
3 + c · (x − 1) for x ≥ 1.

, (c ≥ 0)
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Fig. 1 Sketch of the function f
in Example 2.1, values of c > 0
range between 0.05 and 2.0; the
thick solid line indicating c = 1

2

The function f is (for c �= 1) not differentiable at x = ±1 and quasiconvex. As the
function is monotone increasing on [−1,∞), the level sets S•

f (z) for z ∈ [−1,+∞)

are given by

S≤
f (z) = {x ∈ R|xz0 ≤ x ≤ z} and S<

f (z) = {x ∈ R|xz0 ≤ x < z} ,

where xz0 denotes the x-coordinate of the left intersection point of f ≡ f (z), which
is always in (−∞,−1].

We calculate the Plastria subdifferential of f for two points:

1. At z0 = 1
2 , the Plastria subdifferential is given by

∂≤ f (z0) =
[1

4
,∞

)
.

2. At z1 = 0 we can calculate the Plastria subdifferential as

∂≤ f (z1) =
[1

3
,∞

)
.

One disadvantage of working with subdifferentials instead of the classical gradient
or approximations thereof is the numerical tractability of calculating ∂ f .

One can, however, show, cf. [9, Cor. 2.22], that for differentiable function with
known Lipschitz constant, an element of the Plastria subdifferential can always be
found by appropriately upscaling the gradient∇ f , immediatelywidening the potential
applications of this subgradient concept.

Example 2.2 A classical example of a quasiconvex function is the negative Gaussian
bell curve. In the one-dimensional case, this function is (scaled) given by

f (x) = − exp(−x2/2) .
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Fig. 2 Sketch of the function f in Example 2.2

Instead of giving exact formulas for ∂≤ f (x) or just strongly over-approximating it,
we will use a ‘mix’ of the classical gradient and a heuristic to approximate ∂≤ f (x)
for the nonconvex areas.

Between the two inclination points x ∈ [−1, 1], the function is strictly convex, and
for the calculation of ∂≤ f (x), one can simply rely on the classical gradient of f . If x
is exactly at one of these points x0 = ±1, the intersection point of the linear approxi-
mation f (x0) + ∇ f (x0) · (• − x0) with the y-axis is at Q∗:=(0,−2 · exp(−1/2)) ≈
(0,−1.2131). To obtain elements of the Plastria subdifferential for |x | > 1, we can
use the slope of the linear interpolant between Q∗ and (x, f (x)). This leads to the
formula

s̃(x) ⊂ ∂≤ f (x) , with s̃(x):=
⎧
⎨

⎩

x · exp(−x2/2) for |x | ≤ 1
(

2√
exp(1)

− exp
(−x2/2

)
)

/x else.
(3)

In Fig. 2, the result of this approximation is illustrated.

Finally, we conclude this section by presenting the well-known quasi-Fejér con-
vergence theorem, which has been widely used to analyze gradient and subgradient
methods, see, among others, [3,6,9,17,18].

Definition 2.4 A sequence {uk} ⊆ R
n is said to be quasi-Fejér convergent to a

nonempty set U ⊆ R
n if and only if for each u ∈ U , there exists a summable

sequence {εk} ⊆ R+ such that

‖uk+1 − u‖2 ≤ ‖uk − u‖2 + εk .

Proposition 2.3 [7, Theorem 1] If {uk} ⊆ R
n is quasi-Fejér convergent to a nonempty

set U ⊆ R
n, then {uk} is bounded. Furthermore, if a cluster point ū of {uk} belongs

to U, then the whole sequence {uk} converges to ū.
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3 The Algorithm

In this section,we describe our proposed algorithm to solve (1). In order to guarantee its
well-definedness, we assume throughout the whole paper that the following condition
holds.

Assumption 3.1 Every component function fi : Rn → R, i = 1, 2, · · · ,m, of the
objective function F : Rn → R

m is essentially quasiconvex and Lipschitz continuous
with Lipschitz constant L .

Consider the sequences {γk} ⊆ (0, 1] and {αk} ⊆ R+ with

+∞∑

k=0

γkαk = +∞,

+∞∑

k=0

α2
k < +∞. (4)

The projected subgradient algorithm is defined as follows.

Algorithm 3.1 Input: (i) objective mapping F = ( f1, f2, . . . , fm) : Rn → R
m with

Lipschitz constant L > 0, (ii) nonempty, closed, convex set C ⊆ R
n, (iii) parameter

sequences {αk} ⊆ R+, {γk} ⊆ (0, 1] fulfilling (4), (iv) for arbitrary k = 0, 1, . . .:
nonempty index sets {Ik} ⊆ {1, 2, . . . ,m}, (v) weighting parameters {(λk1, ..., λk#Ik )}
such that for all k = 0, 1, . . . it holds (λk1, ..., λ

k
#Ik

) ⊂ [0, 1]#Ik and∑
i∈Ik λki = 1, (vi)

required optimization goal (‘weak’ or ‘strong’ Pareto points).
Step 0: Find an initial iteration point x0 ∈ C. Set k = 0.
Step 1: Take ski ∈ ∂≤ fi (xk) such that ‖ski ‖ ≤ L for each i = 1, 2, · · · ,m. If

mini=1,2,··· ,m ‖ski ‖ = 0 (for optimization goal ‘weak’) or
maxi=1,2,··· ,m ‖ski ‖ = 0 (for optimization goal ‘strong’), then STOP.

