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Abstract
Considering a finite intersection of balls and a finite union of other balls in anEuclidean
space, we propose an exact method to test whether the intersection is covered by the
union. We reformulate this problem into quadratic programming problems. For each
problem, we study the intersection between a sphere and a Voronoi-like polyhedron.
That way, we get information about a possible overlap between the frontier of the
union and the intersection of balls. If the polyhedra are non-degenerate, the initial
nonconvex geometric problem, which is NP-hard in general, is tractable in polyno-
mial time by convex optimization tools and vertex enumeration. Under some mild
conditions, the vertex enumeration can be skipped. Simulations highlight the accu-
racy and efficiency of our approach compared with competing algorithms in Python
for nonconvex quadratically constrained quadratic programming. This work is moti-
vated by an application in statistics to the problem of multidimensional changepoint
detection using pruned dynamic programming algorithms.

Keywords Ball covering problem · Nonconvex quadratically constrained quadratic
programming · Computational geometry · Voronoi-like polyhedron · Vertex
enumeration · Polynomial time complexity

Mathematics Subject Classification 52C17 · 90C26 · 68U05 · 62L10

1 Introduction

Geometric problems for balls often separately address the intersection and the union
problems. Without optimization tools, the detection of a nonempty intersection
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between balls is difficult to solve. Helly-type theorems can be adapted to balls [1,2],
but no efficient algorithm arises from this approach. The union of balls is a problem
linked in the literature to molecular structures, where the volume and the surface area
of molecules in 3D are important properties. Powerful algorithms based on Voronoi
diagrams have been recently developed [3,4]. Even if the number of balls is small, that
is more than two, the exact computation of simple geometric properties, as volume, is
a challenging question [5].

One of the first problems to associate union and intersection is the historical disk
covering problem, which consists in finding the minimum number of identical disks
(with a given radius) needed to cover the unit disk [6]. This problem is still open and
remains mainly unsolved, although research on this subject is active [7,8] as it has
practical applications, for example in optical interferometry [9].

Our problem also involves covers but is different in several important ways. We
study the covering of an intersection of balls by other balls, but they are not necessary
of the same size. Furthermore, we do not consider the question of the optimal covering,
but only the covering test. This problem is part of computational geometry problems
and, as far as we know, is original in the literature.

Quadratically constrained quadratic programming (QCQP) problems are a major
tool for many practical applications: problems of transmit beamforming in wireless
communication [10] or signal processing [11] have stimulated the development of
this research area. Asking whether a finite intersection of balls is covered by a finite
union of other balls can be reformulated as a collection of nonconvex QCQP problems.
However, this approach often fails to return the exact solution and is based on time-
consuming iterative algorithms.

In this paper, we transform our problem into quadratic programming problems
by introducing hyperplanes “separating” two balls. For each problem, we study the
intersection between a sphere and a polyhedron to get information about a possible
overlap between the frontier of the union and the intersection of balls. That way, we
are able to build an efficient and exact algorithmwith polynomial running time in most
cases.

This work is motivated by an application to a changepoint detection method in
statistics as explained in “Appendix A.”

The outline of this paper is the following. In Sect. 2, we present the problem and
introduce the notations.We also give its naive standard resolution by QCQP problems.
We end the section with a detailed presentation of our solution. Section 3 focuses on
the resolution of a unique QP problem, giving the link between this problem and the
initial geometric structure. In “Appendix B,” we propose a similar method adapted
to covering tests for a large number of exclusion balls and for sequential tests. With
some conditions on the centers and radii of the balls, we are able to ensure that the
polyhedron is unbounded and can then skip themaximization problem to only consider
the convex quadratic one.We present in Sect. 4 several caseswhere the only problem to
solve is convex. If we have only one exclusion ball, we introduce the so-called concave
QCQP problem and highlight simplified results. Finally, in Sect. 5, we compare our
approach with recent methods of the Python library ’qcqp’ gathering together the best
approaches for solving nonconvex QCQP problem. These simulations highlight the
benefit of our method specifically developed for the problem at hand.
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2 Preliminaries

2.1 Problem Description

We consider two finite sets of balls in an Euclidean space, Λ = {B1, . . . , Bp} and
V = {B1, . . . ,Bq}, with p, q ∈ N

∗ and arbitrary centers and radii. We introduce the
intersection set I = ∩p

i=1Bi and union set U = ∪q
j=1B j . Our problem consists in

finding an exact and efficient method to decide whether the inclusion I ⊂ U is true
or false. Denoting by Uc the complement of U , this problem is equivalent to the study
of the emptiness of I ∩ Uc, which is a challenging question, both theoretically and
computationally, due to the non-convexity of the Bc

j sets ( j = 1, . . . , q).
WithRn the n-dimensional Euclidean space, n ≥ 2, we denote by 〈·, ·〉 the canonic

inner product in R
n and by ‖ · ‖ its associated norm. The open balls Bi and closed

balls B j are defined by their centers ci , c j ∈ R
n and radii Ri ,R j ∈ R

∗+, respectively.
Thus,

Bi = {x ∈ R
n : ‖x − ci‖2 < R2

i } and B j = {x ∈ R
n : ‖x − c j‖2 ≤ R2

j } ,

where, for example, ‖x − ci‖2 = ∑n
k=1(xk − cik)2, with x = (x1, . . . , xn)T ∈ R

n .
We assume that the centers of balls in Λ ∪ V are all different (non-concentric) and
that for all (Ba, Bb) ∈ Λ2 and (Bc,Bd) ∈ V 2 (with a �= b and c �= d) we have:

Ba ∩ Bb �= ∅ , Ba ∩ Bc
b �= ∅ ,

Ba ∩ Bc �= ∅ , Ba ∩ Bc
c �= ∅ ,

Bc ∩ Bc
d �= ∅ .

(1)

These conditions can be verified in polynomial time in a preprocessing step in order
to avoid unnecessary computations (for example, we remove B2 inΛ, if B1∩ Bc

2 = ∅)
or trivial solutions (for example, if B1 ∩ B2 = ∅, then I ∩ Uc = ∅).
Remark 2.1 We consider open balls Bi . This is useful in proofs because we get the set
I ∩ Uc open. With closed balls Bi , the decision problem is the same.

2.2 A Standard Approach

We reformulate our geometric problem into a collection of q quadratically constrained
quadratic programming (QCQP) : for j = 1, . . . , q,

P0( j) :

⎧
⎪⎪⎨

⎪⎪⎩

max
x∈Rn

(‖x − c j‖2 − R2
j ) ,

such that ‖x − ci‖2 − R2
i ≤ 0 , i = 1, . . . , p ,

‖x − ck‖2 − R2
k ≥ 0 , k = 1, . . . , j − 1 .

(2)

We solve these problems sequentially for increasing integers j . Notwithstanding the
difficult resolution of (2), the naive Algorithm 1 gives an exact response concerning
the geometric inclusion I ⊂ U .
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Algorithm 1 QCQP-based naive algorithm
1: procedure isIncluded(Λ, V )
2: response ← f alse, j ← 1
3: while j < q + 1 do
4: x∗( j) = Argmax {P0( j)} � We solve the nonconvex QCQP problem P0( j)
5: if ‖x∗( j) − c j‖2 ≤ R2

j then
6: response ← true, j ← q
7: end if
8: j ← j + 1
9: end while
10: return response

Fig. 1 The dark blue region
shows us that I �⊂ U . Solving
P0(1) stucks the solution in the
green region. If only continuous
and feasible moves are allowed,
as with an interior point method,
we would fail to solve P0(2) as
its feasible region is not
connected

The feasible region X j is the subset of points in R
n satisfying the constraints in

problem P0( j). If the (nonempty) feasible region X j for problem P0( j) is strictly
included into B j , that is, ‖x − c j‖2 − R2

j < 0 for all x ∈ X j , then X j+1 = ∅ and

∪ j
k=1Bk covers I. Thus, Algorithm 1 tries to cover I with the balls in V , adding

them one by one. The algorithm stops as soon as the feasible region becomes empty
(justifying the while loop).

Other reformulations are possible. We choose one of them ensuring the feasibility
of the considered problem at each step j . If feasibility is not required, solving P0(q)

is enough work. In both cases, the non-convexity of the initial geometric problem is
transferred to problems P0( j) for which the feasible regions (if q > 1 and j > 1)
and the objective functions (with the standard formulation with a minimization) are
nonconvex. For this reason, line search strategies for interior point methods can fail
to converge toward the global optimum. On a simple example in Fig. 1, we highlight
the failing of any point following methods.

For decades, many approximate methods for the generic nonconvex QCQP prob-
lems (2) have been developed (see the review [12]) to avoid using primal methods.
They are relaxation methods that usually convexify the nonconvex part of the problem
or solve successive convex optimization approximate problems. Approaches as semi-
definite relaxation (SDR) [13], reformulation linearization technique (RLT) [14] or
successive convex approximation (SCA) [15,16] are among the most popular. How-
ever, they are often computationally greedy (using n2 unknowns) and only converge
toward KKT stationary points.
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We propose in this paper, to the best of our knowledge, the first exact and simple
problem-solving method for the subclass of nonconvex QCQP problems involving
only balls and complement of balls.

2.3 Proposed Solution

Our QCQP problem is specific as it only involves balls. We can take advantage of the
fact that the intersection of two spheres, when they meet, belongs to an hyperplane.
Considering a sphere S j = ∂B j , where ∂(·) denotes the frontier operator, we build
hyperplanes as soon as a sphere Si = ∂Bi (i = 1, . . . , p) or Sk = ∂Bk (k �= j, k =
1, . . . , q) intersects S j . Each hyperplane defines a favored half-space. The intersection
of the obtained half-spaces yields an open convex polyhedron P j which can be seen
as a Voronoi-like structure (more details in Sect. 2).

