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Abstract
In this paper, we deal with theweakly homogeneous generalized variational inequality,
which provides a unified setting for several special variational inequalities and com-
plementarity problems studied in recent years. By exploiting weakly homogeneous
structures of involved map pairs and using degree theory, we establish a result which
demonstrates the connection between weakly homogeneous generalized variational
inequalities and weakly homogeneous generalized complementarity problems. Sub-
sequently, we obtain a result on the nonemptiness and compactness of solution sets to
weakly homogeneous generalized variational inequalities by utilizing Harker–Pang-
type condition, which can lead to a Hartman–Stampacchia-type existence theorem.
Last, we give several copositivity results for weakly homogeneous generalized varia-
tional inequalities, which can reduce to some existing ones.
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1 Introduction

Since it was proposed in 1960s, the finite-dimensional variational inequality (VI) has
attracted widespread attention and developed into a very fruitful discipline in the field
of mathematical programming with extensive applications and mature theory [2,3,9].
In 1988, Noor introduced a generalization of the VI, named as the general variational
inequality problem (GVI) [21], which has been found to have plenty of applications
in engineering and economics [1,23,29]. As one of the important theoretical topics,
the existence of solutions to GVIs has been widely studied. For instance, Pang and
Yao [24] proposed some sufficient conditions for the existence of solution of GVIs
by using degree theory. Zhao and Yuan [30] gave an alternative theorem for GVIs
with the help of a unified definition of exceptional family. Luo [18] established some
existence theorems for GVIs from the perspective of generalizations of some known
results for VIs.

Among various conditions for establishing the nonemptiness and compactness of
solution sets to VIs or complementarity problems (CPs), Harker–Pang condition and
copositivity are two important ones. In [9], Harker and Pang studied the existence and
uniqueness theory of VIs and CPs in R

n and provided lots of important conditions,
including the one named as Harker–Pang condition. Later, Isac et.al. [13,14] general-
ized Harker–Pang condition in Rn to an arbitrary Hilbert space. Copositivity of maps
was extended from the classic concept of copositive matrix [20]. It is a condition that
plays a critical role in obtaining rich existence results on VIs and CPs (see [2,3,9] for
references), and at the same time, various extended definitions of copositivity were
proposed, such as q-copositivity [19] and copositivity for multivalued maps [5].

Recently, the VI with the involved maps being weakly homogeneous, called the
weakly homogeneous variational inequality (WHVI) [8,19], has been studied well.
The WHVI contains the polynomial variational inequality (PVI) [10], the polynomial
complementarity problem (PCP) [4,15], the tensor variational inequality (TVI) [27]
and the tensor complementarity problem (TCP) [11,12,25] as its special subclasses. In
[8], authors established amain result on the nonemptiness and compactness of solution
sets to WHVIs with a degree-theoretic condition and an assumption that zero is the
only solution of the corresponding recession cone complementarity problem. To our
best knowledge, this degree-theoretic theorem covers a majority of existence results
on the subcategory problems of WHVIs.

Encouraged by the achievements of WHVIs, we devote ourselves to investigating
nonemptiness and compactness of solution sets to weakly homogeneous generalized
variational inequalities (WHGVIs), which is a special class of GVIs with involved
maps being weakly homogeneous. As a generalization of WHVIs, WHGVIs contains
the recently studied generalized polynomial variational inequality (GPVI) [28] and the
generalized polynomial complementarity problem (GPCP) [16,32] as special classes.
Our results are established by utilizing Harker–Pang-type condition and copositivity,
respectively. The contribution is threefold:

(I) We generalize the main result given for WHVIs in [8] to WHGVIs with the help
of degree theory.
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(II) We establish an existence result for WHGVIs under Harker–Pang-type condition
and some additional assumptions, which is different from the corresponding ver-
sion obtained for general GVIs in [18, Theorem 2.1]. In particular, we obtain a
Hartman–Stampacchia-type existence theorem for WHGVIs.

(III) We achieve three copositivity results on the nonemptiness and compactness of
solution sets toWHGVIs, which coincide with the corresponding ones forWHVIs
when underlying problems are WHVIs.

Our paper is organized as follows. In Sect. 2, some notations and basic results
are shown. In Sect. 3, we explore nonemptiness and compactness of solution sets to
WHGVIs. In Sect. 3, we establish an existence result which builds a close connection
between WHGVIs and WHGCPs. In Sect. 3, we give another existence result with
the help of Harker–Pang-type condition. In Sect. 3, we derive some nonemptiness and
compactness theorems by making use of the copositivity of maps. Finally, we sum up
the conclusions in the last section.

2 Preliminaries

Throughout this paper, we assume that H is a finite-dimensional real Hilbert space
with inner product 〈·, ·〉 and norm ‖ · ‖, C is a closed convex cone in H and K is a
closed convex set in H . We use K ∗ to denote the dual cone of K , which is defined
as K ∗ = {u ∈ H | 〈u, x〉 ≥ 0,∀x ∈ K }. For any nonempty set Ω in H , let int(Ω),
∂Ω and clΩ denote the interior, boundary and closure of Ω , respectively. Let R be
the set of real numbers. Denote Rn := {x	 = (x1, x2, . . . , xn) : xi ∈ R,∀ i ∈ [n]},
and R

n+(Rn++) := {x	 = (x1, x2, . . . , xn) ∈ R
n : xi ≥ (>)0,∀ i ∈ [n]}, where x	

represent the transpose of x and [n] := {1, 2, . . . , n}.
For any z ∈ H and a closed convex set K in H , define ΠK (z) as the orthogonal

projection of z onto K , which is the unique vector z̄ ∈ H such that 〈y− z̄, z̄−z〉 ≥ 0 for
all y ∈ K .ΠK (z) has nonexpansiveness, i.e., ‖ΠK (u)−ΠK (v)‖ ≤ ‖u−v‖ holds for
any u, v ∈ H . Recall that for a closed convex set K , its recession cone [26], denoted
by K∞, is defined as K∞ := {u ∈ H : ∃ tk → ∞, ∃ xk ∈ K such that u = lim

k→∞
xk
tk

},
which satisfies K∞ + K ⊆ K . Then, we have that the map

K (t) = t K + K∞, 0 ≤ t ≤ 1 (1)

satisfies the following property:

K (t) = t K + K∞ = t K (t �= 0) and K (0) = K∞,

where the first statement comes from the fact that K∞ is a cone. In [8], the authors
obtained the following result:

Lemma 2.1 [8] LetK (·) be defined as (1) and θ(·, ·) : H×[0, 1] → H be continuous.
Then, the map (x, t) �→ ΠK (t)θ(x, t) is continuous.
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Given a nonempty closed convex set K in H and two continuousmaps f : C → H ,
g : H → H with C ⊇ g−1(K ) := {x ∈ H | g(x) ∈ K }. The generalized variational
inequality (see Noor [21]), denoted by GVI( f , g, K ), is to find an x∗ ∈ H such that

g(x∗) ∈ K , 〈 f (x∗), y − g(x∗)〉 ≥ 0, ∀y ∈ K . (2)

Let SOL( f , g, K ) denote the solution set of GVI( f , g, K ). When g(x) = x for any
x ∈ H , GVI( f , g, K ) reduces to a variational inequality, denoted by VI( f , K ) with
its solution set being denoted by SOL( f , K ).

