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Abstract
In this paper, we propose in a Hilbertian setting a second-order time-continuous
dynamic system with fast convergence guarantees to solve structured convex min-
imization problems with an affine constraint. The system is associated with the
augmented Lagrangian formulation of the minimization problem. The corresponding
dynamics brings into play three general time-varying parameters, each with specific
properties, and which are, respectively, associated with viscous damping, extrapola-
tion and temporal scaling. By appropriately adjusting these parameters, we develop a
Lyapunov analysis which provides fast convergence properties of the values and of the
feasibility gap. These results will naturally pave the way for developing corresponding
accelerated ADMM algorithms, obtained by temporal discretization.
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1 Introduction

Our paper is part of the active research stream that studies the relationship between
continuous-time dissipative dynamical systems and optimization algorithms. From
this perspective, damped inertial dynamics offer a natural way to accelerate these
systems. An abundant literature has been devoted to the design of the damping terms,
which is the basic ingredient of the optimization properties of these dynamics. In line
with the seminal work of Polyak on the heavy ball method with friction [45,46], the
first studies have focused on the case of a fixed viscous damping coefficient [1,2,17].
A decisive step was taken in [52] where the authors considered inertial dynamics
with an asymptotic vanishing viscous damping coefficient. In doing so, they made the
link with the accelerated gradient method of Nesterov [25,41,42] for unconstrained
convex minimization. This has resulted in a flurry of research activity; see e.g. [3,7–
9,11–13,18,20,21,23,27,31,39,51,53].

In this paper, we consider the case of affinely constrained convex structured min-
imization problems. To bring back the problem to the unconstrained case, there are
two main ways: either penalize the constraint (by external penalization or an internal
barrier method), or use (augmented) Lagrangian multiplier methods.

Accounting for approximation/penalization terms within dynamical systems has
been considered in a series of papers; see [16,29] and the references therein. It is
a flexible approach which can be applied to non-convex problems and/or ill-posed
problems, making it a valuable tool for inverse problems. Its major drawback is that
in general, it requires a subtle tuning of the approximation/penalization parameter.

Here, we will consider the augmented Lagrangian approach and study the conver-
gence properties of a second-order inertial dynamic with damping, which is attached
to the augmented Lagrangian formulation of the affinely constrained convex min-
imization problem. The proposed dynamical system can be viewed as an inertial
continuous-time counterpart of the ADMM method originally proposed in the mid-
1970s and which has gained considerable interest in the recent years, in particular for
solving large-scale composite optimization problems arising in data science. Among
the novelties of our work, the dynamics we propose involves three parameters which
vary in time. These are associated with viscous damping, extrapolation, and temporal
scaling. By properly adjusting these parameters, wewill provide fast convergence rates
both for the values and the feasibility gap. The balance between the viscosity parame-
ter (which tends towards zero) and the extrapolation parameter (which tends towards
infinity) has already been developed in [36,54] and [14], though for different problems.
Temporal scaling techniques were considered in [6] for the case of convex minimiza-
tion without affine constraint; see also [10,12,15]. Thus, another key contribution of
this paper is to show that the temporal scaling and extrapolation can be extended to
the class of ADMM-type methods with improved convergence rates. Working with
general coefficients and in general Hilbert spaces allows us to encompass the results
obtained in the above-mentioned papers and to broaden their scope.

It has been known for a long time that the optimality conditions of the (augmented)
Lagrangian formulation of convex structured minimization problems with an affine
constraint can be equivalently formulated as a monotone inclusion problem; see [48–
50]. In turn, the problem can be converted into finding the zeros of a maximally
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monotone operator and can therefore be attacked using inertial methods for solving
monotone inclusions. In this regard, let us mention the following recent works con-
cerning the acceleration of ADMM methods via continuous-time inertial dynamics:

• In [26], the authors proposed an inertial ADMM by making use of the inertial
version of the Douglas–Rachford splitting method for monotone inclusion prob-
lems recently introduced in [28], in the context of concomitantly solving a convex
minimization problem and its Fenchel dual; see also [34,43,44,47] in the purely
discrete setting.

• Attouch [5] uses the maximally monotone operator which is associated with the
augmented Lagrangian formulation of the problem, and specializes to this operator
the inertial proximal point algorithm recently developed in [19] to solve general
monotone inclusions. This gives rise to an inertial proximal ADMM algorithm
where an appropriate adjustment of the viscosity and proximal parameters gives
provably fast convergence properties, as well as the convergence of the iterates to
saddle points of the Lagrangian function. This approach is in line with [22] who
considered the case without inertia. But this approach fails to achieve a fully split
inertial ADMM algorithm.

Contents In Sect. 2, we introduce the inertial second-order dynamical system with
damping (coined (TRIALS)) which is attached to the augmented Lagrangian formu-
lation. In Sect. 3, which is the main part of the paper, we develop a Lyapunov analysis
to establish the asymptotic convergence properties of (TRIALS). This gives rise to
a system of inequalities-equalities which must be satisfied by the parameters of the
dynamics. From the energy estimates thus obtained, we show in Sect. 4 that the Cauchy
problem attached to (TRIALS) is well posed, i.e. existence and possibly uniqueness
of a global solution. In Sect. 5, we examine the case of the uniformly convex objec-
tives. In Sect. 6, we provide specific choices of the system parameters that satisfy our
assumptions and achieve fast convergence rates. This is then supplemented by prelim-
inary numerical illustrations. Some conclusions and perspectives are finally outlined
in Sect. 7.

2 Problem Statement

Consider the structured convex optimization problem:

min
x∈X , y∈Y

F(x, y) := f (x) + g(y) subject to Ax + By = c, (P)

where, throughout the paper, we make the following standing assumptions:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

X ,Y,Z are real Hilbert spaces;

f : X → R, g : Y → R are convex functions of class C1;
A : X → Z, B : Y → Z are linear continuous operators, c ∈ Z;

The solution set of (P) is non-empty.

(HP )
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Throughout, we denote by 〈·, ·〉 and ‖·‖ the scalar product and corresponding norm
associated with any of X ,Y,Z , and the underlying space is to be understood from
the context.

2.1 Augmented Lagrangian Formulation

Classically, P can be equivalently reformulated as the saddle point problem

min
(x,y)∈X×Y

max
λ∈Z

L(x, y, λ), (1)

where L : X × Y × Z → R is the Lagrangian associated with (1)

L(x, y, λ) := F(x, y) + 〈λ, Ax + By − c〉. (2)

Under our standing assumptionHP , L is convex with respect to (x, y) ∈ X ×Y , and
affine (and hence concave) with respect to λ ∈ Z . A pair (x�, y�) is optimal for P ,
and λ� is a corresponding Lagrange multiplier if and only if (x�, y�, λ�) is a saddle
point of the Lagrangian function L, i.e. for every (x, y, λ) ∈ X × Y × Z ,

L(x�, y�, λ) ≤ L(x�, y�, λ�) ≤ L(x, y, λ�). (3)

We denote byS the set of saddle points ofL. The corresponding optimality conditions
read

(x�, y�, λ�) ∈ S ⇐⇒

⎧
⎪⎨

⎪⎩

∇xL(x�, y�, λ�) = 0

∇yL(x�, y�, λ�) = 0

∇λL(x�, y�, λ�) = 0

⇐⇒

⎧
⎪⎨

⎪⎩

∇ f (x�) + A∗λ� = 0

∇g(y�) + B∗λ� = 0,

Ax� + By� − c = 0

(4)

where we use the classical notations: ∇ f and ∇g are the gradients of f and g, A∗
is the adjoint operator of A, and similarly for B. The operator ∇z is the gradient of
the corresponding multivariable function with respect to variable z. Given μ > 0, the
augmented Lagrangian Lμ : X × Y × Z → R associated with the problem P , is
defined by

Lμ(x, y, λ) := L(x, y, λ) + μ

2
‖Ax + By − c‖2. (5)

Observe that one still has (x�, y�, λ�) ∈ S ⇐⇒

⎧
⎪⎨

⎪⎩

∇xLμ(x�, y�, λ�) = 0,

∇yLμ(x�, y�, λ�) = 0,

∇λLμ(x�, y�, λ�) = 0.
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2.2 The Inertial System (TRIALS)

We will study the asymptotic behaviour, as t → +∞, of the inertial system:

TRIALS: Temporally Rescaled Inertial Augmented Lagrangian System.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẍ(t) + γ (t)ẋ(t) + b(t)∇xLμ

(
x(t), y(t), λ(t) + α(t)λ̇(t)

)
= 0

ÿ(t) + γ (t)ẏ(t) + b(t)∇yLμ

(
x(t), y(t), λ(t) + α(t)λ̇(t)

)
= 0

λ̈(t) + γ (t)λ̇(t) − b(t)∇λLμ

(
x(t) + α(t)ẋ(t), y(t) + α(t)ẏ(t), λ(t)

)
= 0,

for t ∈ [t0,+∞[ with initial conditions (x(t0), y(t0), λ(t0)) and (ẋ(t0), ẏ(t0), λ̇(t0)).
The parameters of (TRIALS) play the following roles:

• γ (t) is a viscous damping parameter,
• α(t) is an extrapolation parameter,
• b(t) is attached to the temporal scaling of the dynamic.

