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Abstract
In this paper, we propose non-model-based strategies for locally stable convergence to
Nash equilibrium in quadratic noncooperative games where acquisition of information
(of two different types) incurs delays. Two sets of results are introduced: (a) one,
which we call cooperative scenario, where each player employs the knowledge of the
functional form of his payoff and knowledge of other players’ actions, but with delays;
and (b) the second one, which we term the noncooperative scenario, where the players
have access only to their own payoff values, again with delay. Both approaches are
based on the extremum seeking perspective, which has previously been reported for
real-time optimization problems by exploring sinusoidal excitation signals to estimate
the Gradient (first derivative) and Hessian (second derivative) of unknown quadratic
functions. In order to compensate distinct delays in the inputs of the players, we have
employed predictor feedback. We apply a small-gain analysis as well as averaging
theory in infinite dimensions, due to the infinite-dimensional state of the time delays,
in order to obtain local convergence results for the unknown quadratic payoffs to a
small neighborhood of the Nash equilibrium. We quantify the size of these residual
sets and corroborate the theoretical results numerically on an example of a two-player
game with delays.
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1 Introduction

Game theory provides a theoretical framework for conceiving social situations among
competing players and using mathematical models of strategic interaction among
rational decision-makers [1,2]. Game-theoretic approaches to designing, modeling,
and optimizing emerging engineering systems, biological behaviors andmathematical
finance make this topic of research an extremely important tool in many fields with a
wide range of applications [3–5]. Indeed, we can find numerous results for both theory
and practice in the corresponding literature of differential games [6–12].

In this context, we can view games roughly in two categories: cooperative and
noncooperative games [13]. A game is cooperative if the players are able to form
binding commitments externally enforced (e.g., through contract law), resulting in
collective payoffs. A game is noncooperative if players cannot form alliances or if
all agreements need to be self-enforcing (e.g., through credible threats), focusing on
predicting individual players’ actions and payoffs and analyzing Nash equilibria [14].
Nash equilibrium is an outcome which, once achieved or reached, means no player
can increase its payoff by changing decisions unilaterally [13].

The development of algorithms to achieve convergence to a Nash equilibrium has
been a focus of researchers for several decades [15,16]. Some papers have also looked
at learning aspects of various update schemes for reaching Nash equilibrium [17].
Related to extremum seeking (ES), the authors in [18] study the problem of computing,
in real time, the Nash equilibria of static noncooperative games with N players by
employing a non-model-based approach. By utilizing extremum seeking (ES) [19]
with sinusoidal perturbations, the players achieve stable, local attainment of their
Nash strategies without the need for any model information.

On the other hand, time delays are some of the most common phenomena that arise
in engineering practice and industry, involving networking problems in areas such as
network virtualization, software defined networks, cloud computing, the Internet of
Things, context-aware networks, green communications, and security [3,4,20]. Hence,
the motivation for employing ES to optimize such engineering processes commonly
modeled by such a game-theoretic framework is very clear and highly demanding. We
can even find publications on differential games with delays [21–27], but the literature
has not addressed in this context extremum seeking feedback.

However, it seems not so simple to address this problem. Notice that despite the
large number of publications on delay compensation via predictor feedback, there
was no work in the literature which rigorously concerns ES in the presence of time
delays. The reason was that delay compensation (such as predictor feedback [28])
is inherently model-based, whereas ES is inherently non-model based. In addition,
this is an extremely important problem, because ES is all about convergence, with a
good convergence rate, whereas a delay, when it is simply ignored, severely restricts
the convergence rate or destabilizes the closed-loop system. Fortunately, we gave
a positive answer to this question in our earlier publications [29,30] by introducing
solutions to the problemof designingmulti-variableES algorithms for delayed systems
via predictors based on perturbation-based (averaging-based) estimates of the model.
Since we have reached the point where we have quite a deep understanding of the
options for multi-input ES with delays, it seems natural to move on to the direction
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of developing solid results for games under time delays through the multi-variable
ES perspective. This is particularly challenging since in the literature for multi-input
delay compensation, most authors consider a centralized approach for the predictor
design (all vector multiplying the control inputs needs to be known), while games are
decentralized.

In this sense, this paper pursues two sets of responses for games with full sharing
of information, as well as more challenging case of games where there are restrictions
on sharing of information by the players. For the former, the predictor-based delay
compensator for the average system needs to be multi-variable, which means that each
player would need to know at least about the existence of other players, including
how many of them there are, and possibly also know something about their payoff
functions. The key is the square matrix of the second derivatives (Hessian) in [18]
due to the players’ payoffs, which must be estimated using the perturbation signals
of each player. Such a perturbation-based estimate of the matrix needs to be shared
by all the players. In this case, the game exhibits some kind of “cooperation” among
the players for a collective delay compensation. Basically, the players are forced to
cooperate minimally so that the Nash equilibrium can be achieved in a scenario with
delays. For the latter, which we call noncooperative scenario, we are able to develop
a result for N -player games with discrete (point) delays, where the players estimate
only the diagonal entries of the Hessian matrix. Hence, we are also able to dominate
sufficiently small off-diagonal terms using a small-gain argument [31] for the average
system.

Our analysis presents a properly designed sequence of steps of averaging in infinite
dimensions [32], Lyapunov functional [30] for the cooperative result and small-gain
theorem for input-to-state stable (ISS) cascades of dynamical ODE- and PDE-systems
[31] in the noncooperative outcome in order to prove closed-loop stability. For both
scenarios of games, a small neighborhood of the Nash equilibrium is achieved, even
in the presence of arbitrarily long (but fixed) delays. A numerical example with a
two-player game address illustrates our theoretical results.

