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Abstract
In this paper, we study robust necessary optimality conditions for a nondifferentiable
complex fractional programming with uncertain data. A robust counterpart of uncer-
tain complex fractional programming is introduced in the worst-case scenario. The
concept of robust optimal solution of the uncertain complex fractional program-
ming is introduced by using robust counterpart. We give an equivalence between
the optimal solutions of the robust counterpart and a minimax nonfractional para-
metric programming. Finally, Fritz John-type and Karush–Kuhn–Tucker-type robust
necessary optimality conditions of the uncertain complex fractional programming are
established under some suitable conditions.
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1 Introduction

The linear programming and linear fractional programming in the setting of complex
spaces were first studied by Levinson [22] and Swarup and Sharma [30], respectively.
Subsequently, optimality conditions and duality of various complex programming
including nonlinear fractional or nonfractional programming were extensively stud-
ied; see, e.g., [7,8,16–19]. In [26], Mond and Craven pointed out that many existed
complex nonlinear programming problems are special cases of a complex program-
ming problem whose objective function includes the square root of a quadratic form.
Though the complex programming can be equivalently expressed as a real-valued
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bi-objective fractional programming, the solution concept of bi-objective fractional
programming depends on some special partial order. However, it is not easy to choose
the best suitable partial order of bi-objective fractional programming such that the
solution of bi-objective fractional programming is that of complex programming. So,
it is deserved to study complex programming directly. Besides, complex program-
ming plays an important role in the field of electrical engineering, and it has also been
applied to phase recovery, MaxCut, statistical signal processing, blind deconvolution,
blind equalization, maximal kurtosis andminimal entropy; see, e.g., [4,9,13,18,31,32].

In 2005, Chen et al. [4] studied complex fractional programming by using Charnes–
Cooper transformation and established an equivalence between the complex fractional
programming and nonfractional programming. Inspired by [8], Lai et al. [21] intro-
duced minimax complex fractional programming and studied the Kuhn–Tucker-type
necessary optimality conditions, sufficient optimality conditions as well as weak
(strong and strict converse) duality results for such programming under the general-
ized convexity conditions. Thereafter, Lai andHuang [16,17] considered the optimality
conditions for nondifferentiable minimax fractional and nonfractional programming
with complex variables. It isworthmentioning that themultipliers corresponding to the
constrained functions in the necessary optimality conditions presented in [16,17,21]
are required to be nonzero. For this reason, the obtained necessary optimality con-
ditions [16,17,21] may not recover the existing necessary optimality conditions of
nonlinear programming with strict inequality constraints. In addition, the minimax
fractional programming and minimax nonfractional programming with complex vari-
ables can be regarded as the robust counterpart of complex fractional programming
and nonfractional programming with respect to the uncertain parameters. As a matter
of fact, the real-world problems are always affected by the uncertainty of data due to
the prediction errors, measurement errors, the lack of complete information and major
emergency (e.g., COVID-19). So, it is necessary to construct mathematical modeling
with possible uncertain data to solve practical problems.

Robust optimization method is an important approach to deal with mathematical
programming with uncertain data. It is based on the principle that the robust coun-
terpart, which is also called robust optimization, of the uncertain programming has a
feasible solution, where the uncertain constraints are forced to be satisfied for all possi-
ble parameter realizations within some uncertain sets. In 1937, Soyster [28] proposed
a linear optimization model to construct a feasible solution for all data belonging to a
convex set. It was the first step in the direction of robust optimization and the determin-
istic robust correspondence model given in the worst-case scenario. Recently, various
robust optimization problems, such as robust linear optimization, robust quadratic opti-
mization, robust semidefinite optimization, robust multistage optimization and robust
fractional programming, are studied; see, e.g., [1–3,5,6,12,15,23,29]. To the best of our
knowledge, there is no result on robust counterpart of complex fractional program-
ming with uncertain data. Also, many practical problems, such as phase recovery,
MaxCut, statistical signal processing, the currents and voltages of electrical networks,
are always subject of uncertainty from calculation errors, incomplete information, the
natural and social factors such as the extreme weather, earthquake, tsunami and social
insurrection. Therefore, it is necessary and meaningful to investigate the complex
fractional programming with uncertain data by the robust optimization method.
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The present paper is organized as follows. In Sect. 2, we present some basic def-
initions, existing results as well as complex fractional programming with uncertain
data. In Sect. 3, we give a minimax nonfractional parametric programming refor-
mation for the robust counterpart of uncertain complex fractional programming and
present the equivalence between optimal solutions of the robust counterpart and one
of the minimax nonfractional parametric programming. In Sect. 4, Fritz John-type
robust necessary optimality conditions and Karush–Kuhn–Tucker-type robust nec-
essary optimality conditions for the robust optimal solution of uncertain complex
fractional programming are established in both differentiable and nondifferentiable
cases, respectively. The presented necessary optimality conditions improve the corre-
sponding results in [16,17,21].

2 Preliminaries

LetCn be the n-dimensional vector space of complex numbers with inner product 〈·, ·〉
is defined by yH z = 〈z, y〉 = y�z for all z, y ∈ C

n , where yH = y� is the conjugate
transpose of y. Denote byCm×n the set of allm×n complex matrices. The transpose,
conjugate and conjugate transpose of a matrix A = (ai j ) ∈ C

m×n are denoted by

A� = (a ji ), A = (ai j ) and AH = A
�
, respectively. Set Q = {(z, y) ∈ C

2n : y = z},
where z denotes the conjugate of z ∈ C

n . Clearly, Q is a closed convex cone; see, e.g.,
[11]. Amatrix A is calledHermitian iff AH = A; it is called positive semidefinite iff all
of its eigenvalues are absolutely positive. For a complex number z = a + bi ∈ C, we
denote the real part and the imaginary part of z by Rez = a and Imz = b, respectively.
For a polyhedral cone S = {ξ ∈ C

p : Re(K ξ) ≥ 0} with K ∈ C
k×p, the dual cone of

S is defined as S∗ = {μ ∈ C
p : Re〈ξ, μ〉 ≥ 0, ∀ξ ∈ S}. Clearly, S = S∗∗. A convex

subset D ⊆ S is said to be a base of the polyhedral cone S if and only if 0 /∈ clD
and S = coneD := {s : s = λd, λ ≥ 0, d ∈ D}, where clD is the closure of D. In
particular, D is called a compact base of S iff it is a base of S and compact set.

In this paper, we consider the following complex fractional programming with
uncertain data:

min
ζ

Re[ f (ζ, η) + (zH Az)
1
2 ]

Re[g(ζ, γ ) − (zH Bz)
1
2 ]

(UCFP)

subject to − h(ζ, ω) ∈ S, ζ = (z, z) ∈ C
2n,

where A, B ∈ C
n×n are positive semidefinite Hermitian matrices, S ⊆ C

p is a
polyhedral cone which is specified by K ∈ C

k×p, η ∈ U , γ ∈ V , ω ∈ W are
uncertain parameters, the uncertain subsets U , V and W of C2m are nonempty and
compact, f , g : C

2n × C
2m → C and h : C

2n × C
2m → C

p are continuous
with respect to the second argument, and f (·, η), g(·, γ ) and h(·, ω) are analytic
at each ζ = (z, z) ∈ C

2n . We denote the feasible solutions set of (UCFP) by
X(ω) = {ζ = (z, z) ∈ C

2n : −h(ζ, ω) ∈ S}.
If f and g are analytic with respect to the first argument, the problem (UCFP) is also

nondifferentiablewhen either zH Az or zH Bz vanishes at somepoint ζ0 = (z0, z0)with
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zH0 Az0 = 0or zH0 Bz0 = 0, because the term (zH Az)
1
2 or (zH Bz)

1
2 is nondifferentiable

in the neighborhood of ζ0.
Throughout this paper, we assume that for each (ζ, η) ∈ X×U and (ζ, γ ) ∈ X×V ,

Re[ f (ζ, η) + (zH Az)
1
2 ] ≥ 0 and Re[g(ζ, γ ) − (zH Bz)

1
2 ] > 0. We adopt the robust

optimization method to deal with (UCFP) in the worst-case scenarios. The robust
counterpart of (UCFP) can be formulated as

min
ζ

max
(η,γ )∈U×V

Re[ f (ζ, η) + (zH Az)
1
2 ]

Re[g(ζ, γ ) − (zH Bz)
1
2 ]

subject to − h(ζ, ω) ∈ S, ∀ω ∈ W , ζ = (z, z) ∈ C
2n .