In the sequel, we make the following standing assumption on these parameters:

γ, α, b : [t0,+∞[→ R
+ are non-negative continuously differentiable functions.

(HD)

Plugging the expression of the partial gradients of Lμ into the above system, the
Cauchy problem associated with (TRIALS) is written as follows, where we unam-
biguously remove the dependence of (x, y, λ) on t to lighten the formula:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẍ + γ (t)ẋ + b(t)
(
∇ f (x) + A∗ [λ + α(t)λ̇ + μ(Ax + By − c)

]) = 0

ÿ + γ (t)ẏ + b(t)
(
∇g(y) + B∗ [λ + α(t)λ̇ + μ(Ax + By − c)

]) = 0

λ̈ + γ (t)λ̇ − b(t)
(
A(x + α(t)ẋ) + B(y + α(t)ẏ) − c

)
= 0

(x(t0), y(t0), λ(t0)) = (x0, y0, λ0) and

(ẋ(t0), ẏ(t0), λ̇(t0)) = (u0, v0, ν0).
(TRIALS)

If in addition toHP , the gradients of f and g are Lipschitz continuous on bounded
sets, we will show later in Sect. 4 that the Cauchy problem associated with (TRIALS)
has a unique global solution on [t0,+∞[. Indeed, although the existence and unique-
ness of a local solution follow from the standard non-autonomous Cauchy–Lipschitz
theorem, the global existence necessitates the energy estimates derived from the Lya-
punov analysis in the next section. The centrality of these estimates is the reason why
the proof of well-posedness is deferred to Sect. 4. Thus, for the moment, we take for
granted the existence of classical solutions to (TRIALS).
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2.3 A Fast Convergence Result

Our Lyapunov analysis will allow us to establish convergence results and rates under
very general conditions on the parameters of (TRIALS), see Sect. 3. In fact, there
are many situations of practical interest where such conditions are easily verified, and
which will be discussed in detail in Sect. 6. Thus, for the sake of illustration and reader
convenience, here we describe an important situation where convergence occurs with
the fast rate O(1/t2).

Theorem 1 Suppose that the coefficients of (TRIALS) satisfy

α(t) = α0t with α0 > 0, γ (t) = η + α0

α0t
, b(t) = t

1
α0

−2
,

where η > 1. Suppose that the set of saddle points S is non-empty and let
(x�, y�, λ�) ∈ S . Then, for any solution trajectory (x(·), y(·), λ(·)) of (TRIALS),
the trajectory remains bounded, and we have the following convergence rates:

L(x(t), y(t), λ�) − L(x�, y�, λ�) = O
(

1

t
1
α0

)

,

‖Ax(t) + By(t) − c‖2 = O
(

1

t
1
α0

)

,

− C1

t
1

2α0

≤ F(x(t), y(t)) − F(x�, y�) ≤ C2

t
1
α0

,

‖(ẋ(t), ẏ(t), λ̇(t)‖ = O
(
1

t

)

.

where C1 and C2 are positive constants.
In particular, for α0 = 1

2 , i.e. no time scaling b ≡ 1, we have

L(x(t), y(t), λ�) − L(x�, y�, λ�) = O
(
1

t2

)

,

‖Ax(t) + By(t) − c‖2 = O
(
1

t2

)

,

−C1

t
≤ F(x(t), y(t)) − F(x�, y�) ≤ C2

t2
.

For the ADMM algorithm (thus in discrete time t = kh, k ∈ N, h > 0), it has been
shown in [32,33] that the convergence rate of (squared) feasibility is O ( 1k

)
and that

on |F(xk, yk)− F(x�, y�)| isO
(

1
k1/2

)
. These rates were shown to be essentially tight

in [32]. Our results then suggest than for α0 = 1
2 , a proper discretization of (TRIALS)

would lead to an accelerated ADMM algorithm with provably faster convergence
rates (see [37,38] in this direction on specific problem instances and algorithms).
These discrete algorithmic issues of (TRIALS) will be investigated in a future work.
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Again, for α0 = 1
2 , theO

(
1
t2

)
rate obtained on the Lagrangian is reminiscent of the

fast convergence obtainedwith the continuous-time dynamical version of the Nesterov
accelerated gradient method in which the viscous damping coefficient is of the form
γ (t) = γ0

t and the fast rate is obtained for γ0 ≥ 3; see [11,52]. With our notations,
this corresponds to γ0 = η+α0

α0
, and our choice α0 = 1

2 entails γ0 = 2η + 1 > 3. This
corresponds to the same critical value as Nesterov’s, but the inequality here is strict.
This is not that surprising in our context since one has to handle the dual multiplier
and there is an intricate interplay between γ and the extrapolation coefficient α.

2.4 The Role of Extrapolation

One of the key and distinctive features of (TRIALS) is that the partial gradients
(with the appropriate sign) of the augmented Lagrangian function are not evaluated
at (x(t), y(t), λ(t)) as it would be the case in a classical continuous-time system
associated with ADMM-type methods,be but rather at extrapolated points. This new
property will be instrumental to allow for faster convergence rates, and it can be
interpreted from different standpoints: optimization, game theory, or control:

• Optimization standpoint: in this field, this type of extrapolation was recently stud-
ied in [14,36,54]. It will play a key role in the development of our Lyapunov
analysis. Observe that α(t)ẋ(t) and α(t)λ̇(t) point to the direction of future move-
ment of x(t) and λ(t). Thus, (TRIALS) involves the estimated future positions
x(t)+α(t)ẋ(t) and λ(t)+α(t)λ̇(t). Explicit discretization xk +αk(xk −xk−1) and
λk+αk(λk−λk−1) gives an extrapolation similar to the acceleratedmethod ofNes-
terov. The implicit discretization reads xk +αk(xk+1−xk) and λk +αk(λk+1−λk).
For αk = 1, this gives xk+1 and λk+1, which would yield implicit algorithms with
associated stability properties.

• Game theoretic standpoint: let us think about (x, y) and λ as two players playing
against each other, and shortly speaking, we identify the players with their actions.
We can then see that in (TRIALS), each player anticipates the movement of its
opponent. In the coupling term, the player (x, y) takes account of the anticipated
position of the player λ, which is λ(t) + α(t)λ̇(t), and vice versa.

• Control theoretic standpoint: the structure of (TRIALS) is also related to control
theory and state derivative feedback. By defining w(t) = (x(t), y(t), λ(t)) the
equation can be written in an equivalent way

ẅ(t) + γ (t)ẇ(t) = K (t, w(t), ẇ(t)),

for an operator K appropriately identified from (TRIALS) in terms of the partial
gradients of Lμ, α and b. In this system, the feedback control term K , which takes
the constraint into account, is not only a function of the state w(t) but also of its
derivative. One can consult [40] for a comprehensive treatment of state derivative
feedback. Indeed, we will use α(·) as a control variable, which will turn to play an
important role in our subsequent developments.
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2.5 AssociatedMonotone Inclusion Problem

The optimality system (4) can be written equivalently as:

TL(x, y, z) = 0, (6)

where TL : X ×Y×Z → X ×Y×Z is the maximally monotone operator associated
with the convex-concave function L, and which is defined by

TL(x, y, λ) = (∇x,yL, −∇λL
)
(x, y, λ)

= (∇ f (x) + A∗λ, ∇g(y) + B∗λ, −(Ax + By − c)
)
. (7)

Indeed, it is immediate to verify that TL is monotone usingHP . Since it is continuous,
it is a maximally monotone operator. Another way of seeing it is to use the standard
splitting of TL as TL = T1 + T2 where

T1(x, y, λ) = (∇ f (x), ∇g(y), 0)

T2(x, y, λ) = (A∗λ, B∗λ, −(Ax + By − c)
)
.

The operator T1 = ∂	 is nothing but the gradient of the convex function	(x, y, λ) =
f (x)+g(y), and therefore is maximally monotone owing toHP (recall that convexity
of a differentiable function implies maximal monotonicity of its gradient [50]). The
operatorT2 is obtainedby translating a linear continuous and skew-symmetric operator,
and therefore, it is also maximally monotone. This immediately implies that TL is
maximally monotone as the sum of two maximally monotone operators, one of them
being Lipschitz continuous ( [30, Lemma 2.4, page 34]). In turn,S can be interpreted
as the set of zeros of the maximally monotone operator TL. As such, it is a closed
convex subset of X × Y × Z .

The evolution equation associated with TL is written

⎧
⎨

⎩

ẋ(t) + ∇ f (x(t)) + A∗(λ(t)) = 0
ẏ(t) + ∇g(y(t)) + B∗(λ(t)) = 0
λ̇(t) − (A(x(t)) + B(y(t)) − c) = 0.

