
Journal of Optimization Theory and Applications (2021) 188:696–723
https://doi.org/10.1007/s10957-020-01803-w

An Efficient Descent Method for Locally Lipschitz
Multiobjective Optimization Problems

Bennet Gebken1 · Sebastian Peitz1

Received: 3 August 2020 / Accepted: 19 December 2020 / Published online: 13 January 2021
© The Author(s) 2021

Abstract
We present an efficient descent method for unconstrained, locally Lipschitz multi-
objective optimization problems. The method is realized by combining a theoretical
result regarding the computation of descent directions for nonsmooth multiobjective
optimization problems with a practical method to approximate the subdifferentials
of the objective functions. We show convergence to points which satisfy a necessary
condition for Pareto optimality. Using a set of test problems, we compare our method
with the multiobjective proximal bundle method by Mäkelä. The results indicate that
our method is competitive while being easier to implement. Although the number of
objective function evaluations is larger, the overall number of subgradient evaluations
is smaller. Our method can be combined with a subdivision algorithm to compute
entire Pareto sets of nonsmooth problems. Finally, we demonstrate how our method
can be used for solving sparse optimization problems, which are present in many
real-life applications.

Keywords Multiobjective optimization · Nonsmooth optimization · Descent
methods · Sparse optimization

Mathematics Subject Classification 90C29 · 90C30 · 90C56 · 49J52

Communicated by Xiaoqi Yang.

B Bennet Gebken
bgebken@math.upb.de

Sebastian Peitz
speitz@math.upb.de

1 Chair of Applied Mathematics, Paderborn University, 33098 Paderborn, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-020-01803-w&domain=pdf

Journal of Optimization Theory and Applications (2021) 188:696–723 697

1 Introduction

In many scenarios in real life, the problem of optimizing multiple objectives at the
same time arises. In engineering for example, one often wants to steer a physical
system as close as possible to a desired state while minimizing the required energy
at the same time. These problems are called multiobjective optimization problems
(MOPs) and generally do not possess a single optimal solution. Instead, the solution is
the set of all optimal compromises, the so-called Pareto set. Due to this, the numerical
computation of solutions toMOPs ismore challenging. In addition, there are numerous
applications where the objectives are nonsmooth, for example contact problems in
mechanics, which adds to the difficulty.

When addressing the above-mentioneddifficulties, i.e.,multiple objectives andnon-
smoothness, separately, there exist a large number of solution methods. For smooth
MOPs, the most popular methods include evolutionary [1,2] and scalarization meth-
ods [3]. Additionally, some methods from single-objective optimization have been
generalized, like gradient descent methods [4–6] and Newton’s method [7,8]. For the
nonsmooth single-objective case, commonly used methods include subgradient meth-
ods [9], bundle methods [10] and gradient sampling methods [11]. More recently,
in [12], a generalization of the steepest descent method to the nonsmooth case was
proposed, which is based on an efficient approximation of the subdifferential of the
objective function. For nonsmooth multiobjective optimization, the literature is a lot
more scarce. Since classical scalarization approaches do not require the existence
of gradients, they can still be used. In [13], a generalization of the steepest descent
method was proposed for the case when the full subdifferentials of the objectives are
known, which is rarely the case in practice. In [14,15], the subgradient method was
generalized to the multiobjective case, but both articles report that their method is
not suitable for real-life application due to inefficiency. In [16] (see also [17]), the
proximal point method for single-objective optimization was generalized to convex
vector optimization problems, where differentiability of the objectives is not required.
In [18] (see also [19,20]), a multiobjective version of the proximal bundle method was
proposed, which currently appears to be the most efficient solver.

In this article, we develop a new descent method for locally Lipschitz continuous
MOPs by combining the descent direction from [13] with the approximation of the
Clarke subdifferential from [12], which is based on the Goldstein ε-subdifferential
[21]. In [13], it was shown that the element with the smallest norm in the negative
convex hull of the subdifferentials of the objective functions is a common descent
direction for all objectives. In [12], the subdifferential of the objective function was
approximated by starting with a single subgradient and then systematically computing
new subgradients until the element with the smallest norm in the convex hull of all
subgradients is a direction of (sufficient) descent. Combining both approaches yields
a descent direction for locally Lipschitz MOPs, and together with an Armijo step
length, we obtain a descent method. We show convergence to points which satisfy a
necessary condition for Pareto optimality (Sect. 3). We discuss the typical behavior
of our method and present a modification which promises better efficiency in practice
(Sect. 4.1). Using a set of test problems, we compare the performance of both methods
to themultiobjective proximal bundlemethod from [18] (Sect. 4.2). The results indicate

123

698 Journal of Optimization Theory and Applications (2021) 188:696–723

that our methods are inferior in terms of function evaluations, but superior in terms of
subgradient evaluations. A globalization strategy to compute the complete Pareto set is
discussed in Sect. 4.3. Finally, we demonstrate how our method can be used for sparse
optimization in Sect. 4.4, a problem that is common to a large number of machine
learning algorithms such as compressed sensing [22] or the sparse identification of
nonlinear dynamics [23].

2 NonsmoothMultiobjective Optimization

We consider the nonsmooth multiobjective optimization problem

min
x∈Rn

f (x) = min
x∈Rn

⎛
⎜⎝

f1(x)
...

fk(x)

⎞
⎟⎠ , (MOP)

where f : R
n → R

k is the objective vector with components fi : R
n → R for

i ∈ {1, . . . , k}, called objective functions. Throughout this article, we assume the
objective functions to be locally Lipschitz continuous, i.e., for each i ∈ {1, . . . , k} and
x ∈ R

n , there is some Li > 0 and ε > 0 with

| fi (y) − fi (z)| ≤ Li‖y − z‖ ∀y, z ∈ {y ∈ R
n : ‖x − y‖ < ε},

where ‖·‖ denotes the Euclidean norm inRn . Since (MOP) is an optimization problem
with a vector-valued objective function, the classical concept of optimality from the
scalar case cannot directly be conveyed. Instead, we are looking for the Pareto set,
which is defined in the following way:

Definition 2.1 A point x ∈ R
n is called Pareto optimal for the problem (MOP), if

there is no y ∈ R
n such that

fi (y) ≤ fi (x) ∀i ∈ {1, . . . , k},
f j (y) < f j (x) for some j ∈ {1, . . . , k}.

The set of all Pareto optimal points is the Pareto set.

In practice, to check whether a given point is Pareto optimal, we need optimality
conditions. In the smooth case, there are the well-known Karush–Kuhn–Tucker (KKT)
conditions (cf. [3]), which are based on the gradients of the objective functions. In case
the objective functions are merely locally Lipschitz, the KKT conditions can be gen-
eralized using the concept of subdifferentials. In the following, we recall the required
definitions and results from nonsmooth analysis. For a more detailed introduction, we
refer to [24], Chapter 2.

123

Journal of Optimization Theory and Applications (2021) 188:696–723 699

Definition 2.2 For i ∈ {1, . . . , k} let �i ⊆ R
n be the set of points where fi is not

differentiable. Then,

∂ fi (x) := conv({ξ ∈ R
n :∃(x j) j ∈ R

n\�i with x j → x and

∇ fi (x j) → ξ for j → ∞})

is the (Clarke) subdifferential of fi in x . ξ ∈ ∂ fi (x) is a subgradient.

Remark 2.1 The original definition of the Clarke subdifferential (on Banach spaces)
was based on so-called generalized directional derivatives (cf. Chapter 2 in [24]). In
the finite-dimensional case, Theorem2.5.1 in [24] shows that theClarke subdifferential
is given by the expression used in Definition 2.2. Since we will only work with this
expression, we omitted the original definition.

It is easy to see that, if an objective function is continuously differentiable, then
the Clarke subdifferential is the set containing only the gradient. We will later use the
following technical result on some properties of the Clarke subdifferential.

Lemma 2.1 ∂ fi (x) is nonempty, convex and compact for all i ∈ {1, . . . , k}.
Proof See [24], Prop. 2.1.2. ��

Using the subdifferential, we can state a necessary optimality condition for locally
Lipschitz MOPs.

Theorem 2.1 Let x ∈ R
n be Pareto optimal. Then,

0 ∈ conv

(
k⋃

i=1

∂ fi (x)

)
. (1)

Proof See [25], Thm. 12. ��
In the smooth case, (1) reduces to the classicalmultiobjectiveKKT conditions. Note

that in contrast to the smooth case, the optimality condition (1) is numerically chal-
lenging to work with, as subdifferentials are difficult to compute. Thus, in numerical
methods, (1) is only used implicitly.