The solution proposed in this paper is as follows. We introduce the notation U j =
∪q
k=1 : k �= jBk and prove that we are able to detect an intersection between I and S j \U j

only by using the convex polyhedron P j . This method is based on the set equality
S j ∩ (I \ U j ) = S j ∩ P j . The closure of P j is denoted Π j (Π j = P j ). Detection of
a nonempty intersection S j ∩ P j can be handled solving the following 2q (q for the
minimum and q for the maximum) quadratic programs (QP): for j = 1, . . . , q,

P1( j) :
{
extrx∈Rn (‖x − c j‖2 − R2

j ) ,

such that x ∈ Π j .
(3)

The minimum QP problem is tractable in polynomial time [17,18]. Solving P1( j)
for the maximum is a nonconvex (concave) problem, which can be solved by vertex
enumeration in polynomial time if the polyhedron Π j is non-degenerate [19]. There
exist particular cases, in practice rarely encountered, for which the vertex enumeration
problem remains NP-hard [20].

In fact, as soon as we find a feasible point strictly inside the ball B j and another
one strictly outside, we have S j ∩ P j �= ∅ and we will prove that we get I \ U �= ∅.

If for all j , this intersectionS j∩P j is empty,we haveS j∩(I\U j ) = I∩(S j \U j ) =
∅ for all j , that is I ∩ ∂U = ∅. Thus, with our method, we shift from the emptiness of
the set I \ U to the emptiness of the set I ∩ ∂U . To solve the initial covering problem
(I \ U = ∅ ?), we notice that we only need to know a point inside I and test whether
this point is also inside U to decide our question.

3 Equivalent Quadratic Programming

We now focus on the building of a unique polyhedron and show its close link with
the initial nonconvex sets I \ Uq . Finally, we show that the q polyhedra and their
associated q quadratic programs solve the covering problem.
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Fig. 2 Left: half-space Hi defined by the intersection of the spheres S = ∂B and Si = ∂Bi and containing
Bi \B. Right: example of feasible region Π (the hatched area) with p = 1 and q = 2. Here, P+ = H1 and
P− = H1. The darker shade of blue is the subset of Π lying inside the ball B

3.1 Linear Constraints

From now one, we consider a unique problem centered on the closed ballBq and write
B = Bq , c = cq , R = Rq , P = Pq , Π = Πq , U = Uq . For all i ∈ {1, . . . , p} such
that S = ∂B and Si = ∂Bi intersect, we define the functions hi : Rn → R as

hi (x) = 2〈x, c − ci 〉 − ‖c‖2 + ‖ci‖2 + R2 − R2
i .

The associated hyperplane equation is hi (x) = 0 and we have the open half-space
containing the set Bi \ B: Hi = {x ∈ R

n : hi (x) < 0}. The geometric configuration
of the balls B and Bi with the half-space Hi is given in Fig. 2 (left). All the balls in
Λ intersect B, and the inclusion B ⊂ Bi is not excluded (see conditions (1)): in this
case, we do not build any hyperplane.

Similar hyperplanes and half-spaces are built between spheres S = ∂B and S j =
∂B j for j ∈ {1, . . . , q − 1} when they intersect, but here, we consider the half-space
containing B \ B j . Thus, we define the functions h j : Rn → R such that

h j (x) = 2〈x, c − c j 〉 − ‖c‖2 + ‖c j‖2 + R2 − R2
j ,

and the associated hyperplane equation is h j (x) = 0 with the open half-space H j =
{x ∈ R

n : −h j (x) < 0}. If B ∩ B j = ∅, a case not excluded in (1), we also do not
build hyperplane.

With these half-spaces, we define the open convex polyhedron

P = {x ∈ R
n : hi (x) < 0 , −h j (x) < 0 , i = 1, . . . , p , j = 1, . . . , q − 1}

and the polyhedra P+ = ∩p
i=1Hi and P− = ∩q−1

j=1H j such that P = P+ ∩ P−. The
open polyhedron P will be used to prove geometrical properties, whereas its closure,
Π = P = P+ ∩P− = Π+ ∩Π−, is the feasible region of the QP problem P1(q) with
Π+ = P+ and Π− = P−.
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An efficient resolution of the nonconvex problem of type P1 (cf (3)) for maximum
is made possible, solving for example a vertex enumeration problem [19]. An example
of feasible region is drawn in Fig. 2 (right).

Before proving the equivalence of Problems (2) and (3), we present some simple
equalities and inclusions used throughout this paper between sets involving balls and
half-spaces.

Lemma 3.1 For i ∈ {1, . . . , p} and j ∈ {1, . . . , q − 1}, we have the relations:

(a) S ∩ Bi = S ∩ Hi , (b) S ∩ Bc
j = S ∩ H j ,

(c) Bi \ B ⊂ Hi , (d) B \ B j ⊂ H j .

The proof is straightforward.

3.2 Links Between the Polyhedron and the Initial Geometric Problem

We give a set equality linking the convex polyhedron P and the open set I \U involved
in the initial geometric problem.

Corollary 3.1 S ∩ (I \ U) = S ∩ P.