(8)

Following [30], the Cauchy problem (8) is well-posed, and the solution trajectories
of (8), which define a semi-group of contractions generated by TL, converge weakly
in an ergodic sense to equilibria, which are the zeros of the operator TL. Moreover,
appropriate implicit discretization of (8) yields the proximal ADMM algorithm.

The situation is more complicated if we consider the corresponding inertial dynam-
ics. Indeed, the convergence theory for the heavy ballmethod can be naturally extended
to the case of maximally monotone cocoercive operators. Unfortunately, because of
the skew-symmetric component T2 in TL (when c = 0), the operator TL is not cocoer-
cive. To overcome this difficulty, recent studies consider inertial dynamics where the
operator TL is replaced by its Yosida approximation, with an appropriate adjustment of
the Yosida parameter; see [19] and [5] in the case of the Nesterov accelerated method.
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However, such an approach does not achieve full splitting algorithms, hence requiring
an additional internal loop.

3 Lyapunov Analysis

Let (x�, y�) ∈ X ×Y be a solution of P , and denote by F� := F(x�, y�) the optimal
value of P . For the moment, the variable λ� is chosen arbitrarily in Z . We will then
be led to specialize it. Let t �→ (x(t), y(t), λ(t)) be a solution trajectory of (TRIALS)
defined for t ≥ t0. It is supposed to be a classical solution, i.e. of class C2. We are now
in position to introduce the function t ∈ [t0,+∞[ �→ E(t) ∈ R that will serve as a
Lyapunov function:

E(t) := δ2(t)b(t)
(
Lμ(x(t), y(t), λ�) − Lμ(x�, y�, λ�)

)
+ 1

2
‖v(t)‖2 (9)

+1

2
ξ(t)‖(x(t), y(t), λ(t)) − (x�, y�, λ�)‖2,

v(t) := σ(t)
(
(x(t), y(t), λ(t)) − (x�, y�, λ�)

)
+ δ(t)(ẋ(t), ẏ(t), λ̇(t)). (10)

The coefficient σ(t) is non-negative and will be adjusted later, while δ(t), ξ(t) are
explicitly defined by the following formulas:

{
δ(t) := σ(t)α(t),

ξ(t) := σ(t)2
(
γ (t)α(t) − α̇(t) − 1

)
− 2α(t)σ (t)σ̇ (t).

(11)

This choice will become clear from our Lyapunov analysis. To guarantee that E is a
Lyapunov function for the dynamical system (TRIALS), the following conditions on
the coefficients γ, α, b, σ will naturally arise from our analysis:

Lyapunov system of inequalities/equalities on the parameters.

(G1) σ (t)
(
γ (t)α(t) − α̇(t) − 1

)
− 2α(t)σ̇ (t) ≥ 0,

(G2) σ (t)
(
γ (t)α(t) − α̇(t) − 1

)
− α(t)σ̇ (t) ≥ 0,

(G3) − d
dt

[
σ(t)

(
σ(t)

(
γ (t)α(t) − α̇(t)

)
− 2α(t)σ̇ (t)

)]
≥ 0,

(G4) α(t)σ (t)2b(t) − d
dt

(
α2σ 2b

)
(t) = 0.

Observe that condition (G1) automatically ensures that ξ(t) is a non-negative func-
tion. Inmost practical situations (see Sect. 6),wewill takeσ as a non-negative constant,
in which case (G1) and (G2) coincide, and thus, conditions (G1)–(G4) reduce to a sys-
tem of three differential inequalities/equalities involving only the coefficients (γ, α, b)
of the dynamical system (TRIALS).
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3.1 Convergence Rate of the Values

By relying on a Lyapunov analysis with the function E , we are now ready to state our
first main result.

Theorem 2 Assume thatHP andHD hold. Suppose that the growth conditions (G1)–
(G4) on the parameters (γ, α, σ, b) of (TRIALS) are satisfied for all t ≥ t0. Let
t ∈ [t0,+∞[�→ (x(t), y(t), λ(t)) be a solution trajectory of (TRIALS). Let E be the
function defined in (9)-(10). Then, the following holds:

(1) E is a non-increasing function, and for all t ≥ t0

F(x(t), y(t)) − F� = O
(

1

α(t)2σ(t)2b(t)

)

.

(2) Suppose moreover that S , the set of saddle points of L in (1) is non-empty, and
let (x�, y�, λ�) ∈ S . Then, for all t ≥ t0, the following rates and integrability
properties are satisfied:

(i) 0 ≤ L(x(t), y(t), λ�) − L(x�, y�, λ�) = O
(

1
α(t)2σ(t)2b(t)

)
;

(ii) ‖Ax(t) + By(t) − c‖2 = O
(

1
α(t)2σ(t)2b(t)

)
;

(iii) there exist positive constants C1 and C2 such that

− C1

α(t)σ (t)
√
b(t)

≤ F(x(t), y(t)) − F� ≤ C2

α(t)2σ(t)2b(t)
;

(iv)
∫ +∞

t0
α(t)σ (t)2b(t)‖Ax(t) + By(t) − c‖2dt < +∞;

(v)
∫ +∞

t0
k(t)‖(ẋ(t), ẏ(t), λ̇(t))‖2dt < +∞, where

k(t) = α(t)σ (t)
(
σ(t) (γ (t)α(t) − α̇(t) − 1) − α(t)σ̇ (t)

)
.

Proof To lighten notation, we drop the dependence on the time variable t . Recall that
(x�, y�) is a solution of P and λ� is an arbitrary vector in Z . Let us define

w := (x, y, λ), w� := (x�, y�, λ�), Fμ(w) := Lμ(x, y, λ�) − Lμ(x�, y�, λ�).

With these notations, we have (recall (9) and (10))

v = σ(w − w�) + δẇ,

∇Fμ(w) = (∇xLμ(x, y, λ�),∇yLμ(x, y, λ�), 0),

E = δ2bFμ(w) + 1

2
‖v‖2 + 1

2
ξ‖w − w�‖2.
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Differentiating E gives

d

dt
E = d

dt
(δ2b)Fμ(w) + δ2b〈∇Fμ(w), ẇ〉

+〈v, v̇〉 + 1

2
ξ̇‖w − w�‖2 + ξ 〈w − w�, ẇ〉. (12)

Using the constitutive equation in (TRIALS), we have

v̇ = σ̇ (w − w�) + (σ + δ̇)ẇ + δẅ

= σ̇ (w − w�) + (σ + δ̇)ẇ − δ
(
γ ẇ + bKμ,α(w)

)

= σ̇ (w − w�) + (σ + δ̇ − δγ )ẇ − δbKμ,α(w),

where the operator Kμ,α : X × Y × Z → X × Y × Z is defined by

Kμ,α(w) :=
⎡

⎣
∇xLμ(x, y, λ + αλ̇)

∇yLμ(x, y, λ + αλ̇)

−∇λLμ(x + α ẋ, y + α ẏ, λ)

⎤

⎦ .

Elementary computation gives

Kμ,α(w) = ∇Fμ(w) +
⎡

⎣
A∗(λ − λ� + αλ̇)

B∗(λ − λ� + αλ̇)

−A(x + α ẋ) − B(y + α ẏ) + c

⎤

⎦ .

According to the above formulas for v, v̇ and Kμ,α , we get

〈v, v̇〉 = 〈σ̇ (w − w�) + (σ + δ̇ − δγ )ẇ − δbKμ,α(w), σ (w − w�) + δẇ〉
= σ σ̇‖w − w�‖2 + (δσ̇ + σ(σ + δ̇ − δγ )

) 〈ẇ, w − w�〉
+δ
(
σ + δ̇ − δγ

) ‖ẇ‖2
−δb

[
σ 〈∇Fμ(w), w − w�〉 + δ〈∇Fμ(w), ẇ〉]

−δb
[
σ 〈λ − λ� + αλ̇, Ax − Ax�〉 + δ〈λ − λ� + αλ̇, Aẋ〉]

−δb
[
σ 〈λ − λ� + αλ̇, By − By�〉 + δ〈λ − λ� + αλ̇, B ẏ〉]

+δbσ 〈A(x + α ẋ) + B(y + α ẏ) − c, λ − λ�〉
+δ2b〈A(x + α ẋ) + B(y + α ẏ) − c, λ̇〉.

Let us insert this expression in (12). We first observe that the term 〈∇Fμ(w), ẇ〉
appears twice but with opposite signs, and therefore cancels out. Moreover, the coef-
ficient of 〈ẇ, w − w�〉 becomes ξ + δσ̇ − σ(γ δ − δ̇ − σ). Thanks to the choice of δ

and ξ devised in (11), the term 〈ẇ, w − w�〉 also disappears. We recall that by virtue
of (G1), ξ is non-negative, and thus so is the last term in E . Overall, the formula (12)
simplifies to
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d

dt
E = d

dt
(δ2b)Fμ(w) +

(
1

2
ξ̇ + σ σ̇

)

‖w − w�‖2 + δ
(
σ + δ̇ − δγ

) ‖ẇ‖2

− δbσ 〈∇Fμ(w), w − w�〉 − δbW,

(13)

where

W := σ 〈λ − λ� + αλ̇, Ax − Ax�〉 + δ〈λ − λ� + αλ̇, Aẋ〉
+σ 〈λ − λ� + αλ̇, By − By�〉 + δ〈λ − λ� + αλ̇, B ẏ〉
−σ 〈A(x + α ẋ) + B(y + α ẏ) − c, λ − λ�〉
−δ〈A(x + α ẋ) + B(y + α ẏ) − c, λ̇〉.