2 Notation and Terminology

We denote the partial derivatives of a function u(x, t) as ∂x u(x, t) = ∂u(x, t)/∂x ,
∂t u(x, t) = ∂u(x, t)/∂t . We conveniently use the compact notation ux (x, t) and
ut (x, t) for the former and the latter, respectively. The 2-norm (Euclidean) of a finite-
dimensional (ODE) state vector ϑ(t) is denoted by single bars, |ϑ(t)|. In contrast,
norms of functions (of x) are denoted by double bars. We denote the spatial L2[0, D]
norm of the PDE state u(x, t) as ‖u(t)‖2L2([0,D]):=

∫ D
0 u2(x, t)dx , where we drop the

index L2([0, D]) and write it as ‖ · ‖ = ‖ · ‖L2([0,D]), if not otherwise specified [28].
As defined in [33], a vector function f (t, ε) ∈ R

n is said to be of order O(ε) over
an interval [t1, t2], if ∃k, ε̄ : | f (t, ε)| ≤ kε,∀ε ∈ [0, ε̄] and ∀t ∈ [t1, t2]. In most cases
we use k and ε̄ as generic constants, and we use O(ε) to be interpreted as an order of
magnitude relation for sufficiently small ε.
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The definitions of input-to-state stability (ISS) for PDE-based and ODE-based
systems is assumed to be as provided in [31,33], respectively.

Let A ⊆ R
n be an open set. By C0(A;Ω), we denote the class of continuous

functions on A, which take values in Ω ⊆ R
m . By Ck(A;Ω), where k ≥ 1 is an

integer, we denote the class of functions on A ⊆ R
n with continuous derivatives of

order k, which take values in Ω ⊆ R
m . In addition, C([a, b];Rn) is the Banach space

of continuous functions mapping the interval [a, b] into Rn , see [34, Chapter 2].
According to [34,35], we assume the usual definitions for any delayed-system

ẋ(t) = f (t, xt ), t ≥ t0 and x(t0 + Θ) = ξ(Θ),Θ ∈ [−Dmax, 0], where t0 is an
arbitrary initial time instant t0 ≥ 0, x(t) ∈ R

N is the state vector, Dmax > 0 is the
maximum time delay allowed, the history function of the delayed state is given by
xt (Θ) = x(t + Θ) ∈ C([−Dmax, 0];RN ), and the functional initial condition ξ is
also assumed to be continuous on [−Dmax, 0]. Without loss of generality, we consider
t0 = 0 throughout the paper.

3 N-Players Gamewith Quadratic Payoffs and Delays: General
Formulation

As discussed earlier, game theory provides an important framework for mathemati-
cally modeling and analysis of scenarios involving different agents (players) where
there is coupling in their actions, in the sense that their respective outcomes (outputs)
yi (t) ∈ R do not depend exclusively on their own actions/strategies (input signals)
θi (t) ∈ R, with i = 1, . . . , N , but at least on a subset of others’. Moreover, defining
θ :=[θ1, . . . , θN ]T , each player’s payoff function Ji (θ) : RN → R depends on the
action θ j of at least one other Player j , j 
= i . An N -tuple of actions, θ∗ is said to be
in Nash equilibrium, if no Player i can improve his payoff by unilaterally deviating
from θ∗

i , this being so for all i [13]. Despite the vast number of publications on Nash
equilibrium seeking [18], its study under time-delays is still an open problem.

For instance, the applications in economic analysis can be used to motivate the
problem. Consider the dividend policies of two gas stations, where each station is
powered by a different oil refinery. Basically, the price at the pumps is adjusted based
on the current price a barrel of oil and stocks bought at previous values. Thus, the
stations take time to pass on to consumers variations in the price of a barrel of oil in
refineries. In this context of game theory, each gas station could be viewed as a player
and the aforementioned phenomenon described can be interpreted as distinct delays
Di applied to their strategies (price at the pumps). An increase in the pumps’ price of
the i th gas station results in lower, but not zero, sales of the i th gasoline yi (t) and,
consequently, increased sales for the other gas station; see Fig. 1.

Hence, we consider games where the payoff function of each player is quadratic,
expressed as a strictly concave combination of their delayed actions

Ji (θ(t − D)) = 1

2

N∑

j=1

N∑

k=1

εi
jk Hi

jkθ j (t − D j )θk(t − Dk) +
N∑

j=1

hi
jθ j (t − D j ) + ci ,

(1)
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Fig. 1 Nash equilibrium seeking
schemes applied by two players
(N = 2) in a duopoly market
structure with delayed players’
actions

e−D2s

θ2(t) y2(t)

e−D1s

θ1(t) y1(t)

MARKET

PLAYER 1
NASH EQUILIBRIUM SEEKING

PLAYER 2
NASH EQUILIBRIUM SEEKING

where θ j (t − D j ) ∈ R is the decision variable of Player j delayed by D j ∈ R
+ units

of time, Hi
jk , hi

j , ci ∈ R are constants, Hi
ii < 0, Hi

jk = Hi
k j and εi

jk = εi
k j > 0,

∀i, j, k.
Without loss of generality, we assume that the inputs have distinct known (constant)

delays which are ordered so that

D = diag{D1, D2, . . . , DN }, 0 ≤ D1 ≤ · · · ≤ DN . (2)

Moreover, given any R
N -valued signal f , the notation f D denotes

f D(t):= f (t − D) = [ f1(t − D1) f2(t − D2) . . . fN (t − DN )
]T

. (3)

Quadratic payoff functions are of particular interest in game theory, firstly because
they constitute second-order approximations to other types of non-quadratic payoff
functions, and secondly because they are analytically tractable, leading in general
to closed-form equilibrium solutions which provide insight into the properties and
features of the equilibrium solution concept under consideration [13].

For the sake of completeness, we provide here in mathematical terms, the definition
of a Nash equilibrium θ∗ = [θ∗

1 , . . . , θ∗
N ]T in an N -player game:

Ji (θ
∗
i , θ∗−i ) ≥ Ji (θi , θ

∗−i ), ∀θi ∈ Θi , i ∈ {1, . . . , N }, (4)

where Ji is the payoff function of Player i , the term θi corresponds to its action, while
Θi is its action set and θ−i denotes the actions of the other players. Hence, no player
has an incentive to unilaterally deviate its action from θ∗. In the duopoly example just
mentioned, Θ1 = Θ2 = R, where R denotes the set of real numbers.