The method we are presenting in this paper is a descent method, which means that,
starting from a point x1 ∈ R

n , we want to generate a sequence (x j) j ∈ R
n in which

each point is an improvement over the previous point. This is done by computing
directions v j ∈ R

n and step lengths t j ∈ R
>0 such that x j+1 = x j + t jv j and

fi (x j+1) < fi (x j) ∀ j ∈ N, i ∈ {1, . . . , k}.

For the computation of v j , we recall the following basic result from convex analysis
that forms the theoretical foundation for descent methods in the presence of multiple
(sub)gradients. Let ‖ · ‖ be the Euclidean norm in Rn .

123

700 Journal of Optimization Theory and Applications (2021) 188:696–723

Theorem 2.2 Let W ⊆ R
n be convex and compact and

v̄ := argmin
ξ∈−W

‖ξ‖2. (2)

Then, either v̄
= 0 and

〈v̄, ξ 〉 ≤ −‖v̄‖2 < 0 ∀ξ ∈ W , (3)

or v̄ = 0 and there is no v ∈ R
n with 〈v, ξ 〉 < 0 for all ξ ∈ W .

Proof Follows from [26], Lemma. ��

Roughly speaking, Theorem 2.2 states that the element of minimal norm in the
convex and compact set −W is directionally opposed to all elements of W . To be
more precise, v̄ is contained in the intersection of all half-spaces induced by elements
of −W . In the context of optimization, this result has several applications:

(i) In the smooth, single-objective case, W = {∇ f (x)} trivially yields the classical
steepest descent method.

(ii) In the smooth, multiobjective case, W = conv({∇ f1(x), . . . ,∇ fk(x)}) yields the
descent direction from [4] (after dualization) and [5].

(iii) In the nonsmooth, single-objective case, W = ∂ f (x) yields the descent direction
from [24], Prop. 6.2.4.

(iv) In the nonsmooth, multiobjective case, W = conv
(⋃k

i=1 ∂ fi (x)
)
yields the

descent direction from [13].

In (i) and (ii), the solution of problem (2) is straightforward, since W is a convex
polytope with the gradients as vertices. In (iii), the solution of (2) is non-trivial due to
the difficulty of computing the subdifferential. In subgradientmethods [9], the solution
is approximated by using a single subgradient instead of the entire subdifferential. As a
result, it cannot be guaranteed that the solution is a descent direction and in particular,
(2) cannot be used as a stopping criterion. In gradient sampling methods [11], the
subdifferential is approximated by the convex hull of gradients of the objective function
in randomly sampled points around the current point. Due to the randomness, it cannot
be guaranteed that the resulting direction yields sufficient descent. Additionally, a
check for differentiability of the objective is required, which can pose a problem
[27]. In (iv), the solution of (2) gets even more complicated due to the presence
of multiple subdifferentials. So far, the only methods that deal with (2) in this case
are multiobjective versions of the subgradient method [14,15], which were reported
unsuitable for real-life applications.

In the following section, we will describe a new way to compute descent
directions for nonsmooth MOPs by systematically computing an approximation of
conv

(∪k
i=1∂ fi (x)

)
that is sufficient to obtain a “good enough” descent direction from

(2).

123

Journal of Optimization Theory and Applications (2021) 188:696–723 701

3 Descent Method for NonsmoothMOPs

In this section, we will present a method to compute descent directions of nonsmooth
MOPs that generalizes the method from [12] to the multiobjective case. As described
in the previous section, when computing descent directions via Theorem 2.2, the
problem of computing subdifferentials arises. Since this is difficult in practice, we
will instead replace W in Theorem 2.2 by an approximation of conv

(∪k
i=1∂ fi (x)

)
such that the resulting direction is guaranteed to have sufficient descent. To this end,
we replace the Clarke subdifferential by the so-called ε-subdifferential and take a finite
approximation of the latter.

3.1 The Epsilon-Subdifferential

Bydefinition, ∂ fi (x) is the convexhull of the limits of the gradient of fi in all sequences
near x that converge to x . Thus, if we evaluate ∇ fi in a number of points close to
x (where it is defined) and take the convex hull, we expect the resulting set to be
an approximation of ∂ fi (x). To formalize this, we introduce the following definition
[21,28].

Definition 3.1 Let ε ≥ 0, x ∈ R
n , Bε(x) := {y ∈ R

n : ‖x − y‖ ≤ ε} and i ∈
{1, . . . , k}. Then,

∂ε fi (x) := conv

⎛
⎝ ⋃

y∈Bε(x)

∂ fi (y)

⎞
⎠

is the (Goldstein) ε-subdifferential of fi in x . ξ ∈ ∂ε fi (x) is an ε-subgradient.

Note that ∂0 fi (x) = ∂ fi (x) and ∂ fi (x) ⊆ ∂ε fi (x). For ε ≥ 0 we define for the
multiobjective setting

Fε(x) := conv

(
k⋃

i=1

∂ε fi (x)

)
.

To be able to choose W = Fε(x) in Theorem 2.2, we first need to establish some
properties of Fε(x).

Lemma 3.1 ∂ε fi (x) is nonempty, convex and compact for all i ∈ {1, . . . , k}. In par-
ticular, the same holds for Fε(x).

Proof For ∂ε fi (x), this was shown in [21], Prop. 2.3. For Fε(x), it then follows directly
from the definition. ��

We immediately get the following corollary from Theorems 2.1 and 2.2.

Corollary 3.1 Let ε ≥ 0.

123

702 Journal of Optimization Theory and Applications (2021) 188:696–723

(a) If x is Pareto optimal, then

0 ∈ Fε(x). (4)

(b) Let x ∈ R
n and

v̄ := argmin
ξ∈−Fε(x)

‖ξ‖2. (5)

Then, either v̄
= 0 and

〈v̄, ξ 〉 ≤ −‖v̄‖2 < 0 ∀ξ ∈ Fε(x), (6)

or v̄ = 0 and there is no v ∈ R
n with 〈v, ξ 〉 < 0 for all ξ ∈ Fε(x).

The previous corollary states that when working with the ε-subdifferential instead
of the Clarke subdifferential, we still have a necessary optimality condition and a way
to compute descent directions, although the optimality conditions are weaker and the
descent direction has a less strong descent. This is illustrated in the following example.

Example 3.1 Consider the locally Lipschitz function

f : R2 → R
2, x �→

(
(x1 − 1)2 + (x2 − 1)2

x21 + |x2|
)

.

The set of nondifferentiable points of f is R × {0}. For ε > 0 and x ∈ R
2 we have

∇ f1(x) =
(
2(x1 − 1)
2(x2 − 1)

)
and ∂ε f1(x) = 2Bε(x) −

(
2
2

)
.

For x ∈ R × {0} we have

∂ f2(x) = {2x1} × [−1, 1] and ∂ε f2(x) = {2x1 + [−2ε, 2ε]} × [−1, 1].

Figure 1 shows the Clarke subdifferential (a), the ε-subdifferential (b) for ε = 0.2
and the corresponding sets Fε(x) for x = (1.5, 0)�.

Additionally, the corresponding solutions of (5) are shown. In this case, the pre-
dicted descent −‖v̄‖2 (cf. (3)) is approximately −3.7692 in (a) and −2.4433 in (b).

Figure 2 shows the same scenario for x = (0.5, 0)�.
Here, the Clarke subdifferential still yields a descent, while v̄ = 0 for the ε-

subdifferential. In other words, x satisfies the necessary optimality condition (4) but
not (1).

The following lemma shows that for the direction from (5), there is a lower bound
for a step size up to which we have guaranteed descent in each objective function fi .

123

Journal of Optimization Theory and Applications (2021) 188:696–723 703

Fig. 1 Clarke subdifferentials (a), ε-subdifferentials (b) for ε = 0.2 and the corresponding sets Fε(x) for
x = (1.5, 0)� in Example 3.1

Fig. 2 Clarke subdifferentials (a), ε-subdifferentials (b) for ε = 0.2 and the corresponding sets Fε(x) for
x = (0.5, 0)� in Example 3.1

Lemma 3.2 Let ε ≥ 0 and v̄ be the solution of (5). Then,

fi (x + t v̄) ≤ fi (x) − t‖v̄‖2 ∀t ≤ ε

‖v̄‖ , i ∈ {1, . . . , k}.

Proof Let t ≤ ε
‖v̄‖ . Since fi is locally Lipschitz continuous on R

n , it is in particular
Lipschitz continuous on an open set containing x + [0, t]v̄. By applying the mean

123

704 Journal of Optimization Theory and Applications (2021) 188:696–723

value theorem (cf. [24], Thm. 2.3.7), we obtain the existence of some r ∈]0, t[with

fi (x + t v̄) − fi (x) ∈ 〈∂ fi (x + r v̄), t v̄〉.

From ‖x − (x + r v̄)‖ = r‖v̄‖ < ε it follows that ∂ fi (x + r v̄) ⊆ ∂ε fi (x). This means
that there is some ξ ∈ ∂ε fi (x) such that

fi (x + t v̄) − fi (x) = t〈ξ, v̄〉.