Since (x�, y�) ∈ X ×Y is a solution of P , we obviously have Ax� + By� = c. Thus,
W reduces to

W = σ 〈Ax + By − c, λ − λ� + αλ̇〉 + δ〈Aẋ + B ẏ, λ − λ� + αλ̇〉
−σ 〈Ax + By − c, λ − λ�〉 − σα〈Aẋ + B ẏ, λ − λ�〉
−δ〈Ax + By − c, λ̇〉 − δα〈Aẋ + B ẏ, λ̇〉

= (σα − δ)
(
〈Ax + By − c, λ̇〉 − 〈Aẋ + B ẏ, λ − λ�〉

)
.

Since it is difficult to control the sign of the above expression, the choice of δ in (11)
appears natural, which entails W = 0.

On the other hand, by convexity of L(·, ·, λ�), strong convexity of μ
2 ‖· − c‖2, the

fact that Ax� + By� = c and Fμ(w�) = 0, it is straightforward to see that

−Fμ(w) − μ

2
‖Ax(t) + By(t) − c‖2 ≥ 〈∇Fμ(w), w� − w〉.

Collecting the above results, (13) becomes

d

dt
E +

(

δbσ − d

dt
(δ2b)

)

Fμ(w)

≤
(
1

2
ξ̇ + σ σ̇

)

‖w − w�‖2

+δ
(
σ + δ̇ − δγ

) ‖ẇ‖2 − δbσμ

2
‖Ax(t) + By(t) − c‖2 . (14)

Since δ is non-negative (σ and α are), and in view of (G2), the coefficient of the second
term in the right-hand side (14) is non-positive. The same conclusion holds for the
coefficient of the first term since its non-positivity is equivalent to (G3). Therefore,
inequality (14) implies

d

dt
E +

(

δbσ − d

dt
(δ2b)

)

Fμ(w) ≤ 0. (15)
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The sign of Fμ(w) is unknown for arbitrary λ�. This is precisely where we invoke
(G4) which is equivalent to

δbσ − d

dt
(δ2b) = 0.

(1) Altogether, we have shown so far that (15) eventually reads, for any t ≥ t0,

d

dt
E(t) ≤ 0, (16)

i.e. E is non-increasing as claimed. Let us now turn to the rates.
E being non-increasing entails that for all t ≥ t0

E(t) ≤ E(t0). (17)

Dropping the non-negative terms 1
2 ‖v(t)‖2 and 1

2ξ(t)‖w(t) − w�‖2 entering E ,
and according to the definition of Lμ, we obtain that, for all t ≥ t0

δ(t)2b(t)
(
Lμ(x(t), y(t), λ�) − Lμ(x�, y�, λ�)

)

= δ(t)2b(t)
(
L(x(t), y(t), λ�) − L(x�, y�, λ�) + μ

2
‖Ax(t) + By(t) − c‖2

)
≤ E(t0).

(18)

Dropping again the quadratic term in (18), we obtain

δ(t)2b(t)
(
F(x(t), y(t)) − F� + 〈λ�, Ax(t) + By(t) − c〉

)

≤ δ2(t0)b(t0)
(
F(x(t0), y(t0)) − F� + 〈λ�, Ax(t0) + By(t0) − c〉

+ μ

2
‖Ax(t0) + By(t0) − c‖2

)
+ 1

2
‖v(t0)‖2

+ 1

2
ξ(t0)‖(x(t0), y(t0), λ(t0)) − (x�, y�, λ�)‖2

≤ δ2(t0)b(t0)‖λ�‖‖Ax(t0) + By(t0) − c‖ + C0,

where C0 is the non-negative constant

C0 = δ2(t0)b(t0)
(∣
∣F(x(t0), y(t0)) − F�

∣
∣+ μ

2
‖Ax(t0) + By(t0) − c‖2

)

+1

2
‖v(t0)‖2 + 1

2
ξ(t0)‖(x(t0), y(t0), λ(t0)) − (x�, y�, λ�)‖2. (19)

When Ax(t) + By(t) − c = 0, we are done by taking, e.g. λ� = 0 and C > C0.
Assume now that Ax(t) + By(t) − c �= 0. Since λ� can be freely chosen in Z ,
we take it as the unit-norm vector
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λ� = Ax(t) + By(t) − c

‖Ax(t) + By(t) − c‖ . (20)

We therefore obtain

δ(t)2b(t)
(
F(x(t), y(t)) − F� + ‖Ax(t) + By(t) − c‖

)
≤ C, (21)

where C > δ2(t0)b(t0) ‖Ax(t0) + By(t0) − c‖ + C0. Since the second term in
the left-hand side is non-negative, the claimed rate in (1) follows immediately.

(2) Embarking from (18) and using (3) since (x�, y�, λ�) ∈ S , we have the rates
stated in (i) and (ii).
To show the lower bound in (iii), observe that the upper-bound of (3) entails that

F(x(t), y(t)) ≥ F(x�, y�) − 〈Ax(t) + By(t) − c, λ�〉. (22)

Applying Cauchy–Schwarz inequality, we infer

F(x(t), y(t)) ≥ F(x�, y�) − ‖λ�‖‖Ax(t) + By(t) − c‖.

We now use the estimate (ii) to conclude. Finally, the integral estimates of the
feasibility (iv) and velocity (v) are obtained by integrating (14).

��

3.2 Boundedness of the Trajectory and rate of the Velocity

We will further exploit the Lyapunov analysis developed in the previous section to
assert additional properties on the iterates and velocities.

Theorem 3 Suppose the assumptions of Theorem2 hold. Assume also thatS , the set of
saddle points of L in (1) is non-empty, and let (x�, y�, λ�) ∈ S . Then, each solution
trajectory t ∈ [t0,+∞[�→ (x(t), y(t), λ(t)) of (TRIALS) satisfies the following
properties:

(1) There exists a positive constant C such that for all t ≥ t0

‖(x(t), y(t), λ(t)) − (x�, y�, λ�)‖2

≤ C

σ(t)2
(
γ (t)α(t) − α̇(t) − 1

)
− 2α(t)σ (t)σ̇ (t)

∥
∥(ẋ(t), ẏ(t), λ̇(t))

∥
∥

≤ C

α(t)σ (t)

(

1 +
√

σ(t)

σ (t) (γ (t)α(t) − α̇(t) − 1) − 2α(t)σ̇ (t)

)

.

(2) If supt≥t0 σ(t) < +∞ and (G1) is strengthened to
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(G+
1 ) inf t≥t0 σ(t)

(
σ(t) (γ (t)α(t) − α̇(t) − 1) − 2α(t)σ̇ (t)

)
> 0,

then

sup
t≥t0

‖(x(t), y(t), λ(t))‖ < +∞ and
∥
∥(ẋ(t), ẏ(t), λ̇(t))

∥
∥ = O

(
1

α(t)σ (t)

)

.

If moreover,

(G5) inf t≥t0 α(t) > 0,

then

sup
t≥t0

∥
∥(ẋ(t), ẏ(t), λ̇(t))

∥
∥ < +∞.

Proof We start from (17) in the proof of Theorem 2, which can be equivalently written

δ2(t)b(t)
(Lμ(x(t), y(t), λ�) − Lμ(x�, y�, λ�)

)+ 1

2
‖v(t)‖2

+ 1

2
ξ(t)‖(x(t), y(t), λ(t)) − (x�, y�, λ�)‖2 ≤ E(t0).

Since (x�, y�, λ�) ∈ S , the first term is non-negative by (3), and thus

1

2
‖v(t)‖2 + 1

2
ξ(t)‖(x(t), y(t), λ(t)) − (x�, y�, λ�)‖2 ≤ E(t0).

Choosing a positive constantC ≥ √
2E(t0), we immediately deduce that for all t ≥ t0

‖(x(t), y(t), λ(t)) − (x�, y�, λ�)‖ ≤ C√
ξ(t)

and ‖v(t)‖ ≤ C . (23)

Set z(t) = (x(t), y(t), λ(t)) − (x�, y�, λ�). By definition of v(t), we have

v(t) = σ(t)z(t) + δ(t)ż(t).

From the triangle inequality and the bound (23), we get

δ(t)‖ż(t)‖ ≤ C

(

1 + σ(t)√
ξ(t)

)

.