(RCFP)

The feasible solution set of (RCFP) is denoted by

F := {ζ = (z, z) ∈ C
2n : h(ζ, ω) ∈ −S, ∀ω ∈ W },

which is called the robust feasible set of (UCFP). Since h is analytic with respect to the
first argument, X(ω) is closed for each ω ∈ W and so, F =⋂ω∈W X(ω) is closed. A
point ζ0 ∈ F is called a robust optimal solution of (UCFP) iff it is an optimal solution
of (RCFP):

max
(η,γ )∈U×V

Re[ f (ζ, η) + (zH Az)
1
2 ]

Re[g(ζ, γ ) − (zH Bz)
1
2 ]

≥ max
(η,γ )∈U×V

Re[ f (ζ0, η) + (zH Az)
1
2 ]

Re[g(ζ0, γ ) − (zH Bz)
1
2 ]

, ∀ ζ ∈ F .

Observed that the problem (RCFP) is nondifferentiable if either zH Az or zH Bz van-
ishes at some point ζ0 = (z0, z0) with zH0 Az0 = 0 or zH0 Bz0 = 0, since the term

(zH Az)
1
2 or (zH Bz)

1
2 is nondifferentiable in the neighborhood of ζ0.

We now recall some definitions and basic results which will be used in the sequel.

Definition 2.1 [27] Let ξ0 ∈ S. The set S(ξ0) is defined to be the intersection of
those closed half spaces which determines S and include ξ0 in their boundaries or,
equivalently,

S(ξ0) = {z ∈ C
p : Re(K1ξ) ≥ 0},

where K1 ∈ C
d×p is an arbitrary submatrix of K ∈ C

k×p and d ≤ k.

Clearly, S ⊆ S(ξ0) for each ξ0 ∈ S. In particular, S(ξ0) = C
p when ξ0 ∈ intS.

This implies that S∗(ξ0) ⊆ S∗, where S∗(ξ0) is the dual cone of S(ξ0).

Lemma 2.1 [20] Let η ∈ U ⊆ C
2m, ω ∈ W ⊆ C

2m and the mapping f (·, η) :
C
2n → C and h(·, ω) : C2n → C

p be analytic at each ζ = (z, z) ∈ C
2n. Then, for

ζ0 = (z0, z0) ∈ C
2n,

f (ζ, η) − f (ζ0, η) = f
′
ζ (ζ0, η)(ζ − ζ0) + o(|ζ − ζ0|), ∀ ζ ∈ C

2n,
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h(ζ, ω) − h(ζ0, ω) = h
′
ζ (ζ0, ω)(ζ − ζ0) + o(|ζ − ζ0|), ∀ ζ ∈ C

2n,

where |ζ − ζ0| means the norm of complex vector ζ − ζ0,

f
′
ζ (ζ0, η)(ζ − ζ0) = (∇z f (ζ0, η),∇z f (ζ0, η))

(
z − z0
z − z0

)

= ∇z f (ζ0, η)(z − z0) + ∇z f (ζ0, η)(z − z0) ∈ C,

and

h
′
ζ (ζ0, ω)(ζ − ζ0) = (∇zh(ζ0, ω),∇zh(ζ0, ω))

(
z − z0
z − z0

)

= ∇zh(ζ0, ω)(z − z0) + ∇zh(ζ0, ω)(z − z0) ∈ C
p.

Lemma 2.2 Let f (·, η) : C
2n → C and h(·, ω) : C

2n → C
p be analytic at ζ =

(z, z) ∈ C
2n, A ∈ C

n×n be a positive semidefinite Hermitian matrix, and η ∈ U and
ω ∈ W be uncertain parameters. For each y ∈ C

n, μ ∈ C
p, if the function

Φ(ζ) = f (ζ, η) + zH Ay + 〈h(ζ, ω), μ〉

is differentiable at ζ0 = (z0, z0) ∈ C
2n, then

Re[Φ ′
(ζ0)(ζ − ζ0)]

= Re[〈z − z0,∇z f (ζ0, η) + ∇z f (ζ0, η) + Ay + μ�∇zh(ζ0, ω) + μH∇zh(ζ0, ω)〉].

Proof Noted that 〈h(ζ, ω), μ〉 = μHh(ζ, ω) = μ�h(ζ, ω) and zH Ay = z�Ay. Since
Φ is differentiable at ζ0, then

Φ
′
(ζ0) = f

′
ζ (ζ0, η) + (zH Ay)

′
ζ + μHh

′
ζ (ζ0, ω)

= (∇z f (ζ0, η),∇z f (ζ0, η)) + (0, Ay) + μH (∇zh(ζ0, ω),∇zh(ζ0, ω)).

From Definition 2.1, it follows that

Φ
′
(ζ0)(ζ − ζ0)

= (∇z f (ζ0, η),∇z f (ζ0, η))

(
z − z0
z − z0

)

+ Ay(z − z0) +
〈
(∇zh(ζ0, ω),∇zh(ζ0, ω))

(
z − z0
z − z0

)

, μ
〉

= (∇z f (ζ0, η) + μH∇zh(ζ0, ω))(z − z0) + (μH∇zh(ζ0, ω) + Ay + ∇z f (ζ0, η))(z − z0)

=
〈
z − z0,∇z f (ζ0, η) + μ�∇zh(ζ0, ω)

〉
+
〈
μH∇zh(ζ0, ω) + Ay + ∇z f (ζ0, η), z − z0

〉
.

For any x, y ∈ C
n , 〈x, y〉 = y�x, 〈x, y〉 = (y�x) = y�x = (y�x)� = x�y =

〈y, x〉 and so,

Re〈x, y〉 = Re〈y, x〉 = Re〈y, x〉. (1)
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Therefore, one has

Re[Φ ′
(ζ0)(ζ − ζ0)]

= Re[〈z − z0,∇z f (ζ0, η) + μ�∇zh(ζ0, ω)〉 + 〈μH∇zh(ζ0, ω) + Ay + ∇z f (ζ0, η), z − z0〉]
= Re[〈z − z0,∇z f (ζ0, η) + μ�∇zh(ζ0, ω)〉] + Re[〈μH∇zh(ζ0, ω) + Ay + ∇z f (ζ0, η), z − z0〉]
= Re[〈z − z0,∇z f (ζ0, η) + μ�∇zh(ζ0, ω)〉] + Re[〈z − z0, μ

H∇zh(ζ0, ω) + Ay + ∇z f (ζ0, η)〉]
= Re[〈z − z0,∇z f (ζ0, η) + ∇z f (ζ0, η) + Ay + μ�∇zh(ζ0, ω) + μH∇zh(ζ0, ω)〉],

where the third equality follows from (1), and Re(ν + υ) = Reν + Reυ implies the
second and fourth equalities, ν, υ ∈ C. ��
Remark 2.1 If h is uncertain-free with respect to the uncertain parameter ω ∈ W , that
is, for any ω̃, ω̂ ∈ W , h(ζ, ω̃) = h(ζ, ω̂), then Lemma 2.2 reduces to Lemma 2 of
[17].

Lemma 2.3 [24] Let E ∈ C
p×n, A ∈ C

n×n, b ∈ C
n and μ ∈ S∗. Then the following

assertions are equivalent:

(a) The system

EHμ = Au + b, uH Au ≤ 1,

has a solution u ∈ C
n.

(b) If Ez ∈ S for z ∈ C
n, then Re[(zH Az)

1
2 + bH z] ≥ 0.

Lemma 2.4 [25] Let ξ0 ∈ S and μ ∈ (S(ξ0))
∗. Then Re(μH ξ0) = 0.

Lemma 2.5 [24] Let A ∈ C
n×n and z, u ∈ C

n. Then the following generalized
Schwarz inequality in complex spaces holds:

Re(zH Au) ≤ (zH Az)
1
2 (uH Au)

1
2 ,

and the equality holds whenever Az = λAu or z = λu for λ ≥ 0.

In the rest of the paper, we assume that all complex functions f , g and h are defined
on the linear manifold Q = {ζ = (z, z) ∈ C

2n : z ∈ C
n} over the real field R, and the

robust feasible solution set F is nonempty.

3 Nonfractional Parametric Programming Reformulation of (RCFP)

In this section, we present an equivalent nonfractional parametric programming prob-
lem of (RCFP) and establish the relationship between the optimal solution of the
nonfractional parametric programming problem and the robust optimal solution of
(UCFP).
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We introduce the following nonfractional parametric programming problem:

min
ζ∈F max

(η,γ )∈U×V
Re{[ f (ζ, η) + (zH Az)

1
2 ] − v[g(ζ, γ ) − (zH Bz)

1
2 ]}, (RCFPv)

where the parameter v is defined as

v = max
(η,γ )∈U×V

Re[ f (ζ, η) + (zH Az)
1
2 ]

Re[g(ζ, γ ) − (zH Bz)
1
2 ]

.