In order to determine the Nash equilibrium solution in strictly concave1 quadratic
games with N players, where each action set is the entire real line, one should differ-
entiate Ji with respect to θi (t − Di ),∀i = 1, . . . , N , setting the resulting expressions

1 By strict concavity, wemean Ji (θ) is strictly concave in θi for all θ−i , this being so for each i = 1, . . . , N .
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equal to zero, and solving the set of equations thus obtained. This set of equations,
which also provides a sufficient condition due to the strict concavity, is

N∑

j=1

εi
i j H i

i jθ
∗
j + hi

i = 0, i = 1, . . . , N , (5)

which can be written in the form of matrices as

⎡

⎢
⎢
⎢
⎣

ε111H1
11 ε112H1

12 . . . ε11N H1
1N

ε221H2
21 ε222H2

22 . . . ε22N H2
2N

...
...

...

εN
N1H N

N1 εN
N2H N

N2 . . . εN
N N H N

N N

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

θ∗
1

θ∗
2
...

θ∗
N

⎤

⎥
⎥
⎥
⎦

= −

⎡

⎢
⎢
⎢
⎣

h1
1

h2
2
...

hN
N

⎤

⎥
⎥
⎥
⎦

. (6)

Defining the Hessian matrix H and vectors θ∗ and h by

H :=

⎡

⎢
⎢
⎢
⎣

ε111H1
11 ε112H1

12 . . . ε11N H1
1N

ε221H2
21 ε222H2

22 . . . ε22N H2
2N

...
...

...

εN
N1H N

N1 εN
N2H N

N2 . . . εN
N N H N

N N

⎤

⎥
⎥
⎥
⎦

, θ∗:=

⎡

⎢
⎢
⎢
⎣

θ∗
1

θ∗
2
...

θ∗
N

⎤

⎥
⎥
⎥
⎦

, h:=

⎡

⎢
⎢
⎢
⎣

h1
1

h2
2
...

hN
N

⎤

⎥
⎥
⎥
⎦

, (7)

there exists only one Nash equilibrium at θ∗ = −H−1h, if H is invertible:

⎡

⎢
⎢
⎢
⎣

θ∗
1

θ∗
2
...

θ∗
N

⎤

⎥
⎥
⎥
⎦

= −

⎡

⎢
⎢
⎢
⎣

ε111H1
11 ε112H1

12 . . . ε11N H1
1N

ε221H2
21 ε222H2

22 . . . ε22N H2
2N

...
...

...

εN
N1H N

N1 εN
N2H N

N2 . . . εN
N N H N

N N

⎤

⎥
⎥
⎥
⎦

−1⎡

⎢
⎢
⎢
⎣

h1
1

h2
2
...

hN
N

⎤

⎥
⎥
⎥
⎦

. (8)

For more details, see [13, Chapter 4].
The control objective is to design a novel extremum seeking-based strategy to

reach the Nash equilibrium in (non)cooperative games subjected to distinct delays in
the decision variables of the players (input signals).

Figure 2 contains a schematic diagram that summarizes the proposed Nash equi-
librium policy for each i th player where its output is given by

yi (t) = Ji (θ(t − D)), (9)

where the vector θ−i (t − D−i ) represents the delayed actions of all other players. The
additive-multiplicative dither signals Si (t) and Mi (t) are

Si (t) = ai sin(ωi t + ωi Di ), (10)

Mi (t) = 2

ai
sin(ωi t), (11)
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Fig. 2 Block diagram
illustrating the Nash equilibrium
seeking strategy of Sect. 5
performed for each player. In red
color, the predictor feedback
used to compensate the
individual delay Di for the
noncooperative case +

+

+

Si(t)

1
s

1
s

ci
s+ci

ki ×

×

Mi(t)
e−Dis Ji(·)

e−Dis

×

Ni(t)

θ̂i

θi(t − Di)

ĜiUi

θi(t) yi(t)

Ĥi

θ−i(t − D−i)

−

Predictor

with nonzero constant amplitudes ai > 0 at frequencies ωi 
= ω j . Such probing
frequencies ωi ’s can be selected as

ωi = ω′
iω = O(ω), i ∈ 1, 2, . . . , N , (12)

where ω is a positive constant and ω′
i is a rational number. One possible choice is

given in [36] as

ω′
i /∈
{

ω′
j ,

1

2
(ω′

j + ω′
k), ω′

j + 2ω′
k, ω′

j + ω′
k ± ω′

l

}

, (13)

for all distinct i, j, k and l. The remaining signals are defined throughout the paper
depending on the type of game in question: cooperative games (Sect. 4) or noncoop-
erative games (Sect. 5).

By considering θ̂i (t) as an estimate of θ∗
i , one can define the estimation error:

θ̃i (t) = θ̂i (t) − θ∗
i . (14)

Then, from Eqs. (10), (14) and Fig. 2, it is easy to get

θi (t) = Si (t) + θ̂i (t) (15)

= ai sin(ωi t + ωi Di ) + θ̃i (t) + θ∗
i , (16)

with the following time-delayed version

θi (t − Di ) = ai sin(ωi t) + θ̃i (t − Di ) + θ∗
i . (17)
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Therefore, from (1) and (17), the i th output signal in (9) can be rewritten as

yi (t) = 1

2

N∑

j=1

N∑

k=1

εi
jk Hi

jk

[
a j sin(ω j t)θ̃k(t − Dk) + ak sin(ωk t)θ̃ j (t − D j )

]
+

+ 1

2

N∑

j=1

N∑

k=1

εi
jk Hi

jk

[
θ∗

k a j sin(ω j t) + θ∗
j ak sin(ωk t)

]
+

+ 1

2

N∑

j=1

N∑

k=1

εi
jk Hi

jk

[
θ∗

k θ̃ j (t − D j ) + θ∗
j θ̃k(t − Dk)

]
+

+ 1

2

N∑

j=1

N∑

k=1

εi
jk Hi

jka j ak sin(ω j t) sin(ωk t) + 1

2

N∑

j=1

N∑

k=1

εi
jk Hi

jkθ
∗
j θ

∗
k +

+ 1

2

N∑

j=1

N∑

k=1

εi
jk Hi

jk θ̃ j (t − D j )θ̃k(t − Dk)+

+
N∑

j=1

hi
j a j sin(ω j t) +

N∑

j=1

hi
j θ̃ j (t − D j ) +

N∑

j=1

hi
jθ

∗
j + ci . (18)