For any GVI( f , g, K ), we recall that the natural map (see Facchinei and Pang [2]
for more details) is defined as follows:

(F, g)natK (x) := g(x) − ΠK [g(x) − F(x)], (3)

where F is a continuous extension of f . When g(x) = x , we write (F, g)natK (x) as
f natK (x). With the help of the natural map and the same technique in Facchinei and
Pang [2, Proposition 1.5.8], an equivalent reformulation of GVI( f , g, K ) can be easily
established.

Lemma 2.2 Let K be a closed convex set in H and f : C → H, g : H → H be two
continuous maps with C ⊇ g−1(K ). Suppose that F is a continuous extension of f .
Then, x∗ ∈ H is a solution of GVI( f , g, K ) if and only if (F, g)natK (x∗) = 0.

Degree theory is a powerful tool in the study of the existence of a solution to
VIs [2,5–8]. Fruitful results on degree theory can refer to [17,22]. Recall that the
topological degree of a map is an integer. When map φ : clΩ → H is continuous with
Ω being a bounded open set in H and b ∈ H satisfying b /∈ φ(∂Ω), the topological
degree of φ over Ω with respect to b is well defined, denoted by deg(φ,Ω, b).

In addition, if x∗ ∈ Ω and φ(x) = φ(x∗) has a unique solution x∗ in clΩ , then,
let Ω ′ ⊆ Ω be any bounded open set containing x∗, deg(φ,Ω ′, φ(x∗)) remains a
constant, which is called the index of φ at x∗ and denoted by ind(φ, x∗). In particular,
when the continuous map ϕ : H → H satisfies ϕ(x) = 0 if and only if x = 0, then,

ind(ϕ, 0) = deg(ϕ,Ω, ϕ(0)) = deg(ϕ,Ω, 0)

holds for any bounded open set Ω containing 0.
There are many important properties of the degree. Below, we only show some of

them used in later discussion.

Lemma 2.3 (the homotopy invariance of the degree)[2] LetΩ be a nonempty, bounded
open subset in H. Then for any two continuous maps H : clΩ × [0, 1] → R

n and
p : [0, 1] → R

n such that p(t) /∈ H (∂Ω, t) for any t ∈ [0, 1], deg(H (·, t),Ω, p(t))
is independent of t ∈ [0, 1].
Lemma 2.4 (the excision property of the degree)[2] Let Ω be a nonempty, bounded
open subset in H, φ : clΩ → H be continuous and p /∈ φ(∂Ω). Then for every open
subset Ω1 of Ω such that p /∈ φ(Ω \ Ω1), deg(φ,Ω, p) = deg(φ,Ω1, p).
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Lemma 2.5 (the degree of an injective map)[2] Let Ω be a nonempty, bounded open
subset in H and let φ : clΩ → H be a continuous injective map. For every p ∈ φ(Ω),
deg(φ,Ω, p) = ±1.

In [18], the following result on the existence of solutions to GVIs was given.

Lemma 2.6 [18] Let K be a closed convex set in H and f : C → H with C ⊇ g−1(K )

and g : H → H be two continuous maps. Suppose that F is a continuous extension of
f . If there exists a bounded open setU with clU ⊆ C such that deg((F, g)natK ,U , 0) �=
0, then GVI( f , g, K ) has a solution in U.

3 Nonemptiness and Compactness of Solution Sets toWHGVIs

Let C be a closed convex cone in H . Recall that a continuous map f : C → H
is said to be weakly homogeneous of degree γ ≥ 0, if there are two continuous
maps h, g : C → H satisfying h(λx) = λγ h(x) for all x ∈ C and λ > 0, and
g(x) = o(‖x‖γ ) as ‖x‖ → ∞ in K such that f = h + g (see [8]). Due to the fact
that h(x) = limλ→∞ f (λx)

λγ for all x ∈ C , h is often called the “leading term” of f ,
denoted by f ∞.

Given K being a nonempty closed convex set in cone C , when maps f and g in
(2) are two weakly homogeneous maps with degrees δ1 > 0 and δ2 > 0, respectively,
defined as: f : C → H and g : H → H with g−1(K ) ⊆ C , we call GVI( f , g, K ) the
generalized variational inequality with weakly homogeneousmaps of positive degrees,
denoted by WHGVI( f , g, K ). In order to simplify the notation, we let

Δ :=
{

(K ,C, f , g)

∣∣∣∣ K ,C, f and g are defined as above;
g−1(C) ⊆ C .

}
.

3.1 A Generalization of the Degree-Theoretic Result forWHVIs

Very recently, Gowda and Sossa [8] have achievedmany good theoretical results on the
nonemptiness and compactness of the solution set to WHVI( f , K ). In particular, they
gave a degree-theoretic result forWHVIs as themain result shown in [8, Theorem 4.1],
which covers a majority of existence results on the subcategory problems of WHVIs,
including the Karamardian-type one in [8, Theorem 5.1] and the copositivity one in
[8, Theorem 6.1]. Below, we generalize the degree-theoretic result from WHVIs to
WHGVIs.
Theorem 3.1 Let (K ,C, f , g) ∈ Δ with g(x) − g∞(x) ∈ C as ‖x‖ → ∞,
F and F∞ be any given continuous extensions of f and f ∞, respectively. If
SOL( f ∞, g∞, K∞) = {0} and ind

(
(F∞, g∞)natK∞ , 0

) �= 0 where (F∞, g∞)natK∞(·)
is defined in (3), then for any bounded open set Ω containing SOL( f , g, K ),
deg

(
(F, g)natK ,Ω, 0

) �= 0, and WHGVI( f , g, K ) has a nonempty, compact solution
set.
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Proof Let K (t) be defined in (1). Consider the following homotopy map:

H (x, t) :=[(1 − t)g∞(x) + tg(x)]−
ΠK (t){[(1 − t)g∞(x) + tg(x)] − [(1 − t)F∞(x) + t F(x)]},

where (x, t) ∈ H × [0, 1]. Then, we can obtain that H (x, 1) = g(x) − ΠK [g(x) −
F(x)] and H (x, 0) = g∞(x) − ΠK∞[g∞(x) − F∞(x)]. Denote the set of zeros
of H (·, t) by: Z := {x ∈ H | H (x, t) = 0 for some t ∈ [0, 1]}. We claim Z is
uniformly bounded.

