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Abstract

We study the implications of a well-known metric inequality condition on sets to the
applicability of standard necessary optimality conditions for constrained optimization
problems when a new constraint is added. We compare this condition with several
other constraint qualification conditions in the literature, and due to its metric nature,
we apply it to nonsmooth optimization problems in order to perform first a penalization
and then to give optimality conditions in terms of generalized differentiability.
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1 Introduction and Preliminaries

The starting point of the investigation we propose in this work is the question we
briefly present below. Generally, if one considers a constrained optimization prob-

Communicated by Asen L. Dontchev.

B Marius Durea
durea@uaic.ro

Diana Maxim
plop.diana.elena@gmail.com

Radu Strugariu

rstrugariu @tuiasi.ro

Faculty of Mathematics, “Alexandru Ioan Cuza” University, Bd. Carol I, nr. 11, 700506 Iasi,
Romania

“Octav Mayer” Institute of Mathematics of the Romanian Academy, lasi, Romania

Department of Mathematics, “Gheorghe Asachi” Technical University, Bd. Carol I, nr. 11, 700506
Tasi, Romania

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-021-01848-5&domain=pdf
http://orcid.org/0000-0002-6429-0209

Journal of Optimization Theory and Applications (2021) 189:744-771 745

lem, in order to write necessary optimality conditions, some constraint qualification
conditions are necessary. Suppose that we add to the current system of constraints
a new constraint. Of course, the problem can dramatically change, and even if the
initial system satisfies a constraint qualification condition, the new system can fail
to do so. We asked ourselves if one can give a condition that links the old system
of constraints and the new constraint in such a way that the optimality conditions
apply for the new problem, without checking a constraint qualification condition for
the whole new system of constraints. Actually, we started by asking this question in
the case of a smooth optimization problem with inequality constraints, and then we
observed that in order to keep the requirements as minimal as possible, we arrive at
a metric condition—denoted (MC) in the following—that naturally comes into play
for other types of optimization problems, including nonsmooth ones, and for some
penalization results of Clarke’s type, as well. It turns out that this metric condition is
equivalent to another well-known metric inequality condition studied under various
names (metric inequality, linear regularity, metric regularity, linear coherence, and
subtransversality) from about 30 years ago, which has been used, among others, as a
key assumption in the study of the rate of convergence of some algorithms related to
set intersection problems, especially in establishing linear convergence of sequences
generated by the method of alternating projections. The way we use it in this paper fol-
lows another main stream of possible applications, i.e., as a qualification condition for
formulae involving normal or tangent cones to intersections of sets, generically well-
known as “Conical Hull Intersection Property”” (CHIP)-type conditions in the convex
framework, and extended to the nonconvex case by many authors. In this work, we
choose to call this condition subtransversality and we denote it by (Str). Not surpris-
ingly, having in mind that the metric subregularity type conditions can successfully
replace the “full” regularity in qualification conditions, and the well-known fact that
the Mangasarian—Fromovitz (MFCQ) is equivalent to the metric regularity of a cer-
tain epigraph-type multifunction—a condition which we denote (MRCQ)—, we asked
ourselves what kind of subregularity is in relation to (Str) condition. Some immediate
candidates, involving difference and distance type multifunctions, are indeed metri-
cally subregular iff (Str) holds, but a more interesting object would be, of course, the
epigraph multifunction mentioned above in relation with (MFCQ). As consequence,
we studied the implications between (Str) and the metric subregularity of the epigraph-
ical multifunction associated to systems of inequalities. This type of conditions were
recently introduced and studied under the name of “metric subregularity constraint
qualification” (MSCQ) conditions. It turns out that, in fact, in the context of inequality
constraints involving C! functions, (Str) is strictly weaker than (MSCQ) condition.
Finally, we observed that all the constraint qualification conditions are only sufficient
in establishing the nonconvex (CHIP) property we study in this work.

The next figure summarizes the relations between all the conditions discussed
above, as will be made clear in the third section, along with more comments and
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Another important feature of the metric condition (MC) is the fact that it can be
employed in nonsmooth settings, for problems much more general than those we
started with. As consequence, the fourth section is twofold. On the one hand, we
apply some facts collected in the previous sections to directional Pareto minima in
order to get necessary optimality conditions, and on the other hand, we employ the
general pattern of the metric inequality under study to penalize scalar nonsmooth
optimization problems with multiple constraints. The latter approach allows us to
derive necessary optimality conditions in terms of limiting generalized differentiation
techniques for the problems under consideration.

The notation we use is fairly standard. If X is a normed vector space, then we denote
by B(x,r), D(x,r) and S(x, r) the open ball, the closed ball and the sphere of center
x € X and radius r > 0, respectively. For a set A C X, we denote by int A, cl A,
bd A its topological interior, closure and boundary, respectively. The cone generated
by A is designated by cone A, and the convex hull of A is conv A. The distance from
apoint x € X to a nonempty set A C X isd(x, A) :=inf {||x — a|| | a € A} and the
distance function to A is d4 : X — R given by d4(x) := d(x, A). The topological
dual of X is X*, and the negative polar of A is

AT ={x* e X* | x*(a) <0,Va € A}.
The positive polar of A is AT := —A~. Of course, A~ = (cone A) ™.
Let D be a nonempty subset of X and x € X. The first order Bouligand tangent
cone to D at x is the set

Tg(D,x) :={ue X |3, | 0,Iu,) —> u,¥n € N,x + tyu, € D}

where (#,) | 0 means (#,) C (0,00) and #, — 0. The first-order Ursescu tangent
cone to D at X is the set

Ty(D,x):={ueX |Vt | 0,3(u,) - u,Vn € N,x + t,u, € D}.
The first-order Dubovitskij—Miljutin tangent set to D at X is the set
Tpm(D,x) :={ue X |V, | 0,Y(u,) = u,3ng € NVa > ng, x + tyu, € D}.
The Bouligand and Ursescu tangent cones are closed sets, and Ty (D, xX) C Tp(D, X).

The fact that Tp(D,x) = X\Tpu(X\D,x) shows that the Dubovitskij—Miljutin
tangent set to D at X is open. Moreover, for x € {B, U, DM}, we have T,(D, X) =
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T.(clD,x). If X € int A, then T,(D,x) = T.(D N A,Xx). It is well known that
x eint D if and only if Tpy (D, x) = X and X € cl D if and only if Tp(D, x) # .