Combined with (6) we obtain

fi (x + t v̄) − fi (x) ≤ −t‖v̄‖2
⇔ fi (x + t v̄) ≤ fi (x) − t‖v̄‖2,

which completes the proof. ��
In the following, we will describe how we can obtain a good approximation of (5)

without requiring full knowledge of the ε-subdifferentials.

3.2 Efficient Computation of Descent Directions

In this part, we will describe how the solution of (5) can be approximated when
only a single subgradient can be computed at every x ∈ R

n . Similar to the gradient
sampling approach, the idea behind ourmethod is to replace Fε(x) in (5) by the convex
hull of a finite number of ε-subgradients ξ1, . . . , ξm from Fε(x) for m ∈ N. Since it
is impossible to know a priori how many and which ε-subgradients are required to
obtain a good descent direction, we solve (5) multiple times in an iterative approach
to enrich our approximation until a satisfying direction has been found. To this end,
we have to specify how to enrich our current approximation conv({ξ1, . . . , ξm}) and
how to characterize an acceptable descent direction.

Let W = {ξ1, . . . , ξm} ⊆ Fε(x) and

ṽ := argmin
v∈− conv(W)

‖v‖2. (7)

Let c ∈]0, 1[.MotivatedbyLemma3.2,we regard ṽ as anacceptabledescent direction,
if

fi

(
x + ε

‖ṽ‖ ṽ

)
≤ fi (x) − cε‖ṽ‖ ∀i ∈ {1, . . . , k}. (8)

If the set I ⊆ {1, . . . , k} for which (8) is violated is nonempty, then we have to find
a new ε-subgradient ξ ′ ∈ Fε(x) such that W ∪ {ξ ′} yields a better descent direction.
Intuitively, (8) being violated means that the local behavior of fi , i ∈ I , in x in the
direction ṽ is not sufficiently captured in W . Thus, for each i ∈ I , we expect that there
exists some t ′ ∈]0, ε

‖ṽ‖] such that ξ ′ ∈ ∂ fi (x + t ′ṽ) improves the approximation of
Fε(x). This is proven in the following lemma.

123

Journal of Optimization Theory and Applications (2021) 188:696–723 705

Lemma 3.3 Let c ∈]0, 1[, W = {ξ1, . . . , ξm} ⊆ Fε(x) and ṽ be the solution of (7). If

fi

(
x + ε

‖ṽ‖ ṽ

)
> fi (x) − cε‖ṽ‖

for some i ∈ {1, . . . , k}, then there is some t ′ ∈]0, ε
‖ṽ‖] and ξ ′ ∈ ∂ fi (x + t ′ṽ) such

that

〈ṽ, ξ ′〉 > −c‖ṽ‖2. (9)

In particular, ξ ′ ∈ Fε(x)\ conv(W).

Proof Assume that for all t ′ ∈]0, ε
‖ṽ‖] and ξ ′ ∈ ∂ fi (x + t ′ṽ) we have

〈ṽ, ξ ′〉 ≤ −c‖ṽ‖2. (10)

By applying the mean value theorem as in Lemma 3.2, we obtain

fi

(
x + ε

‖ṽ‖ ṽ

)
− fi (x) ∈ 〈∂ fi (x + r ṽ),

ε

‖ṽ‖ ṽ〉

for some r ∈]0, ε
‖ṽ‖ [. This means that there is some ξ ′ ∈ ∂ fi (x + r ṽ) such that

fi

(
x + ε

‖ṽ‖ ṽ

)
− fi (x) = 〈ξ ′, ε

‖ṽ‖ ṽ〉 = ε

‖ṽ‖〈ξ ′, ṽ〉.

By (10) it follows that

fi

(
x + ε

‖ṽ‖ ṽ

)
− fi (x) ≤ −cε‖ṽ‖

⇔ fi

(
x + ε

‖ṽ‖ ṽ

)
≤ fi (x) − cε‖ṽ‖,

which is a contradiction. In particular, (3) yields ξ ′ ∈ Fε(x)\ conv(W). ��
The following example visualizes the previous lemma.

Example 3.2 Consider f as in Example 3.1, ε = 0.2 and x = (0.75, 0)�. The dashed
lines in Fig. 3 show the ε-subdifferentials, Fε(x) and the resulting descent direction
(cf. Figs. 1 and 2).

Let y = (0.94,−0.02)�. Then, we have ‖x − y‖ ≈ 0.191 ≤ ε, so y ∈ Bε(x) and

∂ε f1(x) ⊇ ∂ f1(y) =
{(−0.12

−2.04

)}
=: {ξ1},

∂ε f2(x) ⊇ ∂ f2(y) =
{(

1.88
−1

)}
=: {ξ2}.

123

706 Journal of Optimization Theory and Applications (2021) 188:696–723

Fig. 3 Approximations of Fε(x) for ε = 0.2 and x = (0.75, 0)� in Example 3.2. Fε(x) is approximated
by conv({ξ1, ξ2}) in a and by conv({ξ1, ξ2, ξ ′}) in b

Let W := {ξ1, ξ2} and conv(W) be the approximation of Fε(x), shown as the solid
line in Fig. 3a. Let ṽ be the solution of (7) for this W and choose c = 0.25. Checking
(8), we have

f2

(
x + ε

‖ṽ‖ ṽ

)
≈ 0.6101 > 0.4748 ≈ f2(x) − cε‖ṽ‖.

By Lemma 3.3, this means that there is some t ′ ∈]0, ε
‖ṽ‖] and ξ ′ ∈ ∂ f2(x + t ′ṽ) such

that

〈ṽ, ξ ′〉 > −c‖ṽ‖2.

In this case, we can take for example t ′ = 1
2

ε
‖ṽ‖ , resulting in

∂ f2(x + t ′v) ≈
{(

1.4077
1

)}
=: {ξ ′},

〈ṽ, ξ ′〉 ≈ 0.4172 > −0.7696 ≈ −c‖ṽ‖2.

Figure 3b shows the improved approximation W ∪ {ξ ′} and the resulting descent
direction ṽ. By checking (8) for this new descent direction, we see that ṽ is acceptable.
(Note that in general, a single improvement step like this will not be sufficient to reach
an acceptable direction.)

123

Journal of Optimization Theory and Applications (2021) 188:696–723 707

Note that Lemma 3.3 only shows the existence of t ′ and ξ ′ without stating a way
how to actually compute them. To this end, let i ∈ {1, . . . , k} be the index of an
objective function for which (8) is not satisfied, define

hi : R → R, t �→ fi (x + t ṽ) − fi (x) + ct‖ṽ‖2 (11)

(cf. [12]) and consider Algorithm 1. If fi is continuously differentiable around x , then
(9) is equivalent to h′

i (t
′) > 0, i.e., hi being monotonically increasing around t ′. Thus,

the idea of Algorithm 1 is to find some t such that hi is monotonically increasing
around t , while checking whether (9) is satisfied for a subgradient ξ ∈ fi (x + t ṽ).

Algorithm 1 Compute new subgradient
Require: Current point x ∈ R

n , direction ṽ, tolerance ε, Armijo parameter c ∈]0, 1[.
1: Set a = 0, b = ε

‖ṽ‖ and t = a+b
2 .

2: Compute ξ ′ ∈ ∂ fi (x + t ṽ).
3: If 〈ṽ, ξ ′〉 > −c‖ṽ‖2 then stop.
4: If hi (b) > hi (t) then set a = t . Otherwise set b = t .
5: Set t = a+b

2 and go to step 2.

Although in the general setting, we cannot guarantee that Algorithm 1 yields a
subgradient satisfying (9), we can at least show that after finitely many iterations, a
factor t is found such that ∂ fi (x + t ṽ) contains a subgradient that satisfies (9).

Lemma 3.4 Let i ∈ {1, . . . , k} be an index for which (8) is violated. Let (t j) j be the
sequence generated in Algorithm 1.

(a) If (t j) j is finite, then some ξ ′ was found satisfying (9).
(b) If (t j) j is infinite, then it converges to some t̄ ∈]0, ε

‖ṽ‖] with hi (t̄) ≥ hi (
ε

‖ṽ‖) such
that

(i) there is some ξ ′ ∈ ∂ fi (x + t̄ ṽ) satisfying (9) or
(ii) 0 ∈ ∂hi (t̄), i.e., t̄ is a critical point of hi .

Proof Let (t j) j be finite with last element t̄ ∈]0, ε
‖ṽ‖ [. Then, Algorithm 1 must have

stopped in step 3, i.e., some ξ ′ ∈ ∂ fi (x + t̄ ṽ) satisfying (9) was found.
Now let (t j) j be infinite. By construction, (t j) j is a Cauchy sequence in the compact
set [0, ε

‖ṽ‖], so it has to converge to some t̄ ∈ [0, ε
‖ṽ‖]. Additionally, since (8) is

violated for the index i by assumption, we have

hi (0) = 0 and hi

(
ε

‖ṽ‖
)

> 0.