According to the definition (11) of δ(t) and ξ(t), we get

‖(ẋ(t), ẏ(t), λ̇(t))‖ ≤ C

α(t)σ (t)

(

1 +
√

σ(t)

σ (t) (γ (t)α(t) − α̇(t) − 1) − 2α(t)σ̇ (t)

)

,

which ends the proof. ��
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3.3 The Role of˛ and Time Scaling

The time scaling parameter b enters the conditions on the parameters only via (G4),
which therefore plays a central role in our analysis. Now consider relaxing (G4) to the
inequality

d

dt

(
α2σ 2b

)
(t) − α(t)σ (t)2b(t) ≥ 0.

This is a weaker assumption in which case the corresponding term in (15) does not
vanish. However, such an inequality can still be integrated to yield meaningful con-
vergence rates. This is what we are about to prove.

Theorem 4 Suppose the assumptions of Theorem 2(2) hold, where condition (G4) is
replaced with (G+

4 ). Let (x�, y�, λ�) ∈ S �= ∅. Assume also that inf F(x, y) > −∞.
Then, for all t ≥ t0

L(x(t), y(t), λ�) − L(x�, y�, λ�) = O
(

exp

(

−
∫ t

t0

1

α(s)
ds

))

,

(24)

‖Ax(t) + By(t) − c‖2 = O
(

exp

(

−
∫ t

t0

1

α(s)
ds

))

,

(25)

−C1 exp

(

−
∫ t

t0

1

2α(s)
ds

)

≤ F(x(t), y(t)) − F� ≤ C2 exp

(

−
∫ t

t0

1

α(s)
ds

)

,

(26)

where C1 and C2 are positive constants.

Proof We embark from (15) in the proof of Theorem 2. In view of (G+
4 ) and (11), (15)

becomes

0 ≥ d

dt
E −

(
d

dt

(
α2σ 2b

)
− ασ 2b

)

Fμ(w) ≥ d

dt
E −

d
dt

(
α2σ 2b

)− ασ 2b

α2σ 2b
E .(27)

Since (x�, y�, λ�) ∈ S , Fμ is non-negative and so is the Lyapunov function E .
Integrating (27), we obtain the existence of a positive constant C such that, for all
t ≥ t0

0 ≤ E(t) ≤ Cα(t)2σ(t)2b(t) exp

(

−
∫ t

t0

1

α(s)
ds

)

,

which entails, after dropping the positive terms in E ,

Fμ(w(t)) ≤ C exp

(

−
∫ t

t0

1

α(s)
ds

)

. (28)
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(24) and (25) follow immediately from (28) and the definition of Fμ.
Let us now turn to (26). Arguing as in the proof of Theorem 2(2), we have

F(x(t), y(t)) − F� ≥ −‖λ�‖‖Ax(t) + By(t) − c‖.

Plugging (25) in this inequality yields the lower bound of (26).
For the upper bound, we will argue as in the proof of Theorem 2(1) by considering

λ� as a free variable in Z . By assumption, we have that F is bounded from below.
This together with (25) implies that E is also bounded from below, and we denote E
this lower-bound. Define Ẽ(t) = E(t) − E if E is negative and Ẽ(t) = E(t) otherwise.
Thus, from (27), it is easy to see that Ẽ verifies

d

dt
Ẽ ≤

d
dt

(
α2σ 2b

)− ασ 2b

α2σ 2b
Ẽ . (29)

Integrating (29) and arguing with the sign of E , we get the existence of a positive
constant C such that, for all t ≥ t0

E(t) ≤ Ẽ(t) ≤ Cα(t)2σ(t)2b(t) exp

(

−
∫ t

t0

1

α(s)
ds

)

.

Dropping the quadratic terms in E , this yields

F(x(t), y(t)) − F� + 〈λ�, Ax(t) + By(t) − c〉 ≤ C exp

(

−
∫ t

t0

1

α(s)
ds

)

.

When Ax(t) + By(t) − c = 0, we are done by taking, e.g. λ� = 0. Assume now that
Ax(t) + By(t) − c �= 0 and choose

λ� = Ax(t) + By(t) − c

‖Ax(t) + By(t) − c‖ .

We arrive at

F(x(t), y(t)) − F� ≤ F(x(t), y(t)) − F� + ‖Ax(t) + By(t) − c‖
≤ C exp

(

−
∫ t

t0

1

α(s)
ds

)

,

which completes the proof. ��
Remark 1 Though the rates in Theorem 2 and 4 look apparently different, it turns out
that as expected, those of Theorem 2 are actually a specialization of those in Theorem 4
when (G+

4 ) holds as an equality, i.e. (G4) is verified. To see this, it is sufficient to realize
that with the notation a(t) := α(t)2σ(t)2b(t), (G4) is equivalent to ȧ(t) = 1

α(t)a(t).
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Upon integration, we obtain a(t) = exp
(∫ t

t0
1

α(s)ds
)
, or equivalently

1

α(t)2σ(t)2b(t)
= exp

(

−
∫ t

t0

1

α(s)
ds

)

.

4 Well-Posedness of (TRIALS)

In this section, wewill show existence and uniqueness of a strong global solution to the
Cauchy problem associated with (TRIALS). The main idea is to formulate (TRIALS)
in the phase space as a non-autonomous first-order system. In the smooth case, we
will invoke the non-autonomous Cauchy–Lipschitz theorem [35, Proposition 6.2.1].
In the non-smooth case, we will use a standard Moreau–Yosida smoothing argument.

4.1 Case of Globally Lipschitz Continuous Gradients

We consider first the case where the gradients of f and g are globally Lipschitz
continuous over X and Y . Let us start by recalling the notion of strong solution.

Definition 1 Denote H := X × Y × Z equipped with the corresponding product
space structure, and w : t ∈ [t0,+∞[�→ (x(t), y(t), λ(t)) ∈ H. The function w is a
strong global solution of the dynamical system (TRIALS) if it satisfies the following
properties:

• w is in C1([0,+∞[;H);
• w and ẇ are absolutely continuous on every compact subset of the interior of

[t0,+∞[ (hence almost everywhere differentiable);
• for almost all t ∈ [t0,+∞[, (TRIALS) holds with w(t0) = (x0, y0, λ0) and

ẇ(t0) = (u0, v0, ν0).

Theorem 5 Suppose that HP holds1 and, moreover, that ∇ f and ∇g are Lips-
chitz continuous, respectively, over X and Y . Assume that γ, α, b : [t0,+∞[→
R

+ are non-negative continuous functions. Then, for any given initial condition
(x(t0), ẋ(t0)) = (x0, ẋ0) ∈ X×X , (y(t0), ẏ(t0)) = (y0, ẏ0) ∈ Y×Y , (λ(t0), λ̇(t0)) =
(λ0, λ̇0) ∈ Z×Z , the evolution system (TRIALS) has a unique strong global solution.

Proof Recall the notations of Definition 1. Let I = [t0,+∞[ and let Z : t ∈ I �→
(w(t), ẇ(t)) ∈ H2. (TRIALS) can be equivalently written as the Cauchy problem on
H2

{
Ż(t) + G(t, Z(t)) = 0 for t ∈ I ,

Z(t0) = Z0,
(30)

where Z0 = (x0, y0, λ0, u0, v0, ν0), and G : I × H2 → H2 is the operator

G(t, (x, y, λ), (u, v, ν))

1 Actually, convexity is not needed here.
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=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−u
−v

−ν

γ (t)u + b(t)
(
∇ f (x) + A∗ (λ + α(t)ν + μ(Ax + By − c))

)

γ (t)v + b(t)
(
∇g(y) + B∗ (λ + α(t)ν + μ(Ax + By − c))

)

γ (t)ν − b(t)
(
A(x + α(t)u)) + B(y + α(t)v) − c

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (31)

To invoke [35, Proposition 6.2.1], it is sufficient to check that for a.e. t ∈ I , G(t, ·)
is β(t)-Lipschitz continuous with β(·) ∈ L1

loc(I ), and for a.e. t ∈ I , G(t, Z) =
O(P(t))(1 + ‖Z‖), ∀Z ∈ H2, with P(·) ∈ L1

loc(I ). Since ∇ f , ∇g are globally
Lipschitz continuous, and A and B are bounded linear, elementary computation shows
that there exists a constant C > 0 such that

‖G(t, Z) − G(t, Z̄)‖ ≤ Cβ(t)‖Z − Z̄‖, β(t) = 1 + γ (t) + b(t)(1 + α(t)).

Owing to the continuity of the parameters γ (·), α(·), b(·), β(·) is integrable on [t0, T ]
for all t0 < T < +∞. Similar calculation shows that

‖G(t, (x, y, λ), (u, v, ν))‖ ≤ Cβ(t)
(
‖(∇ f (u),∇g(v))‖ + ‖(x, y, λ, u, v, ν)‖

)
,

and we conclude similarly. It then follows from [35, Proposition 6.2.1] that there
exists a unique global solution Z(·) ∈ W 1,1

loc (I ;H2) of (30) satisfying the initial
condition Z(t0) = Z0, and thus, by [30, Corollary A.2] that Z(·) is a strong global
solution to (30). This in turn leads to the existence and uniqueness of a strong solution
(x(·), y(·), λ(·)) of (TRIALS). ��
Remark 2 One sees from the proof that for the above result to hold, it is only sufficient
to assume that the parameters γ , α, b are locally integrable instead of continuous. In
addition, in the above results, we even have existence and uniqueness of a classical
solution.