Now, we briefly collect some basic facts concerning the limiting generalized cal-
culus (see [26]). This calculus relies on the concept of normal cone, and even if this
object can be defined on general Banach spaces, its main applicable features hold on
Asplund spaces, which represent a special class of Banach spaces: X is Asplund iff
every continuous convex function on any open convex set U C X is Fréchet differen-
tiable at the points of a dense Gs—subset of U. A very important property of Asplund
spaces is that every bounded sequence of the topological dual admits a w*—convergent
subsequence.

Take a nonempty subset S of the Asplund space X and pick x € S. Then the Fréchet
normal cone to S at x is

x*(u — x) -

—= ’

N(S, x) = {x* e X*| lim sup
s llu—xll
U—>x

S
where © — x means thatu — x and u € §S.
LetX € S. The limiting normal cone to S at X is

N(S,x) :={x" € X* | 3x, 3 X, x; N Xt xi e N(S, xn),Vn € N}.

If S C X is a convex set, then

NS, ) =x"e X" | x*(x —X) <0,Vx € S}
and coincides with the negative polar of T (S, X).

Let F : X = Y be a set-valued map between the Asplund spaces X and Y, and
*x,y) €eGrF :={(x,y) € X xY |ye F(x)}. Then the limiting coderivative of F
at (X, y) is the set-valued map D*F(x,y) : Y* = X™* given by

D*F(X, y)(y") == {x" € X* | ", —=y") € N(Gr F, (x, )}
As usual, when F := f is a function, since y € F (x) means y = f (X), we write
D*f (x) for D*f (x,7y) .

Let f : X — R U {400} be finite at x € X and lower semicontinuous around X;
the Fréchet subdifferential of f at X is given by

VfE) = {x* e X* | (x*, —1) € Nepi £, (%, fF))},

where epi f denotes the epigraph of f; similarly, the limiting subdifferential of f at
X is given by

Af(x) = {x" e X* | (", —=1) € N(epi f, (x, f(X)))}.
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One always has F) fx) cof(x). Note that a generalized Fermat rule holds: if X is a
local minimum point for f then 0 € 9 f(X).
It is well known that if A is a closed set and X € A, then

dda(X) CN(A,x)ND(O,1).
If f is a convex function, then both F) f(x) and 9 f(x) coincide with the Fenchel
subdifferential.
Next, we recall the standard definitions of metric regularity and metric subregularity.
Given a set-valued mapping F : X = Y between normed vector spaces, one says that

F is metrically regular around (x,y) € Gr F if there exist 7, @ > 0 such that for all
(x,y) € B(x,y),r),

d(x F7 ) < ad (v, F ().

One says that F is metrically subregular at (x, y) € Gr F if there exist r, « > 0 such
that forall x € B (x,r),

d(x F7'3) < ad G F ().
It is well known that metric (sub)regularity of F (at) around (X, y) is equivalent to
(calmness) Aubin property of F~! (at) around (7, X) (see [9]).

Finally, we recall the Gerstewitz (Tammer) scalarization functional (see, for
instance [17, Sect. 2.3]). Let K C Y be a closed convex cone with nonempty interior.
Then for every e € int K, the functional s, : ¥ — R given by

se(y):=inf{t e R | te € y + K}

is continuous and sublinear. Moreover, for every ¢ € R,

(yeV|s(y <t})=te—intK.

2 Adding a New Constraint

We start by illustrating on a smooth optimization problem the main question we deal
with in this paper. Let f, g : X — R be continuously differentiable functions. Con-
sider the basic optimization problem

min f(x), subjectto g(x) <0,

and let X € X be an optimal solution of this problem. The first-order necessary
optimality condition is

V) W) =0, Yu € Ty(My, %), @1
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where
Mg = {x € X | g(x) <0}
is the set of feasible points. We see that one important issue is to describe the cone
Tp(M,, x). Clearly, if the constraint is not active at the feasible point X (that is,
g(x) < 0), then Tg(Mg, X) = X and (2.1) becomes V f(x) = 0 (Fermat’s Theorem).
Otherwise, if the constraint is active at X, i.e., g(x) = 0, we have to suppose that
Vg(x) # 0in order to obtain that
Tp(My.X) = Ty (Mg, %) = el Tppy (Mg, T) = {u € X | Ve@@) <0}.  (22)
In order to show this, observe first that

cl Tpy (Mg, %) C Ty (Mg, %) C Tp(M,, ).

Let now u € Tp(My, X), meaning that there exist (z,) | 0, (u,) — u,ng € N, such
that for all n > ny,

g (x + tyu,) < 0.
Since g is differentiable, there exists (v,) — 0 such that for all n > ng
g (X + thuy) = g(x) + 1, Vg(X) (up) + t, vy,
ie.,
tn (Vg(X)(un) + vn) < 0.

Whence, passing to the limit in the relation Vg(x)(u,) + v, < 0, one gets that
Vg(x)(u) < 0.

Take now u € X such that Vg(x)(u#) < 0. Notice that such an element exists since

Vg(x) # 0. Take (¢,) | 0 and (u#,) — u. Again, the differentiability property of g
means

8 (x + thup) = g(X) + 1, Vg(X) (un) + tyvp
=1, (Vg(X)(un) + vp) ,
with (v,) — 0. Since Vg(x)(#) < 0 and (u,) — u, for all n large enough,
Vg(x)(un) + v, < 0, whence g (x + t,u,) < 0. This means that x + t,u, € M,
and we getu € Tpy (Mg, X).
Let now v € X such that Vg(x)(v) < 0and A € (0, 1). Clearly
Vgx)(Au + (1 — 1v) <0,
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whence, from the previous step, Au + (1 — A)v € Tpy (Mg, X). Passing to the limit
with A — 0, we get v € cl Tpy (Mg, X), and all the inclusions are proved.

We want to underline here that the essential assumption for getting (2.2)is Vg(X) #
0.

Now condition (2.1) becomes

V f(x)(u) > 0, subject to Vg(X)(u) <0,
which can be seen as the fact that 0 € X is an optimal solution to the linear problem
min V f(x)(u), subjectto Vg(x)(u) < 0.

Then, since for linear problems there is no need of supplementary qualification con-
ditions for applying Karush—-Kuhn-Tucker Theorem, we get A > 0 such that

V£(¥) + AVg(¥) = 0.

For the scalar function g, the condition Vg(X) # 0 is equivalent to the well-known
Mangasarian—Fromovitz constraint qualification condition which we recall in greater
generality below.