For the sake of contradiction, assume that Z is not uniformly bounded. Then there
exist two sequences {tk} ⊆ [0, 1] and {0 �= xk} ⊆ H such thatH (xk, tk) = 0 for any
k and ‖xk‖ → ∞. From H (xk, tk) = 0, it follows that

(1 − tk)g
∞(xk) + tkg(x

k) =
ΠK (tk )

(
[(1 − tk)g

∞(xk) + tkg(x
k)] − [(1 − tk)F

∞(xk) + tk F(xk)]
)

,

which means that (1 − tk)g∞(xk) + tkg(xk) ∈ K (tk) = tk K ⊆ C and

〈
(1 − tk)F

∞(xk) + tk F(xk), z − [(1 − tk)g
∞(xk) + tkg(x

k)]
〉
≥ 0 (4)

holds for any z ∈ K (tk). Since g(xk) − g∞(xk) ∈ C as ‖xk‖ → ∞ and C is a
convex cone, it follows that (1 − tk)[g(xk) − g∞(xk)] ∈ C for sufficiently large k.
Furthermore, we have that for sufficiently large k,

g(xk) = (1 − tk)[g(x) − g∞(x)] + (1 − tk)g
∞(xk) + tkg(x

k) ∈ C,

which, together with g−1(C) ⊆ C , implies that xk ∈ C . So, we have that F(xk) =
f (xk) and F∞(xk) = f ∞(xk) for sufficiently large k. Therefore, for sufficiently large
k, (4) can be written as

〈
(1 − tk) f

∞(xk) + tk f (x
k), z − [(1 − tk)g

∞(xk) + tkg(x
k)]

〉
≥ 0, ∀ z ∈ K (tk).

Noting that for any u ∈ K∞ and (fixed) g(x0) ∈ K , tkg(x0) + ‖xk‖δ2u ∈ K (tk)
holds for sufficiently large k. Then, by choosing z = tkg(x0) + ‖xk‖δ2u and dividing
the above relation by ‖xk‖δ1+δ2 , we get that

〈
(1 − tk) f ∞(xk) + tk f (xk)

‖xk‖δ1
, u − (1 − tk)g∞(xk) + tkg(xk) − tkg(x0)

‖xk‖δ2

〉
≥ 0 (5)

holds for any u ∈ K∞ and sufficiently large k. Since {tk} and { xk

‖xk‖ } are bounded, we
can assume that limk→∞ tk = t̄ and lim

k→∞
xk

‖xk‖ = x̄ . Then, let k → ∞ in (5), we have

that
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〈 f ∞(x̄), u − g∞(x̄)〉 ≥ 0, ∀ u ∈ K∞. (6)

Next, we show g∞(x̄) ∈ K∞. Noting that (1 − tk)g∞(xk) + tkg(xk) ∈ K (tk) =
tk K + K∞ for all k, if tk = 0 for infinitely many k, then we can find a subsequence
{xk′ } of {xk} such that tk′ = 0; thus, we can easily get that

g∞(x̄) = lim
k′→∞

(1 − tk′)g∞(xk
′
) + tk′g(xk

′
)

‖xk′ ‖δ2
∈ K∞.

Otherwise, there must exist infinitely many k such that tk > 0, then we can find a
subsequence {xk′ } of {xk} such that tk′ > 0. Since

(1 − tk′)g∞(xk
′
) + tk′g(xk

′
) ∈ K (tk′) = tk′K + K∞ = tk′K ,

each (1−tk′)g∞(xk
′
)+tk′g(xk

′
) can bewritten as (1−tk′)g∞(xk

′
)+tk′g(xk

′
) = tk′ yk

′

with yk
′ ∈ K . Noting that yk

′ ∈ K and ‖xk′ ‖
tk′

→ ∞ as k′ → ∞, then by the definition
of the recession cone, we have that

g∞(x̄) = lim
k′→∞

(1 − tk′)g∞(xk
′
) + tk′g(xk

′
)

‖xk′ ‖δ2

= lim
k′→∞

tk′ yk
′

‖xk′ ‖δ2
= lim

k′→∞
yk

′

‖xk′ ‖δ2/tk′
∈ K∞.

Therefore, both cases imply that g∞(x̄) ∈ K∞. This, together with (6), implies that
0 �= x̄ ∈ SOL( f ∞, g∞, K∞), which contradicts SOL( f ∞, g∞, K∞) = {0}. There-
fore, Z is uniformly bounded.

Now, let Ω be a bounded open set in H , which contains Z, then, 0 /∈ H (∂Ω, t)
for any t ∈ [0, 1]. By Lemma 2.3, we have that,

deg(H (·, 1),Ω, 0) = deg(H (·, 0),Ω, 0) = ind
(
(F∞, g∞)natK∞ , 0

) �= 0.

From the excision property of the degree shown in Lemma 2.4, we can obtain that
deg

(
(F, g)natK ,Ω, 0

) = deg(H (·, 1),Ω, 0) �= 0 for any bounded open set Ω which
contains SOL( f , g, K ). Furthermore, by Lemma 2.3, it follows that SOL( f , g, K ) is
nonempty. In addition, it follows that SOL( f , g, K ) is bounded from the bounded-
ness of Z which contains SOL( f , g, K ). Moreover, the closeness of SOL( f , g, K ) is
obvious. Therefore, SOL( f , g, K ) is nonempty and compact. ��

Remark 3.1 When g(x) = g∞(x) = x , WHGVI( f , g, K ) reduces to the varia-
tional inequality with weakly homogeneous maps of positive degrees, denoted by
WHVI( f , K )with its solution set being written as SOL( f , K ). In this case, it is obvi-
ous that these conditions “g−1(C) = C and g(x) − g∞(x) = 0 ∈ C for any x ∈ H”
hold naturally. Thus, Theorem 3.1 can reduce to [8, Theorem 4.1].
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3.2 An Existence Result Under Harker–Pang-Type Condition

In [9], Harker and Pang studied the existence and uniqueness theory of VIs and CPs
in Rn and provided lots of important conditions, including the one named as Harker–
Pang condition, which was generalized to an arbitrary Hilbert space by Isac et.al. [13]
as follows:

Definition 3.1 [13]We say that a map f : H → H satisfies Harker–Pang condition on
K , if there exists some x∗ ∈ K such that the set K (x∗) = {x ∈ K : 〈 f (x), x−x∗〉 < 0}
is bounded (or empty).