Since Re[ f (ζ, η) + (zH Az)
1
2 ] ≥ 0 and Re[g(ζ, γ ) − (zH Bz)

1
2 ] > 0 for each

(ζ, η) ∈ X ×U and (ζ, γ ) ∈ X × V , one can conclude that v ≥ 0. Since f (ζ, ·) and
g(ζ, ·) are continuous, and U and V are compact sets, for each ζ = (z, z) ∈ F , there
exist η̃ ∈ U and γ̃ ∈ V such that

Re[ f (ζ, η̃) + (zH Az)
1
2 ]

Re[g(ζ, γ̃ ) − (zH Bz)
1
2 ]

= max
(η1,γ1)∈U×V

Re[ f (ζ, η1) + (zH Az)
1
2 ]

Re[g(ζ, γ1) − (zH Bz)
1
2 ]

.

For the sake of brevity, for each ζ ∈ Q, we set

Y (ζ ) =
{

(η, γ ) ∈ U × V : Re[ f (ζ, η) + (zH Az)
1
2 ]

Re[g(ζ, γ ) − (zH Bz)
1
2 ]

= max
(η1,γ1)∈U×V

Re[ f (ζ, η1) + (zH Az)
1
2 ]

Re[g(ζ, γ1) − (zH Bz)
1
2 ]

}

,

and

Yv(ζ ) =
{

(η, γ ) ∈ U × V : Re
[
f (ζ, η) + (zH Az)

1
2

]
− vRe

[
g(ζ, γ ) − (zH Bz)

1
2

]

= max
(η1,γ1)∈U×V

{

Re
[
f (ζ, η1) + (zH Az)

1
2

]
− vRe

[
g(ζ, γ1) − (zH Bz)

1
2

] }}

.

It is easy to see that Y (ζ ) and Yv(ζ ) are compact subsets of U × V .
The next result shows the equivalence between the robust optimal solution of

(UCFP) and (RCFPv).

Theorem 3.1 (a) ζ0 = (z0, z0) ∈ F is a robust optimal solution of (UCFP) with
optimal value

v∗ = max
(η,γ )∈U×V

Re[ f (ζ0, η) + (zH0 Az0)
1
2 ]

Re[g(ζ0, γ ) − (zH0 Bz0)
1
2 ]

= min
ζ∈F max

(η,γ )∈U×V

Re[ f (ζ, η) + (zH Az)
1
2 ]

Re[g(ζ, γ ) − (zH Bz)
1
2 ]

,

if and only if

min
ζ∈F max

(η,γ )∈U×V

{

Re[ f (ζ, η) + (zH Az)
1
2 ] − v∗Re[g(ζ, γ ) − (zH Bz)

1
2 ]
}
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= max
(η,γ )∈U×V

{
Re[ f (ζ0, η) + (zH0 Az0)

1
2 ] − v∗Re[g(ζ0, γ ) − (zH0 Bz0)

1
2 ]
}

= 0,

i.e., ζ0 is an optimal solution of (RCFPv) with v = v∗ and optimal value 0.
(b) If ζ0 is a robust optimal solution of (UCFP) with optimal value v∗, then Y (ζ0) =

Yv∗(ζ0).

Proof (a) Let ζ0 = (z0, z0) be a robust optimal solution of (UCFP) with optimal value

v∗ = max
(η,γ )∈U×V

Re[ f (ζ0, η) + (zH0 Az0)
1
2 ]

Re[g(ζ0, γ ) − (zH0 Bz0)
1
2 ]

= min
ζ∈F max

(η,γ )∈U×V

Re[ f (ζ, η) + (zH Az)
1
2 ]

Re[g(ζ, γ ) − (zH Bz)
1
2 ]

.

Then, one has

v∗ ≥ Re[ f (ζ0, η) + (zH0 Az0)
1
2 ]

Re[g(ζ0, γ ) − (zH0 Bz0)
1
2 ]

, ∀η ∈ U , γ ∈ V ,

which yields that Re[ f (ζ0, η) + (zH0 Az0)
1
2 ] − v∗Re[g(ζ0, γ ) − (zH0 Bz0)

1
2 ] ≤ 0 for

all η ∈ U , γ ∈ V . Consequently, we have

min
ζ∈F max

(η,γ )∈U×V

{
Re
[
f (ζ, η) + (zH Az)

1
2
]− v∗Re

[
g(ζ, γ ) − (zH Bz)

1
2
]}

≤ max
(η,γ )∈U×V

{
Re
[
f (ζ0, η) + (zH0 Az0)

1
2
]− v∗Re

[
g(ζ0, γ ) − (zH0 Bz0)

1
2
]} ≤ 0.

Since f (·, η), g(·, γ ) are analytic on the closed linear manifold Q for any η ∈ U , γ ∈
V , F is closed and F ⊆ Q, we can assume that there exists ζ1 = (z1, z1) ∈ F such
that

max
(η,γ )∈U×V

{
Re
[
f (ζ1, η) + (zH1 Az1)

1
2
]− v∗Re

[
g(ζ1, γ ) − (zH1 Bz1)

1
2
]}

= min
ζ∈F max

(η,γ )∈U×V

{
Re
[
f (ζ, η) + (zH Az)

1
2
]− v∗Re

[
g(ζ, γ ) − (zH Bz)

1
2
]} ≤ 0.

(2)

Let us show that max
(η,γ )∈U×V

{
Re
[
f (ζ1, η)+(zH1 Az1)

1
2
]−v∗Re

[
g(ζ1, γ )−(zH1 Bz1)

1
2
]}

= 0. Suppose by contradiction that

max
(η,γ )∈U×V

{
Re
[
f (ζ1, η) + (zH1 Az1)

1
2
]− v∗Re

[
g(ζ1, γ ) − (zH1 Bz1)

1
2
]}

< 0.
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So, Re
[
f (ζ1, η) + (zH1 Az1)

1
2
] − v∗Re

[
g(ζ1, γ ) − (zH1 Bz1)

1
2
]

< 0 for all η ∈ U ,
γ ∈ V . Then

max
(η,γ )∈U×V

Re[ f (ζ1, η) + (zH1 Az1)
1
2 ]

Re[g(ζ1, γ ) − (zH1 Bz1)
1
2 ]

< v∗,

which contradicts the fact that v∗ is the optimal value of (UCFP) at the robust optimal
solution ζ0. This together with (2) implies that

0 = min
ζ∈F max

(η,γ )∈U×V

{
Re
[
f (ζ, η) + (zH Az)

1
2
]− v∗Re

[
g(ζ, γ ) − (zH Bz)

1
2
]}

= max
(η,γ )∈U×V

{
Re
[
f (ζ0, η) + (zH0 Az0)

1
2
]− v∗Re

[
g(ζ0, γ ) − (zH0 Bz0)

1
2
]}

.

Therefore, ζ0 is an optimal solution of (RCFPv) with v = v∗ and optimal value 0.
Conversely, assume that ζ0 is an optimal solution of (RCFPv) with v = v∗ and

optimal value 0. Then, one has

min
ζ∈F max

(η,γ )∈U×V

{
Re
[
f (ζ, η) + (zH Az)

1
2
]− v∗Re

[
g(ζ, γ ) − (zH Bz)

1
2
]}

= max
(η,γ )∈U×V

{
Re
[
f (ζ0, η) + (zH0 Az0)

1
2
]− v∗Re

[
g(ζ0, γ ) − (zH0 Bz0)

1
2
]} = 0.

(3)

Since f (ζ, ·) and g(ζ, ·) are continuous, U and V are compact sets, then there exist
η1 ∈ U and γ1 ∈ V such that

Re
[
f (ζ0, η1) + (zH0 Az0)

1
2
]− v∗Re

[
g(ζ0, γ1) − (zH0 Bz0)

1
2
] = 0.