Let us consider a general constraint system 2(x) < 0, where 4 : X — R"isa
C! function and A(x) < 0 means that 4;(x) < O forall i € 1, n. The Mangasarian—
Fromovitz constraint qualification condition at X when 4 is active (that is, all scalar
coordinate functions are active) is

JueX:VhE) () <O0. (MFCQ)

It is also well known (see [6]) thzit (MFCQ) is equivalent to the metric regularity
around (x, 0) of the set-valued map & : X = R” given by

h(x) :=h(x) + R

We denote this metric regularity condition by (MRCQ). The equivalence between
(MFCQ) and (MRCQ) was first made explicit by Robinson in [34].

There is an important amount of literature that underlines the idea that metric sub-
regularity still ensures the validity of many facts in optimization and, in particular, can
replace metric regularity in qualification conditions (see [20,37] and the references
therein). For instance, in the context we discuss here, the metric subregularity qualifi-
cation condition (MSCQ) introduced in [16] and extensively used in many other works
(see, e.g., [15] and the references therein) amounts to say that the above set-valued
map is metrically subregular at (x, 0) .

We continue our presentation by adding a new scalar inequality constraint. There-
fore, suppose that the constraint is expressed in the same way, but with a function
g = (g1, 8) : X — R2. Let X be a feasible point. In the case of active constraints,
thatis, g(x) =0 € R2, the Mangasarian—Fromovitz condition is: There exists u € X
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such that Vg1 (X)(u#) < 0 and Vg (*)(#) < 0. On the same lines as before, this
condition ensures that

Tp(My, %) = Ty (Mg, X) = cl Tpp(M,, )
={ueX|Vgi(x)(m) <0,Vga(x)(u) <0}.

In particular, this means that

TB(Mg77) = TB(Mgl 77) N TB(Mg29x)a

and in fact, this is the essential relationship to get, on the same argument as in the case
of a single scalar-valued constraint, that there exist A1, > > 0 such that

VX)) +1Vg1(x) +1Ve(x) =0.

Now if another scalar-valued constraint is coming into play, that is, if we have
g = (81,82, 83) : X — R3, then for an optimal solution X, if the new constraint
is active as well, the corresponding Mangasarian—Fromovitz condition (there exists
u € X such that Vg;(x)(u) < 0 fori € 1, 3) ensures, similarly,

3
Ts(My. X) = [ \T5(Mg,. %),
i=1

and then the existence of A1, A2, A3 > 0 such that

3
VFE® + ) 1iVei®) =0.

i=1

Therefore, according to the facts above, every time we consider another scalar-valued
constraint which is active at the underlying point x, one has to impose the Mangasarian—
Fromovitz condition, and this condition is stronger than the Mangasarian—-Fromovitz
conditions for every of the components of g (that is, the Mangasarian—Fromovitz con-
dition formally applied for each g;). Therefore, we aim at presenting a situation when
one can replace the general Mangasarian—Fromovitz condition with Mangasarian—
Fromovitz conditions for each coordinate function, under a supplementary hypothesis.
This idea will be subject of some generalizations, since it will be clear that the addi-
tional assumption we impose can be extended to nondifferentiable settings.

3 A Metric Condition

We start the investigation in order to get a condition with the above mentioned features
by considering again the situation of g = (g1, g2) : X — RZ. Suppose that g; (¥) =
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0, g2(x) = 0, Vgi(x) # 0 and Vga(x) # 0. Firstly, looking again at the above
arguments, observe that we have

Tp(Mg,X) C Tp(Mg,,X) N Tp(Mg,,X) = Ty (Mg,,x) N Tp(My,, X)
=Tp(Mg,,X) NTy(Mg,,X) = Ty (Myg,,X) N Ty (Mg, , X).

In other words, (MFCQ) is used exactly to show that we have the reverse inclusion
in the above relation. However, such an inclusion can be obtained as well via some
regularity assumptions on the sets. We refer the reader to the paper [12] and the
references therein for some steps in this direction of investigation.

In the next result, we employ a natural metric condition which yields the desired
inclusions. We will see below that this condition is in fact a subtransversality condition
on sets studied in depth by several authors. On the other hand, the property we deduce
in Theorem 3.1 is a nonconvex generalized version of the (CHIP) property in the
sense given in the papers [2] and [3]. Properties of this type for the normal cones
are extended to nonconvex cases in many works; for additional bibliography, see the
references after Proposition 3.3.

Theorem 3.1 Let X be a normed vector space and My, My C X be closed sets. Take
X € My N Mj. Suppose that the following regularity assumption holds: There exist
s > 0, u > 0 such that for all x € B(x, s) N\ M,

d(x, My N M) < pd(x, M>). MC)
Then

Tp(My,x) N Ty(Ma,x) C Tg(My N M, X) (CHIP)
Ty(My,x) N Tg(M2,x) C Tp(M1 N M3, X)
Ty(M1,x) NTy(Ma,x) = Ty (M N M3, X).

Proof Take u € Tg(M;,x) N Ty (M3, %), i.e.,u € Tg(M,x) and u € Ty (M, x).
Then there exist (#,) | 0, (u,) — u, (v,) - uwithx+t,u, € My andx+1t,v, € M>
for all n large enough. Observe that one can apply the regularity assumption since
X + tyu, € B(X, s) for n large enough: there exists p,, € M| N M> with

1% + thstn — pull < W lIX + tyuy — X — tyvnll +t3~
Then for every n as above,

- 2
1% + thun — pull < p -ty llup — vnll +1t,,

whence

tn_l(Pn —X) —uy|| < Wy — vpll + 2.
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We infer that u), := 1, Y(pn — X) — u which, by the fact that for all n large enough
X + tyit), = pn € M1 N M,

allows us to conclude the proof of the first inclusion of the theorem. Now, the other
relations are similar. Notice that for the equality in the third relation one takes into
account the simple inclusion

Ty(My N Mz, x) C Ty(My,x) N Ty (M2, X).
The proof is complete. O

Remark 3.2 Observe that if X is finite dimensional, under condition (MC) one can
prove the following stronger assertion: for all u € Tp(M7,X) and v € Ty (M>, X),
there is w € Tg(M| N M>, X) such that

lw—ull < wullv—ull.

Indeed, one can follow with obvious modifications the proof above and observe that the
sequence (tn_ Yp, — )_C)) is bounded, whence it has a convergent subsequence whose
limit satisfies the requirements for w.

In order to have a better insight on condition (MC), we present next some charac-
terizations. Firstly we recall that a function f : X — Y is metrically subregular at
(x, f(x)) with respect to M C X when X € M and there exists > 0, u > 0 such that
foreveryu € B(x,s)\'M

du, 7L (fFEYNM) < pllf@ — fall.