Now, we give a generalization of above Harker–Pang condition for a pair of maps.

Definition 3.2 Given two subset D, K in H , and two maps f : D → H , g : H → H
with g−1(K ) ⊆ D. We say that f satisfies Harker–Pang condition with respect to g
on K , if there is some x∗ satisfying g(x∗) ∈ K such that the set

K (x∗) = {g(x) ∈ K : 〈 f (x), g(x) − g(x∗)〉 < 0}

is bounded (or empty).

Below, we give an existence result for WHGVIs with the help of Theorem 3.1 and
above Harker–Pang-type condition.

Theorem 3.2 Let (K ,C, f , g) ∈ Δ with g(x) − g∞(x) ∈ C as ‖x‖ → ∞,
(g∞)−1(K∞) ⊆ C, F be any given continuous extension of f . Suppose that g∞
is injective, f ∞ satisfies Harker–Pang condition with respect to g∞ on K∞ and
SOL( f ∞, g∞, K∞) = {0}, then deg

(
(F, g)natK ,Ω, 0

) �= 0 for any bounded open
set Ω containing SOL( f , g, K ), and WHGVI( f , g, K ) has a nonempty, compact
solution set.

Proof Let F∞ : H → H be a continuous extension of f ∞. Since f ∞ satisfies
Harker–Pang condition with respect to g∞ on K∞, there exists some x∗ satisfying
g∞(x∗) ∈ K∞ such that the set

K∞(x∗) = {g∞(x) ∈ K∞ : 〈 f ∞(x), g∞(x) − g∞(x∗)〉 < 0} (7)

is bounded (or empty). Thus, we can find a bounded open set Ω containing 0, which
satisfies that x∗ ∈ Ω and K∞(x∗) ⊆ Ω . From K∞(x∗) ⊆ Ω and Ω being open, it
follows that K∞(x∗) ∩ ∂Ω = ∅, which immediately implies that

〈F∞(x), g∞(x) − g∞(x∗)〉 ≥ 0 ∀ x ∈ (g∞)−1(K∞) ∩ ∂Ω. (8)

Below, we show that ind
(
(F∞, g∞)natK∞ , 0

) �= 0. Since SOL( f ∞, g∞, K∞) = {0}
and0 ∈ Ω ,wehave that [( f ∞, g∞)natK∞]−1(0)∩∂Ω = ∅. Thus, deg(( f ∞, g∞)natK∞ ,Ω, 0)
is well defined. Consider the following homotopy map:

H (x, t) := g∞(x) − ΠK∞(t(g∞(x) − F∞(x)) + (1 − t)g∞(x∗)),
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where (x, t) ∈ clΩ × [0, 1]. Then we have that

H (x, 0) = g∞(x) − ΠK∞(g∞(x∗)) and H (x, 1) = g∞(x) − ΠK∞(g∞(x) − F∞(x)).

Noting that g∞ is an injective map on H and x∗ ∈ Ω , thus deg(g∞,Ω, g∞(x∗)) �= 0
and g∞(x) �= g∞(x∗) for any x ∈ (g∞)−1(K∞) \ {x∗}. In addition, from g∞(x∗) ∈
K∞, it follows thatH (x, 0) = g∞(x)− g∞(x∗). Furthermore, since x ∈ Ω and g∞
is an injective map on H , deg(H (·, 0),Ω, 0) is well defined and

deg(H (·, 0),Ω, 0) = deg(g∞ − g∞(x∗),Ω, 0) = deg(g∞,Ω, g∞(x∗)) �= 0.

If 0 /∈ H (∂Ω, t) for any t ∈ [0, 1], then it follows from Lemma 2.3 that

ind
(
(F∞, g∞)natK∞ , 0

) = deg(H (·, 1),Ω, 0) = deg(H (·, 0),Ω, 0) �= 0.

Therefore, to show ind
(
(F∞, g∞)natK∞ , 0

) �= 0, we only need to prove that 0 /∈
H (∂Ω, t) for any t ∈ [0, 1].

Obviously, 0 /∈ H (∂Ω, t) when t = 0, 1, now we show that 0 /∈ H (∂Ω, t) for
any t ∈ (0, 1). Suppose that H (x, t) = 0 for some t ∈ (0, 1). We divide the proof
into the following two cases:

– Case 1: x = x∗, then x /∈ ∂Ω from x∗ ∈ Ω;
– Case 2: x �= x∗. Since H (x, t) = 0, it follows that g∞(x) ∈ K∞ and

〈y − g∞(x), g∞(x) − t(g∞(x) − F∞(x)) − (1 − t)g∞(x∗)〉 ≥ 0

for all y ∈ K∞. Taking y = g∞(x∗), then we have y ∈ K∞ and

〈g∞(x∗) − g∞(x), t F∞(x) + (1 − t)(g∞(x) − g∞(x∗))〉 ≥ 0,

which, together with g∞(x) �= g∞(x∗) for any x ∈ (g∞)−1(K∞) \ {x∗} and t ∈
(0, 1), implies that 〈F∞(x), g∞(x∗) − g∞(x)〉 ≥ 1−t

t ||g∞(x∗) − g∞(x)||22 > 0.
From (8), we obtain that x /∈ ∂Ω .

Thus, these two cases together mean that 0 /∈ H (∂Ω, t) for any t ∈ (0, 1).
Therefore, we obtain that ind

(
(F∞, g∞)natK∞ , 0

) �= 0, which, together with
SOL( f ∞, g∞, K∞) = {0}, implies that SOL( f , g, K ) is nonempty and compact
from Theorem 3.1. ��

In [18], a related result for GVIs was given as follows.

Theorem 3.3 [18] Let K be a closed convex set in R
n, f : Rn → R

n be continuous
and g : Rn → R

n be continuous, injective. If the set

L≤ := {g(x) ∈ K : 〈 f (x), g(x) − g(x∗)〉 ≤ 0}

is bounded (or empty), then SOL( f , g, K ) is nonempty and compact.
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Here, we show an example, which satisfies all conditions in Theorem 3.2 but do
not satisfy the conditions given in Theorem 3.3 when the maps involved in GVIs are
weakly homogeneous.

