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Abstract
We suggest a new approach to creation of general market equilibrium models involv-
ing economic agents with local and partial knowledge about the system and under
different restrictions. The market equilibrium problem is then formulated as a quasi-
variational inequality that enables us to establish existence results for the model in
different settings. We also describe dynamic processes, which fall into information
exchange schemes of the proposed market model. In particular, we propose an itera-
tive solution method for quasi-variational inequalities, which is based on evaluations
of the proper market information only in a neighborhood of the current market state
without knowledge of the whole feasible set and prove its convergence.

Keywords General market equilibrium · Quasi-variational inequality · Local
knowledge · Existence of solutions · Iterative processes

Mathematics Subject Classification 91B50 · 91B55 · 49J40 · 65K10

1 Introduction

Variational inequalities give a suitable common format for many applied problems
arising in Economics, Mathematical Physics, Transportation, Communication Sys-
tems, Engineering and are closely related with other general problems in Nonlinear
Analysis, such as fixed point, game equilibrium, and optimization problems. For this
reason, their theory and solution methods are developed rather well; see, e.g., [1–5]
and references therein. Nevertheless, many models describing rather complex behav-
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ior of systems with interdependent elements require a somewhat more general format,
where the fixed feasible set is replaced with a set-valued mapping. This modification
leads to the so-called quasi-variational inequalities; see, e.g., [1,3,6–9] and references
therein. However, these problems are much more difficult for solution than the usual
variational inequalities and the existing general solution methods are very expensive
and applicable mostly for small dimensional problems; see, e.g., [7,10,11].

For this reason, we are interested in revealing new general classes of applications,
which can be formulated as (quasi-)variational inequalities in order to derive existence
properties in a unified manner and enable us to develop efficient methods for finding
their solution under rather natural assumptions that may be also treated as dynamic
processes converging to equilibrium states and justifying these equilibrium concepts.
In this work, we intend to present implementation of this approach for general mar-
ket equilibrium models. Traditionally, these models play one of the main roles in
Economics. They in particular indicate ways of equilibrating different interests and
opportunities of active elements (agents, participants) involved in economic systems
and may serve as a basis for description of behavior of these very complex systems.

We recall that investigation of the general equilibriummodels dates back to the book
by Walras [12]. Since then, a number of different kinds of thesemodelswere proposed;
see [3,13–17]. More detailed surveys and expositions of the basic contributions in this
field can be found in [18,19]. Thesemodels usually describemarkets of a great number
of economic agents (customers and producers) so that actions of any separate agent
cannot impact the state of the whole system; hence, any agent utilizes some integral
system parameters (say, prices), rather than the information about the behavior of
other separate agents. The traditional approach is based on the assumption that the
agents are able to determine precisely their desirable collections of commodities for
any vector of common market prices. Then, an equilibrium market state is defined
from the complementarity conditions between the price and excess supply of each
commodity since the usual material balance condition needs additional restrictive
assumptions. At the same time, it holds for each commodity with positive equilibrium
price; see, e.g., [18,19].

In this paper, we suggest some other approach to creation of general equilibrium
models. The current market state is supposed to be defined by the vector of transaction
quantities of the agents. These quantities satisfy the balance equation. We suppose
that the agents have only partial and local knowledge about the current and future
behavior of this so complicated system and evaluate their feasible volume transaction
andprice sets in a neighborhoodof the currentmarket state.Due to these limitations, the
general market equilibrium problem is formulated as a quasi-variational inequality and
corresponds to the local maximal market profit state concept. This approach enables
us to utilize well developed tools from the theory of quasi-variational inequalities
for establishing existence results. However, finding market equilibrium points by an
iterative solutionmethod seems rather difficult in the general case.We suggest iterative
processes, which have rather natural treatment and are convergent for some classes of
market equilibriumproblems. In particular,we propose an iterative solutionmethod for
quasi-variational inequalities, which is based on evaluations of the market information
in a neighborhood of the current market state rather than whole feasible set, which
may be unknown, and prove its convergence under rather weak assumptions.
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We outline now briefly the further organization of the paper. In Sect. 2, we recall
some auxiliary properties and facts from the theory of quasi-variational inequalities. In
Sect. 3, we describe a single commodity market equilibrium model and its variational
inequality re-formulation. In Sect. 4, we describe a general multi-commodity market
equilibrium model in the form of a quasi-variational inequality and give its basic
properties. Implementation issues of this model are discussed in Sect. 5. Section 6
involves description and substantiation of some dynamic market processes converging
to equilibrium points. In Sect. 7, we give a comparison of the presented model with
the existing basic general and partial equilibrium models. Section 8 contains some
conclusions.

2 Basic Preliminaries

We first recall several continuity properties of set-valued mappings.

Definition 2.1 Let W and V be convex sets in the l-dimensional Euclidean space R
l ,

W ⊆ V , and let T : V → �(Rl) be a set-valued mapping. The mapping T is said to
be

(a) upper semicontinuous (u.s.c.) onW , if for each point v ∈ W and for each open set
U such thatU ⊇ T (v), there is an open neighborhood Ṽ of v such that T (w) ⊂ U
whenever w ∈ Ṽ

⋂
W ;

(b) lower semicontinuous (l.s.c.) on W , if for each point v ∈ W and for each open
set U such that U

⋂
T (v) �= ∅, there is an open neighborhood Ṽ of v such that

U
⋂

T (w) �= ∅ whenever w ∈ Ṽ
⋂

W ;
(c) continuous on W , if it is both u.s.c. and l.s.c. on W .

Here and below, �(X) denotes the power set of X , i.e., the family of all nonempty
subsets of X . Let H̃ be a set in R

l and let H : H̃ → �(H̃) and G : H̃ → �(Rl) be
set-valued mappings. Then, we can define the quasi-variational inequality problem
(QVI for short): Find x∗ ∈ H(x∗) such that

∃g∗ ∈ G(x∗), 〈g∗, y − x∗〉 ≥ 0 ∀y ∈ H(x∗). (1)

If the feasible mapping H is constant, problem (1) reduces to the usual variational
inequality problem (VI for short).

It is well known that QVIs can be converted into the fixed point format by using
the projection mapping; see [7, Theorem 5.1]. Let πX (x) denote the projection of a
point x onto a set X .

Proposition 2.1 Suppose that the sets H(x) and G(x) are nonempty, convex and com-
pact for each x ∈ H̃ . Then, QVI (1) is equivalent to the fixed point problem

x∗ ∈ πH(x∗)[x∗ − θG(x∗)],

for some θ > 0.
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We now give existence results for general QVIs on compact sets; see, e.g., [3,
Theorem 9.14].

Proposition 2.2 Suppose that the set H̃ is convex and compact, themapping H : H̃ →
�(H̃) is continuous on H̃ , the mapping G : H̃ → �(Rl) is upper semi-continuous
on H̃ , the sets H(x) and G(x) are nonempty, convex and compact for each x ∈ H̃ .
Then, QVI (1) has a solution.