4.2 Case of Locally Lipschitz Continuous Gradients

Under local Lipschitz continuity assumptions on the gradients∇ f and∇g, the operator
Z �→ G(t, Z) defined in (31) is only Lipschitz continuous over the bounded subsets
of H2. As a consequence, the Cauchy–Lipschitz theorem provides the existence and
uniqueness of a local solution. To pass from a local solution to a global solution, we
will rely on the estimates established in Theorem 3.

Theorem 6 Suppose that HP holds2 and moreover, that ∇ f and ∇g are Lipschitz
continuous over the bounded subsets of, respectively, X and Y . Assume that γ, α, b :
[t0,+∞[→ R

+ are non-negative continuous functions such that the conditions (G+
1 ),

(G2), (G3), (G4) and (G5) are satisfied, and that supt≥t0 σ(t) < +∞. Then, for any

2 Again, convexity is superfluous here.
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initial condition (x(t0), ẋ(t0)) = (x0, ẋ0) ∈ X×X , (y(t0), ẏ(t0)) = (y0, ẏ0) ∈ Y×Y ,
(λ(t0), λ̇(t0)) = (λ0, λ̇0) ∈ Z×Z , the evolution system (TRIALS) has a unique strong
global solution.

Proof We use the same notation as in the proof of Theorem 5. Let us consider the
maximal solution of the Cauchy problem (30), say Z : [t0, T [→ H2.We have to prove
that T = +∞. Following a classical argument, we argue by contradiction, and suppose
that T < +∞. It is then sufficient to prove that the limit of Z(t) exists as t → T , so
that it will be possible to extend Z locally to the right of T , thus getting a contradiction.
According to the Cauchy criterion, and the constitutive equation Ż(t) = G(t, Z(t)),
it is sufficient to prove that Z(t) is bounded over [t0, T [. At this point, we use the
estimates provided byTheorem3,which gives precisely this result under the conditions
imposed on the parameters. ��

4.3 The Non-Smooth Case

For a large number of applications (e.g. data processing, machine learning, statistics),
non-smooth functions are ubiquitous. To cover these practical situations, we need to
consider the case where the functions f and g are non-smooth. In order to adapt the
dynamic (TRIALS) to this non-smooth situation, we will consider the corresponding
differential inclusion

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẍ + γ (t)ẋ + b(t)
(
∂ f (x) + A∗ [λ + α(t)λ̇ + μ(Ax + By − c)

]) � 0

ÿ + γ (t)ẏ + b(t)
(
∂g(y) + B∗ [λ + α(t)λ̇ + μ(Ax + By − c)

]) � 0

λ̈ + γ (t)λ̇ − b(t)
(
A(x + α(t)ẋ) + B(y + α(t)ẏ) − c

)
= 0

(x(t0), y(t0), λ(t0)) = (x0, y0, λ0) and

(ẋ(t0), ẏ(t0), λ̇(t0)) = (u0, v0, ν0),

(32)

where ∂ f and ∂g are the subdifferentials of f and g, respectively. Beyond global
existence issues that we will address shortly, one may wonder whether our Lyapunov
analysis in the previous sections is still valid in this case. The answer is affirmative
provided one takes some care in two main steps that are central in our analysis. First,
when taking the time-derivative of the Lyapunov, one has to invoke now the (gener-
alized) chain rule for derivatives over curves (see [30]). The second ingredient is the
validity of the subdifferential inequality for convex functions. In turn all our results
and estimates presented in the previous sections can be transposed to this more general
non-smooth context. Indeed, our approximation scheme that we will present shortly
turns out to be monotonically increasing. This gives a variational convergence (epi-
convergence) which allows to simply pass to the limit over the estimates established
in the smooth case.

Let us now turn to the existence of a global solution to (32). We will again consider
strong solutions to this problem, i.e. solutions that are C1([t0,+∞[;H), locally abso-
lutely continuous, and (32) holds almost everywhere on [t0,+∞[. A natural idea is
to use the Moreau–Yosida regularization in order to bring the problem to the smooth
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case before passing to an appropriate limit. Recall that, for any θ > 0, the Moreau
envelopes fθ and gθ of f and g are defined, respectively, by

fθ (x) = min
ξ∈X

{

f (ξ) + 1

2θ
‖x − ξ‖2

}

, gθ (y) = min
η∈Y

{

g(η) + 1

2θ
‖y − η‖2

}

.

As a classical result, fθ and gθ are continuously differentiable and their gradients are
1
θ
-Lipschitz continuous. We are then led to consider, for each θ > 0, the dynamical

system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẍθ + γ (t)ẋθ + b(t)
(
∇ fθ (xθ ) + A∗ [λθ + α(t)λ̇θ + μ(Axθ + Byθ − c)

]) = 0

ÿθ + γ (t)ẏθ + b(t)
(
∇gθ (yθ ) + B∗ [λθ + α(t)λ̇θ+μ(Axθ+Byθ−c)

]) = 0

λ̈θ + γ (t)λ̇θ − b(t)
(
A(xθ + α(t)ẋθ ) + B(yθ + α(t)ẏθ ) − c

)
= 0.

(33)

The system (33) comes under our previous study, and for which we have existence and
uniqueness of a strong global solution. In doing so, we generate a filtered sequence
(xθ , yθ , λθ )θ of trajectories.

The challenging question is now to pass to the limit in the system above as θ → 0+.
This is a non-trivial problem, and to answer it, we have to assume that the spacesX ,Y
and Z are finite dimensional, and that f and g are convex real-valued (i.e. dom( f ) =
X and dom(g) = Y in which case f and g are continuous). Recall that ∂F(x, y) =
∂ f (x) × ∂g(y), and denote [∂F(x, y)]0 the minimal norm selection of ∂F(x, y).

Theorem 7 Suppose that X , Y , Z are finite dimensional Hilbert spaces, and that the
functions f : X → R and g : Y → R are convex. Assume that

(i) F is coercive on the affine feasibility set;
(ii) βF := sup(x,y)∈X×Y ‖[∂F(x, y)]0‖ < +∞;
(iii) the linear operator L = [A B] is surjective.
Suppose also that γ, α, b : [t0,+∞[→ R

+ are non-negative continuous func-
tions such that the conditions (G+

1 ), (G2), (G3) (G4) and (G5) are satisfied, and that
supt≥t0 σ(t) < +∞. Then, for any initial condition (x(t0), ẋ(t0)) = (x0, ẋ0) ∈ X×X ,
(y(t0), ẏ(t0)) = (y0, ẏ0) ∈ Y × Y , (λ(t0), λ̇(t0)) = (λ0, λ̇0) ∈ Z × Z , the evolution
system (32) admits a strong global solution .

Condition (i) is natural and ensures, for instance, that the solution set of P is non-
empty. Condition (iii) is also very mild. A simple case where (ii) holds is when f and
g are Lipschitz continuous.

Proof The key property is that the estimates obtained in Theorem 2 and 3, when
applied to (33), have a favourable dependence on θ . Indeed, a careful examination
of the estimates shows that θ enters them through the Lyapunov function at t0 only
via |Fθ (x0, y0) − Fθ (x�

θ , y
�
θ )| and ‖(x�

θ , y
�
θ , λ

�
θ )‖, where Fθ (x, y) = fθ (x) + gθ (y),

(x�
θ , y

�
θ ) ∈ argminAx+Bx=c Fθ (x, y) and λ�

θ is an associated dual multiplier; see (19).
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With standard properties of the Moreau envelope, see [4, Chapter 3] and [24, Chap-
ter 12], one can show that for all (x, y) ∈ X × Y

F(x, y) − θ

2
‖[∂F(x, y)]0‖2 ≤ Fθ (x, y) ≤ F(x, y).

This together with the fact that (x�
θ , y

�
θ ) ∈ argminAx+Bx=c Fθ (x, y) and (x�, y�) ∈

argminAx+Bx=c F(x, y) yields

Fθ (x
�
θ , y

�
θ ) ≤ Fθ (x

�, y�) ≤ F(x�, y�) ≤ F(x�
θ , y

�
θ ).

Thus,

F(x0, y0) − F(x�, y�) − θ

2
‖[∂F(x0, y0)]

0‖2 ≤ Fθ (x0, y0) − Fθ (x
�
θ , y

�
θ )

≤ F(x0, y0) − F(x�, y�) + θ

2
‖[∂F(x�

θ , y
�
θ )
]0‖2.