Observe that the metric subregularity of f at (x, f(x)) with respect to M is exactly
the metric subregularity of the set-valued map fjs : X = Y given by

{(f)}, ifxeM
), otherwise.

fM(x):{

Note that in the paper [12] we used some metric subregularity conditions in getting
calculus rules for tangent cones.

Now we present the equivalence (up to a change of the involved constants) of several
metric conditions. Essentially, all these assertions are known in literature (see [21] and
[19]). We give only some details in order to emphasize the features which will be of
interest for us in the sequel. On product spaces, we consider the sum norm.

Proposition 3.3 Take x € M| N M;. The next assertions are equivalent:

(i) there exist s, u > 0 such that for all x € B(x,s) N My,

d(x, My N M>) < ud(x, M>).
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(ii) there existr,t, u > O such that for all x € B(x,r) N My,
d(x, M1 N M) < ud(x, B(x,t) N M>).
(iii) there existr,v > 0 such that for all x € B(x,r) N M3,
d(x, M1 N M) < vd(x, My).
(iv) there exist r,v > 0 such that for all x € B(x, r),
d(x, M{ N M) <v(d(x, M) +d(x, Mp)). (Str)
(v) the function g : X x X — X given by g(x, y) := x — y is metrically subregular
at (x, x, 0) with respect to M x M».

(vi) the functionh : X x X — R given by h(x, y) := d(x, y) is metrically subregular
at (x, x, 0) with respect to M1 x M».

Proof (i) = (ii) This is obvious for r := s, since d(x, M) < d(x, B(x,t) N M>).

(ii) = (i) Consider s := min{r, ¢} and x € B(x,3"'s) N M;. Then for every
e € (0, 3_1s), there is x, € M such that

lx — x|l <d(x,Mp)+e<|x—Xx||+e<?2- 3715,
Then
lxe =XI < llx = xell + llx =Xl <s <1,

whence x, € B(x,t) N M», so

d(x, Mi N Mz) < pd(x, B(x,t) N M) < pllx — x|l < p(d(x, M2) +¢).
Since this is true for every & small enough, we arrive at the conclusion.

(i) = (iv) Define r = 27 !5 and take x € B(X, r). Then d(x, M}) < ||x —X|| <
215, hence there is m| € M such that ||x — m1| < 2~ 's. Therefore,

[mi —XII < lIm1 — x|l + [lx =X <,
my € My N B(x, s), and by (i)
d(my, My N Mz) < pd(my, Ma).

But then

d(x, My " M) < |lx —my|| +d(my, My N M)
< llx —mqll + pud@my, M>)
< llx —mill + p (llmy — x|l +d(x, M2))
=+ dx —mill+dx, Ma)).
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Since m | can be chosen such that || x — m || is arbitrarily close to d(x, M), it follows
that (Str) holds for v := 1 + pu.

(iv) = (i) This is obvious for s := r and p := v.

(iv) < (iii) This follows by the symmetry of conditions in the items (i) and (iii)
and by (i) < (iv).

(i) & (v) See [19, Proposition 7.6].

(v) < (vi) Observe that g1 (0) = A~1(0) and that d(0, g(x, y)) = |lx — y|| =
d(x,y) =d(0,d(x,y)) =d(0, h(x, y)). U

The metric condition (iv) is very well studied in literature and it is known under
various names: local regularity, metric regularity, linear coherence, metric inequality,
subtransversality (see, e.g., [19,21-25,27,28,30,32]). For more historical details and
an extensive bibliography, see [21].

Remark 3.4 Notice that (MC) is exactly the fact that X is a local minimum on M of
the function

X = pdy, (x) — dy o, (X).

Since the latter function is (1 4+ p)—Lipschitz, by Clarke’s penalization principle (
[8, Proposition 2.4.3]), X is a local minimum (without constraints) of

x = pdy, (x) — dynm, () + (1 + 1) day, (%),

which implies that for x around x

Ayt () < pdpgy (X) + (1 + ) dagy (x) < (1 + ) (dyy (5) + d, ()
This is another argument for (i) = (iv) of the proposition above.

Remark 3.5 The fact that X is a local minimum of the function
X = pduy, () + e, — dynmn (), 3.1

where ¢ is the indicator function, means that the condition (MC) can be seen as a
minimality condition for a difference function. Necessary and sufficient conditions
for it can be devised in terms of subdifferentials of the involved functions (hence, in
our case, in terms of normal cones to My, M»>, M1 N M>) following the results in [31].
Moreover, in the convex case (that is, both M and M> are convex) the local minimality
becomes global minimality, and an equivalent condition in terms of ¢ —subdifferentials
(and e—normal cones) is to be found in [18].

For instance, on Asplund spaces, some well-known consequences of relation (Str)
are formulae for the Fréchet/limiting normal cone to intersection of sets (see, e.g.,
[19,32]).

Remark 3.6 Notice that, for the convex case, the necessity of some metric inequalities
for ensuring the validity of constraint qualification conditions is discussed in [35].
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Combining the discussions above, we present two consequences for the systems
with multiple constraints considered in the previous section.

Corollary 3.7 Let g = (g1, g2) : X — R? be differentiable, consider x € X such that

g1(x) = g(x) =0and Vg1 (x) # 0, Vga(x) # 0. If there exist s > 0, u > 0 such
that for all x € B(X,s) N My,

d(x, Mg N Mg,) < ud(x, Myg,),
then
Tg(Mg,x) ={u € X | Vg(x)(u) < 0}.
Corollary 3.8 Let g = (g1, 82, 83) : X —>_R3 be differentiable, consider x € X such
that gi(x) = 0and Vg;(x) # 0 fori € 1, 3. If there exist s, t, u, y > 0 such that for
allx € B(x,s) N Mg,
d(x, Mg N Mg,) < ud(x, Mg,),
and forall x € B(x,t) N Mg, N M,,
d(x, Mg N Mg, N Mgy) < yd(x, M),
then
Tp(Mg,x) ={u € X | Vg(x)(u) < 0}.
Consider a C! function g = (g1, g2) : X — R?, the associated constraint system

of inequalities g(x) < 0, and let X be a feasible point where both scalar constraints
are active. Let us discuss the relationship between (MFCQ), (Str) and (MSCQ).

Proposition 3.9 In the above notation, we have the following implications:

(i) (MFCQ) < (MRCQ) = (MSCQ);
(ii) (MSCQ) = (Str);
(iii) [(MSCQ) for g1 and g>] + (Str) = (MSCQ) for (g1, £2).