Proof S∩I = S∩(∩p
i=1Bi ) = ∩p

i=1(S∩Bi ) = ∩p
i=1(S∩Hi ) = S∩(∩p

i=1Hi ) = S∩P+

by relation (a) of Lemma 3.1. In the same way, we have S ∩ Uc = S ∩ (∪q−1
j=1B j )

c =
S ∩ (∩q−1

j=1B
c
j ) = ∩q−1

j=1(S ∩ Bc
j ) = ∩q−1

j=1(S ∩ H j ) = S ∩ P− by De Morgan’s laws
and relation (b) of Lemma 3.1. Therefore, S ∩ I \ U = (S ∩ I) ∩ (S ∩ Uc) =
(S ∩ P+) ∩ (S ∩ P−) = S ∩ P and the relation is proven. ��

For ε ∈ R, we introduce the ball BR+ε with center c and radius R + ε. We also
define SR+ε = ∂BR+ε . Vn is the volume (Lebesgue measure) in dimension n. In the
following proposition, we connect the position of points in the closed feasible region
Π to the spatial position of I \ U.
Proposition 3.1 If the volume of the feasible region is nonzero (Vn(Π) > 0), the
following assertions are equivalent:

(i) S ∩ P �= ∅,
(ii) there exists (x−, x+) ∈ Π × Π such that ‖x− − c‖2 < R2 < ‖x+ − c‖2,
(iii) Vn−1(S ∩ Π) > 0 (the Lebesgue measure of the surface area is nonzero),
(iv) there exists r > 0 such that, for all ε ∈ (−r , r), SR+ε ∩ (I \ U) �= ∅.

To state this result, we use the following lemma.

Lemma 3.2 With O an open set of Rn, we have equivalence between propositions:

(a) S ∩ O �= ∅;
(b) Vn−1(S ∩ O) > 0;
(c) there exists r > 0 such that, for all ε ∈ (−r , r), SR+ε ∩ O �= ∅.
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Proof With x̃ ∈ S ∩ O, there exists an open ball B(x̃, ρ) centered on x̃ and of radius
ρ, such that B(x̃, ρ) ⊂ O. Thus, Vn−1(S ∩ O) ≥ Vn−1(S ∩ B(x̃, ρ)) > 0 and for
all ε ∈ (−ρ, ρ), SR+ε ∩ O ⊂ SR+ε ∩ B(x̃, ρ) �= ∅. We have shown that a) �⇒
b) �⇒ c). The implication c) �⇒ a) is obvious, and Lemma is proven. ��
Proof of Proposition 3.1 The implication i) �⇒ i i) is due to the openness of P.
We prove the converse. As Vn(Π) > 0 and Π is convex, we have P �= ∅ and P =
Π . Thus, there exist sequences (x−

n ) and (x+
n ) such that limn→+∞ x−

n = x− and
limn→+∞ x+

n = x+ with x−
n , x+

n ∈ P for all n ∈ N. Therefore, there exists N ∈ N

such that, for all n ≥ N , ‖x−
n − c‖2 < R2 < ‖x+

n − c‖2. By convexity of P, the
segment [x−

n , x+
n ] is in P and S ∩ [x−

n , x+
n ] �= ∅ and we get S ∩ P �= ∅. We use the

Lemma 3.2 (a ⇐⇒ b) with the open set P to prove the equivalence between i)
and i i i), knowing that Vn−1(S ∩ Π) = Vn−1(S ∩ P). As S ∩ (I \ U) = S ∩ P (see
Corollary 3.1), we use again Lemma 3.2 (b ⇐⇒ c) with the open set I \ U to get
the equivalence between propositions i i i) and iv). ��

With this last result, we have shown that some propositions involving the closed
polyhedron Π are related to results using P and hence I \ U. We now combine these
results with the q quadratic programming problems to solve the problem.

3.3 Quadratic Programming Decision

We still focus on a unique quadratic program:

P1(q) = P1 :
{
extrx∈Rn (‖x − c‖2 − R2) ,

such that x ∈ Π ,
(4)

and we denote by x∗
min the value of the argument x for which the objective function

attains its minimum over the setΠ . IfΠ is bounded, x∗
max is one value of the argument

x for which the objective function attains its maximum. Notice that x∗
max is not neces-

sarily unique, hence the use of “one value” in previous sentence. If Π is unbounded,
we consider thereafter that ‖x∗

max − c‖2 = +∞, even if x∗
max is not well-defined.

The non-existence of a point x− or x+ satisfying the strict inequalities in Proposi-
tion 3.1 case (ii) is related to the resolution of problem P1. For example, there is no
point x− if R2 ≤ ‖x∗

min − c‖2. Before solving this extremum problem, one should
verify the feasibility of the constraints. Studying the feasibility of these constraints,
we get some inclusion criteria.