Moreover, it was noticed in [8, Theorem3] that the above conditionsmay be relaxed,
if the feasible mapping value includes the current point.

Proposition 2.3 Suppose that the set H̃ is nonempty, convex and compact, themapping
G : H̃ → �(Rl) is upper semi-continuous on H̃ , the set G(x) is nonempty, convex
and compact for each x ∈ H̃ , x ∈ H(x) for all x ∈ H̃ . Then, QVI (1) has a solution.

3 A Single Commodity Market EquilibriumModel

For the simplicity of exposition,we begin our considerations froma simple equilibrium
market model of a homogeneous commodity, which was suggested in [20–22] for
description of a simplemarket based on a suitable auction implementationmechanism.
Its further development and applications are described in [23–26].

The model involves a finite number of traders and buyers of this commodity, their
index sets will be denoted by I and J , respectively. Hence, the initial roles of agents
are fixed. For each i ∈ I , the i th trader chooses some offer value xi in his/her capacity
segment [α′

i , β
′
i ] and has a price function gi . Similarly, for each j ∈ J , the j th buyer

chooses some bid value y j in his/her capacity segment [α′′
j , β

′′
j ] and has a price function

h j . The signs of all the lower and upper bounds are arbitrary in general, but the standard
choice is to set α′

i = 0 and α′′
j = 0; hence, the upper bounds are chosen to be positive.

Then, we can define the feasible set of offer/bid volumes

D =
{

(x, y) : ∑

i∈I
xi = ∑

j∈J
y j ;

xi ∈ [α′
i , β

′
i ], i ∈ I , y j ∈ [α′′

j , β
′′
j ], j ∈ J

}
,

(2)

where x = (xi )i∈I , y = (y j ) j∈J . We suppose that the prices may in principle depend
on offer/bid volumes of all the participants, i.e., gi = gi (x, y) and h j = h j (x, y).
We say that a pair (x̄, ȳ) ∈ D constitutes a market equilibrium point if there exists a
number λ̄ such that

gi (x̄, ȳ)

⎧
⎨

⎩

≥ λ̄, if x̄i = α′
i ,= λ̄, if x̄i ∈ (α′
i , β

′
i ),≤ λ̄, if x̄i = β ′

i , for i ∈ I ,
(3)
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and

h j (x̄, ȳ)

⎧
⎪⎨

⎪⎩

≤ λ̄, if ȳ j = α′′
j ,

= λ̄, if ȳ j ∈ (α′′
j , β

′′
j ),

≥ λ̄, if ȳ j = β ′′
j , for j ∈ J .

(4)

Observe that the number λ̄ can be treated as amarket clearing price, which equilibrates
the market and yields also the offer/bid volumes for all the participants. In fact, the
minimal offer (bid) volumes correspond to traders (buyers) whose prices are greater
(less) than λ̄, and the maximal offer (bid) volumes correspond to traders (buyers)
whose prices are less (greater) than λ̄. The prices of other participants are equal to
λ̄, and their volumes may be arbitrary within their capacity bounds, but should be
subordinated to the balance equation. It follows that agents’ prices at equilibrium may
in general differ from the market clearing price.

In [20] (see also [21,22]), the following basic relation between the equilibrium
problem (2)–(4) and a VI was established.

Proposition 3.1 (a) If (x̄, ȳ, λ̄) satisfies (3)–(4) and (x̄, ȳ) ∈ D, then (x̄, ȳ) solves
VI:
Find (x̄, ȳ) ∈ D such that

∑

i∈I
gi (x̄, ȳ)(xi − x̄i ) −

∑

j∈J

h j (x̄, ȳ)(y j − ȳ j ) ≥ 0 ∀(x, y) ∈ D. (5)

(b) If a pair (x̄, ȳ) ∈ D solves VI (5), then there exists λ̄ such that (x̄, ȳ, λ̄) satisfies
(3)–(4).

Therefore, we can apply various results from the theory of VIs (see, e.g., [21]) for
investigation and solution of the above equilibrium problem. For instance, if the set D
in (1) is nonempty and bounded, the functions gi and h j are continuous for all i ∈ I
and j ∈ J , and then VI (5) has a solution.

4 A General Multi-commodity Market EquilibriumModel

We now present a multi-commodity extension of the model described in Sect. 3, thus
also extending those in [22,24].

The model is an n-commodity market involving m economic agents, and they are
producers and consumers with respect to these commodities. We suppose that the
agents can strike preliminary (or virtual) bargains until an equilibrium state will be
attained. Then, all these deals become fixed. Denote by N = {1, . . . , n} and I =
{1, . . . ,m}, the index sets of commodities and agents at this market, so that i ∈ I
indicates the i th agent and j ∈ N indicates the j th commodity. Observe that roles of
the agents with respect to the commodities at the market may be changed. Next, let the
vector xi = (xi1, . . . , xin)� define the current transaction quantities of commodities
of the i th agent, so that xi j > 0 means that his/her current sold volume of the j th
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commodity equals xi j , whereas xi j < 0 means that his/her current purchased volume
of the j th commodity equals −xi j . The current market state is thus supposed to be
completely defined by the virtual volume vector x = (xi )i∈I .

Behavior of economic agents may in general depends on their current various goals
and restrictions. In ourmodel, the agents determine first their current particular feasible
volume transaction sets Yi (x) ⊆ Ỹi for i ∈ I , which are supposed to be nonempty
sets in R

n and attributed to each market state x . Similarly, the agents determine their
feasible price sets Pi (x) ⊆ P̃i for i ∈ I , which are also supposed to be nonempty sets
in R

n+ and attributed to each market state x . The sets Yi (x) and Pi (x) are different
for each agent i and depend on actions of all the agents in our model. The sets Ỹi and
P̃i , i ∈ I give the total market transaction bounds (respectively, the total market price
bounds) that may be unknown to the agents in general. These sets define the set-valued
market transaction mapping x �→ Y (x) on the set Ỹ , where

Y (x) =
∏

i∈I
Yi (x), Ỹ =

∏

i∈I
Ỹi ,

and the set-valued feasible market price mapping x �→ P(x) on the set Ỹ where

P(x) =
∏

i∈I
Pi (x), P(x) ⊆ P̃ =

∏

i∈I
P̃i ∀x ∈ Ỹ .