Otherwise, let ηk = maxi∈Ik {‖ski ‖, 1}
and compute

vk := argmin
v∈C−xk

hxk (v), (5)

where hxk (v):=αk
ηk

〈∑i∈Ik λki s
k
i , v〉 + ‖v‖2

2 .

Step 2: Define
xk+1 = xk + γkvk . (6)

Set k := k + 1 and go back to Step 1.
Output: (Weak-) Pareto optimal point x∗ = xk.

Remark 3.1 (Practical Considerations)

1. The main computational costs of the algorithm lie in the solution of the inter-
nal minimization problems minv hxk (v) (and potentially finding elements of the
Plastria subdifferential). These constitute quadratic optimization problems over a
convex domain. Techniques from quadratic programming (interior point methods,
active set methods, augmented Lagrangian methods, extended simplex schemes
and others) or projection-based specially tailored solvers (cf. Proposition 4.2) are
the method of choice here.
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2. Finding a point x0 in C is simply stated as the initial step here. If the constraint
set can be represented or sufficiently well approximated by linear inequalities,
routines from linear programming can be used in Step 0. Otherwise, projection-
based algorithms can be used to solve the according feasibility problem.

3. The strict stopping criteria of the algorithm can hardly be reached in a practical
implementation of the algorithm. So, instead of the ‘hard’ zeros, it is useful to
introduce tolerances for these tests. Even in this case, it rarely happens as one can
show that if the algorithm stops at iteration k with optimization goal ‘weak,’ then
xk is optimal for at least one component of F and in the quasi-interior of C , (in
particular a weak Pareto optimal point). If it pre-terminates with optimization goal
‘strong,’ the iterate is optimal for all components of F . (So, there are no conflicting
goals in F , yet xk is Pareto optimal.)
In the examples below, the stopping criterion is based on norm of the steps in the
iteration.

4. The main purpose of relating the subgradient values ski to the Lipschitz constant of
fi is to bound the subdifferential vectors. Practically, the exact Lipschitz constants
are often either unknown or of no practical value as the slope of fi varies heavily
over C . In such cases, it might be useful to change the condition to one involving
‘local’ Lipschitz constants instead.

5. Note that evaluations of the objective function F are not explicitly part of the algo-
rithm. It is much more solely based on subgradient evaluations. So, in a computer
implementation, there is potential for strong improvements if the actual objective
values are taken into account in, e.g., a local line search that would adapt the value
of γk in each step instead of fixing it a priori. The general conditions on γk , αk , the
index sets Ik and the weight vectors λki practically include many step size selection
algorithms already in the convergence analysis below.
Note also that the method might arrive in a Pareto optimal point but not immedi-
ately ‘recognize’ this as the used subdifferentials are sets not just single points and
the underlying optimality conditions are based on 0 ∈ ∂≤ (so a specific element
of ∂≤). The conditions on step size parameters, however, ensure that the iterates
cannot deviate far away from an already reached optimal point in the iteration.

Remark 3.2 Under theAssumption 3.1, it follows fromPropositions 2.1 and 2.2 that for
each i = 1, 2, · · · ,m, there exists ski ∈ ∂≤ fi (xk) such that ‖ski ‖ ≤ L . Indeed, for any
fixed k and i ∈ {1, 2, · · · ,m}, if xk is a global minimizer of fi , then by Proposition 2.1,
one can take ski = 0; otherwise, Proposition 2.2 ensures the existence of such an ski .
As a result, in view of the strong convexity (ensured by the Tikhonov-type quadratic
term) of hxk , the direction vk can be obtained.

Remark 3.2 guarantees the well-definedness of our algorithm.
From this point on, we assume without loss of generality that the sequence {xk}

generated by the algorithm is infinite.

Remark 3.3

(i) The algorithmproposed here uses exogenousweightsλki for the subgradients s
k
i in a

manner of a weighting method. Following [5,29], the weighting method allows the
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resulting scalar objective function (a positive linear combination of the objectives)
to be solved for a single Pareto optimal solution that represents the preference of
the human decision maker, which is well acceptable in applications and favorable
for mathematical analysis.
Note, however, that the algorithm in its general form does not (implicitly or explic-
itly) fix a weighting and can therefore not be easily recast to a single-objective
algorithm applied to the weighted form.

(ii) The algorithm proposed in the present paper covers several existing algorithms
as special cases. For example, in the case when each Ik = {1, 2, · · · ,m} and
the Fenchel–Moreau subdifferential is used, the algorithm presented here reduces
to the weighting subgradient algorithm that was introduced in [5], which has
been applied to solve the multiobjective optimization problem (1) but under the
assumption that each component function fi is convex.
Assuming for a moment that each fi is a continuously differentiable quasiconvex
function, the sequences {αk} and {ηk} are constant, and each Ik = {ik} is a singleton
with ik := argmaxi∈{1,2,··· ,m}〈∇ fi (xk), v〉, then the algorithm introduced here
reduces to the one in [3], which uses an Armijo-like rule to obtain the step lengths.