Let (a j) j and (b j) j be the sequences corresponding to a and b in Algorithm 1 (at the
start of each iteration in step 2).
Assume that t̄ = 0. Then, we must have hi (t j) ≥ hi (b j) in step 4 for all j ∈ N. Thus,

hi (t j) ≥ hi (b j) = h(t j−1) ≥ hi (b j−1) = · · · = hi (t1) ≥ hi (b1) = hi

(
ε

‖ṽ‖
)

> 0

123

708 Journal of Optimization Theory and Applications (2021) 188:696–723

for all j ∈ N. This is a contradiction to the continuity of hi (in 0). So we must have
t̄ > 0. Additionally, lim j→∞ b j = t̄ and (hi (b j)) j is non-decreasing, so

hi (t̄) = lim
j→∞ hi (b j) ≥ hi (b1) = hi

(
ε

‖ṽ‖
)

.

By construction we have hi (a j) < hi (b j) for all j ∈ N. Thus, by the mean value
theorem, there has to be some r j ∈]a j , b j [such that

0 < hi (b j) − hi (a j) ∈ 〈∂hi (r j), b j − a j 〉 = ∂hi (r j)(b j − a j).

In particular, lim j→∞ r j = t̄ and since a j < b j , ∂hi (r j)∩R
>0
= ∅ for all j ∈ N. By

upper semicontinuity of ∂h there must be some θ ∈ ∂hi (t̄) with θ ≥ 0. By the chain
rule, we have

0 ≤ θ ∈ ∂hi (t̄) ⊆ 〈ṽ, ∂ fi (x + t̄ ṽ)〉 + c‖ṽ‖2. (12)

Thus, there must be some ξ ∈ ∂ fi (x + t̄ ṽ) with

0 ≤ 〈ṽ, ξ 〉 + c‖ṽ‖2 ⇔ 〈ṽ, ξ 〉 ≥ −c‖ṽ‖2.

If there exists ξ ′ ∈ ∂ fi (x + t̄ ṽ) such that this inequality is strict, i.e., such that
〈ṽ, ξ ′〉 > −c‖ṽ‖2, then b)(i) holds. Otherwise, if we have 〈ṽ, ξ ′〉 ≤ −c‖ṽ‖2 for all
ξ ′ ∈ ∂ fi (x + t̄ ṽ), then (12) implies ∂hi (t̄) ⊆ R

≤0. This means that 0 = θ ∈ ∂hi (t̄),
so b)(ii) holds. ��

In the following remark, we will briefly discuss the implication of Lemma 3.4 for
practical use of Algorithm 1.

Remark 3.1 Let i ∈ {1, . . . , k} and (t j) j be as in Lemma 3.4. Assume that (t j) j is
infinite with limit t̄ ∈]0, ε

‖ṽ‖]. In the proof of Lemma 3.4, we showed that there is

a sequence (r j) j ∈]0, ε
‖ṽ‖ [with limit t̄ such that ∂hi (r j) ∩ R

>0
= ∅ for all j ∈ N.
By the definition of the Clarke subdifferential, this implies that there is a sequence
(s j) j ∈]0, ε

‖ṽ‖ [with lim j→∞ s j = t̄ such that hi is differentiable in s j and h′
i (s j) > 0

for all j ∈ N. Due to the upper semicontinuity of the Clarke subdifferential, each s j

has an open neighborhood U j with

∂hi (s) ⊆ R
>0 ∀s ∈ U j , j ∈ N.

As in the proof of Lemma 3.4, it follows that for all s ∈ U j with j ∈ N, there is some
ξ ′ ∈ ∂ fi (x + sṽ) satisfying (9). Thus, roughly speaking, even if we are in case b)(ii)
of Lemma 3.4, there are open sets arbitrarily close to t̄ on which we can find new
ε-subgradients (as in case b)(i)).

Motivated by the previous remark, we will from now on assume that Algorithm 1
stops after finitely many iterations and thus yields a new subgradient satisfying (9).

123

Journal of Optimization Theory and Applications (2021) 188:696–723 709

Algorithm 2 Compute descent direction
Require: Current point x ∈ R

n , tolerances ε, δ > 0, Armijo parameter c ∈]0, 1[.
1: Compute ξ i

1 ∈ ∂ε fi (x) for all i ∈ {1, ..., k}. Set W1 = {ξ11 , ..., ξk
1 } and l = 1.

2: Compute vl = argmin
v∈− conv(Wl)

‖v‖2.
3: If ‖vl‖ ≤ δ then stop.
4: Find all objective functions for which there is insufficient descent:

Il =
{

j ∈ {1, ..., k} : f j

(
x + ε

‖vl‖ vl

)
> f j (x) − cε‖vl‖

}
.

If Il = ∅ then stop.

5: For each j ∈ Il , compute t ∈]0, ε
‖vl‖] and ξ

j
l ∈ ∂ f j (x + tvl) such that

〈vl , ξ
j

l 〉 > −c‖vl‖2

via Algorithm 1.

6: Set Wl+1 = Wl ∪ {ξ j
l : j ∈ Il }, l = l + 1 and go to step 2.

We can use this method of finding new subgradients to construct an algorithm that
computes descent directions of nonsmooth MOPs, namely Algorithm 2.

The following theorem shows that Algorithm 2 stops after a finite number of iter-
ations and produces an acceptable descent direction (cf. (8)).

Theorem 3.1 Algorithm 2 terminates. In particular, if ṽ is the last element of (vl)l ,
then either ‖ṽ‖ ≤ δ or ṽ is an acceptable descent direction, i.e.,

fi

(
x + ε

‖ṽ‖ ṽ

)
≤ fi (x) − cε‖ṽ‖ ∀i ∈ {1, ..., k}.

Proof Assume that Algorithm 2 does not terminate, i.e., (vl)l∈N is an infinite sequence.
Let l > 1 and j ∈ Il−1. Since ξ

j
l−1 ∈ Wl and −vl−1 ∈ Wl−1 ⊆ Wl , we have

‖vl‖2 ≤ ‖ − vl−1 + s(ξ j
l−1 + vl−1)‖2

= ‖vl−1‖2 − 2s〈vl−1, ξ
j

l−1 + vl−1〉 + s2‖ξ j
l−1 + vl−1‖2

= ‖vl−1‖2 − 2s〈vl−1, ξ
j

l−1〉 − 2s‖vl−1‖2 + s2‖ξ j
l−1 + vl−1‖2 (13)

for all s ∈ [0, 1]. Since j ∈ Il−1, we must have

〈vl−1, ξ
j

l−1〉 > −c‖vl−1‖2 (14)

by step 5. Let L be a common Lipschitz constant of all fi , i ∈ {1, ..., k}, on the
closed ε-ball Bε(x) around x . Then by [24], Prop. 2.1.2, and the definition of the
ε-subdifferential, we must have ‖ξ‖ ≤ L for all ξ ∈ Fε(x). So in particular,

‖ξ j
l−1 + vl−1‖ ≤ 2L. (15)

123

710 Journal of Optimization Theory and Applications (2021) 188:696–723

Combining (13) with (14) and (15) yields

‖vl‖2 < ‖vl−1‖2 + 2sc‖vl−1‖2 − 2s‖vl−1‖2 + 4s2L2

= ‖vl−1‖2 − 2s(1 − c)‖vl−1‖2 + 4s2L2.

Let s := 1−c
4L2 ‖vl−1‖2. Since 1 − c ∈]0, 1[and ‖vl−1‖ ≤ L we have s ∈]0, 1[. We

obtain

‖vl‖2 < ‖vl−1‖2 − 2
(1 − c)2

4L2 ‖vl−1‖4 + (1 − c)2

4L2 ‖vl−1‖4

=
(
1 − (1 − c)2

4L2 ‖vl−1‖2
)

‖vl−1‖2.

Since Algorithm 2 did not terminate, it holds ‖vl−1‖ > δ. It follows that

‖vl‖2 <

(
1 −

(
1 − c

2L
δ

)2
)

‖vl−1‖2.

Let r = 1 − (1−c
2L δ

)2
. Note that we have δ < ‖vl‖ ≤ L for all l ∈ N, so r ∈]0, 1[.

Additionally, r does not depend on l, so we have

‖vl‖2 < r‖vl−1‖2 < r2‖vl−1‖2 < · · · < rl−1‖v1‖2 ≤ rl−1L2.