Both volume and price mappings describe the behavior of the economic agents with
respect to market states. Using these sets, the agents can make some transactions
and change their current transaction volumes. Next, any market transaction must also
satisfy the balance equation. Hence, the particular feasible volume transaction sets
togetherwith the balance equation determine the set-valued feasiblemarket transaction
mapping x �→ D(x) with the values

D(x) =
{

y ∈ R
nm :

∑

i∈I
yi = 0, yi ∈ Yi (x), i ∈ I

}

. (6)

We say that a vector x̄ ∈ D(x̄) is a market equilibrium point if

∃ p̄ ∈ P(x̄), 〈 p̄, y − x̄〉 ≥ 0 ∀y ∈ D(x̄). (7)

This problem can be treated as an extension of VI (5) to the multi-commodity case.
Therefore, the general multi-commodity market equilibrium problem is formulated as
a QVI. We observe that the value

−〈 p̄, x̄〉 = −
∑

i∈I
〈 p̄i , x̄ i 〉

gives precisely the difference between the total bought and sold amount at the current
market state x̄ and current price vector p̄ of the agents, i.e., it is the current possible
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profit of the market. Therefore, the market equilibrium point x̄ ∈ D(x̄) can be treated
as the state that provides the maximal possible market profit at the current prices
of the agents subject to the constraints determining the balance and current feasible
transactions.

We now give analogues of equilibrium conditions (3)–(4) for the above problem.
We will take the following basic assumptions.

(A1) The sets Ỹi ⊂ R
n are convex and compact for all i ∈ I . At each state x ∈ Ỹ ,

the sets Yi (x) and Pi (x) are nonempty, convex and compact for all i ∈ I .
Let us define the problem of finding a feasible point x̄ ∈ D(x̄) and a vector λ̄ ∈ R

n

such that

∃ p̄ ∈ P(x̄),
∑

i∈I
〈 p̄i − λ̄, yi − x̄ i 〉 ≥ 0 ∀y ∈ Y (x̄). (8)

Proposition 4.1 Suppose that the assumptions in (A1) are fulfilled. Then:

(a) If a point x̄ ∈ D(x̄) solves QVI (6)–(7), then there exists λ̄ such that (x̄, λ̄) satisfies
(8).

(b) If a pair (x̄, λ̄) ∈ D(x̄) × R
n satisfies (8), then x̄ solves QVI (6)–(7).

Proof If x̄ ∈ D(x̄) solves QVI (6)–(7), then it solves the optimization problem

min → {〈 p̄, y〉 : y ∈ D(x̄)} . (9)

By using the suitable Karush–Kuhn–Tucker theorem for this problem (see, e.g., [27,
Corollary 28.2.2]), we obtain that (8) gives its necessary and sufficient optimality
condition. Conversely, let a pair (x̄, λ̄) ∈ D(x̄) × R

n satisfy (8). Using the same
Karush–Kuhn–Tucker theorem, we obtain that x̄ solves (9), hence it is a solution to
QVI (6)–(7). ��

Since Y (x) and P(x) are Cartesian product sets, problem (8) can be replaced by
the following equivalent system of partial QVIs:

∃ p̄i ∈ Pi (x̄), 〈 p̄i − λ̄, yi − x̄ i 〉 ≥ 0 ∀yi ∈ Yi (x̄), ∀i ∈ I . (10)

It is clear that (8) (or (10)) represents an analogue of the equilibrium conditions
in (3)–(4) for the above multi-commodity market equilibrium model, hence the point
λ̄ in (8), which is nothing but the Lagrange multiplier vector corresponding to the
balance constraint, should be treated as the genuine market equilibrium price vector
for this model. We observe that the equilibrium prices of the agents do not in general
coincide with λ̄ due to the presence of the constraints determining the feasible volume
transaction sets Yi (x̄) for all i ∈ I . This is the case even for the simplest single
commodity equilibriummodel due to (3)–(4). It follows that the agents cannotmaintain
in general the unique market prices at a given state of the market as in the usual
Walrasian models.

We give the existence result for the market equilibrium problem as proper special-
ization of similar properties for general QVIs from Sect. 2.
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(A2) The mapping Y : Ỹ → �(Rnm) is continuous on Ỹ , and the mapping P :
Ỹ → �(Rnm) is upper semi-continuous on Ỹ .

Theorem 4.1 Suppose that assumptions (A1) and (A2) are fulfilled. Then, QVI (6)–(7)
has a solution.

The assertion follows from Proposition 2.2. Moreover, it seems now natural to
suppose that the feasible volume transaction set of each i th agent Yi (x) will contain
the current volume vector xi . This assumption allows us to take the existence result
for the usual VIs as in Proposition 2.3. Set

D̃ =
{

y ∈ Ỹ :
∑

i∈I
yi = 0

}

; (11)

cf. (2).
(A2′) The mapping P : Ỹ → �(Rnm) is upper semi-continuous on Ỹ , x ∈ Y (x)

for all x ∈ D̃, D̃ �= ∅.

Theorem 4.2 Suppose that assumptions (A1) and (A2′) are fulfilled. Then,QVI (6)–(7)
has a solution.

Proof Let us take the following VI: Find a point x̄ ∈ D̃ such that

∃ p̄ ∈ P(x̄), 〈 p̄, y − x̄〉 ≥ 0 ∀y ∈ D̃.

Under the above assumptions, it must have a solution; see, e.g., [3, Theorem 9.9]. Due
to (A2′), it also solves QVI (6)–(7). ��

5 Implementation Issues

The multi-commodity equilibriummodel presented in Sect. 4 seems incomplete with-
out a more detailed description of feasible transaction and price sets attributed to each
state x of the market. We now intend to discuss some approaches to determination of
these sets as building blocks of the whole market model. We suppose that the agents
have only partial and local knowledge about themarket system. Hence, they are able to
only evaluate their market, industry and social goals and restrictions in a neighborhood
of the current market state. That is, each agent may evaluate his/her temporal capacity
bounds by using the information about the current supply or demand of some related
commodities as well as their bounds. For this reason, the feasible transaction set Yi (x)
of each i th economic agent is determined by his/hermarket capacity constraints. These
constraints can reflect both personal and common market or technology relationships
among several commodities that can be actively utilized by different agents. Also, the
initial distribution of commodity endowments must have clear impact on the feasible
transaction sets. For instance, the sets Yi (x) can be determined as intersections of per-
sonal and common obligatory feasible sets. Let Ỹi ⊂ R

n denote the set of obligatory
personal capacity constraints of the i th agent, which is independent of market states.
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Also, let Wi ⊂ R
nm denote the set of common market volume constraints that are

obligatory for the i th agent and may reflect common environmental or transportation
capacity restrictions. Then, the feasible transaction set Yi (x) at the state x is defined
as follows:

Yi (x) = Ỹi
⋂

Y ′
i (x), where Y ′

i (x) =
{
yi ∈ R

n : (x−i , yi ) ∈ Wi

}
.

In the general case, the sets Wi may also depend on the current state x , i.e., their
precise values may be unknown. Similarly, each agent may insert also the set of
desirable market volume distributions in the above definition. But in the simplest case
Yi (x) is a box-constrained set of the form

Yi (x) = [ci (x), di (x)], (12)

where ci (x) ∈ R
n and di (x) ∈ R

n give the current estimates of market capacity
bounds by the i th economic agent.