Proposition 3.2 If Vn(Π+) = 0, then I ⊂ B (or I = ∅),
if Vn(Π−) = 0, then B ⊂ U,
if Vn(Π) = 0, then I ∩ (S \ U) = ∅.
Proof I \ B = ∩p

i=1(Bi \ B) ⊂ ∩p
i=1Hi = P+ using relation (c) of Lemma 3.1. If

Vn(Π+) = 0, then P+ = ∅ and we have I ⊂ B. With relation (d) of Lemma 3.1,
B \ U = ∩q−1

j=1(B \ B j ) ⊂ ∩q−1
j=1H j = P−. If Vn(Π−) = 0, then P− = ∅ and we have

B ⊂ U. The last result is a direct application of Corollary 3.1. ��
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We can now present our main result, showing the equivalent between the resolution
of the QP problems P1( j), j = 1, . . . , q, and the decision about I \ U .
Theorem 3.1 If Vn(Π) > 0, we have the following results.

(A) If there exists (x−, x+) ∈ Π × Π such that ‖x− − c‖2 < R2 < ‖x+ − c‖2, then
I \ U �= ∅, Vn(I \ U) > 0 and Vn(I ∩ U) > 0;

(B) if R2 ≤ ‖x∗
min − c‖2 or ‖x∗

max − c‖2 ≤ R2, then I ∩ (S \ U) = ∅.
Proof In case (A), Proposition 3.1 gives the existence of r > 0 and x ∈ R

n such
that x ∈ SR+ r

2 ∩ (I \ U). In particular, x ∈ SR+ r
2 , then x ∈ Bc. Consequently, x ∈

(I \U)∩Bc = I \U (an open set) and Vn(I \U) > 0.With a point x ′ ∈ SR− r
2 ∩(I \U),

we get B ∩ I �= ∅ and Vn(I ∩ U) > 0. Case (B) is the negation of case (A). That
is, there exists r > 0 such that for all ε ∈ (0, r) or for all ε ∈ (−r , 0), we have
SR+ε ∩ (I \ U) = ∅ using Proposition 3.1. Therefore, I ∩ (S \ U) = ∅. Otherwise,
with O = I \ U in Lemma 3.2 we get SR+ε ∩ (I \ U) �= ∅ for all ε ∈ (−r∗, r∗) and
fixed r∗ > 0, which is impossible. ��

If case (B) is satisfied, the convex set I does not intersect the frontier S \ U and
we consider another reference ball in V to solve a new P1-type problem (3). If for all
elements of V we get case (B), we have I ∩ ∂U = ∅. Using a point x̂ in I, we test
whether x̂ is included in U to conclude.

4 Simplifications

4.1 Convex Reduction

We show that, if some mild conditions are satisfied, the feasible region Π of Problem
P2 (see (4)) can be unbounded and the maximum problem in Theorem 3.1 does not
have to be solved anymore. The problem is reduced to a convex quadratic programming
problem, which can be solved in polynomial time [17,18].

Theorem 4.1 For all i ∈ {1, . . . , p} and j ∈ {1, . . . , q − 1}, if R2
i < R2 + ‖c − ci‖2

and R2
j > R2 + ‖c − c j‖2, then Π \ B �= ∅ or Π = ∅.

Proof First, we show that c /∈ Π . Indeed, we have for i = 1, . . . , p,

hi (c) = 〈2c − (c + ci ), c − ci 〉 + (R2 − R2
i ) = R2 + ‖c − ci‖2 − R2

i > 0 ,

and for j = 1, . . . , q − 1,

−h j (c) = −〈2c − (c + c j ), c − c j 〉 − (R2 − R2
j ) = R2

j − R2 − ‖c − c j‖2 > 0 ,

using the hypothesis. Second, we prove that, ifΠ �= ∅, thenΠ is unbounded. Suppose
that there exists x̂ ∈ Π ; we have c − x̂ �= 0. We consider the affine functions gi :
λ �→ hi (x̂ + λ(c − x̂)) and gi : λ �→ −hi (x̂ + λ(c − x̂)) with λ ∈ R. We have
gi (0) ≤ 0, gi (1) > 0 and gi (0) ≤ 0, gi (1) > 0, so that these functions are strictly
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increasing. Thus, for all negative lambda, we have x̂ + λ(c − x̂) ∈ Π . Therefore, as
limλ→−∞ ‖x̂ + λ(c − x̂)‖ = +∞, the set Π \ B cannot be empty. ��

With only an upper bound on the number of involved balls in Λ ∪ V , we have the
same result.

Proposition 4.1 If the number of constraints is less or equal to the dimension, that is
p + q − 1 ≤ n, then Π is unbounded (or empty) and the conclusion of Theorem 4.1
still holds.