Example 3.1 Consider WHGVI( f , g, K ) where K := {x ∈ R
2 : −1 ≤ x1 ≤ 0, x2 ≥

0}, f (x) = (x31 + x21 ,−x21 x2 − x22 )
	, g(x) = (x31 − x1, x32)

	, ∀x ∈ C := {x ∈ R
2 :

x2 ≥ 0}.
Obviously, K is a convex set in C with K∞ := {x ∈ R

2 : x1 = 0, x2 ≥ 0} and
(K∞)∗ := {x ∈ R

2 : x2 ≥ 0}, and f , g are weakly homogeneous maps of degree 3.

– It is easy to see that g∞ is an injective map, (g∞)−1(K∞) = K∞ ⊆ C , g−1(C) =
C and g(x) − g∞(x) ∈ C for any x ∈ R

2.
– Taking x∗ = (0, 0)	, we have g∞(x∗) = (0, 0)	 ∈ K∞ and for any g∞(x) ∈

K∞, i.e., x1 = 0, x2 ≥ 0, it follows that 〈 f ∞(x), g∞(x)−g∞(x∗)〉 = x61−x21 x
4
2 =

0, which means that f ∞ satisfies Harker–Pang condition with respect to g∞ on
K∞.

– Consider WHGCP( f ∞, g∞, K∞). Suppose that x∗ ∈ SOL( f ∞, g∞, K∞). On
the one hand, from g∞(x∗) ∈ K∞, it follows that x∗

1 = 0 and x∗
2 ≥ 0. On

the other hand, from f ∞(x∗) ∈ (K∞)∗, it follows that x∗
2 ≤ 0. Thus, we get

SOL( f ∞, g∞, K∞) = {0}.
So, all conditions of Theorem 3.2 are satisfied. Noting that g(y) = g(z) = (0, 0)	
where y := (0, 0)	 and z := (1, 0)	, thus g is not an injective map. In addition,
taking g(x∗) ∈ K , then for any g(x) ∈ K with x1 = −1, we can obtain that

〈 f (x), g(x) − g(x∗)〉 = (−x2 − x22 )[x32 − (x∗
2 )

3] → −∞ as x2 → +∞,

which means that L≤ are unbounded. So, conditions in Theorem 3.3 do not hold.

Recall that for VIs, there are two useful consequences of the existence result estab-
lished under Harker–Pang condition, where one is the well-known coercivity theorem
and the other is the famous Hartman–Stampacchia’s theorem. Similarly, forWHGVIs,
we can obtain corresponding versions of these two important results. First, we show
the coercivity one, which turns out to utilize a different coercivity condition from the
corresponding one for VIs when underlying problems reduce to WHVIs.

Theorem 3.4 Let (K ,C, f , g) ∈ Δ with g(x) − g∞(x) ∈ C as ‖x‖ →
∞, (g∞)−1(K∞) ⊆ C. Suppose that g∞ is an injective map on H and
SOL( f ∞, g∞, K∞) = {0}. If there exists some x∗ ∈ K∞, c ≥ 0 and ξ ≥ 0 such that

〈 f ∞(x), g∞(x) − g∞(x∗)〉 ≥ c‖x‖ξ , ∀ g∞(x) ∈ K∞ and ‖x‖ → ∞ (9)

holds, then WHGVI( f , g, K ) has a nonempty, compact solution set.

Proof Since (9) implies that 〈 f ∞(x), g∞(x) − g∞(x∗)〉 ≥ 0 for any g∞(x) ∈ K∞
and ‖x‖ → ∞, that is to say that f ∞ satisfies Harker–Pang condition with respect
to g∞ on K∞. Therefore, from Theorem 3.2, we get that WHGVI( f , g, K ) has a
nonempty, compact solution set. ��
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When g(x) = x , Theorem 3.4 yields the following result on the nonemptiness and
compactness of the solution set to WHVIs:

Corollary 3.1 Let K be a closed convex set in cone C and f : C → R
n be a weakly

homogeneousmap. Suppose thatSOL( f ∞, K∞) = {0}. If there exists some x∗ ∈ K∞,
c ≥ 0 and ξ ≥ 0 such that

〈 f ∞(x), x − x∗〉 ≥ c‖x‖ξ , ∀ x ∈ K∞ and ‖x‖ → ∞ (10)

holds, then WHVI( f , g, K ) has a nonempty, compact solution set.

Below, we compare the conditions in Corollary 3.1 with the coercivity condition
for general VIs with the considered problem being restricted to WHVIs. To this end,
we recall that the corresponding coercivity result for VIs:

Theorem 3.5 [2] Let K be a closed convex set in Rn and f : K → R
n be continuous.

If f is coercive on K , that is there exists some xre f ∈ K, c > 0 and ξ ≥ 0 such that

〈 f (x), x − xre f 〉 ≥ c‖x‖ξ , ∀ x ∈ K and ‖x‖ → ∞,

then VI( f , K ) has a nonempty, compact solution set.

Now, we construct an example to show the coercivity condition used for WHVIs
in Corollary 3.1 is different from the classic one for VIs, where all conditions in
Corollary 3.1 are satisfied, but the coercivity condition of Theorem 3.5 does not hold.

Example 3.2 Consider WHVI( f , K ) where K := {x ∈ R
2 : x1 ≥ x2} and for any

x ∈ K , f (x) = (x31 + x32 − x1,−x31 − 2x1x22 + x32 − x2)	.

Obviously, K is convex with K ∗ := {0}, and f is weakly homogeneous of degree
3. First, we show that all conditions of Corollary 3.1 are satisfied.

– Taking x∗ = (0, 0)	 ∈ K∞ = K , then it follows that

〈 f ∞(x), x − x∗〉 = x1(x
3
1 + x32 ) + x2(−x31 − 2x1x

2
2 + x32 ) = (x1 − x2)(x

3
1 − x32 ) ≥ 0

for any x ∈ K∞. Thus, (10) holds.
– Consider WHCP( f ∞, K∞). Suppose that x̄ ∈ SOL( f ∞, K∞), then it follows
from f ∞(x̄) ∈ (K∞)∗ that x̄31 + x̄32 = 0 and −x̄31 − 2x̄1 x̄22 + x̄32 = 0, i.e.
x̄1 = −x̄2 and 4x̄32 = 0. So, we get that SOL( f ∞, K∞) = {0}.

Therefore, all conditions of Corollary 3.1 are satisfied.
Second, we show the coercivity condition of Theorem 3.5 does not hold.

– For any xre f ∈ K with xre f1 + xre f2 ≥ 0, by taking x ∈ K with x1 = x2 ≤ 0,

we have that 〈 f (x), x − xre f 〉 = 2x32(x
re f
1 + xre f2 ) − x2(2x2 + xre f1 + xre f2 ) →

−∞, as x2 → −∞.