This entails, owing to (ii), that

∣
∣Fθ (x0, y0) − Fθ (x

�
θ , y

�
θ )
∣
∣ ≤ ∣∣F(x0, y0) − F(x�, y�)

∣
∣+ β2

Fθ

2

and thus, since we are interested in the limit as θ → 0+,

sup
θ∈[0,θ̄ ]

∣
∣Fθ (x0, y0) − Fθ (x

�
θ , y

�
θ )
∣
∣ ≤ ∣∣F(x0, y0) − F(x�, y�)

∣
∣+ β2

F θ̄

2
< +∞.

On the other hand,

F(x�
θ , y

�
θ ) ≤ Fθ (x

�
θ , y

�
θ ) + β2

Fθ

2
≤ Fθ (x

�, y�) + β2
Fθ

2
≤ F(x�, y�) + β2

F θ̄

2
.

Thus, in view of (i), ∃a > 0 and b ∈ R such that

a‖(x�
θ , y

�
θ )‖ + b ≤ F(x�, y�) + β2

F θ̄

2
,

which shows that

sup
θ∈[0,θ̄ ]

‖(x�
θ , y

�
θ )‖ < +∞.

Let us turn to λ�
θ . When λ�

θ is chosen as in (20), then we are done. When λ�
θ is the

optimal dual multiplier satisfying (4), then it is a solution to the Fenchel–Rockafellar
dual problem

min
λ∈Z

F∗
θ (−L∗λ) + 〈c, λ〉,
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where F∗
θ is the Legendre–Fenchel conjugate of Fθ . Without loss of generality, we

assume c = 0. Classical conjugacy results give

F∗
θ (u) = F∗(u) + θ

2
‖u‖2 .

Since f and g are convex and real-valued, the domain of F is full. This is equivalent
to coercivity of F∗. This together with injectivity of L∗ (see (iii)) implies that there
exists a > 0 and b ∈ R (potentially different from those above) such that

a‖λ�
θ‖ + b ≤ F∗(−L∗λ�

θ ) ≤ F∗
θ (−L∗λ�

θ )

≤ F∗
θ (−L∗λ�) ≤ F∗(−L∗λ�) + θ̄

2

∥
∥L∗λ�

∥
∥2 < +∞.

Altogether, this shows that

sup
θ∈[0,θ̄ ]

‖λ�
θ‖ < +∞.

Combining the above with Theorem 3, we conclude that for all T > t0, the tra-
jectories (xθ (.), yθ (.), λθ (·)) and the velocities (ẋθ (.), ẏθ (.), λ̇θ (·)) are bounded in
L2(t0, T ;X × Y) uniformly in θ . Since X and Y are finite-dimensional spaces, we
deduce by the Ascoli–Arzelà theorem that the trajectories are relatively compact for
the uniform convergence over the bounded time intervals. By properties of theMoreau
envelope, we also have, for all (x, y) ∈ X × Y ,

‖∇Fθ (x, y)‖ ↗ ‖[∂F(x, y)]0‖ as θ ↘ 0,

and thus

‖∇Fθ (x, y)‖ ≤ βF .

Using this and the boundedness assertions of the trajectories and velocities proved
above in the constitutive equations (33), the acceleration remains also bounded on the
bounded time intervals. Passing to the limit as θ → 0+ in (33) is therefore relevant
by a classical maximal monotonicity argument. Indeed, we work with the canonical
extension of themaximallymonotone operators∇Fθ and ∂F to L2(t0, T ,X×Y), and,
in this functional setting, we use that ∇Fθ graph converges to ∂F in the strong-weak
topology. ��

We conclude this section by noting that at this stage, uniqueness of the solution to
(32) is a difficult open problem. In fact, even existence in infinite dimension and/or
with any proper lower semicontinuous convex functions f and g is not clear. This
goes far beyond the scope of the present paper, and we leave it to a future work.
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5 The Uniformly Convex Case

We now turn to examine the convergence properties of the trajectories generated by
(TRIALS), when the objective F in P is uniformly convex on bounded sets. Recall,
see e.g. [24], that F : X × Y → R is uniformly convex on bounded sets if, for each
r > 0, there is an increasing function ψr : [0,+∞[→ [0,+∞[ vanishing only at the
origin, such that

F(v) ≥ F(w) + 〈∇F(w), v − w〉 + ψr (‖v − w‖) (34)

for all (v,w) ∈ (X × Y)2 such that ‖v‖ ≤ r and ‖w‖ ≤ r . The strongly convex case
corresponds to ψr (t) = cF t2/2 for some cF > 0. In finite dimension, strict convexity
of F entails uniform convexity on any non-empty bounded closed convex subset of
X × Y , see [24, Corollary 10.18].

Theorem 8 Suppose that F is uniformly convex on bounded sets, and let (x�, y�) be
the unique solution of the minimization problem P . Assume also that S , the set of
saddle points of L in (1) is non-empty. Suppose that the conditions (G+

1 )–(G4) on the
coefficients of (TRIALS) are satisfied for all t ≥ t0. Then, each solution trajectory
t ∈ [t0,+∞[�→ (x(t), y(t), λ(t)) of (TRIALS) satisfies, ∀t ≥ t0,

ψr
(‖(x(t), y(t)) − (x�, y�)‖) = O

(
1

α(t)2σ(t)2b(t)

)

.

As a consequence, assuming that limt→+∞ α(t)2σ(t)2b(t) = +∞, we have that the
trajectory t �→ (x(t), y(t)) converges strongly to (x�, y�) as t → +∞.

Proof Uniformly convex functions are strictly convex and coercive, and thus (x�, y�)

is unique. From Theorem 3(2), there exists r1 > 0 such that

sup
t≥t0

∥
∥(x(t), y(t)) − (x�, y�)

∥
∥ ≤ r1.

Taking r ≥ r1 + ‖(x�, y�)‖, we have that the trajectories (x(·), y(·)) and (x�, y�)

are both contained in the ball of radius r centred at the origin. Let λ� be a Lagrange
multiplier of problemP , i.e. (x�, y�, λ�) ∈ S . On the one hand, applying the uniform
convexity inequality (34) at v = (x(t), y(t)) and w = (x�, y�), we have

F(x(t), y(t)) ≥ F(x�, y�) + 〈∇F(x�, y�), (x(t), y(t)) − (x�, y�)〉
+ψr

(‖(x(t), y(t)) − (x�, y�)‖) .

On the other hand, the optimality conditions (4) tell us that

〈∇F(x�, y�), (x(t), y(t)) − (x�, y�)〉 = −〈λ�, Ax(t) + By(t)) − c〉

and obviously

F(x�, y�) = L(x�, y�, λ�).
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Thus,

ψr
(‖(x(t), y(t)) − (x�, y�)‖) ≤ L(x(t), y(t), λ�) − L(x�, y�, λ�).

Invoking the estimate in Theorem 2(2)(i) yields the claim. ��

Remark 3 The assumption limt→+∞ α(t)2σ(t)2b(t) = +∞ made in the above the-
orem is very mild. It holds in particular in all the situations discussed in Sect. 6. In

particular, for α(t) = tr , 0 ≤ r < 1, σ constant, and b(t) = 1
t2r

exp
(

1
1−r t

1−r
)
,

one has α(t)
√
b(t) = exp

(
1

2(1−r) t
1−r
)
. Thus, if F is strongly convex, the trajectory

t �→ (x(t), y(t)) converges exponentially fast to the unique minimizer (x�, y�).

6 Parameters Choice for Fast Convergence Rates

In this section, we suppose that the solution set S of the saddle value problem (4)
is non-empty, so as to invoke Theorem 2(2), Theorem 3 and Theorem 4. The set
of conditions (G+

1 ), (G2), (G3), (G4) and (G5) imposes sufficient assumptions on the
coefficients γ, α, b of the dynamical system (TRIALS), and on the coefficients σ, δ, ξ

of the function E defined in (9), which guarantee that E is a Lyapunov function for the
dynamical system (TRIALS).

Let us show that this systemadmitsmany solutions of practical interestwhich in turn
will entail fast convergence rates. For this, we will organize our discussion around the
coefficient α as dictated by Theorem 4. Indeed, the latter shows that the convergence

rate of the Lagrangian values and feasibility isO
(

exp

(

−
∫ t

t0

1

α(s)
ds

))

. Therefore,

to obtain a meaningful convergence result, we need to assume that

∫ +∞

t0

1

α(s)
ds = +∞.

This means that the critical growth is α(t) = at for a > 0. If α(t) grows faster, our
analysis do not provide an instructive convergence rate. So, it is an essential ingredient
of our approach to assume that α(t) remains positive, but not too large as t → +∞.
In fact, the set of conditions (G+

1 ), (G2), (G3), (G4) and (G5) simplifies considerably
by taking σ a positive constant, and γα − α̇ a constant strictly greater than one. This
is made precise in the following statement whose proof is immediate.

Corollary 1 Suppose that σ ≡ σ0 is a positive constant, and γα − α̇ ≡ η > 1. Then,
the set of conditions (G+

1 ), (G2), (G3), (G4) and (G5) reduces to

b(1 + 2η − 2γα) − αḃ = 0 and inf
t≥t0

α(t) > 0. (35)

Following the above discussion, we are led to consider the following three cases.