The evaluation of the current feasible price set Pi (x) by the i th economic agent can
be based on possible industrial capacity and social constraints and the agent’s profit
as the goal function. In other words, each i th agent solves the optimization problem:

max
pi∈Vi (x)

→ 〈pi , xi 〉, (13)

where Vi (x) ⊂ R
n+ and takes its solution set as Pi (x), i.e.,

Pi (x) = Argmax{〈pi , xi 〉 : pi ∈ Vi (x)}.

The set Pi (x) is non-empty if we impose certain additional assumptions on Vi (x). For
instance, this is the case if Vi (x) is non-empty and compact. Then, μi (x) = 〈pi , xi 〉
for some pi ∈ Vi (x) is the optimal value function for (13). We note that 〈pi , xi 〉
gives precisely the profit of the i th agent within his/her own prices. The feasible set
Vi (x) in (13) may depend on the current state x and reflect also utilization of common
waste treatment plants or environmental restrictions for some industry technologies
of different agents, partial budget type restrictions, common transportation capacity
restrictions, application of nonlinear production technologies, utilization of special
financial tools, etc.

Let us take the simplest case with independent linear production technologies. For
each xi define the index sets N ′

i and N ′′
i , which determine the agent’s supply and

demand commodities. It follows that xi j ≥ 0 if j ∈ N ′
i and xi j ≤ 0 if j ∈ N ′′

i . Then,
Vi (x) ≡ Vi becomes a polyhedral set, i.e.,

Vi =
⎧
⎨

⎩
vi ∈ S

n+ :
∑

s∈N ′′
i

ais jvis ≥ vi j , j ∈ N ′
i

⎫
⎬

⎭
, (14)
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where ais j is the amount of the sth commodity used for production of one unit of the j th
commodity by the i th economic agent. The inequalities in (14) mean that the minimal
price pi j of the j th commodity cannot be greater than the expenses for all the factors
(resources) used for production of one unit of this commodity. Also,

S
n+ =

⎧
⎨

⎩
z ∈ R

n+ :
n∑

j=1

z j = 1

⎫
⎬

⎭

is the standard simplex in R
n . Hence, the relative price scale is taken here. Then,

(13)–(14) reduces to the linear programming problem:

max
pi∈Vi

→ 〈pi , xi 〉, (15)

besides, we have

Pi (x) = ∂μi (x
i ), (16)

i.e., the solution set of problem (14)–(15) is the sub-differential of its optimal value
functionμi (xi ) = μi (x), which is clearly convex.Due to (16),QVI (6)–(7) is rewritten
as follows:

∃ p̄i ∈ ∂μi (x̄
i ), ∀i ∈ I ,

∑

i∈I
〈 p̄i , yi − x̄ i 〉 ≥ 0 ∀y = (yi )i∈I ∈ D(x̄). (17)

If we set

μ(x) =
∑

i∈I
μi (x

i ), (18)

and take the sets Yi (x), i ∈ I , in accordance with (12), then the above QVI becomes
equivalent to the quasi-optimization problem: Find a point x̄ ∈ D(x̄) such that

μ(x̄) ≥ μ(y) ∀y ∈ D(x̄), (19)

since the function μ and set D(x) are convex. This means that the set of market
equilibrium states coincides with the set of the points with minimal pure expenses (or
maximal profit) of the whole market. If the sets Vi , i ∈ I , are nonempty, the set D(x)
given in (6) is nonempty and D(x) ⊆ Ỹ for each state x ∈ Ỹ and some convex and
compact set Ỹ , and the functions ci and di are continuous on Ỹ , then Proposition 2.2
implies that QVI (17) has a solution and this assertion is true for the quasi-optimization
problem (18)–(19).

Example 5.1 Let us give an example of the feasible price mapping calculation in case
(14)–(15). We take a separate agent and remove the index i for simplicity. Let n = 3,
N ′ = {1}, N ′′ = {2, 3}, a21 = 2, a31 = 3. Then, problem (14)–(15) takes the form:
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max → {x1 p1 + x2 p2 + x3 p3 : 2p2 + 3p3 ≥ p1, p1 + p2 + p3 = 1,
p1 ≥ 0, p2 ≥ 0, p3 ≥ 0} .

For x ′ = (1,−1,−1)�, we have Pi (x ′) = {p′}, where p′ = (3/4, 0, 1/4)�, the
optimal value μ∗ = 1/2. For x ′′ = (1,−2,−3)�, we have Pi (x ′′) = [p′, p′′], where
p′′ = (2/3, 1/3, 0)�, μ∗ = 0. Also, for x ′′′ = (1,−2,−4)� we have Pi (x ′) = {p′′},
μ∗ = 0. In the general case, the feasible price value may be one of vertices or faces
of the polyhedral set Vi depending of the volume vector xi .

We observe that the non-industrial consumption commodities can be taken into
account similarly. The agent should only indicate that consumption expenses per unit
of the sth commodity will be covered with selling all the commodities such that
ais j > 0. The coefficient values ais j will give the corresponding relative scale, i.e.,
the relative weights of commodities for any agent. In such a way, this model can in
principle describe a pure exchange market. Similarly, common waste treatment or
environment restrictions can be inserted in the model. In the general case, all these
parameters and the index sets N ′

i and N ′′
i may also depend on the current state x , i.e.,

the agents can change their preferences for commodities with respect to the current
distribution of volumes.

We intend now to illustrate the process of creation of the whole market model by
using some of the proposed partial blocks.

Example 5.2 (A market equilibrium model with treatment of industrial wastes)
Consider a market system withm economic agents and n commodities. Some of these
economic agents are industrial firms whose outputs may contain polluted substances,
which require certain treatment by using the corresponding technologies. As above,
we denote by I = {1, . . . ,m} and N = {1, . . . , n} the index sets of agents and
commodities. For simplicity, we suppose that there exists a unique firm denoted as
agent m having plants for treatment of these polluted substances and set J = I \ {m}.
For each agent i ∈ J , the index sets N ′

i , N
′′
i , and Li of supply and demand commodities

and polluted substances, respectively, are supposed to be fixed. Although polluted
substances belong to outputs, we consider them as demand commodities, since the i th
agent buys their treatment service from the mth agent. It follows that Li ⊂ N ′′

i . Also,
let

L =
⋃

i∈J

Li

denote the index set of all the polluted substances and let l denote the number of these
substances. Next, we suppose that firmm is a municipal (or state) property and that its
prices are under regulation, i.e., its price mapping pm(x) is single-valued and given
explicitly so that the unit treatment price (charge) pms(x) = pms(xm) for the sth
substance may in principle depend on the volumes of all the polluted substances. The
feasible volume transaction set Ỹm ⊂ R

l is supposed to be fixed and nonempty, convex
and compact. For simplicity,we suppose that all the other agents have linear production
technologies and fixed capacity bounds. As above, let ais j denote the amount of the sth
commodity used for production of one unit of the j th commodity by the i th economic
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agent. If s ∈ Li , this means that the sth substance appears as a by-product of the j th
commodity and needs the treatment service. Then, the feasible volume transaction set
Yi ⊂ R

n of agent i ∈ J is defined as follows:

Yi =
⎧
⎨

⎩
yi ∈ R

n : yi j ∈ [αi j , βi j ], j ∈ N ,

∑

j∈N ′
i

ais j yi j + yis ≤ 0, s ∈ N ′′
i \ Li ,

∑

j∈N ′
i

ais j yi j + yis = 0, s ∈ Li

⎫
⎬

⎭
,

and supposed to be nonempty and bounded. The feasible price set Pi (x) for i ∈ J
is then represented as the sum Pi (x) = P ′

i (x) + P ′′
i (x), due to the presence of two

different sources of expenses. In order to define the first term P ′
i (x), we take the same

optimization problem (15), but modify the set Vi to be

Vi =
⎧
⎨

⎩
vi ∈ S

n+ :
∑

s∈N ′′
i \Li

ais jvis ≥ vi j , j ∈ N ′
i

⎫
⎬

⎭
,

it is only supposed to be nonempty. The treatment expenses are not included in the
first term, and they determine the second term components

P ′′
i j (x) =

∑

s∈Li

ais j pms(x
m).

The feasible volume transaction set Ym(x) is defined as follows:

Ym(x) =
{

ym ∈ Ỹm :
∑

i∈J

δis xis + yms = 0, s ∈ N

}

,

where the set Ỹm ⊂ R
n reflects the treatment technologies constraints,

δis =
{
1, if s ∈ Li ,

0, if s /∈ Li .

Therefore, QVI (6)–(7) will give equilibrium states for this market system. It can be
also transformed into a VI. It suffices to define the common constraint set

W =
{

x ∈ R
nm :

∑

i∈J

δis xis + xms = 0, s ∈ L

}

,

123



344 Journal of Optimization Theory and Applications (2021) 188:332–355

and take Ym(x) ≡ Ym = Ỹm . Let us define the following VI: Find a point x̄ ∈ B such
that

∃ p̄ ∈ P(x̄), 〈 p̄, y − x̄〉 ≥ 0 ∀y ∈ B, (20)

where

B = W ∩ Y , Y =
∏

i∈I
Yi , P(x) =

∏

i∈I
Pi (x).

Under the above assumptions, VI (20) is clearly equivalent to QVI (6)–(7). Moreover,
if the set B is nonempty and the treatment charge functions pms are continuous,
then VI (20) has a solution; see, e.g., [3, Theorem 9.9]. Next, VI (20) admits some
dimensionality reduction after the sequential substitution of the variables xms and
xis , s ∈ L with the corresponding variables xi j , j ∈ N ′

i , i ∈ J due to the equality
constraints in W and Yi .

It should be observed that utilization of common services with congestion
effects described above is typical for modern telecommunication systems as well
as for industrial and energetic systems with common transportation lines; see, e.g.,
[23,25,26,28–30]. Next, the price mapping x �→ P(x) need not be potential, i.e., VI
(20) cannot be in general replaced by an optimization problem, as the simple example
below shows.

Example 5.3 Let us take m = 3, n = 3, N ′
1 = N ′

2 = {1}, N ′′
1 = N ′′

2 = {2, 3},
L = L1 = L2 = {2, 3}. Thismeans that agents 1 and 2 produce commodity 1 and have
two by-products (polluted substances) whose treatments are marked as commodities
2 and 3 produced by agent 3. Let a121 = 2, a131 = 3, a221 = 1, a231 = 4, p32(x) =
0.5x32 + 0.1x33, p33(x) = 0.2x33. It follows that

x32 = −(x12 + x22) = 2x11 + x21, x33 = −(x13 + x23) = 3x11 + 4x21.

Therefore,

p1(x) = 2p32(x) + 3p33(x) = 4.4x11 + 4.2x21,

p2(x) = p32(x) + 4p33(x) = 3.7x11 + 4.1x21.

Since the Jacobian of the mapping x �→ P(x) = (p1(x), p2(x))� is not symmetric,
P is not the gradientmap of a function.

6 Convergence of Dynamic Processes

The existence of natural dynamic market processes converging to an equilibrium point
is very essential for justification of any suggested equilibrium concept. But it is well
known that substantiation of such dynamic processes is much more difficult in com-
parison with that of static existence results. In fact, the multi-commodity equilibrium
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model from Sect. 4 is formulated as QVI (6)–(7). However, even finding its solution by
an iterative solutionmethod seems very difficult in the general case; see, e.g., [7,10,11].
In this case, we have additional restrictions due to partial and local knowledge of the
agents about the system. In fact, we intend to describe a process of changing the mar-
ket states that continues until attaining a solution of problem (6)–(7), thus creating
a decentralized (self-regulation) transaction mechanism. The implementation of this
mechanism is clearly attributed to a suitable information exchange scheme of this
model and depends on the properties of the defined sets and mappings. Therefore, any
chosen iterative solution method must admit a natural treatment of this method as a
dynamic process for finding market equilibrium points in the above model together
with suitable convergence conditions. For this reason, it ismore suitable to select rather
broad classes of equilibrium problems of form (6)–(7) and suitable natural converging
dynamic processes. First of all, we observe that converging dynamic processes based
on bilateral transactions were proposed for the single commodity market equilibrium
model from Sect. 3; see [31–33]. We now give examples of iterative processes, which
have rather natural treatment and are convergent for some classes of multi-commodity
market equilibrium problems.

Let us take assumptions (A1) and (A2′) and suppose in addition that the set Pi (x)
is determined as the solution set of optimization problem (14)–(15) for all i ∈ I and
x ∈ Ỹ . Then, as indicated in Sect. 5, QVI (6)–(7) can be replaced with the quasi-
optimization problem (18)–(19) where the function μ and set D(x) are convex. In
addition, we observe that the appearance of the moving feasible set D(x) reflects both
relationships and restricted knowledge of the agents. Hence, problem (18)–(19) can
be also treated as a relative optimization problem; see [34].

Bearing in mind Proposition 2.1, we can apply the simplest projection method

x (k+1) = πD(x (k))[x (k) − θk p
(k)], p(k) ∈ P(x (k)), θk > 0, k = 0, 1, . . . , (21)

for finding a solution of problem (18)–(19). However, its convergence needs additional
assumptions since problems (14)–(15) may have many solutions, i.e., the function μ

is in general non-differentiable. This gives a quasi-optimization problem with convex
non-differentiable function and creates certain difficulties for convergence properties
of method (21). At the same time, extensions of more sophisticated non-differentiable
optimization methods (see, e.g., [5,35,36]) do not admit a natural treatment within the
above market equilibrium model and its information exchange scheme. We can take
the stationary case where the agents utilize only fixed feasible transaction sets. More
precisely, we take the following assumptions.