Proof We explicit the constraints as a system of linear inequalities, Ax ≤ b, with A ∈
R

(p+q−1)×n and b ∈ R
p+q−1. If the rank of A is equal to n, the system Ax = b − tI,

with I the vector filled by ones, has a (unique) solution x(t) and limt→+∞ ‖x(t)‖ =
limt→+∞ ‖A−1(b − tI)‖ = +∞ with Ax(t) = b − tI ≤ b for positive t . If
rank(A) < n, the rank-nullity theorem shows that the linear subspace Ker(A) is of
dimension n − rank(A) > 0 and then Ker(A) �= {0}. If a point x0 ∈ R

n satisfies the
inequalities, thus, A(x0 + t y) = Ax0 ≤ b, with y ∈ Ker(A)\ {0} and t ∈ R. We have
limt→+∞ ‖x0 + t y‖ = +∞, and the result is proven. ��
Remark 4.1 The conditions of Theorem 4.1 are sharp. If one of the relations is false,
then there exist sets of balls Λ and V with #(Λ ∪ V ) = p + q = n + 2, such that we
have Π ⊂ B. An example of such a set Π is the n-dimensional pyramid with summit
near point c and a basis obtained with the only one hyperplane that do not satisfies
the conditions of Theorem 4.1. The necessary condition of Proposition 4.1 is also not
verified as p + q = n + 2 > n + 1.

Theorem 4.2 If there exists d ∈ R
n \{0}n such that 〈d, c−ci 〉 < 0 and 〈d, c−c j 〉 > 0

for all i ∈ {1, . . . , p}and j ∈ {1, . . . , q−1} (linear separability), thenΠ is unbounded
or Π = ∅.
Proof Suppose that there exist x̂ ∈ Π and d satisfying the condition of the theorem.
Then for all α < 0, we have for all the constraints

hi (x̂ + αd) = 2〈x̂, c − ci 〉 + 2α〈d, c − ci 〉 − ‖c‖2 + ‖ci‖2 + (R2 − R2
i ) ≤ hi (x̂) ≤ 0 ,

h j (x̂ + αd) = 2〈x̂, c − c j 〉 + 2α〈d, c − c j 〉 − ‖c‖2 + ‖c j‖2 + (R2 − R2
j ) ≥ h j (x̂) ≥ 0 ,

and x̂ + αd defines an infinite direction inside the polyhedron Π . ��
All these results are important for our changepoint detection algorithm (see

“Appendix A”) as they can considerably reduce the computation time.

4.2 The Concave QCQP Problem

If there is only one ball in the set V and then no more concave constraint in (2), we
consider only one QCQP problem of type (2) and only one QP problem of type (4)
(q = 1). We say that we solve a concave QCQP problem, because we minimize the
opposite of a convex function over a set of convex constraints.
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A first direct consequence is thatΠ = Π+,Π− = R
n and U = ∅. In this particular

configuration, some of our results in Sects. 3 and 4.1 can be simplified.
Feasibility:

If Vn(Π) = 0, then I ⊂ B (or I = ∅).
Quadratic programming reduction:

(A) If (x−, x+) ∈ Π ×Π is such that ‖x− −c|‖2 < R2 < ‖x+ −c‖2, then I \B �= ∅;
(B) if R2 ≤ ‖x∗

min − c‖2, then I ∩ S = ∅;
(C) if ‖x∗

max − c‖2 ≤ R2, then I ⊂ B.

Proof Only the case (C) has to be proven. Using Lemma 3.1, we have I \ B =
∩p
i=1(Bi \ B) ⊂ ∩p

i=1(Hi \ B) = Π \ B. However, Π \ B = ∅ and then I ⊂ B. ��
Convex optimization reduction:

if R2
i < R2 + ‖c − ci‖2, for all i ∈ {1, . . . , p}, then Π \ B �= ∅ or Π = ∅.

5 Simulations

Algorithm 2 describes our new procedure based on equivalent QP problems. It is made
of two steps: the detection of an intersection between I and ∂U using QP problems
(see Sect. 3) and the test I ⊂ U with a unique point (if I ∩ ∂U = ∅). We chose to
determine x∗

min and x∗
max for each QP problem but, in fact, we only need points x−

and x+, as shown by Theorem 3.1.

Algorithm 2 QP-based decision algorithm
1: procedure IsIncluded(Λ, V )
2: response ← true, j ← 1
3: while j < q + 1 do
4: x∗

min( j) = Argmin {P1( j)} � We solve the QP problem P1( j) for min

5: if ‖x∗
min( j) − c j‖2 < R2

j then

6: x∗
max ( j) = Argmax {P1( j)} � We solve the QP problem P1( j) for max

7: if R2
j < ‖x∗

max ( j) − c j‖2 then
8: response ← f alse, j ← q
9: end if
10: end if
11: j ← j + 1
12: end while
13: if response = true then
14: Find x̃ ∈ I
15: if x̃ /∈ U then
16: response ← f alse
17: end if
18: end if
19: return response

Our goal is to compare the performances of this algorithm against Algorithm 1 on
two aspects: the exactness of the result and their computational efficiency. We will
also illustrate the polynomial time complexity of our new algorithm by increasing the
dimension n at fixed p and q.
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Fig. 3 Two examples of simulated data with p = q = 3 in dimension 2. On the left, I �⊂ U , on the right
I ⊂ U . The opaque red disks are the balls of the union set V . The transparent blue disks are the balls of
the intersection set Λ

We have implemented1 Algorithm 1 in Python using the recent (2017) suggest
and improve method for nonconvex QCQP [12] based on packages ’cvxpy’ [21] and
its extension ’qcqp’. This allows us to use state-of-the-art methods on Python, more
elaborated than interior point one, which is not adapted to our problem (see Fig. 1).
The suggest method is set to random and the improve step to ADMM (alternating
directions method of multipliers [22]) followed by a coordinate descent step. This is
the most efficient combination of methods (empirically speaking) and is used in some
examples given in the package.