The estimate Ĝi of the unknown gradient of each payoff Ji is given by

Ĝi (t) = Mi (t)yi (t). (19)

Plugging (11) and (18) into (19) and computing the average of the resulting signal,
lead us to

Ĝav
i (t) = 1

Π

∫ Π

0
Mi (τ )yidτ =

N∑

j=1

εi
i j H i

i j θ̃
av
j (t − D j ) +

∑N

j=1
εi

i j H i
i jθ

∗
j + hi

i
︸ ︷︷ ︸

=0, from (5)

,

=
N∑

j=1

εi
i j H i

i j θ̃
av
j (t − D j ). (20)

with Π defined as

Π :=2π × LCM

{
1

ωi

}

, (21)

and LCM standing for the least common multiple.
At this point, if we neglect the prediction loop and the low-pass filter (both indicated

in red color) in Fig. 2, the control law Ui (t) = ki Ĝi (t) could be obtained as in the
classical ES approach. In this case, fromEqs. (14) and (20), we could write the average
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version of

˙̃
θi (t) = Ui (t) (22)

such as

˙̃
θavi (t) = ki Ĝ

av
i (t)

= ki

N∑

j=1

εi
i j H i

i j θ̃
av
j (t − D j ). (23)

Therefore, by defining θ̃av(t) := [θ̃av1 (t), θ̃av2 (t), . . . , θ̃avN (t)]T ∈ R
N in order to take

into account all players, one has

˙̃
θav(t) = K H θ̃av(t − D), (24)

with K :=diag{k1, . . . , kN } and H given by (7). Equation (24) means that even if
K H was a Hurwitz matrix, the equilibrium θ̃ave = 0 of the closed-loop average sys-
tem would not necessarily be stable for arbitrary values of the time-delays Di . This
reinforces the demand of employing the prediction feedback Ui (t) = ki Ĝi (t + Di )—
or even its filtered version—for each player to stabilize collectively the closed-loop
system, as illustrated with red color in Fig. 2.

On the other hand, the derivative of (20) is

˙̂Gav
i (t) =

N∑

j=1

εi
i j H i

i j
˙̃
θavj (t − D j ), (25)

and delaying by Di units the time-argument of both sides of the average version of
(22), we obtain

˙̃
θavi (t − Di ) = U av

i (t − Di ). (26)

Thus, Eq. (25) can be rewritten as

˙̂Gav
i (t) =

N∑

j=1

εi
i j H i

i jU
av
j (t − D j ). (27)

Taking into account all players, from (20) and (27), it is possible to find a compact
form for the overall average estimated gradient Ĝav(t):=[Ĝav

1 (t), . . . , Ĝav
N (t)]T ∈ R

N

according to

Ĝav(t) = H θ̃av(t − D), (28)

˙̂Gav(t) = HU av(t − D), (29)
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where H is given in (7) and U av(t):=[U av
1 (t), U av

2 (t), . . . , U av
N (t)]T ∈ R

N .
Throughout the paper the key idea is to design control laws (policies) for each player

in order to achieve a small neighborhood of the Nash equilibrium point. To this end,
we use an extremum seeking strategy based on prediction feedback to compensate
multiple and distinct delays in the players’ actions. Basically, the control laws are able
to ensure exponential stabilization of Ĝav(t) and, consequently, of θ̃av(t). From (28),
it is clear that if H is invertible, θ̃av(t) → 0 as Ĝav(t) → 0. Hence, the convergence
of θ̃av(t) to the origin results in the convergence of θ(t) to a small neighborhood of
θ∗ in (4) via averaging theory [32].

4 Cooperative Scenario with Delays

In the cooperative scenario, the purpose of the extremum seeking is to estimate the
Nash equilibrium vector θ∗ by sharing among the players their outputs (payoffs)

yi (t) = Ji (θ(t − D)) (30)

in (1), as well as their own actions θi (t) and control laws Ui (t). In this sense, we are
able to formulate the closed-loop system in a centralized fashion with a multivariable
framework on which each state variable corresponds to its corresponding player.

In this section, ei ∈ R
N stands for the i-th columnof the identitymatrix IN ∈ R

N×N

for each i ∈ {1, 2, . . . , N }.

4.1 Centralized Predictor with Shared Hessian Information Among Players

To this end, we redefine perturbation signals in (10) and (11) through a vector form
S(t) and M(t) ∈ R

N by

S(t) = [a1 sin(ω1(t + D1)) · · · aN sin(ωN (t + DN ))
]T

, (31)

M(t) =
[
2

a1
sin(ω1t) · · · 2

aN
sin(ωN t)

]T

. (32)

Notice that the delayed signal SD of S is a conventional perturbation signal used
in [36]. We also set the matrix-valued signal N (t) ∈ R

N×N as

Ni j (t) =

⎧
⎪⎪⎨

⎪⎪⎩

16

a2
i

(

sin2(ωi t) − 1

2

)

, i = j,

4

ai a j
sin(ωi t) sin(ω j t), i 
= j .

(33)

By using the above signals, we develop a multivariable extremum seeking scheme
in order to compensate collectively the presence of multiple input delays. Let the input
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signals (14) be constructed in the vector form as

θ(t) = θ̂ (t) + S(t), (34)

where θ̂ is an estimate of θ∗. We also introduce the estimation error

θ̃ (t):=θ̂ D(t) − θ∗. (35)

Note that the error is defined here with θ̂ D rather than θ̂ . With this error variable, the
individual output signals or payoffs yi (t) can be rewritten as

yi (t) = Ji

(
θ∗ + θ̃ (t) + SD(t)

)
. (36)

To compensate the delays, we propose the following predictor-based update law:

˙̂
θ(t) = U (t), (37)

U̇i (t) = − cUi (t) + cki

(

Mi (t)yi (t) + Ni (t)yi (t)
N∑

j=1

e j

∫ t

t−D j

U j (τ )dτ

)

,

(38)

for some positive constants c, ki > 0 with ki being the elements of the diagonal matrix
K ∈ R

N×N . Without loss of generality, we consider ci = c in Fig. 2. Moreover, in
the particular case of the cooperative scenario, the signal Ni (t) used in (38) is simply
defined by

Ni (t):=[Ni1(t) . . . Ni N (t)], (39)

representing the vector with the elements of each row of the matrix N (t) with Ni j

given in (33).