4 Convergence Analysis

In this section, we show that the sequence {xk} generated by our algorithm converges
to a Pareto optimal point for (1). We begin the analysis by showing the feasibility of
{xk}.

Proposition 4.1 The sequence {xk} belongs to C.

Proof The proof is constructed by induction over k. Note that by the initialization of
the algorithm, the initial iterate x0 belongs toC . Assume that xk ∈ C . Since γk ∈ (0, 1]
and vk ∈ C − xk (which means that vk + xk ∈ C), rewritten xk+1 = xk + γkvk as

xk+1 = (1 − γk)xk + γk(xk + vk),

we conclude by the convexity of C that xk+1 belongs to C . ��

We continue the convergence analysis with the following auxiliary results.

Lemma 4.1 For all k ∈ N, ‖vk‖ ≤ 2αk and ‖xk+1 − xk‖ ≤ 2αk .

Proof Fix k ∈ N. In the case when vk = 0, both assertions are trivial. So we assume
that vk �= 0. By Proposition 4.1, we obtain that 0 ∈ C − xk . Thus, one has hxk (vk) ≤
hxk (0) ≤ 0, that is

αk

ηk

〈
∑

i∈Ik
λki s

k
i , vk

〉

+ ‖vk‖2
2

≤ 0.
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Then, by applying the Cauchy–Schwarz inequality and recalling that
∑

i∈Ik λki = 1

and ‖ski ‖ ≤ ηk , one can get

‖vk‖2 ≤ −2
αk

ηk

〈
∑

i∈Ik
λki s

k
i , vk

〉

≤ 2
αk

ηk

∑

i∈Ik
λki ‖ski ‖‖vk‖ ≤ 2αk‖vk‖.

Consequently,
‖vk‖ ≤ 2αk . (7)

Finally, it follows from (6) and (7) that ‖xk+1 − xk‖ = γk‖vk‖ ≤ 2αk . ��
The next proposition establishes a fundamental inequality satisfied by the iterates of
the method.

Proposition 4.2 For all z ∈ C, it holds that

‖xk+1 − z‖2 ≤ 8α2
k + ‖xk − z‖2 + 2

γkαk

ηk

∑

i∈Ik
λki 〈ski , z − xk〉, ∀ k ∈ N.

Proof Let z ∈ C and k ∈ N. By using (6) and Lemma 4.1, one has

‖xk+1 − z‖2 = ‖xk+1 − xk‖2 + ‖xk − z‖2 + 2〈xk+1 − xk, xk − z〉
≤ 4α2

k + ‖xk − z‖2 + 2γk〈vk, xk − z〉. (8)

Note that from (5) and taking into account the definition of hxk , we get

vk = argmin
v∈C−xk

⎧
⎨

⎩

αk

ηk

〈
∑

i∈Ik
λki s

k
i , v

〉

+ ‖v‖2
2

⎫
⎬

⎭

= argmin
v∈C−xk

⎧
⎪⎨

⎪⎩

〈
αk

ηk

∑

i∈Ik
λki s

k
i , v

〉

+ 1

2

⎛

⎜
⎝‖v‖2 +

∥
∥
∥
∥
∥
∥

αk

ηk

∑

i∈Ik
λki s

k
i

∥
∥
∥
∥
∥
∥

2
⎞

⎟
⎠

⎫
⎪⎬

⎪⎭

= argmin
v∈C−xk

⎧
⎪⎨

⎪⎩

1

2

∥
∥
∥
∥
∥
∥
v −

⎛

⎝−αk

ηk

∑

i∈Ik
λki s

k
i

⎞

⎠

∥
∥
∥
∥
∥
∥

2
⎫
⎪⎬

⎪⎭

= PC−xk

⎛

⎝−αk

ηk

∑

i∈Ik
λki s

k
i

⎞

⎠ .

(9)

Then, by applying (2) with D = C − xk , x = −αk
ηk

∑
i∈Ik λki s

k
i and y = z − xk , it

follows that
〈

−αk

ηk

∑

i∈Ik
λki s

k
i − vk, z − xk − vk

〉

≤ 0,
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which yields that

〈vk, xk − z〉 ≤ −‖vk‖2 + αk

ηk

∑

i∈Ik
λki 〈ski , z − xk〉 − αk

ηk

∑

i∈Ik
λki 〈ski , vk〉

≤ αk

ηk

∑

i∈Ik
λki 〈ski , z − xk〉 + αk

ηk

∑

i∈Ik
λki ‖ski ‖‖vk‖

≤ αk

ηk

∑

i∈Ik
λki 〈ski , z − xk〉 + αk‖vk‖

≤ αk

ηk

∑

i∈Ik
λki 〈ski , z − xk〉 + 2α2

k ,

(10)

where the third inequality holds by the fact that
∑

i∈Ik λki ‖ski ‖ ≤ ηk and the last
inequality holds by Lemma 4.1. Consequently, by combining (8) and (10), also note
that γk ∈ (0, 1], we obtain the desired result. ��

In order to prove the convergence of the sequence {xk} produced by our algorithm,
we will assume the following condition.