Since Re
[
g(ζ0, γ1) − (zH0 Bz0)

1
2
]

> 0, we have

v∗ = Re[ f (ζ0, η1) + (zH1 Az1)
1
2 ]

Re[g(ζ0, γ1) − (zH1 Bz1)
1
2 ]

. (4)

We next show that

v∗ = max
(η,γ )∈U×V

Re[ f (ζ0, η) + (zH0 Az0)
1
2 ]

Re[g(ζ0, γ ) − (zH0 Bz0)
1
2 ]

. (5)

If (5) does not hold, then (4) implies

max
(η,γ )∈U×V

Re[ f (ζ0, η) + (zH0 Az0)
1
2 ]

Re[g(ζ0, γ ) − (zH0 Bz0)
1
2 ]

> v∗.
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Since f (ζ, ·) and g(ζ, ·) are continuous, and U and V are compact sets, there exist
η2 ∈ U and γ2 ∈ V such that

Re[ f (ζ0, η2) + (zH0 Az0)
1
2 ]

Re[g(ζ0, γ2) − (zH0 Bz0)
1
2 ]

> v∗,

and so, Re
[
f (ζ0, η2) + (zH0 Az0)

1
2
]− v∗Re

[
g(ζ0, γ2) − (zH0 Bz0)

1
2 ] > 0, which con-

tradicts (3). So, (5) holds.
We claim that

min
ζ∈F max

(η,γ )∈U×V

Re[ f (ζ, η) + (zH Az)
1
2 ]

Re[g(ζ, γ ) − (zH Bz)
1
2 ]

= v∗.

If the above equality does not hold, then (5) implies that

min
ζ∈F max

(η,γ )∈U×V

Re[ f (ζ, η) + (zH Az)
1
2 ]

Re[g(ζ, γ ) − (zH Bz)
1
2 ]

< v∗.

Since f (·, η) and g(·, γ ) are analytic on the closed linear manifold Q for any η ∈
U , γ ∈ V , and F ⊆ Q is closed, we can assume that there exists ζ2 ∈ F such that

max
(η,γ )∈U×V

Re[ f (ζ2, η) + (zH2 Az2)
1
2 ]

Re[g(ζ2, γ ) − (zH2 Bz2)
1
2 ]

= min
ζ∈F max

(η,γ )∈U×V

Re[ f (ζ, η) + (zH Az)
1
2 ]

Re[g(ζ, γ ) − (zH Bz)
1
2 ]

< v∗.

This implies that

Re[ f (ζ2, η) + (zH2 Az2)
1
2 ]

Re[g(ζ2, γ ) − (zH2 Bz2)
1
2 ]

< v∗, ∀(η, γ ) ∈ U × V .

So, Re
[
f (ζ2, η) + (zH2 Az2)

1
2 ] − v∗Re

[
g(ζ2, γ ) − (zH2 Bz2)

1
2 ] < 0 for all (η, γ ) ∈

U × V . This together with the continuity of f and g and compactness of U and V
yields that

max
(η,γ )∈U×V

Re
[
f (ζ2, η) + (zH2 Az2)

1
2 ] − v∗Re

[
g(ζ2, γ ) − (zH2 Bz2)

1
2 ] < 0,

which contradicts that

min
ζ∈F max

(η,γ )∈U×V

{
Re
[
f (ζ, η) + (zH Az)

1
2
]− v∗Re

[
g(ζ, γ ) − (zH Bz)

1
2
]} = 0.
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Consequently, we have

v∗ = min
ζ∈F max

(η,γ )∈U×V

Re[ f (ζ, η) + (zH Az)
1
2 ]

Re[g(ζ, γ ) − (zH Bz)
1
2 ]

= max
(η,γ )∈U×V

Re[ f (ζ0, η) + (zH0 Az0)
1
2 ]

Re[g(ζ0, γ ) − (zH0 Bz0)
1
2 ]

.

So, ζ0 = (z0, z0) ∈ F is the robust optimal solution of (UCFP) with optimal value
v∗.

(b) It directly follows from (a) that Y (ζ0) = Yv∗(ζ0). ��
Remark 3.1 If f and g are perturbed by the same uncertain parameter, h is uncertain-
free and U = V , then Theorem 4.5 reduces Theorem 1 in [16, p. 233]. Moreover,
if A = B = 0, U = V and h is uncertain-free, then Theorem 4.5 reduces Lemma
2.2 in [21, p. 177]. In particular, if f , g and h are uncertain-free, f and g are also
continuous and real-valued functions, A = B = 0 and F is a compact and connected
subset of R2n , then the Dinkelbach’s result [10, Theorem, p.494] can be recovered
from Theorem 3.1 (a).

4 Robust Necessary Optimality Conditions of (UCFP)

In this section, we study the Fritz John-type/Karush–Kuhn–Tucker-type robust nec-
essary optimality conditions for the robust optimal solution of (UCFP) in both
differentiable and nondifferentiable cases.

We first give the Fritz John-type robust necessary optimality conditions for the
robust optimal solution of (UCFP) in the differentiable case.

Theorem 4.1 Let ζ0 = (z0, z0) ∈ F be a robust optimal solution of (UCFP) with
optimal value v∗, zH0 Az0 > 0 and zH0 Bz0 > 0. Then there exist

(
α̂, l̂
) ∈ R

2+ \ {0},
μ̂ ∈ S∗, û1, û2 ∈ C

n and ω̂ ∈ W such that

α̂
{[∇z f (ζ0, η̂) + ∇z f (ζ0, η̂)

]− v∗[∇zg(ζ0, γ̂ ) + ∇zg(ζ0, γ̂ )
]+ Aû1 + v∗Bû2

}

+
(
(l̂μ̂)�∇zh(ζ0, ω̂) + (l̂μ̂)H∇zh(ζ0, ω̂)

)
= 0, (6)

Re〈h(ζ0, ω̂), l̂μ̂〉 = 0, ûH
1 Aû1 = 1, ûH

2 Bû2 = 1, (7)

Re(zH0 Az0)
1
2 = Re(zH0 Aû1), Re(zH0 Bz0)

1
2 = Re(zH0 Bû2). (8)

Proof It follows from Theorem 3.1 (a) that ζ0 = (z0, z0) ∈ F is an optimal solution
of (RCFPv) with v = v∗ and optimal value 0. For each η ∈ U , γ ∈ V and ω ∈ W ,
f (·, η), g(·, γ ) and h(·, ω) are analytic at each ζ = (z, z) ∈ Q, and A, B are positive
semidefinite Hermitian matrices; we deduce that for each μ ∈ S∗, Re[ f (·, η) +
(zH Az)

1
2 ] − v∗Re[g(·, γ ) − (zH Bz)

1
2 ] and Re〈h(·, ω), μ〉 are analytic at ζ0. We

observe that

ζ ∈ F ⇔ max
(ω,μ)∈W×S∗ Re〈h(ζ, ω), μ〉 ≤ 0 ⇔ max

(ω,μ)∈W×S∗
1

Re〈h(ζ, ω), μ〉 ≤ 0,
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where S∗
1 = {μ ∈ S∗ : |μ| ≤ 1}. So, (RCFPv) with v = v∗ is equivalent to the

following optimization problem:

min
ζ

max
(η,γ )∈U×V

Re{[ f (ζ, η) + (zH Az)
1
2 ] − v∗[g(ζ, γ ) − (zH Bz)

1
2 ]},

subject to , ψ(ζ ) ≤ 0, ζ = (z, z) ∈ C
2n,

(9)

where ψ(ζ ) = max(ω,μ)∈W×S∗
1
Re〈h(ζ, ω), μ〉. Since h is analytic on Q with respect

to the first argument, and W and S∗
1 are nonempty compact sets, for each ζ ∈ Q,

there exists (ω,μ) ∈ W × S∗
1 such that ψ(ζ ) = Re〈h(ζ, ω), μ〉, ψ is differentiable

at ζ ∈ Q and so,

ψ ′(ζ ) = μ�∇zh(ζ, ω) + μH∇zh(ζ, ω). (10)

We define the generalized Lagrangian function of the problem (9) as follows:

L(ζ, α, l) = α max
(η,γ )∈U×V

{
Re[ f (ζ, η) + (zH Az)

1
2 ] − v∗Re[g(ζ, γ ) − (zH Bz)

1
2 ]}+ lψ(ζ ),

where ζ = (z, z) ∈ C
2n, α ≥ 0 and l ≥ 0. Since U and V are compact, for each

ζ ∈ F , there exist η ∈ U and γ ∈ V such that

L(ζ, α, l) = αRe[ f (ζ, η) + (zH Az)
1
2 ] − v∗Re[g(ζ, γ ) − (zH Bz)

1
2 ] + lψ(ζ ).