Since ˙̂
θ D(t) = U D(t), differentiating the error variable θ̃ with respect to t yields

˙̃
θ(t) = U D(t) =

N∑

i=1

eiUi (t − Di ), (40)

which is in a standard form of a system with input delays. As we will see later, the
terms in the parentheses on the right-hand side of (38) correspond to a predicted value
of H θ̃ at some time in the future in the average sense, i.e.,

Ĝav(t + D) = Ĝav(t) + H
N∑

i=1

ei

∫ t

t−Di

U av
i (τ )dτ. (41)

We obtain the future state (41) by simply applying the variation of constants formula
to (29).
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4.2 Reduction Approach: Exponential Stability Deduced from the Explicit
Solutions

For the sake of simplicity, we assume c → +∞ in (38) resulting in the following
expression:

Ui (t) = ki

⎛

⎝Mi (t)yi (t) + Ni (t)yi (t)
N∑

j=1

e j

∫ t

t−D j

U j (τ )dτ

⎞

⎠ , (42)

such that the delayed closed-loop system (40) and (42) can be written in the corre-
sponding PDE representation form, given by [29]:

˙̃
θ(t) =

N∑

i=1

ei ui (0, t), (43)

∂t ui (x, t) = ∂x ui (x, t), x ∈ ]0, Di [, i = 1, 2, . . . , N , (44)

ui (Di , t) = Ui (t). (45)

The relation between ui and Ui is given by ui (x, t) = Ui (x + t − Di ).
In the reduction approach [37] (or finite-spectrum assignment), we use the trans-

formation

Z(t) = θ̃ (t) +
N∑

i=1

∫ t+Di

t
eiUi (τ − Di )dτ

= θ̃ (t) +
N∑

i=1

∫ Di

0
ei ui (ξ, t)dξ. (46)

It is not difficult to see that Z satisfies

Ż(t) =
N∑

i=1

eiUi (t). (47)

This is the key fact in the reduction approach since Eq. (47) can be written in the
simple form

Ż(t) = U (t). (48)

By employing the feedback law U (t) = −K̄ Z(t) into (48), which replaces (43), with
K̄ > 0 being a diagonal matrix K̄ = diag(k̄1 · · · k̄N ), k̄i > 0, then the closed-loop
system (43)–(45) becomes

Ż(t) = − K̄ Z(t), (49)

∂t ui (x, t) = ∂x ui (x, t), x ∈ ]0, Di [, i = 1, 2, . . . , N , (50)

ui (Di , t) = −k̄i Zi (t). (51)
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Exponential stability of the closed-loop system can be shown directly from (49) to
(51) since the solution of the Z–subsystem is easily calculated as

Z(t) = exp(−K̄ t)Z(0). (52)

Hence, Z(t) → 0 exponentially as t → +∞. Then, for t > Di , the solution to the
ui–subsystem in (51) is obtained as

ui (x, t) = − k̄i e
T
i exp(−K̄ (x + t − Di ))Z(0), x ∈ ]0, Di [, t > Di . (53)

Clearly, for each x ∈ ]0, Di [, the state variables ui (x, t), and consequently u(x, t),
converge to 0 as t → +∞. The rate of convergence is exponential.

However, the control law U (t) = −K̄ Z(t) cannot be implemented since Z(t) in
(46) was constructed with the unmeasured signal θ̃ (t) in (35). However, in the average
sense, the average version of (42) returns

U av(t) = K H︸︷︷︸
−K̄

⎛

⎜
⎜
⎜
⎜
⎝

θ̃av(t) +
∑N

j=1
e j

∫ t

t−D j

U av
j (τ )dτ

︸ ︷︷ ︸
Zav(t)

⎞

⎟
⎟
⎟
⎟
⎠

, (54)

since

Ĝav
i (t) = 1

Π

∫ Π

0
Mi (τ )yidτ =

N∑

j=1

εi
i j H i

i j θ̃
av
j (t − D j ), (55)

Ĥ av
i (t) = 1

Π

∫ Π

0
Ni (τ )yidτ =

N∑

j=1

εi
i j H i

i j e
T
j , (56)

or, equivalently, Ĝav(t) = H θ̃av(t − D) and Ĥ av(t) = H , where Ĥ av
i is the i th row

vector of the Hessian H .
In the next sub-section, we show the average control law (54)—or its equivalent

filtered version in (38)—is indeed able to stabilize in the average sense the closed-loop
system (43)–(45).

4.3 Stability Analysis

Inwhat follows,wemake the sameassumption as in [18] concerning theHessianmatrix
H , which describes the interactions among the players in our cooperative game.

Assumption 1 The Hessian matrix H given by (7) is strictly diagonal dominant, i.e.,

N∑

j 
=i

|εi
i j H i

i j | < |εi
i i H i

ii |, i ∈ {1, . . . N }. (57)
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ByAssumption 1, theNash equilibrium θ∗ exists and is unique since strictly diagonally
dominant matrices are nonsingular by the Levy–Desplanques theorem [38]. To attain
θ∗ stably in real time, without any model information (except for the delays Di ), each
Player i employs the cooperative extremum seeking strategy (38) via predictor feed-
back with shared information. The next theorem provides the stability/convergence
properties of the closed-loop extremum seeking feedback for the quadratic N -player
cooperative game with delays under the cooperative scenario.