Proof (i) All the implications are known (see the above comments).
(ii) Firstly, remark that M, = &' (0), fori = 1,2. Then (MSCQ) means that
there are some constants r, « > 0 such that for all x € B (x, r)
d (g 0.0)=d(xg" ©NE" ©) < ad (0,0, 7x)
=a(d (0,8 (x))+d (0,8 (x))).

Since g; are C!, they are locally Lipschitz around X. Whence g; are Lipschitz multi-
functions around (¥, 0) , meaning that g;~ Vare metrically regular around (0, X) . This
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obviously implies that there exists § > 0 such that
d (0,8 (x) < Bd(x, g (0)
for all x sufficiently close to x. The two relations above imply (Str) condition.

(iii) The assumption made means that there are r, o, 8 > 0 such that for all x €
B (x,r)

d(x.87" O) <ad 0§, i=1.2
d(x &' ONE" ©) = B (de g7 O) +dex g5 O)).
Then forall x € B (x,r),

d(x.g" ONE" ©) = ap @051 +d 0. ().

i.e., (MSCQ) holds. O

We present some illustrative examples where we aim to discuss different situa-
tions from the perspective of the properties we study here, that is, (MFCQ), (CHIP),
(MSCQ), (Str).

Example 3.10 Let g1, g> : R>— R be given by
gix,y) =x—y, g, y)=x>—x+y.
Consider the sets

M1=Mgl=H(x,y)eR2|x§y} anszzMgzz{(x,y)eRz|y§x—x2}.

Take (x,y) = 0 € R? and observe that Vg; (x,y) = (1, —1) = —Vg, (x,y) and
(MFCQ) holds for g1 and g7 at (X, y), while it does not for (g1, g2). We have

T, 0) = {(x,3) € B | ¥ < y| and To(Ms,0) = {(x. 1) e R? | y = 5},
whence
T5(M1,0) N T(M2,0) = {(x, ) € B? | x =y}
On the other hand, M| N M, = {0}, so Tp(M| N M>, 0) = {0}, whence the equality

does not hold. However, the relation (MC) does not hold either. Indeed, the relation
(MC) would imply the existence of u > 0 such that for every small x > 0,

x <xvV2=d((x,x), Mi N M) < pud ((x,x), M)
< e = (x5 - 2)| = .
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which is impossible. So, (Str) does not hold.
Moreover, (MSCQ) would mean the existence of « > 0 such that

I 9l < @ [max (x = v, 0) 4+ max x> — x + y,0}
for all (x, y) close to (0, 0) . But, for x = y, this would mean
2x| < ax?
for all small x, and this is false. Therefore, (MSCQ) does not hold.
Example 3.11 Let g1, g» : R>— R be given by
g1(x,y) =x—y, ga(x,y) =—x+y.
Consider the sets
My =My = [ e R x <y

M2=Mg2={(x,y)eR2|y§x}.

Take (x,y) =0 € R? and observe that Vg1 (x) = (1, —-1) = —Vgy(¥) and (MFCQ)
holds for g; and g, at (x, y), while it does not for (g1, g2). We have

T, 0) = {(x,y) € B | ¥ < y| and To(M,0) = {(x. 1) e B2 | y = 5],

whence
T5(M1,0) N Tp(M2,0) = {(x, ) € B? | x =y}
On the other hand,
MMy = |y e R x =y},
)

Tp(My (M2, 0) = {(x, ) € R? | x =y},

whence the equality does hold. Moreover, it is not difficult to see that the relation (MC)
does hold as well for small s and . = 1. So, (Str) holds. Also an easy computation
shows that (MSCQ) holds.

Now we give examples which show that the converse implications in Proposition
3.9 (i), (ii) do not hold.
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Example 3.12 Let g1, g2 : R — R be given by

g1(x) = g2 (x) = —x7.

Take X = 0 € R. It is clear that (MFCQ) does not hold for g; and g,. However,
(MSCQ) does hold, since g,! (0)N ;" (0) = R, hence d (x, Glong! (0)) -0
for any x.

Example 3.13 Consider now gi, g2 : R — R be given by

g1(x) = x%, g (x) = —x2.

Consider x = 0 € R. For this system, (MSCQ) does not hold, since otherwise we
should find & > 0 such that

d(xe' ©ng' O)=Ixl < ax,

for all x close to 0, which is not possible. On the other hand, (Str) trivially holds with
w=1.

Remark 3.14 The second item of Proposition 3.9 and above example show that there are
situations where (Str) is strictly weaker than (MSCQ) . This fact will be emphasized in
the next section. Some interesting equivalences concerning the fulfillment of Karush—
Kuhn-Tucker conditions can be found in [1] and [33].

Moreover, it is well known that translating regularity properties from the image or
product space into the preimage space requires, in general, certain regularity assump-
tions on the involved mappings.

Nevertheless, the conditions (MC) and (MFCQ) are only sufficient for having the
equality between the tangent cone to the intersection and the intersection of tangent
cones, as the next example shows.

Example 3.15 Consider g1, g» : R>— R given by

4 ;021 :
) x%sin® - —y, ifx #0
gl(-xsy)_ {O,Ifxzx(),
and
4 ;.21 .
) x%sin® - +y, ifx #0

respectively. We have that Vg1(0,0) = (0, —1) and Vg;(0,0) = (0, 1) whence
(MFCQ) holds for g; and for g», while it does not hold for (g1, g2). We have that

Tg(M,,, (0,0) N T(M,,, (0,0)) = Tg(My, N M,, (0,0))
={(a,0) | a € R}.
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Now denote f(x) = x*sin? % for any x # 0 and consider, for n € N\ {0}, the
number

_ 1 /1 1 2n+1
_xn = —_— —_ —|— = ,
2r \n n+1 2rn(n+1)
and the element
Xn, f (n)) € M, .
Since
1
Mg, N Mg, ={(0,0)}U {(E’O> | k € Z\{O}},

one has that

< d((Xn, f (Xn)), Mgy N My,).

Xn— —

On the other hand,

d((n, [ (X)) Mg,) <2f (Xn) .

whence, (MC) would imply the existence of a constant i > 0 such that for all n large

enough,
| 1 an+1 N\, 2nn(n+1)
Xp——|=——<2u|l=———) sin"| ——— |,
nmw 2an(n + 1) 2nn (n+ 1) 2n + 1
that is

473 <

Qn+D*  ,2nn(n+1)
= —n3 (n+])3 sin (—)

2n + 1

Of course, this is impossible since the right-hand term converges to 0 as n — oo. This
means, obviously, that also (Str) does not hold.

4 Consequences in Optimization
In this section, we present some consequences of the metric condition discussed above,
and we give as well some other similar conditions that can be used in various contexts.