Since ζ0 = (z0, z0) ∈ F is an optimal solution of (RCFPv) with v = v∗, ζ0 is also an
optimal solution of (9). This together with (10) yields that there exist (α̂, l̂) ∈ R

2+\{0},
η̂ ∈ U , γ̂ ∈ V , ω̂ ∈ W and μ̂ ∈ S∗

1 ⊆ S∗ such that

α̂
{[∇z f (ζ0, η̂) + ∇z f (ζ0, η̂)

]− v∗[∇zg(ζ0, γ̂ ) + ∇zg(ζ0, γ̂ )
]+ Az0

〈Az0, z0〉 1
2

+ v∗Bz0
〈Bz0, z0〉 1

2

}

+ (l̂μ̂)�∇zh(ζ0, ω̂) + (l̂μ̂)H∇zh(ζ0, ω̂)

= α̂
{[∇z f (ζ0, η̂) + ∇z f (ζ0, η̂)

]− v∗[∇zg(ζ0, γ̂ ) + ∇zg(ζ0, γ̂ )
]+ Az0

〈Az0, z0〉 1
2

+ v∗Bz0
〈Bz0, z0〉 1

2

}

+ l̂
{
μ̂�∇zh(ζ0, ω̂) + μ̂H∇zh(ζ0, ω̂)

}

= α̂
{[∇z f (ζ0, η̂) + ∇z f (ζ0, η̂)

]− v∗[∇zg(ζ0, γ̂ ) + ∇zg(ζ0, γ̂ )
]+ Az0

〈Az0, z0〉 1
2

+ v∗Bz0
〈Bz0, z0〉 1

2

}

+ l̂ψ ′(ζ0)
= 0

and Re〈h(ζ0, ω̂), l̂μ̂〉 = l̂ Re〈h(ζ0, ω̂), μ̂〉 = l̂ψ(ζ0) = 0. Since zH0 Az0 =
〈Az0, z0〉 > 0 and zH0 Bz0 = 〈Bz0, z0〉 > 0,we set û1 = z0

〈Az0,z0〉
1
2
and û2 = z0

〈Bz0,z0〉
1
2
.
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Then, it shows that

α̂

{
[∇z f (ζ0, η̂) + ∇z f (ζ0, η̂)

]− v∗[∇zg(ζ0, γ̂ ) + ∇zg(ζ0, γ̂ )
]+ Aû1 + v∗Bû2

}

+(l̂μ̂)�∇zh(ζ0, ω̂) + (l̂μ̂)H∇zh(ζ0, ω̂) = 0.

Moreover, we have

ûH
1 Aû1 = zH0 Az0

(zH0 Az0)
1
2 (zH0 Az0)

1
2

= 1, ûH
2 Bû2 = zH0 Bz0

(zH0 Bz0)
1
2 (zH0 Bz0)

1
2

= 1,

Re(zH0 Aû1) = Re
(
zH0 A

z0

〈Az0, z0〉 1
2

)
= Re

( zH0 Az0

(zH0 Az0)
1
2

)
= Re(zH0 Az0)

1
2 ,

and Re(zH0 Bû2) = Re
(
zH0 B z0

〈Bz0,z0〉
1
2

)
= Re

(
zH0 Bz0

(zH0 Bz0)
1
2

)
= Re(zH0 Bz0)

1
2 , as

required. ��
Remark 4.1 (a) In Theorem 4.1, μ̂ ∈ S∗ and l̂ ≥ 0 imply l̂μ̂ ∈ S∗ since S∗ is a closed

and convex cone. So, Theorem 4.1 implies that there exist
(
α̂, l̂
) ∈ R

2+ \ {0},
μ̃ = l̂μ̂ ∈ S∗, û1, û2 ∈ C

n and ω̂ ∈ W such that

α̂
{[∇z f (ζ0, η̂) + ∇z f (ζ0, η̂)

]− v∗[∇zg(ζ0, γ̂ ) + ∇zg(ζ0, γ̂ )
]+ Aû1 + v∗Bû2

}

+ μ̃�∇zh(ζ0, ω̂) + μ̃∇zh(ζ0, ω̂) = 0, (11)

Re〈h(ζ0, ω̂), μ̃〉 = 0, ûH
1 Aû1 = 1, ûH

2 Bû2 = 1, (12)

Re(zH0 Az0)
1
2 = Re(zH0 Aû1), Re(zH0 Bz0)

1
2 = Re(zH0 Bû2). (13)

(b) Since 0 ∈ S∗
1 ⊆ S∗, for each ζ ∈ F , (ω, 0) ∈ W × S∗

1 is a trivial solution of the
problem: ψ(ζ ) := max

(ω,μ)∈W×S∗
1

Re〈h(ζ, ω), μ〉 = 0, that is, W × {0} ⊆ ψ−1
ζ (0),

where

ψ−1
ζ (0) =

{
(ω̄, μ̄) ∈ W × S∗

1 : Re〈h(ζ, ω̄), μ̄〉 = max
(ω,μ)∈W×S∗

1

Re〈h(ζ, ω), μ〉
}
.

If ζ /∈ F , then there exist μ ∈ S∗, ω ∈ W such that Re〈h(ζ, ω), μ〉 > 0 due
to S = (S∗)∗. This yields that ψ(ζ ) = max(ω,μ)∈W×S∗

1
Re〈h(ζ, ω), μ〉 > 0. In

Theorem 4.1, if μ̂ = 0 and α̂ = 0, then one can easily check that (6)–(8) still
hold for all l̂ > 0. In this case, for any l̂ > 0, (α̂, μ̃) = 0, α̂ and μ̃ also satisfy
(11)–(13), where μ̃ = l̂μ̂.
In order to avoid the trivial case (α̂, μ̃) = 0, let us analyze the set ψ−1

ζ (0).

(i) If ψ−1
ζ (0) = W × {0} for each ζ ∈ F , then for each ζ = (z, z) ∈ C

2n ,

max
ω∈W Re〈h(ζ, ω), μ〉 < 0, ∀μ ∈ S∗

1 \ {0}.
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It implies F = Q, i.e., (UCFP), (RCFPv) with v = v∗ and the optimization
problem (9) are unconstrained. Then, there exist α̂ = 1, μ̂ = 0 and û1, û2 ∈ C

n

such that for each l̂ ≥ 0, ω̂ ∈ W , μ̃ = l̂μ̂ = 0 ∈ S∗, and the robust necessary
optimality conditions (11)–(13) hold.

(ii) If there exists ζ ∈ F such that ψ−1
ζ (0) �= W × {0}, then, there exists μ̂ ∈

S∗
1 \ {0} such that maxω∈W Re〈h(ζ, ω), μ̂〉 = 0. In particular, if all conditions

of Theorem 4.1 hold and ψ−1
ζ0

(0) �= W × {0}, then there exist ω̂ ∈ W and a

nonzero μ̂ ∈ S∗
1 ⊆ S∗ such that for

(
α̂, l̂
) ∈ R

2+ \ {0} given in Theorem 4.1,
(
α̂, μ̃

) ∈ (R+ × S∗) \ {0}, where μ̃ = l̂μ̂.

The following Fritz John-type robust necessary optimality conditions for the robust
optimal solution of (UCFP) can be obtained directly from Theorem 4.1 and Remark
4.1(b)(ii).

Theorem 4.2 Let ζ0 = (z0, z0) ∈ F be a robust optimal solution of (UCFP) with
optimal value v∗, ψ−1

ζ0
(0) �= W × {0}, zH0 Az0 > 0 and zH0 Bz0 > 0. Then there exist

ω̂ ∈ W, û1, û2 ∈ C
n and

(
α̂, μ̂

) ∈ (R+ × S∗) \ {0} such that

α̂
{[∇z f (ζ0, η̂) + ∇z f (ζ0, η̂)

]− v∗[∇zg(ζ0, γ̂ ) + ∇zg(ζ0, γ̂ )
]+ Aû1 + v∗Bû2

}

+ μ̂�∇zh(ζ0, ω̂) + μ̂H∇zh(ζ0, ω̂) = 0, (14)

Re〈h(ζ0, ω̂), μ̂〉 = 0, ûH
1 Aû1 = 1, ûH

2 Bû2 = 1, (15)

Re(zH0 Az0)
1
2 = Re(zH0 Aû1), Re(zH0 Bz0)

1
2 = Re(zH0 Bû2). (16)

We next present another Fritz John-type robust necessary optimality conditions for
the robust optimal solution of (UCFP) when S∗ has a compact base.

Theorem 4.3 Let ζ0 = (z0, z0) ∈ F be a robust optimal solution of (UCFP) with
optimal value v∗, S∗ have a compact base, and let zH0 Az0 > 0 and zH0 Bz0 > 0. Then
there exist ω̂ ∈ W, û1, û2 ∈ C

n and
(
α̂, μ̂

) ∈ (R+ × S∗) \ {0} such that (14)–(16)
hold.

Proof Since S∗ has a compact base, we assume that D is a compact base of S∗. Then

ζ ∈ F ⇔ max
(ω,μ)∈W×S∗ Re〈h(ζ, ω), μ〉 ≤ 0 ⇔ max

(ω,μ)∈W×D
Re〈h(ζ, ω), μ〉 ≤ 0.