A1. The set T := {z ∈ C : F(z) � F(xk),∀ k ∈ N} is nonempty.
This assumption is related to the completeness of the image of F , namely, all

nonincreasing sequences with respect to � in the image of F have a lower bound. It
is important to point out that completeness is a standard assumption for ensuring the
existence of Pareto optimal points for vector optimization problems [24]. Furthermore,
this condition is standard in the analysis of extensions of classical methods to vector
optimization, such as the projected gradient method [2,3,5,6,9,17,18], steepest descent
method [4] and proximal point method [8,27,28].

Proposition 4.3 Assume that A1 holds. Then the sequence {xk} is quasi-Fejér conver-
gent to T and bounded.

Proof Let z ∈ T . Then, we have that for each k ∈ N,

fi (z) − fi (xk) ≤ 0, ∀ i ∈ Ik . (11)

Since ski ∈ ∂≤ fi (xk), it holds by definition that

〈ski , z − xk〉 ≤ fi (z) − fi (xk), ∀ i ∈ Ik . (12)

From (12) and Proposition 4.2, we obtain

‖xk+1 − z‖2 ≤ ‖xk − z‖2 + 8α2
k + 2

γkαk

ηk

∑

i∈Ik
λki ( fi (z) − fi (xk)). (13)

Combining this with (11) yields that

‖xk+1 − z‖2 ≤ ‖xk − z‖2 + 8α2
k .
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Then, by (4) and Definition 2.4 with εk = 8α2
k , we conclude that the sequence {xk} is

quasi-Fejér convergent to T . The boundedness of {xk} follows from Proposition 2.3.
��

To conclude that the sequence converges to a Pareto optimal point for (1), we need
the following requirement.

A2. Assume, there exists a number λ > 0 such that for each z ∈ T , it holds

ik := argmax
i=1,2,··· ,m

{ fi (xk) − fi (z)} ∈ Ik and λkik ≥ λ , ∀ k ∈ N. (14)

From the algorithm’s construction, it is clear that such a constant λ always lies in
(0, 1). Now, we present the main convergence result.

Theorem 4.1 Assume that A1 and A2 hold. Then the sequence {xk} converges to a
Pareto efficient solution of the problem (1).

Proof First, we show that {xk} converges to some x∗ ∈ T . Take z ∈ T . Note that
ηk ≤ L for all k ∈ N. Then, by using the inequality (13), one has

2γkαk

L

∑

i∈Ik
λki ( fi (xk) − fi (z)) ≤ 2γkαk

ηk

∑

i∈Ik
λki ( fi (xk) − fi (z))

≤ ‖xk − z‖2 − ‖xk+1 − z‖2 + 8α2
k .

(15)

Summing (15) with k between 0 and N , we get

2

L

N∑

k=0

γkαk

⎡

⎣
∑

i∈Ik
λki ( fi (xk) − fi (z))

⎤

⎦ ≤ ‖x0 − z‖2 − ‖xN+1 − z‖2 + 8
N∑

k=0

α2
k

≤ ‖x0 − z‖2 + 8
∞∑

k=0

α2
k .

Letting N go to +∞ and noting (4), it follows that

lim inf
k→+∞

∑

i∈Ik
λki ( fi (xk) − fi (z)) ≤ 0.

Furthermore, owing to the fact that z ∈ T and the definition of ik in (14), we have

0 ≤ lim inf
k→+∞ λkik max

i=1,2,··· ,m{ fi (xk) − fi (z)} = lim inf
k→+∞ λkik ( fik (xk) − fik (z))

≤ lim inf
k→+∞

∑

i∈Ik
λki ( fi (xk) − fi (z)) ≤ 0,

and thus
lim inf
k→+∞ λkik max

i=1,2,··· ,m{ fi (xk) − fi (z)} = 0. (16)
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As λkik
≥ λ for each k ∈ N, (16) implies that

lim inf
k→+∞ max

i=1,2,··· ,m{ fi (xk) − fi (z)} = 0.

Then, one can take a subsequence {xk j } of {xk} such that

lim inf
k→+∞ max

i=1,2,··· ,m{ fi (xk j ) − fi (z)} = 0. (17)

Since {xk} belongs to C and is bounded by Proposition 4.1 and Proposition 4.3, we
may assume that there exists x∗ ∈ C such that lim j→+∞ xk j = x∗. Then, by the
continuity of the maximal function, we have from (17) that

max
i=1,2,··· ,m{ fi (x∗) − fi (z)} = 0.

Consequently, F(x∗) = F(z) because z ∈ T , and so x∗ ∈ T . By applying Proposi-
tion 4.3 and Proposition 2.3, one gets that {xk} converges to x∗ ∈ T . Moreover, from
z being arbitrary, we get

F(x∗) = F(y), for all y ∈ T . (18)

Now, we show that x∗ is a Pareto efficient solution of (1). In fact, if there exists
y ∈ C such that

fi (y) ≤ fi (x
∗), i = 1, 2, · · · ,m, i �= j, f j (y) < f j (x

∗),

then y ∈ T , thus yielding a contradiction to (18). The desired result is proved. ��
Note that in the special case when Ik = {1, 2, · · · ,m} for all k ∈ N, then for each

z ∈ T , the condition ik ∈ Ik in A2 holds automatically. With that in mind, we can
think of another condition that is weaker than A2.