(B1) At each state x ∈ Ỹ , it holds that Yi (x) = Ỹi , where the set Ỹi ⊂ R
n is convex

and compact for each i ∈ I . The set D̃ in (11) is non-empty.
(B2) At each state x ∈ Ỹ the set Pi (x), is determined as the solution set of opti-

mization problem (14)–(15), where the set Vi is non-empty for all i ∈ I .
Then, QVI (6)–(7) reduces to the set-valued VI: Find a vector x̄ ∈ D such that

∃ p̄ ∈ P(x̄), 〈 p̄, y − x̄〉 ≥ 0 ∀y ∈ D̃. (22)
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Moreover, due to (16) this problem is equivalent to the convex optimization problem:

min
x∈D̃

→ μ(x);

cf. (19). It is clear that VI (22), (11) has a solution under the assumptions in (B1)–
(B2). This result follows, e.g., from Theorem 4.1. Next, we can find a solution of VI
(22), (11) by using the fixed point iterate (21) that now reduces to the sub-gradient
projection method:

x (k+1) = πD̃[x (k) − θk p
(k)], p(k) ∈ ∂μ(x (k)), θk > 0, k = 0, 1, . . . , (23)

with the standard step-size rules:

∞∑

k=0

θk = ∞,

∞∑

k=0

θ2k < ∞. (24)

Its convergence property is well known and can be deduced, e.g., from Lemma 2.1 in
[37, Chapter V].

Proposition 6.1 Suppose that assumptions (B1)–(B2) are fulfilled. If a sequence {x (k)}
is subordinated to rules (23)–(24), it converges to a solution of problem (22), (11).

Nevertheless, implementation of each iteratemay be not so easywithin the informa-
tion exchange scheme of the multi-commodity market model. Bearing in mind (12),
we specialize the market capacity bounds as follows.

(B1′) At each state x ∈ Ỹ , it holds that Yi (x) = Ỹi = [ci , di ] for all i ∈ I . The set
D̃ in (11) is non-empty.

Clearly, (B1′)–(B2) imply (B1)–(B2). According to the sub-gradient projection
method, the agents first determine their price vector p(k) for the current market state
x (k) from the optimization problems of form (14)–(15). Afterward, they find the next
state x (k+1) from (23). This problem now decomposes into n independent single com-
modity market equilibrium problems of form (5) with affine price functions. In fact,
the j th commodity market problem is written as VI: Find x (k+1)

( j) ∈ D̃ j such that

∑

i∈I
(p(k)

i j + θ−1
k (x (k+1)

i j − x (k)
i j ))(yi j − x (k+1)

i j ) ≥ 0 ∀y( j) ∈ D̃ j , (25)

where y( j) = (y1 j , . . . , xmj )
� and

D̃ j =
{

y( j) ∈ R
m :

∑

i∈I
yi j = 0, yi j ∈ [ci j , di j ], i ∈ I

}

. (26)

This problem can be solved by simple solution algorithms including the bilateral
exchanges; see [31,32]. Therefore, process (23) can be naturally implemented within
usual market mechanisms.
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We still intend to present the simple method for finding a solution of QVI (6)–(7)
within the assumptions from (A1) and (A2′) with moving feasible transaction sets.

(C1) The sets Ỹi ⊂ R
n are convex and compact for all i ∈ I . At each state x ∈ Ỹ ,

the set Yi (x) ⊆ Ỹi is convex and compact for each i ∈ I .
In general, the set-valuedness of the price mappings Pi may create certain difficul-

ties for the agents since the clear choice of unique prices is more suitable. For this
reason, we suppose that each i th economic agent bearing in mind some most suitable
reference price vector v̄i chooses his/her feasible price value Pi (x) at state x , i.e.,
problem (14)–(15) is replaced by the optimization problem

max
pi∈Vi

→
n∑

j=1

{
pi j xi j − 0.5βi (pi j − v̄i j )

2
}

, (27)

where βi > 0 is a suitable weight parameter chosen by the i th agent. Since it has the
unique solution pi (xi ) = pi (x), the mapping x �→ Pi (x) is now single-valued for
each i ∈ I and so is x �→ P(x). If we denote by ηi (xi ) the optimal value of problem
(27), (14), then the function ηi will be convex and differentiable and η′

i (x
i ) = pi (xi ).

In turn, p(x) = (pi (x))i∈I is the gradient of the convex function

η(x) =
∑

i∈I
ηi (x

i ). (28)

In other words, we take the following assumptions.
(C2) At each state x ∈ Ỹ , the point pi (x) = pi (xi ) is determined as a unique

solution of optimization problem (27), (14), where the set Vi is non-empty for all
i ∈ I .

(C3) At each state x ∈ D̃, it holds that x ∈ Y (x), the set D̃ is non-empty, the
mapping D : Ỹ → �(D̃) is lower semi-continuous on Ỹ .

Then, QVI (6)–(7) reduces to the single-valued problem: Find a vector x̄ ∈ D(x̄)
such that

〈p(x̄), y − x̄〉 ≥ 0 ∀y ∈ D(x̄). (29)

Its solution can be, however, deduced from the usual VI: Find a vector x̄ ∈ D̃ such
that

〈p(x̄), y − x̄〉 ≥ 0 ∀y ∈ D̃, (30)

where the set D̃ is defined in (11). From (C1) and (C3), it follows that D̃ is nonempty,
convex and compact. From (C2), it follows that the mapping p is continuous on Ỹ .
Hence, VI (30) has a solution x̄ ∈ D̃. Due to (C3), we have x̄ ∈ Y (x̄), therefore,
x̄ ∈ D(x̄). This means that x̄ is a solution to QVI (29). We observe that the reverse
implication (29) �⇒ (30) does not hold in general.

Proposition 6.2 Suppose that assumptions (C1)–(C3) are fulfilled. Then, QVI (29) has
a solution.
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Moreover, VI (30) is equivalent to the convex smooth optimization problem:

min
x∈D̃

→ η(x),

where η(x) is defined in (28). It follows that we can in principle apply one of various
well known smooth optimization methods (see, e.g., [38]) for finding a solution of
QVI (29). However, most of them are too sophisticated and do not fall into the above
market information exchange framework. For instance, even simple projection and
conditional gradient methods with line-search or utilization of a priori information
cannot be taken due to the indicated information restrictions. For this reason, we
will present a dynamic process based on the parametric conditional gradient method
without line-search, which was proposed in [39] for custom optimization problems.
Given a point x ∈ D̃, we define the auxiliary problem

min
y∈D(x)

→ 〈p(x), y〉. (31)

We denote by Z(x) the solution set of problem (31), thus defining the set-valued
mapping x �→ Z(x). Observe that Z(x) is determined only by the local information
from D(x) rather than D̃ and that the set Z(x) is always non-empty, convex, and
compact.
Method (PCGM)

Initialization: Choose a point w(0) ∈ D̃, a number β ∈ (0, 1), and a positive
sequence {δs} → 0. Set s = 1.