Consequently, (RCFPv) with v = v∗ is equivalent to the following optimization prob-
lem:

min
ζ

max
(η,γ )∈U×V

Re{[ f (ζ, η) + (zH Az)
1
2 ] − v∗[g(ζ, γ ) − (zH Bz)

1
2 ]},

subject to ϕ(ζ ) ≤ 0, ζ = (z, z) ∈ C
2n,

(17)

where ϕ(ζ ) = max(ω,μ)∈W×D Re〈h(ζ, ω), μ〉. Since f , g and h are analytic on Q
with respect to the first argument, and U , V ,W and D are nonempty compact sets,
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for each ζ ∈ Q, there exist η1 ∈ U , γ1 ∈ V and (ω,μ) ∈ W × D such that

Re{[ f (ζ, η1) + (zH Az)
1
2 ] − v∗[g(ζ, γ1) − (zH Bz)

1
2 ]}

= max
(η,γ )∈U×V

Re{[ f (ζ, η) + (zH Az)
1
2 ] − v∗[g(ζ, γ ) − (zH Bz)

1
2 ]},

ϕ(ζ ) = Re〈h(ζ, ω), μ〉 and so, max
(η,γ )∈U×V

Re{[ f (ζ, η) + (zH Az)
1
2 ] − v∗[g(ζ, γ ) −

(zH Bz)
1
2 ]} and ϕ(ζ ) are differentiable at ζ ∈ Q. Moreover, one has

ϕ′(ζ ) = μ�∇zh(ζ, ω) + μH∇zh(ζ, ω). (18)

Since ζ0 = (z0, z0) ∈ F is an optimal solution of (RCFPv) with v = v∗, ζ0 is also an
optimal solution of (17). This togetherwith (18) yields that there exist (α̂, l̂) ∈ R

2+\{0},
η̂ ∈ U , γ̂ ∈ V , ω̂ ∈ W and μ̃ ∈ D ⊆ S∗ such that

α̂
{[∇z f (ζ0, η̂) + ∇z f (ζ0, η̂)

]− v∗[∇zg(ζ0, γ̂ ) + ∇zg(ζ0, γ̂ )
]+ Az0

〈Az0, z0〉 1
2

+ v∗Bz0
〈Bz0, z0〉 1

2

}

+(l̂μ̃)�∇zh(ζ0, ω̂) + (l̂μ̃)H∇zh(ζ0, ω̂) = 0

and Re〈h(ζ0, ω̂), l̂μ̃〉 = l̂ Re〈h(ζ0, ω̂), μ̃〉 = l̂ϕ(ζ0) = 0. Since μ̃ ∈ D and D
is a compact base of S∗, then μ̃ �= 0. Using (α̂, l̂) ∈ R

2+ \ {0} yields (α̂, l̂μ̃) ∈
(R+ × S∗) \ {0}. Set μ̂ := l̂μ̃, û1 = z0

〈Az0,z0〉
1
2
and û2 = z0

〈Bz0,z0〉
1
2
. By the similar

proof of Theorem 4.1, one can conclude that (14)–(16) hold. ��
We now introduce the robust constraint qualification.

Definition 4.1 The problem (UCFP) satisfies the robust constraint qualification
(shortly, RCQ) at ζ0 = (z0, z0) if and only if for any nonzero μ ∈ S∗ ⊂ C

p and
for any ω ∈ W ,

Re〈h ′
ζ (ζ0, ω)(ζ − ζ0), μ〉 �= 0, ζ �= ζ0.

It is easy to verify that if (UCFP) satisfies RCQ at ζ0, then

μ�∇zh(ζ0, ω) + μH∇zh(ζ0, ω) �= 0, ∀μ ∈ S∗ \ {0}, ω ∈ W ,

and for any ω ∈ W , μ�∇zh(ζ0, ω) + μH∇zh(ζ0, ω) = 0 implies μ = 0.
If Re[g(ζ, γ ) − (zH Bz)

1
2 ] ≡ 1 and h is uncertain-free with respect to the uncer-

tain parameter ω ∈ W , then RCQ reduces to the constraint qualification defined by
Definition 3 in [17].

It is known that the RCQ corresponds to quasinormality condition [14] is weaker
than Mangasarian–Fromovitz constraint qualification as well as positively linearly
independent constraint qualification in nonlinear programming.
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If S = R
p
+ and h : R

n → R
p is differentiable and uncertain-free, then RCQ

reduces to the following positively linearly independent constraint qualification (in
short, PLICQ): For a feasible point z0 ∈ R

n with h(z0) = 0, there exists no nonzero
μ = (μ1, μ2, . . . , μp) ∈ R

p
+ such that

∑p
i=1 μi∇hi (z0) = 0.

For a feasible point z0 ∈ R
n , RCQ is slightly weaker than the following quasi-

normality condition: There exist no nonzero μ = (μ1, μ2, . . . , μp) ∈ R
p
+ and no

sequence {zk} → z0 such that
∑p

i=1 μi∇hi (z0) = 0 and for all k, μi hi (zk) > 0 for
all i with μi �= 0.

We present the Karush–Kuhn–Tucker-type robust necessary optimality conditions
for (UCFP) by using RCQ.

Theorem 4.4 Let ζ0 = (z0, z0) ∈ F be a robust optimal solution of (UCFP) with
optimal value v∗. Assume that (UCFP) satisfies RCQ at ζ0 with zH0 Az0 > 0 and
zH0 Bz0 > 0. If ψ−1

ζ0
(0) �= W ×{0} or S∗ has a compact base, then there exist μ̂ ∈ S∗,

û1, û2 ∈ C
n and ω̂ ∈ W such that

[∇z f (ζ0, η̂) + ∇z f (ζ0, η̂)
]− v∗[∇zg(ζ0, γ̂ ) + ∇zg(ζ0, γ̂ )

]+ Aû1 + v∗Bû2
+ μ̂�∇zh(ζ0, ω̂) + μ̂H∇zh(ζ0, ω̂) = 0, (19)

Re〈h(ζ0, ω̂), μ̂〉 = 0, (20)

ûH
1 Aû1 = 1, ûH

2 Bû2 = 1, (21)

Re(zH0 Az0)
1
2 = Re(zH0 Aû1), Re(zH0 Bz0)

1
2 = Re(zH0 Bû2). (22)

Proof It follows from Theorems 4.2 and 4.3 that there exist
(
α̂, μ̃

) ∈ (R+ × S∗)\{0},
û1, û2 ∈ C

n and ω̂ ∈ W such that (21), (22) hold and

α̂
{[∇z f (ζ0, η̂) + ∇z f (ζ0, η̂)

]− v∗[∇zg(ζ0, γ̂ ) + ∇zg(ζ0, γ̂ )
]+ Aû1 + v∗Bû2

}

+μ̃�∇zh(ζ0, ω̂) + μ̃H∇zh(ζ0, ω̂) = 0, (23)

and Re〈h(ζ0, ω̂), μ̃〉 = 0.
If α̂ = 0 in (23), then

μ̃�∇zh(ζ0, ω̂) + μ̃H∇zh(ζ0, ω̂) = 0. (24)

Since (UCFP) satisfies RCQ at ζ0, then (24) implies μ̃ = 0, which contradicts the fact
that

(
α̂, μ̃

) ∈ (R+ × S∗) \ {0}. So, α̂ > 0. Divided both the sides of equation (23) by

α̂ and set μ̂ = μ̃

α̂
∈ S∗, we have

[∇z f (ζ0, η̂) + ∇z f (ζ0, η̂)
]− v∗[∇zg(ζ0, γ̂ ) + ∇zg(ζ0, γ̂ )

]+ Aû1 + v∗Bû2
+μ̂�∇zh(ζ0, ω̂) + μ̂H∇zh(ζ0, ω̂) = 0,

and Re〈h(ζ0, ω̂), μ̂〉 = 1
α̂
Re〈h(ζ0, ω̂), μ̃〉 = 0. Consequently, (19) and (20) hold. ��

We next give another form of Karush–Kuhn–Tucker-type robust necessary opti-
mality conditions for (UCFP) by using RCQ.
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Theorem 4.5 Let ζ0 = (z0, z0) ∈ F be a robust optimal solution of (UCFP) with
optimal value v∗. Assume that (UCFP) satisfies RCQ at ζ0 with zH0 Az0 > 0 and
zH0 Bz0 > 0. If ψ−1

ζ0
(0) �= W ×{0} or S∗ has a compact base, then there exist μ̂ ∈ S∗,

û1, û2 ∈ C
n, ω̂ ∈ W and a positive integer k such that

(i) (η̂i , γ̂i ) ∈ Y (ζ0), i = 1, 2, . . . , k;
(ii) there exist multipliers λ̂i > 0 for i = 1, 2, . . . , k with