Consider a scalar function f : X — R and recall that the Hadamard upper direc-
tional derivative of f at X € X in direction u € X is

dy f(x.u) = limsup 1~ (f (¥ + tu') — £(¥)).

u'—u,t}0
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while the Hadamard lower directional derivative of f at X in direction u is
d_f(x,u) = liminf :~'(f &+ tu') — f(@)).
u'—u,t]0

In [7] a concept of directional minimum was introduced and studied in the vectorial
setting (see also [14]). We consider this concept here, but, initially, for the sake of
simplicity, we restrict ourselves to the scalar case.

Definition 4.1 Let f : X — R be a function and A C X, L C S§(0, 1) be nonempty
closed sets. One says that X € A is a local directional minimum point for f on A with
respect to (the set of directions) L if there exists a neighborhood U of X such that for
everyx c UNAN G +conel), f(X) < f(x).

Proposition4.2 Let f : X — R be a function, A C X, L C S(0, 1) be nonempty
closed sets and x € A. Suppose that there exist s > 0, u > 0 such that

Vx e B(x,s)NA:dx,AN(x +conel)) < ud(x,x + cone L). “.1)

(i) If X is a local directional minimum point for f on A with respect to L, then
di f(x,u) > 0forallu € Tp(A,x) N L.

(ii) Moreover, if X is finite dimensional and d_ f (x,u) > Oforallu € Tp(A,xX)NL,

then there exists a > 0 such that X is a local directional minimum point for
f ) —all-—X| on A with respect to L.

Proof Firstly, observe that, according to Theorem 3.1, the metric assumption imposed
ensures that

Tp(A,x)NTy(x +cone L,x) C Tp(AN(x +conel),X).
Since, obviously,

Tp(AN(X+conel),x) C Tp(A,Xx) N Tp(X + cone L, X)
and

Tp(x 4+ cone L,x) = Ty (x +cone L, x) = Ty (cone L, 0) = cone L,
we actually get
Tg(AN (x4 conel),x)=Tg(A,X)Ncone L.
Now the proof of both items is quite standard, but we present it here for the sake of
clarity.
(i) Remark that the minimality of X on A with respect to a set of directions L is in fact

the minimality of X on AN(X + cone L) . Therefore, foreveryu € Tg(A, X)Ncone L =
Tp(A N (X 4+ cone L), X), there are some sequences (#,) | 0, (u,) — u such that
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forall n € N,X + tyu, € UN AN (x +cone L), whence, for n large enough
f &+ tyu,) > f(x). Consequently,

dy f (X, u) = limsup 1, (f(X + tatty) — f (X)) = 0.

n— oo

(ii) Suppose, by way of contradiction, that for every positive integer n there exists
Xn € AN (X +cone L) N B(x, n~ ") such that

F) < f@® +n" x, — I

Then foralln > 1, x,, # X and

e = X171 (FGon) = £G0) = Il — X[ (f <f+ lx, — X| g) - f(?c))
Iy — x|
1
< —.
n

Since X is finite dimensional, we can suppose, without loss of generality, that ( H;C" :%l )

converges to an element u which clearly is in Tg(A, X) N L. Therefore

— - —n—1 — _ Xn—X —
d—f(x, u) = liminf [lx, — X]| (f (x + llxn — X —_) - f(x)) =0,

X, — x|l
and this is a contradiction. Therefore, the conclusion holds. O

Remark 4.3 According to Proposition 3.3, one can replace (4.1) by any of the equiva-
lent corresponding conditions.

From our point of view, an interesting fact is that metric conditions of the type
(MC) come into play as weak assumptions to ensure the validity of some penalization
principles. Even if all the conditions in Proposition 3.3 are equivalent, the change of
constants is important in the construction of the penalty function. More details will be
given after the next results.

Theorem 4.4 (penalty of an intersection of sets) Let f : X — R be a function and
A, B C X be nonempty, closed sets. Let x € A N B be a local minimum point for f
on AN B. Suppose that

(i) there exist e > 0 and £ > O such that f is £—Lipschitz on B(X, €);
(ii) there exist s > 0, u > 0 such that for all x € B(x,s) N A,

d(x,ANB) < pd(x, B).

Then X is a local minimum point for f + £ud(-, B) on A and a local minimum
point (without constraints) for

f4+e(+m)dG, A +eud(, B). 4.2)
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Proof We prove first that X is a local minimum point on A for
f+Lud(-, B).
Let @ > 0 be the radius of the ball given by the local minimality of X. We choose

8 > Osuch that § < min {(1 + ) 'a,s, (1 +u)"' e} and x € AN B(x, 8). Since
f(x)+Lud(x, B) = f(x), we have to show that

f @) = fx) +Lud(x, B).

Ifx € ANB(X, §) N B, this is obvious, by the property of x. Take x € ANB(x, §)\ B.
By (if),

d(x,ANB) < ud(x, B),
whence, for every p € (0, min {«, e} — § (1 + w)),
d(x,ANB) < ud(x, B) + p.
This means that there is x, € A N B such that
|x —xp| < nd(x, B)+p < pllx — x|l + p.
But,
|xp =% < [xp — x|+ llx =X <pud+p+8=861+un) +p < min{e, }.
Consequently, x, € AN BN B(x, o), whence f(X) < f(x,). Then, by (i),
F® < fxp) < f)+€|x —x,| < fx) + Lud(x, B) + £p.

Letting p — 0 we get the desired inequality, whence the claim is proved.

Now, observe that f + £ud(-, B) is locally Lipschitz around X with the Lipschitz

constant £(1 + w). We apply the standard Clarke penalization principle and we get the
conclusion. |

Remark 4.5 Observe that the usual Clarke penalization principle corresponds to the
case A = B in Theorem 4.4.

Remark 4.6 One canemploy as well the following argument: if (i7) holds, then, accord-
ing to Proposition 3.3 (i)<>(iv), for all x close to x

dix,ANB) < (1+w)dx,A) +d(x,B))

and the Clarke penalization principle gives £ (1 + ) d(-, A) + £ (1 + w)d(-, B) as
penalization term.
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Remark 4.7 Similarly to the situation described in the above remark, the use of condi-
tion (MC) instead of (Str) could be of importance in the study of the rate of convergence
of some algorithms related to the method of alternating projections or, more general,
set intersection problems (see [4,5,10,29]).

We apply this generalized penalty result for getting necessary optimality conditions
in the dual space for directional minima.