A2−. Let Ik = {1, 2, · · · ,m} for any k ∈ N and assume, there exists a number
λ > 0 such that for each z ∈ T , it holds

λkik ≥ λ with ik := argmax
i=1,2,··· ,m

{ fi (xk) − fi (z)} , ∀ k ∈ N.

As illustrated before, such a constant λ is in the interval (0, 1). Then, one can
obtain directly from Theorem 4.1 the following result, which improves the ones in [5,
Theorem 2] and [6, Theorem 3.2] in twofold: (i) Corollary 4.1 extends the results in
[5,6] from the convex case to the qusiconvex case; (ii) the condition λki ≥ λ, for all
i = 1, 2, · · · ,m, that is required in [5,6] is weakened to λkik

≥ λ as stated in A2−.

Corollary 4.1 Assume that A1 and A2− hold. Then the sequence {xk} converges to a
Pareto efficient solution of the problem (1).
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5 Numerical Results

In this section, we illustrate the functionality of the proposed method by means of
several small-scale examples.Note thatConditionA2 is a ratherweakone introduced in
the theoretical proof to ensure that the sequence generated by the algorithm converges
to an efficient solution. It may, however, not be easy to ensure the validity of A2
beforehand. So, in the actual implementation of the algorithm, one can still adopt
the relatively strong but easy to operate parameter setting that the weights are always
bounded from below by a positive constant, specifically, Ik = {1, 2, · · · ,m} for any
k ∈ N and λki ≥ λ > 0 for each i ∈ Ik . It is seen that, if additionally the weight values
λki are kept constant, the multiobjective optimization problem is then transformed into
a scalar one.

We use the first example1 to illustrate Algorithm 3.1’s parameters and the assump-
tions in the main convergence result Theorem 4.1.

Example 5.1 Consider the objective function F : R → R
2 given by

F = ( f1, f2) =
(
exp(−x)

x2

)

and C = R.

This problem is strictly convex and continuously differentiable. The set of Pareto
optimal points is given by {x ∈ R : 0 ≤ x}, and the Plastria subdifferentials of f1 and
f2 can be derived from the classical derivatives

∂≤ f1(x) = {s ∈ R : s ≤ d f1(z)
dz |z=x } = ( − ∞,− exp(−x)],

∂≤ f2(x) = {s ∈ R : |s| ≥ d f2(z)
dz |z=x , sgn s = sgn x} = {M · x, M ≥ 2}.

Both components of F are not Lipschitz continuous. However, on any subinterval
of the real line that is bounded from below, a Lipschitz constant L1 for f1 can be
determined and f2 is Lipschitz continuous on any bounded domain. For the sake of
simplicity, we will use L1 = 1 in the following, meaning that we use −1 ∈ ∂≤ f1(xk)
when the subdifferential (at xk ≥ 0) is needed.

Theorem 4.1 states that the iterates of Algorithm 3.1 converge toward a Pareto
efficient solution provided that Assumptions A1 and A2 are fulfilled. To make this
implication more clear, we will consider algorithmic parameters that violate them.

We consider the choice

∀k : Ik :={1} ,

which is obviously not in accordance with A2 as it completely disregards the second
component of F . The problem is not constrained, so the minimization of hxk (v) can
be performed analytically. One obtains

1 Motivating the algorithm and its parameters using this example was prompted to us by one of the anony-
mous referees.
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min
v

hxk (v) = min
v

αk

ηk

〈
λk1 · sk1 , v

〉
+ ‖v‖2

2
�⇒ vk = αk ,

where we used sk1 = −1, λk1 = 1 and ηk = 1 which follow from the above consider-
ation of ∂≤ f1 and the choice for Ik (tacitly assuming that xk is sufficiently large. For
this example, this is without loss of generality.) The iterates of Algorithm 3.1 therefore
are explicitly given by

xk = x0 +
k−1∑

i=0

γk · αk .

Taking (4) into account, one sees the divergence of {xk} as k → ∞.
To avoid that, next we choose the index set Ik = {1, 2} and modify A2 to

∃λ > 0 : ∀k : λk1, λ
k
2 ≥ λ ,

which is yet slightly stronger than A2−. For a nonnegative starting value x0, the
termination of the search direction vk can be performed analytically. One obtains

vk = αk

ηk
·
(

(λk2 − 1)
︸ ︷︷ ︸

<0

·sk1 − λk2︸︷︷︸
≥λ

·sk2
)

with sk1 ≥ −L1, sk2 ≥ 2 · xk , αk
ηk

> 0. One can see that, however, small λ is, vk becomes
negativewhen xk is sufficiently large. In this case, the sequence {xk} no longer diverges
but converges to a Pareto efficient point.