The center points for balls are randomly generated with a normal distribution cen-
tered on zero with standard deviation σ = 10, and their radius is the distance to zero
plus a quantity ε = 5 for intersection ball and 2ε for union balls.We also verify that the
obtained balls intersect each other as in (1), if not, we simulate new balls. Examples
of simulated data are shown in Fig. 3.

In Table 1, we generate 100 examples for each proposed configuration. We first
consider examples with I �⊂ U . In case (n = 2, p = 3), we compare the results of the
two algorithms with the 2d graphical representation of the balls problem to confirm
the exactness of our method.

Algorithm 2 always finds the exact result in dimension 2, and we get the value 100.
For higher dimensions, we know the result of Algorithm 2 to be exact (as shown by
theoretical results of Sect. 3) and count the number of identical results between the
two algorithms to get the number of true results for Algorithm 1. Algorithm 1 often
fails, in particular when the non-inclusion is difficult to visually detect (obtained on
a small volume). This behavior is a consequence of our simulations: we generated
data with a unique simulation procedure, so that, for increasing q it becomes harder
to generate examples without inclusion. An increasing dimension n gives more space
to get a non-inclusion and facilitate the detection of I �⊂ U for Algorithm 1.

In the case of the inclusion I ⊂ U , we notice that Algorithm 1 always finds the
right answer in our simulations. Interestingly, the resolution of the unique problem
P0(q) often fails, unlike the non-inclusion case.

1 The Python code is available on my github ’vrunge’ in repository called ’QP_vs_QCQP’ https://github.
com/vrunge/QP_vs_QCQP/blob/master/simulations.ipynb.
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Table 1 Number of exact results over 100 simulations

I �⊂ U n = 2, p = 3 p = 3, q = 3 p = 5, q = 5

q = 1 q = 2 q = 3 n = 3 n = 5 n = 10 n = 10

Algorithm 1 83 65 48 57 63 79 65

P0(q) 83 80 87 91 91 90 92

Algorithm 2 100 100 100 · · · ·
I ⊂ U
Algorithm 1 100 100 100 100 100 100 100

P0(q) 100 92 81 75 75 83 77

Table 2 Comparison of execution time with p = q = 3 and varying dimension n

i n = 5 n = 10 n = 20

time QP time QCQP time QP time QCQP time QP time QCQP

1 0.00411 2.013 0.00448 2.667 0.00464 2.923

2 0.00280 1.213 0.00261 2.553 0.00298 1.732

3 0.00260 1.034 0.00262 2.358 0.00305 2.570

4 0.00274 1.044 0.00262 2.133 0.00290 15.10

5 0.00279 1.967 0.00272 2.098 0.00306 4.843

6 0.00304 1.039 0.00278 1.402 0.00294 5.856

7 0.00267 1.639 0.00267 1.766 0.00288 48.80

8 0.00261 1.070 0.00277 8.500 0.00296 2.780

9 0.00547 0.832 0.00275 1.803 0.00375 2.913

10 0.00263 0.564 0.00286 1.663 0.00666 2.964

RATIO mean time QCQP by mean time QP

394.6 933.0 2526

In Table 2, we highlight the efficiency of our new algorithm, compared with the
Python package ’qcqp’ based on nonconvex QCQP methods. Notice that improve-
ments in the code for Algorithm 2 are still possible with a direct implementation
of the QP problem stopping as soon as we get x− or x+ and in the vertex enu-
meration solver (we simply used package cdd2 [23]). We have made 10 simulations
(i = 1, . . . , 10) for 3 configurations (n = 5, 10, 20) with p = q = 3 in case I �⊂ U
(simpler to obtain in our ball generation algorithm with increasing dimension n). Our
results show for Algorithm 1 a computational time complexity of order O(103) slower
than for Algorithm 2 and a higher time variability between iterates.

An empirical polynomial time complexity is confirmed by our simulations as shown
in Fig. 4. Simulations have been performed with I �⊂ U for an increasing n, so that,
in these simulations, we only solve a unique QP problem for maximum and minimum

2 website of the Python package http://pycddlib.readthedocs.io/en/latest/.
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Fig. 4 Left: p = q = 3 and n = 10, 20, 30, . . . , 2000. Each datapoint is the mean over 10 identical
simulations in case I �⊂ U . A unique QP problem is solved for each simulation. Right: in the log-log scale,
the curve stabilizes, corroborating a polynomial time complexity of type anb . A linear model returns a
coefficient of determination of 0.935 with b ≈ 1.76

to detect an intersection. With a linear regression based on the model t = anb, we get
a power of about b = 1.76 with R2 = 0.935 in the logarithmic scale.