123



Journal of Optimization Theory and Applications (2022) 193:704–736 729

6.1 Constant Parameter˛

Consider the simple situation where σ ≡ σ0 > 0 and η > 1 in which case (G+
1 ) reads

γα − α̇ − 1 = η − 1 > 0. Taking α ≡ α0, a positive constant, yields γ ≡ η
α0

and (35)
amounts to solving

b − α0ḃ = 0,

that is, b(t) = exp
(

t
α0

)
. Capitalizing on Corollary 1, and specializing the results of

Theorem 2(2) (or equivalently Theorem 4 according to Remark 1) and Theorem 3 to
the current choice of parameters yields the following statement.

Proposition 1 Suppose that σ ≡ σ0 > 0, η > 1, and that the coefficients of (TRIALS)
satisfy: the functions α, γ are constant with

α ≡ α0 > 0, γ ≡ η

α0
, b(t) = exp

(
t

α0

)

.

Suppose that S is non-empty. Then, for any solution trajectory (x(·), y(·), λ(·)) of
(TRIALS), the trajectory and its velocity remain bounded, and we have

L(x(t), y(t), λ�) − L(x�, y�, λ�) = O
(

exp

(

− t

α0

))

,

‖Ax(t) + By(t) − c‖2 = O
(

exp

(

− t

α0

))

,

−C1 exp

(

− t

2α0

)

≤ F(x(t), y(t)) − F� ≤ C2 exp

(

− t

α0

)

,

‖(ẋ(·), ẏ(·), λ̇(·))‖ ∈ L2([t0,+∞[),

where C1 and C2 are positive constants.

6.2 Linearly Increasing Parameter˛

We now take σ ≡ σ0 > 0, η > 1 and α(t) = α0t with α0 > 0. Then, (G+
1 ) is satisfied,

and we have γ (t) = η+α0
α0t

. Condition (35) then becomes

b(t)(1 − 2α0) − α0t ḃ(t) = 0,

which admits b(t) = t
1
α0

−2
as a solution. We then have b ≡ 1 for α0 = 1/2, while

one can distinguish two regimes for its limiting behaviour with

lim
t→+∞ b(t) =

{
+∞ α0 < 1

2 ,

0 α0 > 1
2 .
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In view of Theorem 2(2) and Theorem 3, we obtain the following result.

Proposition 2 Suppose that σ ≡ σ0 > 0, η > 1, and that the coefficients of (TRIALS)
satisfy

α(t) = α0t with α0 > 0, γ (t) = η + α0

α0t
, b(t) = t

1
α0

−2
.

Suppose that S is non-empty. Then, for any solution trajectory (x(·), y(·), λ(·)) of
(TRIALS), the trajectory remains bounded, and we have the following convergence
rates:

L(x(t), y(t), λ�) − L(x�, y�, λ�) = O
(

1

t
1
α0

)

,

‖Ax(t) + By(t) − c‖2 = O
(

1

t
1
α0

)

,

− C1

t
1

2α0

≤ F(x(t), y(t)) − F� ≤ C2

t
1
α0

,

‖(ẋ(t), ẏ(t), λ̇(t)‖ = O
(
1

t

)

.

where C1 and C2 are positive constants.

6.3 Power-type Parameter˛

Let us now take σ ≡ σ0 > 0, η > 1 and consider the intermediate case between the
two previous situations, where α(t) = tr , 0 < r < 1. Thus, (G+

1 ) is satisfied and we
have γ (t) = η

tr + r
t . Condition (35) is then equivalent to

b(t)(1 − 2r tr−1) − tr ḃ(t) = 0,

which, after integration, shows that b(t) = 1
t2r

exp
(

1
1−r t

1−r
)
is a solution. Appealing

again to Theorem 2(2) and Theorem 3, we obtain the following claim.

Proposition 3 Take σ ≡ σ0 > 0 and η > 1. Suppose that the coefficients of (TRIALS)
satisfy

α(t) = tr with 0 < r < 1, γ (t) = η

tr
+ r

t
, b(t) = 1

t2r
exp

(
1

1 − r
t1−r

)

.

Suppose that S is non-empty. Then, for any solution trajectory (x(·), y(·), λ(·)) of
(TRIALS), the trajectory remains bounded, and we have the convergence rates:

L(x(t), y(t), λ�) − L(x�, y�, λ�) = O
(

exp

(

− 1

1 − r
t1−r

))

,
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‖Ax(t) + By(t) − c‖2 = O
(

exp

(

− 1

1 − r
t1−r

))

,

−C1 exp

(

− 1

2(1 − r)
t1−r

)

≤ F(x(t), y(t)) − F� ≤ C2 exp

(

− 1

1 − r
t1−r

)

,

‖(ẋ(t), ẏ(t), λ̇(t)‖ = O
(
1

tr

)

.

where C1 and C2 are positive constants.

6.4 Numerical experiments

To support our theoretical claims, we consider in this section two numerical examples
with X = Y = Z = R

2: one with a strongly convex objective F and one where F is
convex but not strongly so.

Example 1 We consider the quadratic programming problem

min
(x,y)∈R4

F(x, y) = ‖x − (1, 1)T‖2 + ‖y‖2 subject to y = x + (−x2, 0)
T,

whose objective is strongly convex and verifies all required assumptions.

Example 2 We consider the minimization problem

min
(x,y)∈R4

F(x, y) = log
(
1 + exp

(
−〈(1, 1)T, x〉

))
+ ‖y‖2

subject to y = x + (−x2, 0)
T.

The objective is convex (but not strongly so) and smooth as required. This problem is
reminiscent of (regularized) logistic regression very popular in machine learning.

In all our numerical experiments, we consider the continuous time dynamical sys-
tem (TRIALS), solved numerically with a Runge–Kutta adaptive method (ode45 in
MATLAB) on the time interval [1, 20].

For the solely convex (resp. strongly convex) objective, Figure 1 (resp. Fig-
ure 2) displays the objective error |F(x(t), y(t)) − F�| on the left, the feasibility
gap ‖Ax(t) + By(t) − c‖ in the middle, and the velocity ‖(ẋ(t), ẏ(t), λ̇(t))‖ on the
right. In each figure, the first row shows the results for α(t) ≡ α0 with α0 ∈ {1, 2, 4},
the second row corresponds to α(t) = α0t with α0 ∈ {0.25, 0.5, 1} and the third row
to α(t) = tr with r ∈ {0.01, 0.1, 0.5}. In all our experiments, we set μ = 10 (recall
that μ is the parameter associated with the augmented Lagrangian formulation). All
these choices of the parameters comply with the requirements of Propositions 1, 2 and
3. The numerical results are in excellent agreement with our theoretical results, where
the values, the velocities and the feasibility gap all converge at the predicted rates.

123



732 Journal of Optimization Theory and Applications (2022) 193:704–736

5 10 15

10-6

10-4

10-2

100

5 10 15

10-6

10-4

10-2

100

101

10-4

10-3

10-2

10-1

(a) α(t) ≡ α0
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(c) α(t) = tr

Fig. 1 Experiment on the solely convex objective. Observed (solid) and predicted (dashed) rates on the
objective error

∣
∣F(x(t), y(t)) − F�

∣
∣ on the left, the feasibility gap ‖Ax(t) + By(t) − c‖ in the middle, and

the velocity ‖(ẋ(t), ẏ(t), λ̇(t))‖ on the right

7 Conclusion, Perspectives

In this paper, we adopted a dynamical system perspective and we have proposed a
second-order inertial system enjoying provably fast convergence rates to solve struc-
tured convex optimization problems with an affine constraint. One of the most original
aspects of our study is the introduction of a damped inertial dynamic involving several
time-dependent parameters with specific properties. They allow to consider a vari-
able viscosity coefficient (possibly vanishing so making the link with the Nesterov
accelerated gradient method), as well as variable extrapolation parameters (possibly
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Fig. 2 Experiment on the strongly convex objective. Observed (solid) and predicted (dashed) rates on the
objective error

∣
∣F(x(t), y(t)) − F�

∣
∣ on the left, the feasibility gap ‖Ax(t) + By(t) − c‖ in the middle, and

the velocity ‖(ẋ(t), ẏ(t), λ̇(t))‖ on the right

large) and time scaling. The analysis of the subtle and intricate interplay between
these objects together has been made possible through Lyapunov’s analysis. It would
have been quite difficult to undertake such an analysis directly on the algorithmic
discrete form. On the other hand, as we have now gained a deeper understanding
with such a powerful continuous-time framework, we believe this will serve us as a
guide to design and analyse a class of inertial ADMM algorithms which can be nat-
urally obtained by appropriate discretization of the dynamics (TRIALS). Their full
study would go beyond the scope of this paper and will be the subject of future work.
Besides, several other open questions remain to be studied, such as the introduction of
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geometric damping controlled by the Hessian, and the convergence of the trajectories
in the general convex constrained case.
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