Theorem 4.1 Consider the closed-loop system (38)–(40) under Assumption 1 and
multiple and distinct input delays Di for an N-players game with payoff functions
given in (1) and under the cooperative scenario. There exists a constant c∗ > 0 such
that ∀c ≥ c∗, ∃ ω∗(c) > 0 such that ∀ω > ω∗, the closed-loop delayed system (38)
and (40) with state θ̃i (t − Di ), Ui (τ ), ∀τ ∈ [t − Di , t] and ∀i ∈ 1, 2, . . . , N, has
a unique locally exponentially stable periodic solution in t of period Π , denoted by
θ̃Π

i (t − Di ), UΠ
i (τ ), ∀τ ∈ [t − Di , t] satisfying, ∀t ≥ 0:

(
N∑

i=1

[
θ̃Π

i (t − Di )
]2 + [UΠ

i (t)
]2 +

∫ t

t−Di

[
UΠ

i (τ )
]2

dτ

)1/2

≤ O(1/ω). (58)

Furthermore,

lim sup
t→+∞

|θ(t) − θ∗| = O(|a| + 1/ω), (59)

where a = [a1 a2 · · · aN ]T and θ∗ is the unique Nash equilibrium given by (8).

Proof The proof is carried out in 5 steps as follows.
First, in Steps 1 and 2, we write the equations of the closed-loop system as well as

its corresponding average version by employing a PDE representation for the transport
delays. In Step 3, we show the exponential stability of the average closed-loop system
using a Lyapunov–Krasovskii functional. Then, we invoke the averaging theorem for
infinite-dimensional systems [32] in Step 4 to show the exponential stability of the
original closed-loop system. Finally, Step 5 shows the convergence of θ(t) to a small
neighborhood of the Nash equilibrium θ∗.

Step 1: Closed-loop System
A PDE representation of the closed-loop system (38), (40) is given by

˙̃
θ(t) = u(0, t), (60)

ut (x, t) = D−1ux (x, t), x ∈ ]0, 1[, (61)

u(1, t) = U (t), (62)

U̇ (t) = − cU (t) + cK

(

Ĝ(t) + Ĥ(t)
∫ 1

0
Du(x, t)dx

)

, (63)

where u(x, t) = (u1(x, t), u2(x, t), · · · , uN (x, t))T ∈ R
N and

Ĝ(t) = [M1(t)y1(t) . . . MN (t)yN (t)]T ∈ R
N×N , (64)
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Ĥ(t) = [N1(t)y1(t) . . . NN (t)yN (t)]T ∈ R
N×N . (65)

It is easy to see that the solution of (61) under the condition (62) is represented as

ui (x, t) = Ui (Di x + t − Di ) (66)

for each i ∈ {1, 2, . . . , N }. Hence, we have
∫ 1

0
Di ui (x, t)dx =

∫ t

t−Di

ui

(
τ − t + Di

Di
, t

)

dτ

=
∫ t

t−Di

Ui (τ )dτ. (67)

This means that

∫ 1

0
Du(x, t)dx =

N∑

i=1

ei

∫ 1

0
Di ui (x, t)dx

=
N∑

i=1

ei

∫ t

t−Di

Ui (τ )dτ. (68)

Thus, we can recover (40) from (61) to (63).
Step 2: Average Closed-loop System
The average system associated with (60)–(63) is given by

˙̃
θav(t) = uav(0, t), (69)

uav,t(x, t) = D−1uav,x (x, t), x ∈ ]0, 1[, (70)

uav(1, t) = Uav(t), (71)

U̇av(t) = − cUav(t) + cK H

(

θ̃av(t) +
∫ 1

0
Duav(x, t)dx

)

, (72)

where we have used the fact that the averages of Ĝ(t) and Ĥ(t) are calculated as
H θ̃av(t) and H .

Step 3: Exponential Stability via Lyapunov–Krasovskii Functional
For simplicity of notation, let us introduce the following auxiliary variables

ϑ(t):=H

(

θ̃av(t) +
∫ 1

0
Duav(x, t)dx

)

, (73)

Ũ = Uav − Kϑ. (74)

With this notation, (72) can be represented simply as U̇av = − cŨ . In addition,
differentiating (73) with respect to t yields

ϑ̇ = HUav(t). (75)
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We prove the exponential stability of the closed-loop system by using the Lyapunov
functional defined by

V (t) = ϑ(t)T Kϑ(t) + 1

4
λmin(−H)

∫ 1

0

(
(1 + x)uav(x, t)T Duav(x, t)dx

)

+ 1

2
Ũ (t)T (−H)Ũ (t). (76)

Recall that K and D are diagonal matrices with positive entries and that H is a
negative-definite matrix. Hence, all of K , D, and −H are positive-definite matrices.
In particular, we use the Gershgorin circle theorem [38, Theorem 6.1.1] to guarantee
λ(H) ⊆⋃N

i=1 ρi , where λ(H) denotes the spectrum of H and ρi is a Gershgorin disc:

ρi =
⎧
⎨

⎩
z ∈ C : |z − εi

i i H i
ii | <

∑

j 
=i

∣
∣
∣εi

i j H i
i j

∣
∣
∣

⎫
⎬

⎭
. (77)

Since εi
i i H i

ii < 0 and H is strictly diagonally dominant, the union of the Gershgorin
discs lies strictly in the left-half side of the complex plane, and we conclude that
Re{λ} < 0 for all λ ∈ λ(H).

For simplicity of notation, we suppress explicit dependence of the variables on t .
The time derivative of V is given by

V̇ = 2ϑT K HUav + 1

2
λmin(−H)U T

avUav

−1

4
λmin(−H)u(0)T u(0) − 1

4
λmin(−H)

×
∫ 1

0
uav(x)T uav(x)dx + Ũ T (−H)

(
U̇av − K HUav

)

≤ 2ϑT K HUav + 1

2
U T
av(−H)Uav − 1

8Dmax
λmin(−H) ×

×
∫ 1

0
(1 + x)uav(x)T Duav(x)dx +

+Ũ T (−H)U̇av + Ũ T (−H)K (−H)Uav. (78)

Applying Young’s inequality to the last term leads to

Ũ T (−H)K (−H)Uav ≤ 1

2
Ũ T (−H K H K H)Ũ + 1

2
U T
av(−H)Uav. (79)

Then, completing the square yields

V̇ ≤ Ũ T (−H)Ũ − ϑT K (−H)Kϑ

− 1

8Dmax
λmin(−H)