In an actual implementation, these shortcomings might not be relevant after all: As
discussed above, a more practical stopping criterion is to exit the main loop whenever
the performed steps of the algorithm are sufficiently small. In Fig. 3, we depict results
for a numerical study of this example. The (constant) weight λ1 (x-axis) is varied
from zero (corresponding to Ik = {2}) to one (as in the divergent example above), and
αk = 1

k+1 , γk = 1, have been chosen. The initial value has been fixed to x0 = 1 and
we depict the final iterates x∗ of Algorithm 3.1 (point markers) and the total number
of steps (bars). The iteration was stopped as soon as the step size reduced to below
10−4. Even though the iterates diverge in exact arithmetic, this is not observed for the
numerical approximation (which was computed in double precision) even though the
number of steps (bar plot in Fig. 3) increases significantly. Note that the overall high
iteration numbers for this experiment result from the poor parameter choice and rough
representation ∂≤ f1(x) � −1 of the Plastria subdifferential.

The next example was given by Bello Cruz et al. [3] as an counterexample to show
that their method may fail when the pseudoconvexity for the quasiconvex objective
functions required therein was dropped.
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Fig. 3 Numerical results for Example 5.1: x∗ (left y-axis, bullets in the plot) indicate the final iterates of
Algorithm 3.1, the bars (right y-axis) show the number of iterations before the main loop terminates due to
sufficiently small step lengths

Example 5.2 Consider the quasiconvex multiobjective problem defined by

F = ( f1, f2) : R → R
2 with f1(x) = x5

5
, f2(x) = x3

3
for all x ∈ R,

and the constraint set C = [−1, 1].
It can be verified that the set of stationary points of the problem is {−1, 0}, and the

set of Pareto efficient solutions (as well as the weak Pareto efficient solutions) is the
singleton {−1}. (In this academic example there are no conflicting goals involved.)
Recall that a point x ∈ C is said to be a stationary point if

−R
m++ ∩ JF (x)(C − x) = ∅,

where JF (x) is the Jacobian matrix of F at x . Note that in the general setting of the
algorithm, the notion of a Jacobianmatrix does not have tomake sense since it requires
some amount of smoothness of the objectives. Since the functions f1 and f2 in this
example are not pseudoconvex, the authors showed in [3] that there are some cases
in which the sequence {xk} generated by the method proposed therein converges to
0 when starting at x0 ∈ [0, 1]. Next, we will underline that our method (given some
special algorithmic parameters) is feasible with any initial point in C .

1. In this example, we take αk = 1
k+1 , Ik = {1, 2}, λk1 = λk2 = 1

2 , s
k
1 = sk2 = 1 (It

can be computed by definition that 1 ∈ ∂≤ fi (x) for each i = 1, 2 and x ∈ C , so we
take these values in the procedure.) and γk = 1

2 for all k ∈ N.
First, we consider the case when the initial point x0 ∈ [−1, 0]. Then, one can obtain

by calculation that

xk = 1

2k
x0 − 2k − 1

2k
, for all k ∈ N,

and it is seen that xk converges to −1. If we consider the stopping criterion ‖xk+1 −
xk‖ < 0.0001, an easy calculation shows that at most k = 14 iterations are necessary
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Fig. 4 Numerical results for Example 5.2

for the algorithm to solve the problem. (In an actual implementation, the convergence
is much faster.)

Now, consider the case when the initial point x0 ∈ (0, 1]. Then, it can be computed
that after k = 3 or k = 4 iterations, xk ∈ [−1, 0). Consequently, xk converges to −1
as shown in the above situation.

2. To further illustrate, we used a MATLAB implementation of the algorithm with
γk = 0.95, Ik = {1, 2}, λk1 = λk2 = 1

2 , αk = 1
k+1 and solved the quadratic program-

ming problems numerically using the routine ‘quadprog.m’ from the Optimization
toolbox (interior point method). In Fig. 4, we compare Algorithm 3.1 with the pro-
jected gradient algorithm of [3] with comparable solver settings. The iteration limit
was set to 200, the step tolerance to 10−8 in both cases and the initial guesses were
varied along the interval [−1, 1]. The crosses marked as ‘no convergence’ indicate the
cases when the projected gradient algorithm failed to converge to the actual solution
within the iteration limit (92 out of 200 cases). As can be easily seen, Algorithm 3.1
clearly outperforms similar methods based on the classical gradient with no more than
k = 8 iterations to reach a reasonably good approximation and an average iteration
count of 7.79 as opposed to the average of 16.92 iterations for the successful runs of
the gradient-based method.

This behavior can even be amplified if instead of using a functionwith one stationary
point, we change to one with multiple such ‘traps.’