Corollary 4.8 Let X be an Asplund space, f : X — R be a function, A C X,
L C S(0, 1) be nonempty closed sets and x € A. Suppose that:

(i) X is a local directional minimum point for f on A with respect to L;
(ii) there exist ¢ > 0 and £ > O such that f is £—Lipschitz on B(X, €);
(iii) there exist s > 0, u > 0 such that for all x € B(x,s) N A,

d(x, AN (X4 conelL)) < ud(x,x +cone L).

Then there are u* € N(A,X),v* € N (cone L, 0) with |u*|| < €(1+ ) and
lv*|l < £u, such that

—u*—v* € df(x).

Proof Since X is a local directional minimum point for f on A with respect to L,
then it is a local minimum point for f on A N (x + cone L). Then, on the basis of
(i7) and (iii) we can apply Theorem 4.4 to get that X is a local minimum point for
f4+ed4+wd(, A + £€ud(-,x 4+ cone L). Therefore, since all the functions are
locally Lipschitz around X, one can apply the exact subdifferential calculus rules (see
[26, Theorem 3.36]) to get

0€d(f+e(0+pd(, A+ tud(-,X + cone L)) (%)
COfE@) +£(1 4 ) dd(-, A) (®) + Ludd(-, % + cone L) (%) .

The conclusion follows. O

Remark 4.9 The importance of having constants as small as possible is apparent in the
conclusion of Corollary 4.8 in the estimation of the norms of the generalized Lagrange
multipliers ™ and v*. Observe that if cone L is convex, then N (cone L, 0) = L.

Remark 4.10 In view of the discussion in the preceding section, condition displayed
in (iii) is, in general, weaker than (MSCQ) type conditions.

We illustrate the above results by the following example.

Example4.11 Let X := R%, A := [0,1]>, L = 5((0,0),1) N {(x,y) e R?
| y > x > 0} . Consider the function f : R?2 > R, f(x,y) =2y—x.Clearly, (0, 0)is
a directional minimum point for f on A with respect to L. Moreover, the assumptions
of Corollary 4.8 are satisfied with £ = /5 and & = 1. Then 8 £ (0, 0) = {(—1, 2)} and
there is u* = (0, —1) € N(A, (0,0)), v* = (1, —1) € L~ satisfying the conclusion.

@ Springer



Journal of Optimization Theory and Applications (2021) 189:744-771 765

On the other hand, if we change only the set of directions to
L:=S50.0.hnfwner y=3"x=0},
then one cannot find u*, v* to satisfy the conclusion, confirming that this time (0, 0)

is not a directional minimum point for f on A with respect to L.

In the next result we point out that a metric condition can be imposed as well for a
functional constraint in order to get a penalty result. Let Z be a normed vector space,
g : X — Z be afunction and Q C Z be a pointed closed convex cone. As above, one
defines the set-valued map g : X = Z given by g(x) := g(x) + Q and one considers
g 1 (=0) = g7 (0) as the feasible set.

Theorem 4.12 (penalty for a functional constraint)Let X € g~ (— Q) be a local min-
imum of f on g~'(— Q). Suppose that

(i) there exist e > 0 and £ > O such that f is £—Lipschitz on B(X, €);
(ii) there exist s, u > 0 such that for all x € g~' (—Q + B(0, s)) N B (X, s)

d(x,g”' (= Q) < pd(0, §(x) N B0, s)).
Then (x,0) is a local minimum for the function (x,z) — f(x) + Lu |zl +

(1 +u)yd((x,z),Grg).
If, moreover, X, Z are Asplund spaces, then

—3f(xX)N DO, £(1+ )N D*g(,0)(QT N DO, £wn)) # 9.
Proof Denote h : X X Z — R, h(x,z) = f(x) + £Lu||z|| . Clearly, h(x,0) = f(X)

and we show first that (x, 0) is a local minimum on Gr g for 4. Thus, we have to show
that there is § > 0 such that for all (x, z) € (B (x,§) x B(0,4)) NGrg,

JF&@) = fO)+ Lzl
Let « be the radius of the ball given by the local minimality of x. Take § > O such that
§ <min{e(1+mw)~" 5,01+ "} and (x,2) € (B(x,8) x B(0,8) NGrg.If
z € —Q, then by the property of X,

J&) = fx) = f)+ Lzl

Suppose that z ¢ —Q. Then there is ¢ € Q such that z — ¢ = g (x), hence x €
B(X.8)Ng (z—q) CBE.5)Ng~' (=0 + B(0,5)) . Now, by (ii),

d(x, g (—0Q)) < pnd (0, g(x) N B, s)) < plzll.
Then for every p € (0, min {«, e} — & (1 + w)), thereis x, g’l(—Q) such that
|x = xo| < wllzll +p < ué+p.
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Then
lxo = %] < xp = x| +lIx =X <pud+p+8 =581+ p) +p < min{a, &} .
Therefore, by (i),
F@ < fxp) < @)+ |x = xp|| < fFO) + Lzl + Lp.

For p — 0, we get the claim.

Since h is locally Lipschitz around (X, 0) with constant £ (1 + ), we apply the
standard Clarke penalization principle, and we get the first conclusion.

For the second part, by applying the generalized Fermat rule for limiting subdiffer-
ential on Asplund spaces, we get

0,0) € f(x) x {0} + {0} x Lud ||| (O) + € (1 + ) dd((-,-),Grg) (x,0).
Then there are x* € 9 f(X), z* € D(0, £1) such that

(—=x*,—z*) e N(Grg, (x,0)) and
|G ) < ed+m.

In particular, this means that

|«*|| <€+ p) and
—x* e D*g(x,0) (z").

Taking into account the definition of the limiting normal cone, (—x*, —z*) can be
approached in the weak-star topology by some elements (—x,;, —z) elements in the
Fréchet normal cone to Gr g at points close to (x, 0) . According to [11, Lemma 3.2],
the elements z;* are in O and since this set is weakly-star closed, z* € Q. Therefore,

z¥ € Q7 N D(0, £1) and then we get the conclusion. O

Remark 4.13 Notice that the dual conditions in Corollary 4.8 and the last part of
Theorem 4.12 are consequences of the corresponding primal conditions and the sum
rule for limiting subdifferentials.

By combining both penalty principles above, one can get similarly optimality con-
ditions for directional minima under functional constraints. We leave the details to
interested reader.

Finally, we give some optimality conditions for a concept of directional minimum
with respect to two sets of directions for vectorial functions (see [14]). One needs an
auxiliary result.