Step 0 For the given number s, choose a positive sequence {τl,s} such that τl,s ∈
(0, 1) and {τl,s} → 0 as l → ∞. Set k = 0, l = 0, x (0) = w(s−1), and choose a
number θ0 ∈ (0, τ0,s].

Step 1 Find a point y(k) ∈ Z(x (k)). If

〈p(x (k)), x (k) − y(k)〉 ≥ δs, (32)

go to Step 2. Otherwise, set w(s) = x (k), s = s + 1 and go to Step 0. (Restart)
Step 2 Set d(k) = y(k) − x (k), x (k+1) = x (k) + θkd(k). If

〈p(x (k+1)), d(k)〉 ≤ β〈p(x (k)), d(k)〉, (33)

take θk+1 ∈ [θk, τl,s]. Otherwise, take θk+1 ∈ (0,min{θk, τl+1,s}] and set l = l + 1.
Afterward, set k = k + 1 and go to Step 1.

Note that each outer iteration (stage) in s contains some number of inner iterations
in k with the fixed tolerance δs . Completing each stage, that is marked as restart, leads
to decrease in its value. Note that the choice of the parameters {τl,s} can be in principle
independent for each stage s. Also, by (32), we have 〈p(x (k)), d(k)〉 ≤ −δs < 0 in
(33). It follows that

η(x (k+1)) − η(x (k)) ≤ θk〈p(x (k+1)), d(k)〉 ≤ βθk〈p(x (k)), d(k)〉
≤ −βθkδs, (34)
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besides, x (k) ∈ D̃ for each k.
We show that each stage is well defined.

Proposition 6.3 Suppose that assumptions (C1)–(C3) are fulfilled. Then, the number
of iterations at each stage s is finite.

Proof Fix any s and suppose that the sequence {x (k)} is infinite. Then, the number of
changes of index l is also infinite. In fact, otherwise we have θk ≥ θ̄ > 0 for k large
enough, hence (34) gives η(x (k+t)) ≤ η(x (k))− tβθ̄δs → −∞ as t → ∞, for k large
enough, which is a contradiction. Therefore, there exists an infinite subsequence of
indices {kl} such that

〈p(x (kl+1)), d(kl )〉 > β〈p(x (kl )), d(kl )〉, (35)

where d(kl ) = y(kl ) − x (kl ). Besides, it holds that θkl ∈ (0, τl,s], θkl+1 ∈ (0, τl+1,s],
where

lim
l→∞ τl,s = 0.

Both the sequences {x (k)} and {y(k)} belong to the bounded set D̃ and hence have
limit points. Without loss of generality, we can suppose that the subsequence {x (kl )}
converges to a point x̄ and the corresponding subsequence {y(kl )} converges to a point
ȳ. Due to (32), we have

〈p(x̄), ȳ − x̄〉 = lim
l→∞〈p(x (kl )), y(kl ) − x (kl )〉 ≤ −δs . (36)

At the same time, taking the limit l → ∞ in (35), we obtain

〈p(x̄), ȳ − x̄〉 ≥ β〈p(x̄), ȳ − x̄〉,

i.e., (1 − β)〈p(x̄), ȳ − x̄〉 ≥ 0, which is a contradiction with (36). ��
We are ready to prove convergence of the whole method.

Theorem 6.1 Suppose that assumptions (C1)–(C3) are fulfilled. Then:

(i) The number of changes of index k at each stage s is finite.
(ii) The sequence {w(s)} generated by method (PCGM) has limit points, all these limit

points are solutions of QVI (29).

Proof Assertion (i) has been obtained in Proposition 6.3. By construction, the sequence
{w(s)} is bounded, hence it has limit points. By definition, for each s it holds that

〈p(w(s)), y − w(s)〉 ≥ −δs ∀y ∈ D(w(s)). (37)

Take an arbitrary limit point w̄ of {w(s)}, then

w̄ = lim
t→∞ w(st ),
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for some subsequence {w(st )}, hence w̄ ∈ D̃. Then, D(w̄) is nonempty and w̄ ∈
D(w̄). Take any ȳ ∈ D(w̄), then there exists a sequence of points {y(st )} → ȳ,
y(st ) ∈ D(w(st )), since the mapping D is lower semi-continuous on Ỹ . Setting s = st
and y = y(st ) in (37) and taking the limit t → ∞, we obtain

〈p(w̄), ȳ − w̄〉 ≥ 0.

This means that w̄ is a solution of QVI (29). Assertion (ii) is true. ��
Again, implementation of each iterate may be not so easy in general. Bearing in

mind (12), we specialize the feasible transaction sets and market capacity bounds as
follows.

(C1′) At each state x ∈ Ỹ = ∏

i∈I
Ỹi , it holds that Yi (x) = Ỹi

⋂[ci (x), di (x)],where
Ỹi = [gi , hi ] for all i ∈ I , the set Ỹ is bounded.

Clearly, (C1′), (C2)–(C3) imply (C1)–(C3). Following (PCGM), the agents deter-
mine their price vector p(k) for the current market state x (k) in accordance with (C2).
However, changing the stage does not require calculation of the price since the real
state remains the same. This means that the agents only adjust their current tolerances
for determination of the sufficient decrease in the pure expenses of the market; see
(34). The main part of the iteration consists in solution of problem (31) at x (k). This
problem clearly decomposes into n independent single commoditymarket equilibrium
problems of form (5) with fixed prices. In fact, the j th commodity market problem is
now written as follows:

min
y( j)∈Dj

→
∑

i∈I
p(k)
i j yi j ,

where

Dj =
{

y( j) ∈ R
m :

∑

i∈I
yi j = 0, yi j ∈ [c(k)

i j , d(k)
i j ], i ∈ I

}

,

c(k)
i j and d(k)

i j are the corresponding capacity bounds; cf. (25)–(26). This problem can
be solved by simple arrangement algorithms. Therefore, (PCGM) can be naturally
implemented within usual market mechanisms.

It should be also noticed that (PCGM) has rather low computation expenses per
iteration and provides opportunities for computations in a distributed manner, where
computational units possess only limit data sets and information transmission flows are
also limited. These multi-agent computational procedures are developed very inten-
sively; see, e.g., [40,41].

We illustrate the proposed market model by a simple example.