Example 5.3 Consider the (for simplicity one-dimensional) objective function

f (x) = 1√
2

· (x + sin(x)) , C = [0,∞).
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Fig. 5 Numerical results for the function f in Example 5.3, left: objective; right: final solutions

If we use a similar setting as before with γk = 0.99 and αk = 5/(k + 1)9/10, step
size tolerance 10−7 and iteration limit 500, we obtain the results displayed in Fig. 5.
To solve the involved quadratic programs, we used IBM ILOG Cplex’s quadratic
programming capabilities (i.e., the MATLAB routine cplexqp.m; note, however,
that for this simple one-dimensional example, the projection can easily be performed
without additional libraries) [22]. The initial guesses were randomly sampled as x0 ∈
[25, 27]. Of the 150 experiments, all were solved correctly by Algorithm 3.1 while
none(!) of the runs of the gradient-based solvers reached the neighborhood of the
Pareto optimal point E = {0}. The average number of iterations for Algorithm 3.1
was 9.447.

The examples provided so far are for illustrative purposes only and were chosen
to underline the generality of Algorithm 3.1 and its convergence as stated in Theo-
rem 4.1 (in particular when comparing to alternatives from the literature). They are
not intended to illustrate Algorithm 3.1’s performance or to give a practical applica-
tion case. In all three examples, a full characterization of the (weak) Pareto optimal
points is analytically possible. This characterization can be achieved using methods
as outlined, for example, in [14,15] and details are provided in “Appendix” of this
article. Actual numerical test cases will follow in the next two examples.

Now, we present Algorithm 3.1 when applied to a problem from facility location
theory.

Example 5.4 Consider the problem of finding an optimal location of a building in
the two-dimensional Euclidean plane. Optimality means that the weighted sum of
(appropriately measured) distances to already existing facilities should be as small as
possible. We use the simple mathematical model, [19]

f1(x) =
N∑

i=1

μi ·
∥
∥
∥x − xEi

∥
∥
∥
pi

to implement this requirement, where N is the number of existing facilities, located at
(xEi )Ni=1⊆ R

2, the weights (μi )
N
i=1, μi ≥ 0 ∀i , measure the importance of that facility

and pi ∈ [1,∞] gives a certain degree of freedom in modeling the distances. In
the numerical example, we used N = 7 existing locations with coordinate values in
[−5, 4] and varying weights between 1 and 2. The norms were partially Euclidean
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Fig. 6 Objective space view for the facility location problem

(pi = 2), partially the Manhattan norm (pi = 1) was inserted, which is very common
in facility location problems.

When the weights are all positive (as in our case), the objective function f1 is
convex. Therefore, we introduce a second objective that can measure, for example,
the ‘merit distance’ to a hospital. Once a certain distance from that hospital is reached,
it does not make a large difference anymore, whether the facility is placed yet further
away or not. A quasiconvex function, that can model this is the Gaussian

f2(x) = − exp

(

−
(

2∑

i=1

(
xi − xHi

)2
/ai

))

,

where x = (x1, x2), xH = (
xH1 , xH2

)
is the position of the hospital and the additional

parameters a1, a2 give the modeler yet more freedom to fine-tune the model.
To derive the Plastria subdifferential to this function (that is f2), the same heuristic

as for the one-dimensional case (see Example 2.2) was used. For the first objective f1,
the Plastria subdifferential is identical with the Moreau–Fenchel subdifferential and
there are establishedways to find elements thereof. In Fig. 6, the objective values of the
facility location problem along a grid (x, y ∈ [−5, 5]) are displayed as small markers.
The larger markers indicate the final iterations of Algorithm 3.1 with γk = 0.9,
αk = 1

k+1 and 300 initial values drawn randomly from a normal distribution. We

chose Ik = {1, 2} and λk1 = λk2 = 1
2 for this experiment. The internal optimization

problems were not solved by a specialized solver here as constraints were explicitly
disregarded for this example. It is apparent how almost all solutions lie along the
nonconvex Pareto front of the problem.

To further judge the performance, the optimization process (using the same initial
points and comparable numerical settings) was repeated using the algorithm of Cruz
Neto et al. [9] (which is similar to Algorithm 3.1 but disregards constraints and the
regularization term in hxk (v)). The results are also displayed in Fig. 6. As can be
seen, Algorithm 3.1 performs more robust for the given tolerances at this problem.
However, the average number of iterations was approximately twelve percent higher
(219 instead of 195) and for finer tolerances, both algorithms succeed to approximate
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the Pareto front reliably. Given the simple nature of the problem, it is obvious that
both algorithms can easily be tuned to better performance by the use of, for example,
improved line search strategies in a next step.

Finally, to illustrate the scalability of Algorithm 3.1, we give an example with
varying parameters for the dimension n of the decisions variables, the dimension m
of the objective space and the constraints imposed for the definition of the constraint
set C .

Example 5.5 We consider again the negative Gaussian as in Examples 2.2 and 5.4. For
this experiment (cf. Fig. 7), we used the full index set Ik = {1, . . . ,m}, k = 0, 1, . . .,
a value of γk = 0.99, k = 0, 1, . . ., and αk := 5·n

k+1 . The minimization of hxk was again
carried out using Cplex (standard parameters) and the tolerances (in the projected
subgradient method) were set to 10−4. The maximum number of iterations was set to
9999 (but in all the optimization runs, this bound was only reached once). The weights
λki were set such that ∀k : λk1 = 1

2 and the weights on all other objectives were equally
distributed.