Lemma4.14 Let X, Y be Banach spaces, f : X — Y a continuously differentiable
function, M C Sy a closed and nonempty set, and x € X. Suppose that one of the
following sets of conditions holds:
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(i) cone M is convex and there exists ug € X such that V f (x)(ug) € — int(cone M);
(ii) themap g : X x Y — Y given by g(x,y) = f(x) — y is metrically subregular at
(x, £(X), 0) with respect to X x f~1(f(x) — cone M). Then

Ts(f~'(f(X) — cone M), X) = V £ (%) (— cone M). 4.3)

Proof Providedthat f is continuously differentiable, itis always true that Tz (£~ (f (X)—
cone M), x) C Vf(f)_1 (— cone M). Indeed, for an arbitrary u € TB(f_l(f()_c) —
cone M), x), there exist (¢,) | Oand (u,) — usuchthat f (x+t,u,) € f(x)—cone M
forall n. Since f is continuously differentiable at X, this means that there exists a func-
tion @ : X — Y such thatlimy, .o (X + &) = a(x) = 0 and

f& A+ tuy) = fG) + 5,V X)) (Uy) + thoe (X + tyug) llug |-
Therefore,
taV f(X) (uy) + thoe(xX + tyuy)||uy || € — cone M,

and from here, dividing by #,, and passing to the limit, one getsu € V f(X) —1(— cone M).
If the condition from (ii) holds, the conclusion is granted by [12, Theorem 3.1].
Suppose now that we are under the assumptions from (7). Let (¢,) be an arbitrary

sequence of positive numbers converging to 0, and set u,, := u¢. Using the differen-

tiability of f, we can write

S+ thun) =fX) + 1,V X)) (up) + thoe (X + tpuy) ||ugl
=f(X) + ta[V fX) (o) + (X + tyuo)lluoll],

where « : X — Y is such that lim a(x + t,u,) = a(x) = 0. Therefore, since
n—oo

Vf(x)(up) € —int(cone M), we have that for all n large enough, f (X + t,ug) €
f(x) —cone M, thatis ug € TU(f_l(f()_c) —cone M), x).
Consider now v € X such that V f (x)(v) € —cone M, and A € (0, 1). Then

V&) (Auo + (1 — 2)v) € —(int(cone M) + cone M) = — int(cone M).
Hence, from the previous step,
Ao+ (1 — v € Ty (f~ N (f (&) — cone M), X).
Passing to the limit with A — 0, and taking into account that the adjacent cone is

closed, we getthat v € TU(f’1 (f(x)—cone M), x) C TB(f*1 (f(x) —cone M), X),
and this completes the proof. U

We give next a more involved concept of directional minimality (see [14]).

Definition 4.15 Let X and Y be normed vector spaces, K C Y a closed ordering cone
with nonempty interior, f : X — Y,and A C X, L C Sx, M C Sy closed sets. One
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says that X € A is a weak local directional Pareto minimum point for f with respect
to the sets of directions L and M on A if there exists a neighborhood U for X such
that

[[f(ANU N (X 4 cone L)) N (£ (%) — cone M)] — f(X)]1N (—int K) = ¥.

We present now the necessary optimality conditions.

Theorem 4.16 Let X, Y be Banach spaces, f : X — Y a continuously differentiable
function, K C Y a closed convex ordering cone with nonempty interior, A C X,
L C Sx and M C Sy closed and nonempty sets, and X € A. Assume there exist
S, 1, t, v > 0 such that

d(x,AN (X +conel)) < ud(x,x +cone L), Vx € B(x,s) N A,

and

d(x, AN (X +coneL) N f~1(f(*) — coneM)) < yd(x, f~'(f(X) — coneM)),
Vx € B(x,t)NAN(x + cone L).

Suppose also that either (i) or (ii) from Lemma 4.14 hold, and X is a weak local
directional Pareto minimum for f on A with respect to L and M.
Then

Vfx)(u) ¢ —int K, Yu € Tg(A,X) Nconel N Vf(f)*](—coneM).
Proof First, we observe that the metric assumptions ensure the equality

Tg(AN (X +cone L) N f~1(f(X) — cone M), X)
=Tg(A,x)NTg(x +coneL,x)N TB(f_l(f(f) —cone M), x).

But 75 (x 4 cone L, X) = cone L and since we are under assumptions (i) or (i7) from
Lemma 4.14, we also have

Tp(f ' (f () — cone M), %) = V f(X) " (— cone M).
Therefore,

Tp(AN (X +cone L) N f_l(f(f) —cone M), x)
= TB(A,)_c)ﬂconeLﬁVf(f)*l(—coneM). “4.4)

The minimality of X means there exists a neighborhood U for X such that
[[f(ANU N (x +conel)) N (f(X) —coneM)] — f(x)]N (—int K) = @.
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Thatis, forevery e € int K andeveryx € ANUN(X+cone L)N f~1(f(x)—cone M),
wehave s, (f(x)— f(x)) > Osince f(x)— f(x) ¢ —int K. We cannow see X as alocal
minimum point for the scalar function g : X — R given by g(x) = s.(f(x) — f(X))
onAN(x+conel)N f_l(f()_c) — cone M). Note that g(x) = s.(0) = 0 because s,
is sublinear.

Considernow u € Tg(A, ¥)Ncone(L)NV f(x)~ ! (— cone M). There exist (z,) | 0
and u,, — u such that

X + tyun € AN (X 4+ coneL) N £~ (f(X) — coneM),

due to (4.4). Moreover, since X + t,u, — X, we also have that X + t,u,, € U forn
sufficiently large. Hence,

8(X + thun) = g(X) & s.(f (X + thun) — f (X)) = 0,

for all n sufficiently large. There exists a function & : X — Y such that limy_,o o (x +
h) = a(x) = 0, so that we can write

Se(tnV f(X) (up) + tyoe(x + tyup) lunll) = 0.

Dividing by #,, and passing to the limit, we get s, (V f (x)(u)) > 0, thatis V f (x)(u) ¢
—int K. The proof is complete. g

5 Concluding Remarks

Besides the known applications of the metric inequality on sets that we discuss in this
work, we study its implications in at least two aspects related to optimization prob-
lems. First of all, it is an appropriate replacement for some constraint qualification
conditions when a new constraint is added. Secondly, it is naturally involved in penal-
ization results when several constraints are considered. By its nature, as underlined,
the metric inequality is rather weak and this offers the perspective of applying the gen-
eral principle behind the results in this work to other research directions. Therefore,
the metric relations we study here can be extended as well for deriving calculus rules
for tangent cones by changing the conditions based on subregularities of mappings
initiated in [12]. Moreover, penalization procedures for vectorial problems with mul-
tiple constraints based on results such as those in [36] and [13] are to be envisaged in
future works.
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