In particular, there is some l such that ‖vl‖ ≤ δ, which is a contradiction. ��
Remark 3.2 The proof of Theorem 3.1 shows that for convergence of Algorithm 2,
it would be sufficient to consider only a single j ∈ Il in step 5. Similarly, for the
initial approximation W1, a single element of ∂ε fi (x) for any i ∈ {1, . . . , k} would be
enough. A modification of either step can potentially reduce the number of executions
of step 5 (i.e., Algorithm 1) in Algorithm 2 in case the ε-subdifferentials of multiple
objective functions are similar. Nonetheless, we will restrain the discussion in this
article to Algorithm 2 as it is, since both modifications also introduce a bias toward
certain objective functions, which we want to avoid.

To highlight the strengths of Algorithm 2, we will consider an example where
standard gradient sampling approaches can fail to obtain a useful descent direction.

Example 3.3 For a, b ∈ R\{0} consider the locally Lipschitz function

f : R2 → R
2, x �→

(
(x1 − 1)2 + (x2 − 1)2

|x2 − a|x1|| + bx2

)
.

The set of nondifferentiable points is

� f = ({0} × R) ∪ {(λ, a|λ|)� : λ ∈ R},

123

Journal of Optimization Theory and Applications (2021) 188:696–723 711

separatingR2 into four smooth areas (cf. Fig. 4a). For large a > 0, the two areas above
the graph of λ �→ a|λ| become small, making it difficult to compute the subdifferential
close to (0, 0)�.

Let a = 10, b = 0.5, ε = 10−3 and x = (10−4, 10−4)�. In this case, (0, 0)� is the
minimal point of f2 and

∂ε f2(x) = conv

{(−a
b − 1

)
,

(
a

b + 1

)
,

(
a

b − 1

)
,

(−a
b + 1

)}

= conv

{(−10
−0.5

)
,

(
10
1.5

)
,

(
10

−0.5

)
,

(−10
1.5

)}
.

In particular, 0 ∈ ∂ε f2(x), so the descent direction from (5) with the exact ε-
subdifferentials is zero. When applying Algorithm 2 in x , after two iterations we
obtain

ṽ = v2 ≈ (0.118, 1.185) · 10−9,

i.e., ‖ṽ‖ ≈ 1.191·10−11. Thus, x is correctly identified as (potentially) Pareto optimal.
The final approximation W2 of Fε(x) is

W2 =
{
ξ11 , ξ21 , ξ22

}
=

{(−1.9998
−1.9998

)
,

(
10

−0.5

)
,

(−10
1.5

)}
.

The first two elements of W2 are the gradients of f1 and f2 in x from the first iteration
of Algorithm 2, and the last element is the gradient of f2 in the point x ′ = x + tv1 =
(0.038, 0.596)� · 10−3 ∈ Bε(x) from the second iteration. The result is visualized in
Fig. 4.

Building on Algorithm 2, it is now straightforward to construct the descent method
for locally Lipschitz continuous MOPs given in Algorithm 3. In step 4, the classical
Armijo backtracking line search was used (cf. [4]) for the sake of simplicity. Note that
it is well defined due to step 4 in Algorithm 2.

Algorithm 3 Nonsmooth descent method
Require: Initial point x1 ∈ R

n , tolerances ε, δ > 0, Armijo parameters c ∈]0, 1[, t0 > 0.
1: Set j = 1.
2: Compute a descent direction v j via Algorithm 2.
3: If ‖v j ‖ ≤ δ then stop.
4: Compute

s̄ = inf({s ∈ N ∪ {0} : fi (x j + 2−s t0v j) ≤ fi (x j) − 2−s t0c‖v j ‖2 ∀i ∈ {1, ..., k}})

and set t̄ = max({2−s̄ t0,
ε

‖v j ‖ }).
5: Set x j+1 = x j + t̄v j , j = j + 1 and go to step 2.

123

712 Journal of Optimization Theory and Applications (2021) 188:696–723

Fig. 4 a The set of nondifferentiable points � f of f , the ball Bε(x) for the ε-subdifferential and the point
in which subgradients were computed for Algorithm 2 in Example 3.3. b The approximation of Fε(x) in
Algorithm 2

Since we introduced the two tolerances ε (for the ε-subdifferential) and δ (as a
threshold for when we consider ε-subgradients to be zero), we cannot expect that
Algorithm 3 computes points which satisfy the optimality condition (1). This is why
we introduce the following definition, similar to the definition of ε-stationarity from
[11].

Definition 3.2 Let x ∈ R
n , ε > 0 and δ > 0. Then, x is called (ε, δ)-critical, if

min
v∈−Fε(x)

‖v‖ ≤ δ.

It is easy to see that (ε, δ)-criticality is a necessary optimality condition for Pareto
optimality, but a weaker one than (1). The following theorem shows that convergence
in the sense of (ε, δ)-criticality is what we can expect from our descent method.

Theorem 3.2 Let (x j) j be the sequence generated by Algorithm 3. Then, either the
sequence (fi (x j)) j is unbounded below for each i ∈ {1, . . . , k}, or (x j) j is finite with
the last element being (ε, δ)-critical.

Proof Assume that (x j) j is infinite. Then, ‖v j‖ > δ for all j ∈ N. Let j ∈ N. If
t̄ = 2−s̄ t0 ≥ ε

‖v j ‖ in step 4 of Algorithm 3, then

fi (x j + t̄v j) − fi (x j) = fi (x j + 2−s̄ t0v j) − fi (x j)

≤ −2−s̄ t0c‖v j‖2 ≤ −cε‖v j‖ < −cεδ < 0

for all i ∈ {1, . . . , k}. If instead t̄ = ε
‖v j ‖ in step 4, then the same inequality holds due to

Theorem 3.1. This implies that (fi (x j)) j is unbounded below for each i ∈ {1, . . . , k}.

123

Journal of Optimization Theory and Applications (2021) 188:696–723 713

Now assume that (x j) j is finite, with x̄ and v̄ being the last elements of (x j) j and
(v j) j , respectively. Since the algorithm stopped, we must have ‖v̄‖ ≤ δ. From the
application of Algorithm 2 in step 2, we know that there must be some W ⊆ Fε(x̄)

such that v̄ = argmin
v∈− conv(W)

‖v‖2. This implies

min
v∈−Fε(x̄)

‖v‖ ≤ min
v∈− conv(W)

‖v‖ = ‖v̄‖ ≤ δ,

which completes the proof. ��
Finally, before considering numerical examples in the following section, we will

discuss the influence of the parameters of Algorithm 3 on its results and performance:

– The tolerance ε > 0 is the radius of the closed ball that we use for the ε-
subdifferential (cf. Definition 3.1). On the one hand, by definition, we can only
expect Algorithm 3 to compute the actual Pareto critical set up to a distance of
ε, which is the motivation for choosing ε relatively small. On the other hand, ε

controls how early the algorithm notices nondifferentiable points, so a small ε

means that the algorithm might take a longer time until the nondifferentiability of
the objective vector is detected. These two properties should be kept in mind when
choosing ε in practice.

– The tolerance δ > 0 is the threshold for when we consider the norm of the descent
direction (i.e., a convex combination of ε-subgradients) to be zero. The result of
Algorithm 3 will be closer to the Pareto critical set the smaller we choose δ. But
since more iterations are needed, it also takes more time until the algorithm stops.

– The parameters c ∈]0, 1[and t0 > 0 are used for the step length, where t0 is the
initial step length and c is the percentage of how much actual descent we want to
have compared to the predicted descent based on the ε-subgradients. The closer c
is chosen to 1, the steeper the descent of the computed descent direction will be
and the closer the direction computed by Algorithm 2 will be to the theoretical
descent direction from (5). Then again, this also increases the iterations required
in Algorithm 2 and therefore the runtime of Algorithm 3.

Examples for the choice of these parameters can be found in the following section.
Furthermore,wewill introduce amodification ofAlgorithm3with a dynamic tolerance
ε.

4 Numerical Examples

In this section, we will consider several numerical examples. We will begin by dis-
cussing the typical behavior of Algorithm 3 and presenting a modification (Algorithm
4) which has some practical advantages. Afterward, we compare the performance of
both algorithms to themultiobjective proximal bundle method [18]. In order to approx-
imate the entire Pareto set of nonsmooth MOPs, we will then combine Algorithm 3
with the subdivision algorithm [29], and show how the resulting method can be used
for the solution of sparse optimization problems.