Conclusions

The geometric question of the cover of an intersection of balls by an union of other balls
has been addressedusingoptimization tools. The collectionof nonconvexquadratically
constrained quadratic programming problems has been transformed into a collection of
quadratic optimization problems: the minimum and the maximum distances between
a point and a Voronoi-like polyhedron has to be found for each problem. The maxi-
mum problem can be handled efficiently by vertex enumeration. If simple conditions
are satisfied, the polyhedron is unbounded, the maximization problem has not to be
considered anymore, and the complexity is known to be in polynomial time. Simu-
lations show that state-of-the-art nonconvex QCQP algorithms, developed in Python,
often fail the decision test and are computationally greedy. Our newmethod never fails
(is exact) and efficiently finds the solution with a time complexity of order O(103)
smaller in our simulation study. In a further work, we will apply this method to the
efficient implementation of amultidimensional changepoint detection algorithm based
on pruned dynamic programming.
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Appendices

A Motivation

Our covering problem has a direct application for the implementation of the pruned
penalized3 dynamic programming algorithm for changepoint detection in a multidi-
mensional setting [25–27]. This problem consists in finding the optimal changepoint
within the set Sm = {τ = (τ1, . . . , τk) ∈ N

k | 1 = τ0 < τ1 < · · · < τk < m + 1 =
τk+1} such that we minimize a quadratic (for Gaussian modelization) penalized cost
(by β > 0):

Qm = min
τ∈Sm

[
k∑

i=0

{C(yτi :τi+1−1) + β}
]

,

with C(yτi :τi+1−1) = min
x∈Rn

τi+1−1∑

j=τi

n∑

k=1

(xk − y jk)
2 ,

and (y1, . . . , ym)T ∈ (Rn)m the data to segment. Using a dynamic programming
procedure, we build the recursion Qt+1(x) = min{Qt (x), mt + β} + ∑n

k=1(xk −
y(t+1)k)

2 with mt = minx Qt (x) and the initialization Q0(x) = 0. We solve this
recursion iteratively from t = 0 to t = m − 1.
At each t , the recursive function Qt (·) is a piecewise quadratic function defined on t
non-overlapping regions R1

t , . . . , R
t
t ⊂ R

n , for which each quadratics is active on a
set Ri

t of type “I \ U”. Precisely,

R1
t = ∩t

i=1B
1
i ,

R2
t = ∩t

i=2B
2
i \ B1

1 ,

R3
t = ∩t

i=3B
3
i \ (B1

2 ∪ B2
2 ) ,

...

Rt
t = Rt

t \ (∪t−1
j=1B

j
t−1) .

where all the “Bk
l ” sets designate balls determined by the data (yk, . . . , yl). At the

next iteration t + 1, each Ri
t is intersected by a new ball (that is, we add a ball in each

I) and the set Rt+1
t+1 is created.

In order to get the global minimum mt , we compare the minima of all present
quadratics. To speed-up the procedure, it is worthwhile to search for vanishing sets,
that is to detect efficiently the emptiness of sets R1

t , . . . , R
t
t . In fact, once a set is

proved to be empty, we do not need to consider its minimum anymore at any further
iteration. This method is called pruning in the changepoint detection literature.

3 It would also work for (non-penalized) segment neighborhood method [24].
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In a paper in preparation, wewill compare this exact method to heuristic approaches
in order to build a fast algorithm for an application to genomic data. Moreover, our
methods can be extended to other distributions of the natural exponential family.

B An Alternative Method

In some applications, as for example in “Appendix A,” we need to test sequentially the
covering. This means that we add at each iteration a new ball in the intersection I. For
large q, it could be expensive to solve q QP problems at each iteration for minimum
and maximum. Another approach consists in detecting an intersection between I \ U
and S (as soon as #I > 0), where S is the frontier of the new ball B (with center c
and radius R) to add in I. The problem is now centered on the “newest” ball of set Λ
rather than the successive balls of V . Thus, a unique QP problem centered on the ball
B is built and we get a result similar to Theorem 3.1:

Theorem B.1 If Vn(Π) > 0, we have the following results.

(a) If there exists (x−, x+) ∈ Π × Π such that ‖x− − c‖2 < R2 < ‖x+ − c‖2,
then (B ∩ I) \ U �= ∅ and Vn((B ∩ I) \ U) > 0;

(b) if R2 ≤ ‖x∗
min − c‖2 or ‖x∗

max − c‖2 ≤ R2, then S ∩ (I \ U) = ∅.

In case (b), we can conclude knowing a point x̃k for each connected component Ck

(k = 1, . . . , K ) of I \ U and testing x̃k ∈ B. If always false, we get (B∩ I) \ U = ∅.
The drawback of this approach is the necessity to know the number of connected
components in I \ U . However, with the conditions of Theorem 4.1 the set I \ U is
connected (see the proof) and a unique point in I \ U is required (K = 1).
Proposition 3.2 remains the same with B instead of B. The detection of the inclusion
I ⊂ B is now made possible and is important for sequential problems, since in this
case, the ball B is not added to the set Λ.
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