– For any xre f ∈ K with xre f1 + xre f2 < 0, by taking x ∈ K with x1 = x2 ≥ 0,

we have that 〈 f (x), x − xre f 〉 = 2x32(x
re f
1 + xre f2 ) − x2(2x2 + xre f1 + xre f2 ) →

−∞, as x2 → +∞.
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Thus, we cannot find some xre f ∈ K , c > 0 and ξ ≥ 0 such that 〈 f (x), x − xre f 〉 ≥
c‖x‖ξ for any x ∈ K satisfying ‖x‖ → ∞, which implies that f is not coercive on
K .

Hartman–Stampacchia’s theorem is a basic result on the existence of solutions to
VIs, which plays a critical role in deriving many existence results for VIs. Besides, it is
well known that Hartman–Stampacchia’s theorem is another important consequences
of the fundamental existence result under Harker–Pang condition. In the following, we
investigate the corresponding version forWHGVIs, which is the basis for establishing
the first copositivity result in the next section.

Theorem 3.6 Let (K ,C, f , g) ∈ Δ with g(x) − g∞(x) ∈ C as ‖x‖ → ∞,
(g∞)−1(K∞) ⊆ C and K being compact. If g∞ is injective on H, then
WHGVI( f , g, K ) has a nonempty, compact solution set.

Proof Since K is compact, K∞ = {0}. Take x∗ = 0, then it follows that K∞(x∗)
defined by (7) is empty, which implies that f ∞ satisfies Harker–Pang condition with
respect to g∞ on K∞. In addition, since g∞(x) ∈ K∞ if and only if g∞(x) = 0
if and only if x = 0, it follows that SOL( f ∞, g∞, K∞) = {0} holds. Hence, by
Theorem 3.2, we know that SOL( f , g, K ) is nonempty and compact. ��

3.3 Several Copositivity Results

Let ψ : H ⊇ D → H be a continuous map. Recall that ψ is said to be copositive on
D [9], if 〈ψ(x) − ψ(0), x〉 ≥ 0 holds for any x ∈ D, and ψ is said to be q-copositive
on D [19], if there is some q ∈ H such that 〈ψ(x) − q, x〉 ≥ 0 holds for any x ∈ D.
They are two useful conditions for deriving existence results for VIs. Below, we show
three copositivity results for WHGVIs. To this end, we give the following definitions.

Definition 3.3 Given two maps f : C → H and g : H → H . f is said to be

(i) copositive with respective to g on K , if g−1(K ) ⊆ C and 〈 f (x)− f (0), g(x)〉 ≥ 0
holds for any g(x) ∈ K .

(ii) q-copositive with respective to g on K , if g−1(K ) ⊆ C and there exists a vector
q ∈ H such that 〈 f (x) − q, g(x)〉 ≥ 0 holds for any g(x) ∈ K .

The first copositivity result on the nonemptiness and compactness of solution sets
to WHGVIs is obtained with the help of the specific Hartman–Stampacchia’s theorem
for WHGVIs given as Theorem 3.6 in subsection 3.1.

Theorem 3.7 Let (K ,C, f , g) ∈ Δ with g(x) − g∞(x) ∈ C as ‖x‖ → ∞,
(g∞)−1(K∞) ⊆ C, and p ∈ H. Suppose that g∞ is injective on H, g∞(x) �= 0
for any x ∈ H satisfying ‖x‖ = 1 and the following conditions hold:

(a) f is q-copositive with respect to g on K ;
(b) there is a vector x̂ ∈ K such that 〈 f (x), x̂〉 ≤ 0 for all x satisfying g(x) ∈ K;
(c) p + q ∈ int((g∞(S ))∗) with S :=SOL( f ∞, g∞, K∞), g∞(S ) := {g∞(x) :

x ∈ S },
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then WHGVI( f + p, g, K ) has a nonempty, compact solution set.

Proof Denote Kk = {x ∈ H : x ∈ K , ‖x‖ ≤ k}, ∀ k = 1, 2, . . . . Obviously, for
every fixed k, Kk is a compact and convex set. Then it follows from Theorem 3.6, for
sufficiently large k, Kk is nonempty andWHGVI( f , g, Kk) has a solution, denoted by
xk . That is to say, for sufficiently large k, there is some xk ∈ H such that g(xk) ∈ Kk

and

〈 f (xk) + p, y − g(xk)〉 ≥ 0, ∀ y ∈ Kk . (11)

Below, we show that the sequence {xk} is bounded, which means that limk→∞ xk = x̃
solves VI( f , g, K ); thus, SOL( f , g, K ) is nonempty and compact.

For the sake of contradiction, assume that the sequence {xk} is unbounded and
xk

‖xk‖ → x̄ as k → ∞. Taking y = x̂ in (11) (without loss of generality, assume that

‖x̂‖ ≤ k), we obtain 〈 f (xk) + p, x̂ − g(xk)〉 ≥ 0, i.e.,

−〈 f (xk), x̂〉 + 〈 f (xk) − q, g(xk)〉 ≤ −〈p + q, g(xk)〉 + 〈p, x̂〉,

which, together with conditions (a) and (b), implies that 〈p+ q, g(xk)〉 − 〈p, x̂〉 ≤ 0.
Dividing it by ‖xk‖γ2 and letting k → ∞, we have that 〈p + q, g∞(x̄)〉 ≤ 0, which
implies that x̄ /∈ S from the condition that p + q ∈ int((g∞(S ))∗). Thus, for the
sake of contradiction, to show the boundedness of {xk}, we only need to show that
x̄ ∈ S , i.e., x̄ ∈ SOL( f ∞, g∞, K∞).

For every v ∈ K∞ with v �= 0 and every k, since K∞ + K ⊆ K , ‖g(xk )‖
‖v‖ v ∈ K∞,

and x1 ∈ K , it follows that yk := ‖g(xk )‖
‖v‖ v + x1 ∈ K . Noting that

‖yk‖ ≤ ‖g(xk)‖ + ‖x1‖ ≤ k + 1,

which means that yk ∈ Kk+1. By substituting yk for y in (11), we have that

〈
f (xk+1) + p,

‖g(xk)‖
‖v‖ v + x1 − g(xk+1)

〉
≥ 0.