∑k
i=1 λ̂i = 1 such that

k∑

i=1

λ̂i

{[∇z f (ζ0, η̂i ) + ∇z f (ζ0, η̂i )
]− v∗[∇zg(ζ0, γ̂i ) + ∇zg(ζ0, γ̂i )

]}

+ (Aû1 + v∗Bû2
)+

(
μ̂�∇zh(ζ0, ω̂) + μ̂H∇zh(ζ0, ω̂)

)
= 0, (25)

Re〈h(ζ0, ω̂), μ̂〉 = 0, (26)

ûH
1 Aû1 = 1, Re(zH0 Az0)

1
2 = Re(zH0 Aû1), (27)

ûH
2 Bû2 = 1, Re(zH0 Bz0)

1
2 = Re(zH0 Bû2). (28)

Proof It follows from Theorem 3.1 that ζ0 = (z0, z0) ∈ F is an optimal solution of
(RCFPv) with v = v∗ and optimal value 0, and Yv∗(ζ0) = Y (ζ0). For each η ∈ U ,
γ ∈ V and ω ∈ W , f (·, η), g(·, γ ) and h(·, ω) are analytic at each ζ = (z, z) ∈ Q,
and A, B are positive definite Hermitian matrices; we deduce that for a nonzero vector

μ ∈ S∗, Re〈h(·, ω), μ〉 and Re[ f (·, η) + (zH Az)
1
2 ] − v∗Re[g(·, γ ) − (zH Bz)

1
2 ] are

analytic at ζ . As in the proof of Theorem 4.1, we conclude from the compactness ofU
and V and Remark 4.1 (b)(ii) that for the robust optimal solution ζ0 = (z0, z0) ∈ F ,
there exist (̂α, μ̃) ∈ (R+ × S∗) \ {0}, ω̂ ∈ W , û1, û2 ∈ C

n and a positive integer k
with (̂ηi , γ̂i ) ∈ Yv∗(ζ0), λ̂i > 0 and

∑k
i=1 λ̂i = 1, i = 1, 2, . . . , k such that

α̂

k∑

i=1

λ̂i

{
[∇z f (ζ0, η̂i ) + ∇z f (ζ0, η̂i )

]− v∗[∇zg(ζ0, γ̂i ) + ∇zg(ζ0, γ̂i )
]+ Aû1 + v∗Bû2

}

+
(
μ̃�∇zh(ζ0, ω̂) + μ̃H∇zh(ζ0, ω̂)

)
= 0,

Re〈h(ζ0, ω̂), μ̃〉 = 0 and (27) and (28) hold.
Since Yv∗(ζ0) = Y (ζ0), we have (̂ηi , γ̂i ) ∈ Y (ζ0), i = 1, 2, . . . , k. Since (UCFP)

satisfies RCQ at ζ0, as in the proof of Theorem 4.4, we have α̂ > 0. Set μ̂ = μ̃
α̂

∈ S∗.
Then

k∑

i=1

λ̂i

{
[∇z f (ζ0, η̂i ) + ∇z f (ζ0, η̂i )

]− v∗[∇zg(ζ0, γ̂i ) + ∇zg(ζ0, γ̂i )
]
}

+Aû1 + v∗Bû2 +
(
μ̂�∇zh(ζ0, ω̂) + μ̂H∇zh(ζ0, ω̂)

)
= 0

and Re〈h(ζ0, ω̂), μ̂〉 = 1
α̂
Re〈h(ζ0, ω̂), μ̃〉 = 0, namely, (25) and (26) are true. ��
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Remark 4.2 Generally, the multipliersμ ∈ S∗ corresponding to the constrained condi-
tions are not necessary to be nonzero. In Theorem 4.5, we do not require the multiplier
corresponding to constrained function h to be a nonzero μ̂ ∈ S∗. So, Theorem 4.5
is distinct from Theorem 3.1 in [21, p.177] even if f , g are perturbed by the same
uncertain parameter, h is uncertain-free, A = B = 0 and U = V , and Theorem 2
in [16, p. 234] even though f , g are perturbed by the same uncertain parameter, h
is uncertain-free and U = V . Moreover, if h is uncertain-free with respect to the

uncertain parameter ω ∈ W and Re[g(ζ, γ ) − (zH Bz)
1
2 ] ≡ 1, then Theorem 4.5 is

different from Theorem 1 in [17, p. 1207].

We consider the robust necessary optimality conditions for the robust optimal solu-

tion ζ0 of (UCFP) when 〈Az0, z0〉 = 0 or 〈Bz0, z0〉 = 0, i.e., 〈Az, z〉 1
2 or 〈Bz, z〉 1

2 is
nondifferentiable at z = z0. By the compactness of Y (ζ0), one can verify that Theorem
4.5 (a) and (b) are satisfied. Let (η̂i , γ̂i ) ∈ Y (ζ0), λ̂i > 0, i = 1, 2, . . . k be the same
as in Theorem 4.5. Since W is a nonempty and compact set, there exists ω̂ ∈ W such
that

max
μ∈S∗

1

Re〈h(ζ0, ω̂), μ〉 = max
ω∈W max

μ∈S∗
1

Re〈h(ζ0, ω), μ〉 = max
(ω,μ)∈W×S∗

1

Re〈h(ζ0, ω), μ〉.

Set v∗ = min
ζ∈F max

(η,γ )∈U×V

Re[ f (ζ,η)+(zH Az)
1
2 ]

Re[g(ζ,γ )−(zH Bz)
1
2 ]
. Motivated by the works [16,17,27], we

introduce a subset Z(ζ0) ⊆ C
2n as follows:

Z(ζ0) = {ζ ∈ Q : −h
′
ζ (ζ0, ω̂)ζ ∈ S(−h(ζ0, ω̂)), if any one of (c1), (c2) and (c3) holds

}
,

where the conditions (c1), (c2) and (c3) are defined as:

(c1) Re

{
∑k

i=1 λ̂i [ f ′
ζ (ζ0, η̂i ) − v∗g′

ζ (ζ0, γ̂i )]ζ + 〈Az0,z〉
〈Az0,z0〉

1
2

+ 〈(v∗)2Bz, z〉 1
2

}

< 0, if

zH0 Az0 > 0 and zH0 Bz0 = 0;

(c2) Re

{
∑k

i=1 λ̂i [ f ′
ζ (ζ0, η̂i ) − v∗g′

ζ (ζ0, γ̂i )]ζ + 〈Az, z〉 1
2 + 〈v∗Bz0,z〉

〈Bz0,z0〉
1
2

}

< 0, if

zH0 Az0 = 0 and zH0 Bz0 > 0;

(c3) Re

{
∑k

i=1 λ̂i [ f ′
ζ (ζ0, η̂i ) − v∗g′

ζ (ζ0, γ̂i )]ζ + 〈[A + (v∗)2B]z, z〉 1
2

}

< 0, if

zH0 Az0 = 0 and zH0 Bz0 = 0.

We next present Karush–Kuhn–Tucker-type robust necessary optimality conditions
for (UCFP) without the assumptions 〈Az0, z0〉 > 0, 〈Bz0, z0〉 > 0 as well as the
assumptions that ψ−1

ζ0
(0) �= W × {0} and S∗ has a compact base.

Theorem 4.6 Let ζ0 = (z0, z0) ∈ F be a robust optimal solution of (UCFP) with
optimal value v∗. Assume that (UCFP) satisfies RCQ at ζ0 and Z(ζ0) = ∅. Then there
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exist μ̂ ∈ S∗, û1, û2 ∈ C
p such that

k∑

i=1

λ̂i

{[∇z f (ζ0, η̂i ) + ∇z f (ζ0, η̂i )
]− v∗[∇zg(ζ0, γ̂i ) + ∇zg(ζ0, γ̂i )

]}

+ Aû1 + v∗Bû2 + μ̂�∇zh(ζ0, ω̂) + μ̂H∇zh(ζ0, ω̂) = 0, (29)

Re〈h(ζ0, ω̂), μ̂〉 = 0, (30)

ûH
1 Aû1 ≤ 1, Re(zH0 Az0)

1
2 = Re(zH0 Aû1), (31)

ûH
2 Bû2 ≤ 1, Re(zH0 Bz0)

1
2 = Re(zH0 Bû2). (32)

Proof Observe that 〈Az, z〉 = zH Az = ζ H Âζ = 〈 Âζ, ζ 〉, 〈Bz, z〉 = zH Bz =
ζ H B̂ζ = 〈B̂ζ, ζ 〉, where ζ = (z, z) ∈ C

2n and

Â =
(
A 0
0 0

)

∈ C
2n×2n, B̂ =

(
B 0
0 0

)

∈ C
2n×2n .