Example 6.1 (Amarket equilibriummodelwith production delay).Consider amar-
ket system with m economic agents and n commodities. We suppose that the agents
can utilize the purchased commodities only in the next time period, so that they utilize
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in the current production only the endowments bi , i ∈ I from the previous period. This
delay is typical for inter-temporal market models; see, e.g., [18,19]. Bearing in mind
the previous endowments, each agent i is able to determine some current reference
endowment vector b̄i . Similarly, taking into account the previous active prices, each
agent i is able to determine some current reference price vector v̄i . Next, each agent
i has the total market transaction set Ỹi = [gi , hi ] such that b̄i ∈ Ỹi and the tolerance
mapping xi �→ ui (xi ) such that ui (xi ) → 0 as xi → gi or xi → hi . Then, agent
i determines the current market transaction set Yi (x) = Ỹi

⋂
([b̄i , xi ] + ui (xi )) at

state x . The current market price vector pi (x) = pi (xi ) at state x is then naturally
determined as a unique solution of optimization problem (27), (14). This means that
the current output commodity prices are evaluated together with the next input com-
modity prices. QVI (29) will give equilibrium states for this market system. If the set
Ỹ is bounded, the set Vi is non-empty, and the tolerance mapping ui is continuous for
each i ∈ I , then conditions (C1′), (C2), and (C3) hold. Hence, by Theorem 6.1, QVI
(29) has a solution and each limit point of the sequence {w(s)} generated by method
(PCGM) is a market equilibrium state.

7 Relationships with Some Other Basic EquilibriumModels

In this section, we intend to make a comparison of the presented model with the
existing basic general and partial equilibrium models.

We recall that the classical Walrasian type general equilibrium models describe a
market of a great number of economic agents, so that actions of any separate agent
cannot impact the state of the whole system and traditionally belong to the perfect
competition market models. These models are based on the assumption that any agent
does not utilize particular information about the behavior of the others, but accepts the
common market price values and then determines precisely his/her personal demand
and/or supply values. These values create the general market excess supply values
that have certain impact on the prices. Namely, a negative (positive) market excess
supply of a commodity forces its price to increase (decrease), thus defining the so-
called tâtonnement process; see [12,19]. Hence, the model essentially exploits (in fact,
postulates) the assumption that there exists a common (market) price value for each
commodity at any moment that can be recognized by any separate agent. Then, the
budget constraint of any consumer involves just these common prices, which is usually
active for his/her optimal choice due to the basic non-satiability property of the utility
function. Similarly, any producer maximizes his/her profit, which is again determined
by the same common prices. Next, the equilibrium conditions in the classical models
are determined as complementarity relationships between the prices andmarket excess
supply values; see, e.g., [18,19].

Our model is based on the assertion that the agents of a general market do not
possess in fact a sufficient information about the current and future behavior of this
so complicated system. That is, information for their decision making can be only
partial and local. This means that each agent can evaluate his/her opportunities only
in a neighborhood of the current market state by using his/her technology peculiar-
ities and capacities, some integral parameters of the market (say, the current total
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supply or demand for certain commodities), and some information on other agents
due to the transaction process. For instance, this lack of information about the market
participants is typical for contemporary telecommunication-based systems; see, e.g.,
[29,42]. Besides, the behavior of each economic agent depends on his/her current
market, industry and social goals and restrictions. For this reason, the assumption that
there exists an “ideal broker” who is able to determine precisely the common market
price for each commodity at any moment and report simultaneously all these prices to
all the agents seems rather restrictive. Similarly, it seems too difficult requirement for
an agent to precisely fulfil the budget constraint with common prices also because of
the data uncertainty. It should be noted that common constraints may appear due to the
complexity of the system, these constraints can reflect common market, transporta-
tion, and/or technology relationships that are actively utilized by different agents. For
instance, markets with joint constraints arise often in telecommunication and energy
sectors; see, e.g., [28,30,42].

For this reason, we suppose that the agents will utilize their own prices that may
differ from the current market prices even at an equilibrium state. These prices are
values of their feasible price mappings attributed to the current market state that is
determined by the current distribution of commodities. Instead of the exact budget
constraint, any agent should simply indicate current sources that will cover his/her
consumption expenses for each purchased commodity, as described in Sect. 5. Sim-
ilarly, the agents determine feasible transaction sets dependent of the current market
state. This approach leads to a quasi-variational inequality formulation of the market
equilibrium state, which corresponds to the local maximal market profit in a neighbor-
hood of the current state. It was proved in Sect. 4 that the proposed market equilibrium
model also involves commonmarket prices as the Lagrange multipliers corresponding
to the common balance constraint, but they are in general different from the equilib-
rium prices of the agents; see Proposition 4.1. It also follows that the agents may have
positive endowments at equilibrium due to the market capacity bounds as in the single
commodity case.

We observe that most imperfectly competitive (or partial) equilibrium models (see,
e.g., [43]) and some general market equilibrium models (see, e.g., [9,16]) are for-
mulated as non-cooperative game-theoretic problems. Due to the common balance
constraint in any market, the agents are mutually dependent, which contradicts to the
custom non-cooperative game setting with equal and independent players. But in the
imperfect competition case, actions of each agent can change the state of the whole
market so that agents’ utility functions depend on these actions (strategies). In order to
avoid the mentioned drawback, the imperfect competition models are based on uneven
roles of market sides. Namely, one side of the market (say, consumers) is presented by
a common price (inverse demand) function, whereas each agent from the other side
(producer) can change the state of the whole system by choosing his/her supply, so
that the common balance is always satisfied implicitly. Therefore, the model becomes
a game of producers and its solution is usually determined as its Nash equilibrium
point. However, this is not the case for the general market equilibrium models with
equal agents, which are then formulated as extended non-cooperative game-theoretic
problems; see, e.g., [9,16]. The presence of the joint binding constraints creates cer-
tain difficulties for players and needs in a special non-trivial mechanism for attaining
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such an equilibrium point; see, e.g., [44]. Therefore, our quasi-variational inequality
formulation of the market equilibrium problem seems rather natural and suitable for
different applications.

8 Conclusions

We described a new class of general market equilibrium models involving economic
agents with restricted knowledge about the system. Due to these limitations, the mar-
ket equilibrium problem was formulated as a quasi-variational inequality. We then
deduced existence results for the model from the theory of quasi-variational inequal-
ities. Besides, we indicated some ways of implementation of the proposed model
in different settings and made comparisons with the other basic general equilibrium
models.We also presented decentralized dynamic processes converging to equilibrium
points within information exchange schemes of the market model. In particular, we
proposed an iterative solutionmethod for quasi-variational inequalities, which is based
on evaluations of the market information in a neighborhood of the current market state
rather than whole feasible set, which may be unknown, and proved its convergence.

Investigations of these models and methods can be continued in several direc-
tions. For instance, it seems worthwhile to adjust them to different applications, which
involve explicit technology, environment and transportation capacity restrictions and
develop new suitable dynamic processes.

The datasets generated during and/or analyzed during the current study are available
from the author on reasonable request.
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