123

714 Journal of Optimization Theory and Applications (2021) 188:696–723

Fig. 5 Result of Algorithm 3 in
three different starting points for
the MOP (16). The Pareto set is
shown in red, and the dashed
lines show the set of
nondifferentiable points � f

4.1 Typical Behavior

In smooth areas, the behavior of Algorithm 3 is almost identical to the behavior of
the multiobjective steepest descent method [4]. The only difference stems from the
fact that, unlike the Clarke subdifferential, the ε-subdifferential does not reduce to the
gradient when f is continuously differentiable. As a result, Algorithm 3 may behave
differently in points x ∈ R

n where

max{‖∇ fi (x) − ∇ fi (y)‖ : y ∈ Bε(x), i ∈ {1, . . . , k}}

is large. (If f is twice differentiable, this can obviously be characterized in terms of
second order derivatives.) Nevertheless, if ε is chosen small enough, this difference
can be neglected. Thus, in the following, we will focus on the behavior with respect
to the nonsmoothness of f .

To show the typical behavior of Algorithm 3, we consider the objective function
f : R2 → R

2,

x �→
(
max{x21 + (x2 − 1)2 + x2 − 1,−x21 − (x2 − 1)2 + x2 + 1}

−x1 + 2(x21 + x22 − 1) + 1.75|x21 + x22 − 1|
)

(16)

from [18] (combining Crescent from [30] and Mifflin 2 from [31]). The set of nondif-
ferentiable points is � f = S1 ∪ (S1 + (0, 1)�). We consider the starting points

x1 = (0,−0.3)�, x2 = (0.6, 1.0)�, x3 = (−1,−0.2)�,

the tolerances ε = 10−3, δ = 10−3 and the Armijo parameters c = 0.25, t0 = 1. The
results are shown in Fig. 5.

We will briefly go over the result for each starting point:

– For x1, the sequence moves through the smooth area like the steepest descent
method until a point is found with a distance less or equal ε to the set of nondiffer-
entiable points� f . In that point, more than one ε-subgradient is required to obtain

123

Journal of Optimization Theory and Applications (2021) 188:696–723 715

a sufficient approximation of the ε-subdifferentials. Since this part of� f is Pareto
optimal, no acceptable descent direction (cf. (8)) is found and the algorithm stops
(in a (ε, δ)-critical point).

– For x2, the sequence starts zigzagging around the non-optimal part of� f , since the
points are too far away from� f for the algorithm to notice the nondifferentiability.
When a point is foundwith distance less or equal ε to� f , a better descent direction
is found, breaking the zigzagging motion.

– For x3, the sequence has a similar zigzagging motion to the previous case. The
difference is that this time, the sequence moves along � f until a Pareto optimal
point in � f is found.

As described above, the zigzagging behavior when starting in x2 is caused by the
fact that εwas too small for themethod to notice the nondifferentiability. To circumvent
problems like this and quickly move through problematic areas, it is possible to apply
Algorithm 3 consecutively with decreasing values of ε. The result is Algorithm 4. (A
similar idea was implemented in [12].)

Algorithm 4 ε-decreasing nonsmooth descent method
Require: Initial point x1 ∈ R

n , tolerances δ > 0, ε1 > ... > εK > 0, Armijo parameters c ∈]0, 1[, t0 > 0.

1: Set y1 = x1 and i = 1.
2: while i ≤ K do
3: Apply Algorithm 3 with initial point yi and tolerance ε = εi . Let yi+1 be the final element in the

generated sequence.
4: Set i = i + 1.
5: end while

Remark 4.1 In addition to a decreasing sequence of (εi)i , it would be possible to
choose a decreasing sequence of (δi)i in Algorithm 4. A similar strategy was used in
[12]. For εi → 0 and δi → 0, convergence of the resulting sequence (yi)i to critical
points was reported. Since our methods can be seen as a generalization of the method
from [12], this could be a way to obtain convergence to Pareto critical points also in
our case, and the analysis of this is a promising direction for future work.

4.2 Comparison to theMultiobjective Proximal Bundle Method

Wewill nowcompareAlgorithms 3 and 4 to themultiobjective proximal bundle method
(MPB) by Mäkelä, Karmitsa and Wilppu from [18] (see also [20]). As test problems,
we consider the 18 MOPs in Table 1, which are created on the basis of the scalar
problems from [18]. Problems 1 to 15 are convex (and were also considered in [32])
and problems 16 to 18 are nonconvex. Since the expressions of the objective functions
are relatively basic, we are able to differentiate all test problems by hand to obtain
explicit formulas for the subgradients. For each test problem, we choose a 10 × 10
grid of 100 starting points in the corresponding area given in Table 1.

For the MPB, we use the Fortran implementation from [20] with the default param-
eters. For Algorithm 3, we use the parameters ε = 10−3, δ = 10−3, c = 0.25 and

123

716 Journal of Optimization Theory and Applications (2021) 188:696–723

Table 1 Test problems (using objectives from [18])

Nr. fi Area Nr. fi Area

1. CB3, DEM [−3, 3]2 10. QL, LQ [−3, 3]2
2. CB3, QL [−3, 3]2 11. QL, Mifflin 1 [−3, 3]2
3. CB3, LQ [0.5, 1.5]2 12. QL, Wolfe [−3, 3]2
4. CB3, Mifflin 1 [−3, 3]2 13. LQ, Mifflin 1 [0.5, 1.5] × [−0.5, 1]
5. CB3, Wolfe [−3, 3]2 14. LQ, Wolfe [−3, 3]2
6. DEM, QL [−3, 3]2 15. Mifflin 1, Wolfe [−3, 3]2
7. DEM, LQ [−3, 3]2 16. Crescent, Mifflin 2 [−0.5, 1.5]2
8. DEM, Mifflin 1 [−3, 3]2 17. Mifflin 2, WF [−3, 3]2
9. DEM, Wolfe [−3, 3]2 18. Mifflin 2, SPIRAL [−3, 3]2

t0 = max{‖v j‖−1, 1} (i.e., the initial step size t0 is chosen depending on the norm of
the descent direction v j in the current iteration). For Algorithm 4, we additionally use
ε1 = 10−1, ε2 = 10−2, ε3 = 10−3. By this choice of parameters, all three methods
produce results of similar approximation quality in terms of their spread along and
individual distance to the Pareto sets.

To compare the performance of the three methods, we count the number of evalu-
ations of objectives fi , their subgradients ξ ∈ ∂ fi and the number of iterations (i.e.,
descent steps) needed. (This means that one call of f will account for k evaluations
of objectives.) Since the MPB always evaluates all objectives and subgradients in a
point, the value for the objectives and the subgradients are the same here. The results
are shown in Table 2 and are discussed in the following.

– Function Evaluations When considering the number of function evaluations, we
see that Algorithm 3 needs almost 12 times and Algorithm 4 needs almost 4 times
as many evaluations as the MPB. In our methods, these evaluations are used to
check whether a descent direction is acceptable (cf. (8)) and for the computation
of the Armijo step length. One reason for the larger average amount is the fact that
unlike the MPB, our methods are autonomous in the sense that they do not reuse
information from previous iterations, so some information is potentially gathered
multiple times. Additionally, the step length we use is fairly simple, so it might
be possible to lower the number of evaluations by using a more sophisticated step
length (see [33], Chapter 3.5, for an overview of techniques for the smooth, single-
objective case).When comparing ourmethods to each other, we see that Algorithm
4 is a lot more efficient than Algorithm 3 when the number of evaluations is high
and is slightly less efficient when the number of evaluations is low. The reason
for this is that for some problems, some of the iterations of Algorithm 4 will be
redundant, because the (εi−1, δ)-critical point of the previous iteration is already
(εi , δ)-critical.

– Subgradient evaluations For the subgradient evaluations, we see that the MPB
is slightly superior to our methods on problems 3, 5 and 16, but inferior on the
rest. Overall, Algorithm 3 needs 36.4% more and Algorithm 4 needs 20.3% fewer

123

Journal of Optimization Theory and Applications (2021) 188:696–723 717

Table 2 Performance of MPB, Algorithms 3 and 4 for the test problems in Table 1 for 100 starting points

fi #∂ fi # Iter
Nr. MPB Alg.3 Alg.4 MPB Alg.3 Alg.4 MPB Alg.3 Alg.4

1. 1780 6924 7801 1780 1102 1751 761 492 695

2. 2522 14,688 12,263 2522 1906 2351 1151 842 914

3. 880 5625 6447 880 921 1534 340 448 662

4. 4416 103,826 17,664 4416 11,774 3415 1832 4644 1242

5. 2956 30,457 16,877 2956 3479 3037 1377 1616 1161

6. 1640 8357 8684 1640 1209 1802 706 552 736

7. 1702 8736 8483 1702 1307 1832 723 595 739

8. 4226 8283 8620 4226 1318 1914 1204 582 759

9. 1828 8201 8794 1828 1194 1805 793 536 732

10. 1782 6799 7201 1782 1101 1722 684 543 733

11. 4426 52,096 17,594 4426 6311 3189 1964 2442 1206

12. 2482 15,146 12,446 2482 1992 2401 1140 967 1010

13. 2662 36,570 9513 2662 4958 2247 1221 1692 787

14. 4264 95,303 12,227 4264 9524 2571 1774 4379 921

15. 3594 85,936 15,669 3594 9329 3124 1444 3963 1125

16. 2206 20,372 11,094 2206 2596 2400 884 1194 947

17. 2388 7920 5852 2388 1272 1556 868 626 706

18. 11,430 166,707 31,52811,430 16,676 6902 2789 8291 2412

Avg. 3177 37,886 12,153 3177 4332 2531 1203 1911 972

% 100 1192.5 382.5 100 136.4 79.7 100 158.9 80.8

In each row, the best performance for each criterion is written in bold
Shown is the number of function evaluations (# fi), subgradient evaluations (#∂ fi) and iterations (# Iter).
The last two rows contain the rounded average over the respective column and the percentage compared to
the MPB result

evaluations than the MPB. Regarding the comparison of Algorithms 3 and 4, we
observe the same pattern as for the function evaluations.