∫ 1

0
(1 + x)uav(x)T Duav(x)dx
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+Ũ T (−H)U̇av + 1

2
Ũ T (−H K H K H)Ũ

= Ũ T (−H)
(

U̇av + c∗Ũ
)

− ϑT K (−H)Kϑ

− 1

8Dmax
λmin(−H)

∫ 1

0
(1 + x)uav(x)T Duav(x)dx, (80)

where c∗:=1 + λmax(−H K H K H)/λmin(−H). Hence, by setting U̇av = − cŨ for
some c > c∗, we see that there exists μ > 0 such that

V̇ ≤ −μV . (81)

Finally, it is not difficult to find positive constants α, β > 0 such that

α

(

|θ̃av(t)|2 +
∫ 1

0
|uav(x, t)|2dx + |Ũ (t)|2

)

≤ V (t)

≤ β

(

|θ̃av(t)|2 +
∫ 1

0
|uav(x, t)|2dx + |Ũ (t)|2

)

. (82)

Therefore, the average system (69)–(72) is exponentially stable as long as c > c∗.
Step 4: Invoking the Averaging Theorem for Infinite-Dimensional Systems
Indeed, the closed-loop system (38)–(40) can be rewritten as:

η̇(t) = f (ωt, ηt ), (83)

where η(t) = [η1(t), η2(t)]T :=
[
θ̃ (t), U (t)

]T
is the state vector and ηt (Θ) =

η(t + Θ) for −DN ≤ Θ ≤ 0. The vector field f is given in Eq. (84), such that

η̇(t) =
[ ˙̃
θ(t), U̇ (t)

]T = f (ωt, ηt ). At this point, it is worth to note that the vari-

able ηt ∈ C([−DN , 0];R2N ) does not include only terms that suffer a discrete delay
action (for instance, θ̃i (t − Di ) and Ui (t − Di )), but this representation also includes
operations with terms of distributed delays such as

∫ 0
−Di

Ui (t + τ)dτ . For the sake of

clarity, let us express the discrete terms by ηt1 =
[
θ̃1(t − D1), . . . , θ̃N (t − DN )

]T
,

and ηt2 = [U1(t − D1), . . . , UN (t − DN )]T , for Θ = −Di in each element of the
vector, whereas ηt3 = [U1(t + Θ1), . . . , UN (t + ΘN )]T denotes the distributed terms
for Θi ∈ Θ = [−DN , 0]. The variable υ = g(t, ηt ) with g : R+ × Ω → R

N and

υ =
[∫ 0

−D1
η

[1]
t3 (τ )dτ, . . . ,

∫ 0
−DN

η
[N ]
t3 (τ )dτ

]T
, where η

[i]
t3 represents the i th element

of the vector ηt3, while f : R+ × Ω → R
2N is a continuous functional from a neigh-

borhood Ω of 0 of the supremum-normed Banach space X = C([−DN , 0];R2N ) of
continuous functions from [−DN , 0] to R2N .

From Eq. (40), one has

˙̃
θ(t) = U (t − D),
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with U (t − D) = [
U1(t − D1), U2(t − D2), . . . , UN (t − DN )

]T . Noting that the

term
∫ t

t−Di
Ui (τ )dτ = ∫ 0

−Di
Ui (t + τ)dτ and plugging (12), (32) and (33) into (38),

one can write

U̇i (t) = − cUi (t) + cki yi (t)

{
2

ai
sin(ω′

iωt) + 16

a2
i

[

sin2(ω′
iωt) − 1

2

]

×

×
∫ 0

−Di

Ui (t + τ)dτ +
∑

j 
=i

4

ai a j
sin(ω′

iωt) sin(ω′
jωt)

∫ 0

−D j

U j (t + τ)dτ

⎫
⎬

⎭
.

Then, the dynamics of η are simply

η̇
[1]
1 = f1 = η

[1]
t2 ,

.

.

.
.
.
.

η̇
[i]
1 = fi = η

[i]
t2 ,

.

.

.
.
.
.

η̇
[N ]
1 = fN = η

[N ]
t2 ,

η̇
[1]
2 = fN+1 = −cη[1]

2 + ck1y1

{
2

a1
sin(ω′

1ωt) + 16

a21

[

sin2(ω′
1ωt) − 1

2

]

υ1+

+
N∑

j=2

4

a1a j
sin(ω′

1ωt) sin(ω′
j ωt)υ j

⎫
⎬

⎭
,

.

.

.
.
.
.

η̇
[i]
2 = fN+i = −cη[i]

2 + cki yi

{
2

ai
sin(ω′

i ωt) + 16

a2i

[

sin2(ω′
i ωt) − 1

2

]

υi +

+
∑

j 
=i

4

ai a j
sin(ω′

i ωt) sin(ω′
j ωt)υ j

⎫
⎬

⎭
,

.

.

.
.
.
.

η̇
[N ]
2 = f2N = −cη[N ]

2 + ckN yN

{
2

aN
sin(ω′

N ωt) + 16

a2N

[

sin2(ω′
N ωt) − 1

2

]

υN +

+
N−1∑

j=1

4

aN a j
sin(ω′

N ωt) sin(ω′
j ωt)υ j

⎫
⎬

⎭
, (84)

where yi = yi (t) = yi (ωt, ηt1) according to (18), for all i ∈ {1, . . . , N }, satisfying

yi = 1

2

N∑

j=1

N∑

k=1

εi
jk Hi

jk

[
a j sin(ω

′
j ωt)η[k]

t1 + ak sin(ω
′
kωt)η[ j]

t1

]
+

+ 1

2

N∑

j=1

N∑

k=1

εi
jk Hi

jk

[
θ∗

k a j sin(ω
′
j ωt) + θ∗

j ak sin(ω
′
kωt)

]
+
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+ 1

2

N∑

j=1

N∑

k=1

εi
jk Hi

jka j ak sin(ω
′
j ωt) sin(ω′

kωt)+

+ 1

2

N∑

j=1

N∑

k=1

εi
jk Hi

jk

[
θ∗

k η
[ j]
t1 + θ∗

j η
[k]
t1

]
+ 1

2

N∑

j=1

N∑

k=1

εi
jk Hi

jkη
[ j]
t1 η

[k]
t1 +

+ 1

2

N∑

j=1

N∑

k=1

εi
jk Hi

jkθ∗
j θ

∗
k +

N∑

j=1

hi
j a j sin(ω

′
j ωt) +

N∑

j=1

hi
j η

[ j]
t1 +

N∑

j=1

hi
j θ

∗
j + ci .