Dividing it by ‖xk+1‖γ1+γ2 , we obtain

〈
f (xk+1) + p

‖xk+1‖γ1
,
‖g(xk)‖
‖xk‖γ2

‖xk‖γ2

‖xk+1‖γ2

v

‖v‖ + x1

‖xk+1‖γ2
− g(xk+1)

‖xk+1‖γ2

〉
≥ 0. (12)

Without loss of generality, we can assume that ‖xk+1‖ ≥ ‖xk‖ for all sufficiently
large k, then we have that, k − 1 ≤ ‖xk‖ ≤ k, k ≤ ‖xk+1‖ ≤ k + 1, which means

that lim
k→∞

‖xk‖γ2

‖xk+1‖γ2
= 1. By letting k → ∞ in (12), we can further obtain that

〈 f ∞(x̄), ‖g∞(x̄)‖ v

‖v‖ − g∞(x̄)〉 ≥ 0, ∀ v ∈ K∞. (13)
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Noting that ‖g∞(x̄)‖ �= 0 as g∞(x) �= 0 for any x satisfying ‖x‖ = 1, and K∞ is
a cone, thus (13) is equivalent to 〈 f ∞(x̄), v − g∞(x̄)〉 ≥ 0 for any v ∈ K∞, which,
together with g∞(x̄) = lim

k→∞
g(xk )
‖xk‖γ2 ∈ K∞, means that x̄ ∈ S . This is a contradiction

to condition (c) and thus further a contradiction to the assumption that the sequence
{xk} is unbounded.

The proof is complete. ��
Remark 3.2 It is easy to see that Theorem 3.7 becomes the main result recently estab-
lished in [19] when the underlying problem reduces to a WHVI.

The second copositivity result can be seen as a generalization of the one given in
[8, Theorem 6.1]. But it should be noticed that this new existence theorem is derived
in a different way from [8, Theorem 6.1].

Theorem 3.8 Let (K ,C, f , g) ∈ Δ with g(x) − g∞(x) ∈ C as ‖x‖ → ∞,
(g∞)−1(K∞) ⊆ C, and F be any given continuous extension of f . If f ∞ is copositive
with respect to g∞ on K∞, g∞ is injective on H and SOL( f ∞, g∞, K∞) = {0}, then
deg

(
(F, g)natK ,Ω, 0

) �= 0 for any bounded open setΩ containing SOL( f , g, K ), and
SOL( f , g, K ) is nonempty and compact.

Proof It is easy to see that if f ∞ is copositive with respect to g∞ on K∞, then f ∞ sat-
isfies Harker–Pang condition with respect to g∞ on K∞. From Theorem 3.2, we have
that deg

(
(F, g)natK ,Ω, 0

) �= 0 for any bounded open setΩ containing SOL( f , g, K ),
and SOL( f , g, K ) is nonempty and compact. ��
Remark 3.3 When g(x) = x , WHGVI( f , g, K ) reduces to WHVI( f , K ), and Theo-
rem 3.8 reduces to Theorem 6.1 (a) in [8].

Next, we show the third copositivity result. To this aim, an “alternative theorem”
is established first.

Theorem 3.9 Let (K ,C, f , g) ∈ Δ with g(x) − g∞(x) ∈ C as ‖x‖ → ∞,
(g∞)−1(K∞) ⊆ C. Suppose that g∞ is an injective map on H. If f ∞ is coposi-
tive with respect to g∞ on K∞, then either the WHGVI( f , g, K ) has a solution or
there exists an unbounded sequence {xk} and a positive sequence {tk} ⊆ (0, 1) such
that g(xk) ∈ K and for each k,

〈 f ∞(xk) + tkg(xk) + (1 − tk)( f (xk) − f ∞(xk)), y − g(xk)〉 ≥ 0, ∀y ∈ K . (14)

Proof Let F and F∞ be any given continuous extensions of f and f ∞, respectively.
For the sake of contradiction, we assume that the set

⋃
0<t<1

SOL( f ∞ + tg + (1 − t)( f − f ∞), g, K )

is bounded and SOL( f , g, K ) = ∅. Then, consider the homotopy:

H (x, t) = g(x) − ΠK (g(x) − (F∞(x) + tg(x) + (1 − t)(F(x) − F∞(x)))),
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where (x, t) ∈ H × [0, 1]. It is easy to see that H (·, t) is just the natural map of
WHGVI( f ∞ + tg + (1 − t)( f − f ∞), g, K ) for each t ∈ [0, 1]. Denote the set of
zeros of H (·, t) by: Z := {x ∈ H | H (x, t) = 0 for some t ∈ [0, 1]}.

Since SOL( f , g, K ) = ∅, it follows that {x ∈ H | H (x, 0) = 0} is bounded,
which, togetherwith another assumption, implies {x ∈ H | H (x, t) = 0 for some t ∈
[0, 1)} is bounded. Now, we consider the set

{x ∈ H | H (x, 1) = g(x) − ΠK (g(x) − (F∞(x) + g(x))) = 0}.

Since f ∞ is copositivewith respect to g∞ on K∞, it follows that 〈 f ∞(x), g∞(x)〉 ≥ 0
for all g∞(x) ∈ K∞. In addition, noting that 〈g∞(x), g∞(x)〉 > 0 for any g∞(x) �= 0
and g∞ is injective, thus SOL(( f ∞ + g)∞, g∞, K∞) = {0}. Besides, it is easy to
see that ( f ∞ + g)∞ is copositive with respect to g∞ on K∞. So from Theorem 3.8,
it follows that SOL( f ∞ + g, g, K ) is nonempty and compact. Hence, the set Z is
uniformly bounded.

Let Ω be a bounded open set in H , which contains Z, then for all t ∈ [0, 1],
0 /∈ H (∂Ω, t). By Lemma 2.3, it follows that,

deg(H (·, 0),Ω, 0) = deg(H (·, 1),Ω, 0) = deg((F∞ + g, g)natK ,Ω, 0). (15)

Since f ∞ + g∞ is copositive with respect to g∞ on K∞, g∞ is injective on H and
SOL( f ∞ + g∞, g∞, K∞) = {0}, it follows that deg((F∞ + g, g)natK (x),Ω, 0) �= 0
by Theorem 3.8. Hence, from (15), we have that deg(H (·, 0),Ω, 0) �= 0, which
means that SOL( f , g, K ) is nonempty. Contradiction! ��

Recall that in [8], the authors investigated the nonemptiness and compactness of
the solution set of WHVI( f , K ) well, and established some good results based on
a condition that SOL( f ∞, K∞) = {0}. With Theorem 3.9, we can obtain the third
copositivity result for WHGVI( f , g, K ), which does not need the assumption that
SOL( f ∞, g∞, K∞) = {0}.
Theorem 3.10 Let (K ,C, f , g) ∈ Δ with g(x) − g∞(x) ∈ C as ‖x‖ → ∞, 0 ∈ K
and (g∞)−1(K∞) ⊆ C. Suppose that g∞ is an injective map on H and the following
conditions hold:

(a) f ∞ is copositive with respect to g∞ on K∞;
(b) f ∞ is copositive with respect to g on K ;
(c) for any x satisfying g(x) ∈ K and ‖x‖ → ∞, g(x) �= 0 and there exists no c > 0

such that −g(x) = c( f (x) − f ∞(x));
(d) lim

g(x)∈K ,‖x‖→∞ ‖(F, g)natK (x)‖ = ∞ and ‖ f (x) − f ∞(x)‖ ≤ ‖(F, g)natK (x)‖ for

any x satisfying g(x) ∈ K and ‖x‖ → ∞, where (F, g)natK (x) := g(x) −
ΠK (g(x) − F(x)) is the natural map of GVI( f , g, K ) with F being a given
continuous extension of f ;

then WHGVI( f , g, K ) has a nonempty, compact solution set.