– Iterations For the number of iterations, besides problem 5, we see the exact same
pattern as for the number of subgradient evaluations, with Algorithm 3 needing
58.9% more and Algorithm 4 needing 19.2% fewer iterations than the MPB. Note
that the MPB can perform null steps, which are iterations where only the bundle
is enriched, while the current point in the descent sequence stays the same.

For our set of test problems, this leads us to the overall conclusion that in terms of
function evaluations, the MPB seems to be superior to our methods, while in terms
of subgradient evaluations, our methods seem to be (almost always) more efficient.
Furthermore, as also discussed in Chapter 1 of [11] for the single-objective case, the
implementation of bundle methods like the MPB (for the general nonconvex case) is
somewhat complicated. The only publicly available implementation that we are aware
of is the Fortran implementation from [20]. Compared to this, our method can be
implemented relatively quickly.

123

718 Journal of Optimization Theory and Applications (2021) 188:696–723

(a) (b)

Fig. 6 Subdivision algorithm. a Applying g to a set of sample points. b Selection step, where boxes with
an empty intersection with the image of g are removed

4.3 Globalization Using a Subdivision Algorithm

Note that so far, we have method (Algorithm 3) where we can put in some initial point
fromR

n and obtain a single (ε, δ)-critical point (close to an actual Pareto optimal point)
as a result. To compute an approximation of the entire Pareto set, the straightforward
approach to extend our method would be to just take a large set of well-spread initial
points and apply our method to each of them. But since there is no guarantee that this
actually yields a good pointwise discretization of the Pareto set, we instead combine
our method with the subdivision algorithm which was developed for smooth problems
in [29]. As this only requires minor adjustments for the nonsmooth case, we will only
sketch the method here and refer to [29] for the details.

The idea is to interpret the nonsmooth descent method as a discrete dynamical
system

x j+1 = g(x j), j = 0, 1, 2, . . . , x0 ∈ R
n, (17)

where g : Rn → R
n is the map that applies one iteration of Algorithm 3 to a point

in R
n . (For the sake of brevity, we have omitted the rest of the input of the algorithm

here.) Since no information is carried over between iterations of the algorithm, the
trajectory (i.e., the sequence) generated by the system (17) is the same as the one
generated by Algorithm 3. In particular, this means that the Pareto set of the MOP is
contained in the set of fixed points of the system (17). Thus, the subdivision algorithm
(which was originally designed to compute attractors of dynamical systems) can be
used to compute (a superset of) the Pareto set.

The subdivision algorithm starts with a large hypercube (or box) inRn that contains
the Pareto set and mainly consists of two steps:

1. Subdivision Divide each box in the current set of boxes into smaller boxes.
2. Selection Compute the image of the union of the current set of boxes under g and

remove all boxes that have an empty intersection with this image. Go to step 1.

In practice, we realize step 1 by evenly dividing each box into 2n smaller boxes and
step 2 by using the image of a set of sample points. The algorithm is visualized in
Fig. 6.

123

Journal of Optimization Theory and Applications (2021) 188:696–723 719

Fig. 7 a Result of the subdivision algorithm applied to problem 16 from Table 1. b Corresponding approx-
imation of the Pareto front (red) and a pointwise discretization of the image of f (black)

Unfortunately, the convergence results of the subdivision algorithm only apply if g
is a diffeomorphism. If the objective function f is smooth, then the descent direction
is at least continuous (cf. [4]) and the resulting dynamical system g, while not being
a diffeomorphism, still behaves well enough for the subdivision algorithm to work.
If f is nonsmooth, then our descent direction is inherently discontinuous close to the
nonsmooth points. Thus, the subdivision algorithm applied to (17) will (usually) fail
to work. In practice, we were able to solve this issue by applying multiple iterations
of Algorithm 3 in g at once instead of just one. Roughly speaking, this smoothes g by
pushing the influence of the discontinuity further away from the Pareto set and was
sufficient for convergence (in our tests).

Figure 7 shows the result of the subdivision algorithm for problem 16 from Table 1.
Here, we used 15 iterations of Algorithm 3 in g, [−0.5, 1.5]2 as the starting box and
applied 8 iterations of the subdivision algorithm. For the approximation of the Pareto
front (i.e., the image of the Pareto set), we evaluated f in all points of the image of
g of the last selection step in the subdivision algorithm. We see that the algorithm
produced a tight approximation of the Pareto set.

4.4 Application to Sparse Optimization

The globalized version of our method from Sect. 4.3 can be used to solve sparse
(single-objective) optimization problems with an
1 penalty term, such as compressed
sensing [22] or the sparse identification of nonlinear dynamics [23]. Abstractly, these
problems can be denoted as

min
x∈Rn

G(x) + λ‖x‖1, (18)

where G : Rn → R is a locally Lipschitz continuous function and λ ≥ 0 is some
weighting parameter. But as an alternative to the classical problem (18), sparse opti-

123

720 Journal of Optimization Theory and Applications (2021) 188:696–723

Fig. 8 a Result of the subdivision algorithm applied to the MOP (19) (red) and multiple solutions of the
classical problem (18) (blue) for Example 4.1. b Corresponding approximation of the Pareto front (red),
the image of the classical solutions under f (blue) and a pointwise discretization of the image of f (black)

mization can also be understood as solving the MOP

min
x∈Rn

f (x) with f (x) =
(

G(x)

‖x‖1
)

. (19)

Note that due to the
1-norm, this MOP is intrinsically nonsmooth (even if G is
smooth). It is easy to see that (18) is a scalarization of the MOP (19), known as the
weighting method [3]. It is well known that every solution of the weighting method
is a Pareto optimal point of the corresponding MOP, but the opposite only holds if G
is convex. So in the general, nonconvex case, solving problem (18) with varying λ

will only yield a subset of the solution to the MOP (19). Furthermore, (19) does not
depend on any parameter, so in contrast to (18) it only has to be solved once.

Example 4.1 Consider the nonconvex function

G : R3 → R, x �→
(

x1 − 1

4

)2

+
(

x2 − 1

2

)2

+ (x3 − 1)4 − 1

2

(
x3 − 1

4

)3

.

Figure 8 shows the result of the subdivision algorithm applied to theMOP (19), both in
variable and image space. Additionally, the solution of (18) (computed via the function
patternsearch in MATLAB) is shown for 30 equidistant λ ∈ [0, 4]. As expected, all
solutions of (18) are elements of the Pareto set. But since G is nonconvex, there is a
large part of the Pareto set which cannot be obtained via (18).

123

Journal of Optimization Theory and Applications (2021) 188:696–723 721

5 Conclusions

In this article, we have developed a new descent method for locally Lipschitz
continuous multiobjective optimization problems, which is based on the efficient
approximation of the Clarke subdifferentials of the objective functions by the Gold-
stein ε-subdifferentials as in [12]. To avoid the computation of entire subdifferentials,
we presented a method to obtain a finite set of ε-subgradients which is sufficient to
compute a descent direction. The idea is to start with a rough approximation by only
a few subgradients and then systematically enrich the approximation with new sub-
gradients until a direction of sufficient descent is found. Together with an Armijo step
length, we obtain a descent method that converges to points which satisfy a neces-
sary condition for Pareto optimality. On a test set with 18 problems, a comparison
showed that the multiobjective proximal bundle method from [18] is superior in terms
of objective function evaluations, but our method requires less subgradient evalua-
tions and iterations. Combination with the subdivision algorithm from [29] resulted in
a method to compute entire Pareto sets of nonsmooth MOP. Finally, we showed that
our method can be useful for solving sparse optimization problems, which occur in
applications such as compressed sensing [22] or the sparse identification of nonlinear
dynamics [23].