We split the proof into three cases.
(1) If zH0 Az0 > 0 and zH0 Bz0 = 0, then we deduce from Z(ζ0) = ∅ that for

ζ = (z, z) ∈ C
2n and −h

′
ζ (ζ0, ω̂)ζ ∈ S(−h(ζ0, ω̂)),

Re

{
k∑

i=1

λ̂i

[

f
′
ζ (ζ0, η̂i ) − v∗g′

ζ (ζ0, γ̂i )

]

ζ + 〈Az0, z〉
〈Az0, z0〉 1

2

+ 〈(v∗)2Bz, z〉 1
2

}

≥ 0.

It can be equivalently reformulated as

Re

{
k∑

i=1

λ̂i

[

f
′
ζ (ζ0, η̂i ) − v∗g′

ζ (ζ0, γ̂i ) + Âζ0

〈Az0, z0〉 1
2

]

ζ + 〈(v∗)2 B̂ζ, ζ 〉 1
2

}

≥ 0.

(33)

Note that −h(ζ0, ω̂) ∈ S. By Lemma 2.4, it implies that there exists μ̂ ∈
S∗(−h(ζ0, ω̂)) such that −Re〈h(ζ0, ω̂), μ̂〉 = Re(μ̂H (−h(ζ0, ω̂))) = 0 and so,
Re〈h(ζ0, ω̂), μ̂〉 = 0. Hence, we conclude from S∗(−h(ζ0, ω̂)) ⊆ S∗ that μ̂ ∈ S∗
and

max
(ω,μ)∈W×S∗ Re〈h(ζ0, ω), μ〉 = max

(ω,μ)∈W×S∗
1

Re〈h(ζ0, ω), μ〉 = Re〈h(ζ0, ω̂), μ̂〉 = 0.
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Set E = −h
′
ζ (ζ0, ω̂), b = ∑k

i=1 λ̂i

[

f
′
ζ (ζ0, η̂i ) − v∗g′

ζ (ζ0, γ̂i ) + Âζ0

〈Az0,z0〉
1
2

]

, z = ζ ,

A = (v∗)2 B̂ in Lemma 2.3. It follows from Lemma 2.3(a) that there exists ξ =
(α, α)� ∈ C

2n such that αH (v∗)2Bα = ξ H (v∗)2 B̂ξ ≤ 1, and

(−h
′
(ζ0, ω̂))H μ̂ = (v∗)2 B̂ξ +

(
k∑

i=1

λ̂i

[

f
′
ζ (ζ0, η̂i ) − v∗g′

ζ (ζ0, γ̂i ) + Âζ0

〈Az0, z0〉 1
2

])

.

(34)

Set û2 = v∗α. Then (34) implies that

(−∇zh(ζ0, ω̂)μ̂

−∇zh(ζ0, ω̂)μ̂

)

=
⎛

⎝
v∗Bû2 +∑k

i=1 λ̂i

[
∇z f (ζ0, η̂i ) − v∗∇zg(ζ0, γ̂i )

]
+ (Az0)H

〈Az0,z0〉
1
2

∑k
i=1 λ̂i

[
∇z f (ζ0, η̂i ) − v∗∇zg(ζ0, γ̂i )

]

⎞

⎠ ,

and so,

v∗Bû2 +
k∑

i=1

λ̂i

[
∇z f (ζ0, η̂i ) − v∗∇zg(ζ0, γ̂i )

]
+ (Az0)H

〈Az0, z0〉 1
2

+ ∇zh(ζ0, ω̂)μ̂ = 0,

(35)
k∑

i=1

λ̂i

[
∇z f (ζ0, η̂i ) − v∗∇zg(ζ0, γ̂i )

]
+ ∇zh(ζ0, ω̂)μ̂ = 0. (36)

Clearly, (36) can be equivalently expressed as

k∑

i=1

λ̂i
[∇z f (ζ0, η̂i ) − v∗∇zg(ζ0, γ̂i )

]+ ∇zh(ζ0, ω̂)μ̂ = 0. (37)

Since A ∈ C
n×n is positive semidefinite Hermitian matrix, we have (Az0)H = zH0 A.

Due to zH0 Az0 > 0, set û1 = z0

〈Az0,z0〉
1
2
. So, (29) is obtained by summing (35) and

(37). By the same proof as in (27), (31) can be obtained.
Owing to û2 = v∗α and αH (v∗)2Bα ≤ 1, we obtain ûH

2 Bû2 ≤ 1. It follows
from Lemma 2.5 and zH0 Bz0 = 0 that for u ∈ C

n , Re(zH0 Bu) = Re(uH Bz0) ≤
(zH0 Bz0)

1
2 (uH Bu)

1
2 = 0. Taking u = Bz0 in the above equality, one has

Re[(Bz0)H Bz0] = Re〈Bz0, Bz0〉 ≤ 0 and so, Bz0 = 0. Since B is positive
semidefinite Hermitian matrix, then zH0 B = (Bz0)H = 0. It therefore shows that

Re(zH0 Bz0)
1
2 = Re(zH0 Bû2) = 0.

(2) If zH0 Az0 = 0 and zH0 Bz0 > 0, then the desired results can be deduced by the
similar argument as in the proof of case (1), and so, it is omitted.

(3) If zH0 Az0 = 0 and zH0 Bz0 = 0, then by the similar argument as in the proof of
[16, Theorem 3, pp. 235-237], one can obtain the desired results. Altogether, (29)–(32)
hold. ��
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Remark 4.3 Generally, the multipliersμ ∈ S∗ corresponding to the constrained condi-
tions are not necessary to be nonzero. In Theorem 4.6, we do not require the multiplier
corresponding to constrained function h to be a nonzero μ̂ ∈ S∗. So, Theorem 4.6
is distinct from Theorem 3 in [16, p. 235] when f , g are perturbed by the same
uncertain parameter, h is uncertain-free and U = V , and Theorem 6 in [17, p.
1207] when h is uncertain-free with respect to the uncertain parameter ω ∈ W and

Re[g(ζ, γ ) − (zH Bz)
1
2 ] ≡ 1.

In particular, if we set k = 1 in Theorem 4.6, then the following robust necessary
optimality conditions for (UCFP) holds.

Corollary 4.1 Let ζ0 = (z0, z0) ∈ F be a robust optimal solution of (UCFP) with
optimal value v∗. Assume that (UCFP) satisfies RCQ at ζ0 and Z(ζ0) = ∅. Then there
exist μ̂ ∈ S∗, û1, û2 ∈ C

p, η̂ ∈ U, γ̂ ∈ V and ω̂ ∈ W such that

[∇z f (ζ0, η̂) + ∇z f (ζ0, η̂)
]− v∗[∇zg(ζ0, γ̂ ) + ∇zg(ζ0, γ̂ )

]

+ Aû1 + v∗Bû2 + μ̂�∇zh(ζ0, ω̂) + μ̂H∇zh(ζ0, ω̂) = 0,

Re〈h(ζ0, ω̂), μ̂〉 = 0, ûH
1 Aû1 ≤ 1, ûH

2 Bû2 ≤ 1,

Re(zH0 Az0)
1
2 = Re(zH0 Aû1), Re(zH0 Bz0)

1
2 = Re(zH0 Bû2).

5 Conclusions

A complex fractional programming with uncertain data is studied by the robust
optimizationmethod. The robust counterpart of (UCFP) is introduced, and then, amin-
imax nonfractional parametric programming reformation for the robust counterpart
is presented. The equivalence between the optimal solutions of the robust counter-
part and one of the minimax nonfractional parametric programming is also derived.
Fritz John-type robust necessary optimality conditions for the robust optimal solution
ζ0 of (UCFP) are established under the assumption that S∗ has a compact base or,
ψ−1

ζ0
(0) �= W × {0}. By the RCQ, Karush–Kuhn–Tucker-type robust necessary opti-

mality conditions for the robust optimal solution ζ0 of (UCFP) are also obtained under
some suitable assumptions. The presented necessary optimality conditions improve
the corresponding results in [16,17,21].

For the future research, it is interesting to investigate the robust sufficient optimality
conditions, duality, stability, robust radius and algorithm of (UCFP) by the necessary
optimality conditions presented in this paper. It is well known that a cone has a base
if and only if its strict dual cone or the quasi-interior of its dual cone is nonempty.
However, there are no sufficient conditions for ensuring a cone having a compact base.
So, it is also deserved to study the sufficient conditions for a cone having a compact
base.
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