Proof First, we show that SOL( f , g, K ) �= ∅. Suppose that SOL( f , g, K ) = ∅, then
from Theorem 3.9, there exists an unbounded sequence {xk} and a positive sequence
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{tk} ⊆ (0, 1) such that g(xk) ∈ K and (14) holds for each k. Noting that 0 ∈ K , thus
we have that

〈g(xk), f ∞(xk) + tkg(xk) + (1 − tk)( f (xk) − f ∞(xk))〉 ≤ 0,

which, together with the condition that f ∞ is copositive with respect to g on K and
g(xk) ∈ K , implies that

〈g(xk), tkg(xk) + (1 − tk)( f (xk) − f ∞(xk))〉 ≤ 0.

This, together with Cauchy–Schwarz inequality, means that

tk‖g(xk)‖2 = 〈g(xk), tkg(xk)〉
≤ 〈g(xk),−(1 − tk)( f (xk) − f ∞(xk))〉
≤ (1 − tk)‖g(xk)‖‖ f (xk) − f ∞(xk)‖;

thus, it follows that

tk‖g(xk)‖ ≤ (1 − tk)‖ f (xk) − f ∞(xk)‖, if ‖g(xk)‖ �= 0.

Since when ‖g(xk)‖ = 0, tk‖g(xk)‖ ≤ (1 − tk)‖ f (xk) − f ∞(xk)‖ holds naturally,
we have that

tk‖g(xk)‖ ≤ (1 − tk)‖ f (xk) − f ∞(xk)‖, (16)

which, together with condition (c), implies that f (xk) − f ∞(xk) �= 0 for sufficiently
large k. Further, by tk > 0, condition (c) and the trigonometric inequality of the norm,
we have that

‖ − tkg(xk) + tk( f (xk) − f ∞(xk))‖ < tk‖g(xk)‖ + tk‖ f (xk) − f ∞(xk)‖ (17)

for sufficiently large k. In addition, by Lemma 2.2 and (14), it follows that

g(xk) = ΠK (g(xk) − f ∞(xk) − tkg(xk) − (1 − tk)( f (xk) − f ∞(xk))),

which, together with F(xk) = f (xk) since xk ∈ K , implies that for sufficiently large
k,

‖(F, g)natK (xk)‖
= ‖g(xk) − ΠK (g(xk) − F(xk))‖
= ‖ΠK (g(xk) − f ∞(xk) − tk g(xk) − (1 − tk)( f (xk) − f ∞(xk))) − ΠK (g(xk) − f (xk))‖
≤ ‖ − tk g(xk) + tk( f (xk) − f ∞(xk))‖
< tk‖g(xk)‖ + tk‖ f (xk) − f ∞(xk)‖
≤ (1 − tk)‖ f (xk) − f ∞(xk)‖ + tk‖ f (xk) − f ∞(xk)‖
= ‖ f (xk) − f ∞(xk)‖,
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where the first inequality follows from nonexpansiveness of Euclidean projector and
the second inequality follows from (17) and the third inequality follows from (16).

On the one hand, it follows from

‖(F, g)natK (xk)‖ < ‖ f (xk) − f ∞(xk)‖

for sufficiently large k. On the other hand, by condition (d), g(xk) ∈ K and ‖xk‖ → ∞
as k → ∞, we have

‖ f (xk) − f ∞(xk)‖ ≤ ‖(F, g)natK (xk)‖

for sufficiently large k. A contradiction yields! So, it follows that SOL( f , g, K ) �= ∅.
Obviously, from lim

g(x)∈K ,‖x‖→∞ ‖(F, g)natK (x)‖ = ∞, it follow that SOL( f , g, K )

is bounded. Therefore, we obtain that SOL( f , g, K ) is nonempty and compact. ��
Remark 3.4 (i) It has been shown in [31] that the condition (b) can imply the con-

dition (a) of Theorem 3.10 when g(x) = x . In addition, when g(x) = x , these
constraints that g−1(C) ⊆ C, g(x) − g∞(x) ∈ C as ‖x‖ → ∞ and g∞ is an
injective map on H are satisfied immediately. So, when g(x) = x , Theorem 3.10
reduces to [31, Theorem 2]

(ii) However, it should be noticed if g(x) �= x , then condition (b) may not
imply condition (a). For example, take K := {x ∈ R

2 : x1 ≥ 0},
f (x) = (x1 − 3

√
x1, x2 − 3

√
x2)	 and g(x) = (−x22 ,−x32 + x21 )

	. Then for
any g(x) ∈ K , it follows that x2 = 0; thus, we have 〈 f ∞(x), g(x)〉 =
−x22 x1 − x42 + x21 x2 = 0, which means f ∞ is copositive with respect to g
on K . But for any g∞(x) = (0,−x32)

	 ∈ K∞ = K , it follows that x ∈ R
2;

thus, we have that 〈 f ∞(x), g∞(x)〉 = −x42 ≤ 0, which implies f ∞ is not
copositive with respect to g∞ on K∞.

4 Conclusions

In this paper, we investigated the nonemptiness and compactness of the solution set to
the WHGVI, which contains a lot of recently well-studied special VIs and CPs as its
subclasses. First, we obtained a result for demonstrating the relationship between the
solution set of WHGVI( f , g, K ) and the solution set of WHGCP( f ∞, g∞, K∞).
Second, we proved that WHGVI( f , g, K ) has a nonempty, compact solution set
under some assumptions and the condition that f ∞ satisfies Harker–Pang condition
with respect to g∞ on K∞, which is different from the corresponding one shown in
[18]. Third, we established three copositivity results for WHGVIs. In particular, one
copositivity result does not need to the common restriction on the solution set of cor-
responding recession cone complementarity problem. If underlying problems reduce
to WHVIs, some of our results coincide with the corresponding ones.

In our opinions, the efficient algorithms and the applications of WHGVIs in equi-
librium theory and engineering deserve to further study in the future work.
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