For the construction of F at given parameters n ∈ {2, 3, . . . , 10},m ∈ {2, 3, 4} and
an integer parameter p ∈ {0, 2}, we proceeded 100 times as follows:

1. Choose a p × n matrix A= and a p-dimensional vector b= at random and let

C := {
x ∈ R

n : (∀i : −5 ≤ xi ≤ 5) ∧ (A= · x = b=)
}
.

2. Choose an initial point x0 ∈ C at random. (in Step 0 of Algorithm 3.1)
3. Define randomoffset valueso(l) ∈ [−5, 5]n and (nonlinear)weightsa(l) ∈ [5, 15]n ,

l = 1, . . . ,m, and set

F(x):=

⎛

⎜
⎜
⎜
⎜
⎝

− exp

(

−∑n
i=1

xi−o1i
a1i

)

...

− exp
(
−∑n

i=1
xi−omi
ami

)

⎞

⎟
⎟
⎟
⎟
⎠

.

In Fig. 7, we display the mean number of iterations (dashed lines) and their medians
(solid lines) over the varied dimension n of the decision variables x . The experiments
were only carried out if p < n and m ≤ n − p was satisfied to ensure that non-Pareto
elements of C exist.

A Pareto optimal element could always be found with a single exception form = 3,
p = 0 and the average number of steps is typically kept below 50, thereby underlining
the competitive capacity of Algorithm 3.1.

6 Conclusion and Outlook

In this work, we introduce a projected subgradient method to solve constrained mul-
tiobjective optimization problems, where the objective function is assumed to be
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Fig. 7 Numerical results for Example 5.5, dashed lines indicate the average value of iterations, solid lines
indicate their median, the disconnected dots (magenta in the online version) display the iteration numbers
of every single experiment, the numbers ‘max. it.’ and ‘min. it.’ denote the maximal/minimal number of
iterations over all displayed optimization runs in each subplot
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componentwise essentially quasiconvex and Lipschitz continuous but not necessarily
differentiable. Under reasonable assumptions, we show that for any initial point in the
constraint set, the sequence produced by our method converges to a Pareto efficient
solution of the problem. Analytical tools included the subdifferential calculus in the
sense of Plastria and quasi-Fejér convergence. Numerical examples are presented to
indicate the practical validity of our method.

As already indicated earlier, there are several possible extensions on the numeri-
cal side like the implementation of a penalty-based version to improve the algorithm’s
behavior at the boundary ofC or improving the stopping criteria of the method. So far,
the Plastria subdifferential used was implemented as a deterministic function (always
the same subdifferential for the same argument). As, by nature, the subdifferential is a
set-valued mapping, extensions in this direction might also open new research direc-
tions as do possible extensions of the algorithm that include reusing previous values
of the subdifferential (conjugated subdifferential methods or BFGS-type subgradient
methods).

The extension of this type of algorithm to more general space is also of great sig-
nificance, which needs to consider the subdifferential of quasiconvex function in such
generalized space, for example the family of quasiconvex subdifferentials presented
in [10]. Meanwhile, note that the boundedness property of the subdifferential plays a
key role in ensuring the convergence of the algorithm. Therefore, in order to get the
expected results in generalized spaces, one needs to explore the related properties of
the involving subdifferential.

From the analytical viewpoint, we intend to analyze the rate of convergence of this
type and other extended methods for multiobjective optimization problems as a next
step.
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Appendix: Analytically Finding Pareto Optimal Solutions in the Small
Test Cases

The (weak) Pareto optimal solutions in Examples 5.1–5.3 can be obtained by applying
the techniques from [14,15]. We partially adapt the notation of these two references
to outline the analysis below:

Example 5.1 Here, we have f1 = x2, f2 = exp(−x) and no constraints (i.e.,
C = R). In this example, we obtain argminx∈C f1 = {0} = [0, 0] =: [α, β]
(bounded) and argminx∈C f2 = ∅ (empty), corresponding to ‘Case 2’ in [14,
p. 95]. Then, the inclusion [0,∞) ⊆ Ew follows from [14, Theorem 4.3(b)]. On
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the other hand, note that

B−:={x ∈ C : x ≥ β, f2(x) = f2(β)} = [0, 0] =: [β, β−]

and that {x ∈ C : x < 0, exp(−x) = exp(0) = 1} = ∅. So, we obtain from the
second case in [14, Theorem4.3(b)] that Ew∩{x ∈ C : x < 0} = ∅. Consequently,
Ew = [0,∞).
Furthermore, note that f2 is strictly decreasing. From [15, Corollary 5.5(b)], it can
be obtained immediately that E = [0,∞).

Example 5.2 For f1 = x5
5 , f2 = x3

3 , C = [−1, 1], we get

argmin
x∈C

f1 ∩ argmin
x∈C

f2 = {−1} �= ∅ .

From [14, Proposition 3.1] (resp. [15, Proposition 2.1]), we therefore conclude
directly that Ew = {−1} (resp. E = {−1}).
Example 5.3 For a single objective, we always have the set of (classically) optimal
solutions to this one dimension coinciding with E (if existent). From that (or
formally also from [14, Proposition 3.1] and [15, Proposition 2.1]), we get E =
Ew = {0}.
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