For future work, we believe that the extension to constrainedMOPs can be achieved
in a straightforward manner by adding constraints to the problem (7) to ensure that
the descent direction maintains the feasibility of the descent sequence (similar to [6]
for smooth problems). Additionally, in [34], the classical gradient sampling method
for scalar nonsmooth optimization was generalized by allowing variable norms in the
direction finding problem, increasing its efficiency. We expect that a similar general-
ization can be performed for problem (7), which potentially yields a similar increase in
efficiency. Additional potential for increased performance lies in more advanced step
length schemes as well as descent directions with memory (for instance, conjugate
gradient like). On a related note, it would make sense to compare the performance
of our method not only to the MPB, but also to proximal point methods for MOPs
[16] and evolutionary approaches [1,2]. Furthermore, it might be possible to extend
our method to infinite-dimensional nonsmooth MOPs [35,36]. Finally, for nonsmooth
MOPs with large numbers of objectives (which are sometimes referred to as many-
objective optimization problems), we believe that considering subsets of objectives
is a very promising and efficient approach (cf. [37] for smooth problems). However,
theoretical advances are required for locally Lipschitz continuous problems.

Acknowledgements This research was funded by the DFG Priority Programme 1962 “Non-smooth and
Complementarity-based Distributed Parameter Systems.”

Funding Open Access funding enabled and organized by Projekt DEAL.

Data Availability Statement Data sharing is not applicable to this article as no datasets were generated or
analyzed during the current study.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,

123

722 Journal of Optimization Theory and Applications (2021) 188:696–723

and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Deb, K.:Multi-objective Optimization using Evolutionary Algorithms, vol. 16.Wiley, Hoboken (2001)
2. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm:

NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
3. Miettinen, K.: Nonlinear Multiobjective Optimization. Springer, New York (1998)
4. Fliege, J., Svaiter, B.F.: Steepest descent methods for multicriteria optimization. Math. Methods Oper.

Res. 51(3), 479–494 (2000)
5. Schäffler, S., Schultz, R., Weinzierl, K.: Stochastic method for the solution of unconstrained vector

optimization problems. J. Optim. Theory Appl. 114(1), 209–222 (2002)
6. Gebken, B., Peitz, S., Dellnitz, M.: A descent method for equality and inequality constrained multiob-

jective optimization problems. In: Trujillo, L., Schütze, O., Maldonado, Y., Valle, P. (eds.) Numerical
and Evolutionary Optimization—NEO 2017, pp. 29–61. Springer, Cham (2019)

7. Fliege, J., Graa, L., Svaiter, B.F.: Newton’s method for multiobjective optimization. SIAM J. Optim.
20, 602–626 (2008)

8. Wang, J., Hu, Y., Yu, C.K.W., Li, C., Yang, X.: Extended Newton methods for multiobjective opti-
mization: majorizing function technique and convergence analysis. SIAM J. Optim. 29(3), 2388–2421
(2019). https://doi.org/10.1137/18m1191737

9. Shor, N.: Minimization Methods for Non-differentiable Function. Springer, Berlin (1985)
10. Kiwiel, K.C.: Proximity control in Bundle methods for convex nondifferentiable minimization. Math.

Program. 46, 105–122 (1990)
11. Burke, J., Lewis, A., Overton, M.: A robust gradient sampling algorithm for nonsmooth, nonconvex

optimization. SIAM J. Optim. 15, 751–779 (2005)
12. Mahdavi-Amiri, N., Yousefpour, R.: An effective nonsmooth optimization algorithm for locally Lips-

chitz functions. J. Optim. Theory Appl. 155(1), 180–195 (2012)
13. Attouch, H., Garrigos, G., Goudou, X.: A dynamic gradient approach to Pareto optimization with

nonsmooth convex objective functions. J. Math. Anal. Appl. 422(1), 741–771 (2015)
14. Bello-Cruz, Y.: A subgradient method for vector optimization problems. SIAM J. Optim. 23, 2169–

2182 (2013)
15. Cruz Neto, J., Silva, G., Ferreira, O., Lopes, J.: A subgradient method for multiobjective optimization.

Comput. Optim. Appl. 54, 461–472 (2013)
16. Bonnel, H., Iusem, A.N., Svaiter, B.F.: Proximal Methods in Vector Optimization. SIAM J. Optim.

15(4), 953–970 (2005). https://doi.org/10.1137/s1052623403429093
17. Grad, S.M.: A survey on proximal point type algorithms for solving vector optimization problems. In:

Bauschke, H.H., Burachik, R.S., Luke, D.R. (eds.) Splitting Algorithms, Modern Operator Theory, and
Applications, pp. 269–308. Springer, Berlin (2019). https://doi.org/10.1007/978-3-030-25939-6_11

18. Mäkelä, M.M., Karmitsa, N., Wilppu, O.: Multiobjective proximal bundle method for nonsmooth
optimization. TUCS technical report No 1120, Turku Centre for Computer Science, Turku (2014)

19. Kiwiel, K.C.: A descent method for nonsmooth convex multiobjective minimization. Large Scale Syst.
8(2), 119–129 (1985)

20. Mäkelä,M.M.:Multiobjective proximal bundlemethod for nonconvexnonsmooth optimization: fortran
subroutine MPBNGC 2.0. Rep. Depart. Math. Inf. Technol. Ser. B. Sci. Comput. B 13, 2003 (2003)

21. Goldstein, A.: Optimization of Lipschitz continuous functions. Math. Program. 13, 14–22 (1977)
22. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Rev. 43(1),

129–159 (2001)
23. Brunton, S.L., Proctor, J.L., Kutz, J.N.: Discovering governing equations from data by sparse identi-

fication of nonlinear dynamical systems. In: Proceedings of the National Academy of Sciences, pp.
3932–3937 (2016)

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1137/18m1191737
https://doi.org/10.1137/s1052623403429093
https://doi.org/10.1007/978-3-030-25939-6_11

Journal of Optimization Theory and Applications (2021) 188:696–723 723

24. Clarke, F.: Optimization and Nonsmooth Analysis. Society for Industrial and Applied Mathematics
(1983)

25. Mäkelä, M.M., Eronen, V.P., Karmitsa, N.: On Nonsmooth Multiobjective Optimality Conditions with
Generalized Convexities, pp. 333–357. Springer, New York (2014)

26. Cheney, W., Goldstein, A.A.: Proximity maps for convex sets. Proc. Am. Math. Soc. 10(3), 448–450
(1959)

27. Helou, E.S., Santos, S.A., Simes, L.E.A.: On the differentiability check in gradient sampling methods.
Optim. Methods Softw. 31(5), 983–1007 (2016)

28. Kiwiel, K.C.: A nonderivative version of the gradient sampling algorithm for nonsmooth nonconvex
optimization. SIAM J. Optim. 20(4), 1983–1994 (2010)

29. Dellnitz, M., Schütze, O., Hestermeyer, T.: Covering Pareto sets by multilevel subdivision techniques.
J. Optim. Theory Appl. 124(1), 113–136 (2005)

30. Kiwiel, K.C.: Methods of Descent for Nondifferentiable Optimization. Springer, Berlin (1985)
31. Mäkelä,M.M.,Neittaanmäki, P.:NonsmoothOptimization:Analysis andAlgorithmswithApplications

to Optimal Control. World Scientific, Cambridge (1992)
32. Montonen, O., Karmitsa, N., Mäkelä, M.M.: Multiple subgradient descent bundle method for convex

nonsmooth multiobjective optimization. Optimization 67(1), 139–158 (2018)
33. Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (2006). https://doi.org/10.1007/

978-0-387-40065-5
34. Curtis, F.E., Que, X.: An adaptive gradient sampling algorithm for non-smooth optimization. Optim.

Methods Softw. 28(6), 1302–1324 (2013)
35. Mordukhovich, B.: Multiobjective optimization problems with equilibrium constraints. Optim. Meth-

ods Softw. 117, 331–354 (2008)
36. Christof, C., Müller, G.: Multiobjective Optimal Control of a Non-smooth Semilinear Elliptic Partial

Differential Equation. European Series in Applied and Industrial Mathematics (ESAIM): Control,
Optimisation and Calculus of Variations (2020)

37. Gebken, B., Peitz, S., Dellnitz, M.: On the hierarchical structure of Pareto critical sets. J. Global Optim.
73(4), 891–913 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1007/978-0-387-40065-5

	An Efficient Descent Method for Locally Lipschitz Multiobjective Optimization Problems
	Abstract
	1 Introduction
	2 Nonsmooth Multiobjective Optimization
	3 Descent Method for Nonsmooth MOPs
	3.1 The Epsilon-Subdifferential
	3.2 Efficient Computation of Descent Directions

	4 Numerical Examples
	4.1 Typical Behavior
	4.2 Comparison to the Multiobjective Proximal Bundle Method
	4.3 Globalization Using a Subdivision Algorithm
	4.4 Application to Sparse Optimization

	5 Conclusions
	Acknowledgements
	References