Therefore, f (ωt, ηt ):=[ f1, . . . , f2N ]T is simply given by the right-hand side of equa-
tion (84) such that the averaging theorem by [32] (see Theorem A.1 in Appendix) can
be directly applied, considering ω = 1/ε.

From (81), the origin of the average closed-loop system (69)–(72) with transport
PDE for delay representation is locally exponentially stable. Then, from (73) and (74),
we can conclude the same results in the norm

(
N∑

i=1

[
θ̃avi (t − Di )

]2 +
∫ Di

0
[uav

i (x, t)]2dx + [uav
i (Di , t)]2

)1/2

since H is non-singular.
Thus, there exist positive constants α and β such that all solutions satisfy

Ψ (t) ≤ αe−βtΨ (0), ∀t ≥ 0,

where Ψ (t) �
∑N

i=1

[
θ̃avi (t − Di )

]2 + ∫ Di
0

[
uav

i (x, t)
]2 dx + [uav

i (Di , t)
]2, or equiv-

alently,

Ψ (t) �
N∑

i=1

[
θ̃avi (t − Di )

]2 +
∫ t

t−Di

[
U av

i (τ )
]2 dτ + [U av

i (t)
]2

, (85)

using (66). Then, according to the averaging theorem by [32] (see also TheoremA.1 in
Appendix), for ω sufficiently large, (38)–(40), or equivalently (69)–(72), has a unique
locally exponentially stable periodic solution around its equilibrium (origin) satisfying
(58).

Step 5: Asymptotic Convergence to a Neighborhood of the Nash equilibrium
By first using the change of variables ϑ̃i (t):=θ̃i (t − Di ) = θ̂i (t − Di ) − θ∗

i , and
then integrating both sides of (60) over [t, σ + Di ], we have:

ϑ̃i (σ + Di ) = ϑ̃i (t) +
∫ σ+Di

t
ui (0, s)ds, i = 1, . . . , N . (86)

From (66), we can rewrite (86) in terms of U , namely

ϑ̃i (σ + Di ) = ϑ̃i (t) +
∫ σ

t−Di

Ui (τ )dτ. (87)
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Now, note that

θ̃i (σ ) = ϑ̃i (σ + Di ), ∀σ ∈ [t − Di , t]. (88)

Hence,

θ̃i (σ ) = θ̃i (t − Di ) +
∫ σ

t−Di

Ui (τ )dτ, ∀σ ∈ [t − Di , t]. (89)

Applying the supremum norm to both sides of (89), we have

sup
t−Di ≤σ≤t

∣
∣
∣θ̃i (σ )

∣
∣
∣

= sup
t−Di ≤σ≤t

∣
∣
∣θ̃i (t − Di )

∣
∣
∣+ sup

t−Di ≤σ≤t

∣
∣
∣
∣

∫ σ

t−Di

Ui (τ )dτ

∣
∣
∣
∣

≤ sup
t−Di ≤σ≤t

∣
∣
∣θ̃i (t − Di )

∣
∣
∣+ sup

t−Di ≤σ≤t

∫ t

t−Di

|Ui (τ )| dτ

≤
∣
∣
∣θ̃i (t − Di )

∣
∣
∣+
∫ t

t−Di

|Ui (τ )| dτ (by Cauchy–Schwarz)

≤
∣
∣
∣θ̃i (t − Di )

∣
∣
∣+
(∫ t

t−Di

dτ

)1/2

×
(∫ t

t−Di

|Ui (τ )|2 dτ
)1/2

≤
∣
∣
∣θ̃i (t − Di )

∣
∣
∣+
√

Di

(∫ t

t−Di

U 2
i (τ )dτ

)1/2

. (90)

Now, it is easy to check

∣
∣
∣θ̃i (t − Di )

∣
∣
∣ ≤

(∣
∣
∣θ̃i (t − Di )

∣
∣
∣
2 +

∫ t

t−Di

U 2
i (τ )dτ

)1/2

, (91)

(∫ t

t−Di

U 2
i (τ )dτ

)1/2

≤
(∣
∣
∣θ̃i (t − Di )

∣
∣
∣
2 +

∫ t

t−Di

U 2
i (τ )dτ

)1/2

. (92)

By using (91) and (92), one has

∣
∣
∣θ̃i (t − Di )

∣
∣
∣+
√

Di

(∫ t

t−Di

U 2
i (τ )dτ

)1/2

≤ (1 +√Di )

(∣
∣
∣θ̃i (t − Di )

∣
∣
∣
2 +

∫ t

t−Di

U 2
i (τ )dτ

)1/2

. (93)

From (90), it is straightforward to conclude that

sup
t−Di ≤σ≤t

∣
∣
∣θ̃i (σ )

∣
∣
∣ ≤ (1 +√Di )

(∣
∣
∣θ̃i (t − Di )

∣
∣
∣
2 +

∫ t

t−Di

U 2
i (τ )dτ

)1/2

(94)
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and, consequently,

∣
∣
∣θ̃i (t)

∣
∣
∣ ≤ (1 +√Di )

(∣
∣
∣θ̃i (t − Di )

∣
∣
∣
2 +

∫ t

t−Di

U 2
i (τ )dτ

)1/2

. (95)

Inequality (95) can be given in terms of the periodic solution θ̃Π
i (t − Di ), UΠ

i (τ ),
∀τ ∈ [t − Di , t] as follows:

∣
∣
∣θ̃i (t)

∣
∣
∣ ≤ (1 +√Di )

(∣
∣
∣θ̃i (t − Di ) − θ̃Π

i (t − Di ) + θ̃Π
i (t − Di )

∣
∣
∣
2 +

+
∫ t

t−Di

[
Ui (τ ) − UΠ

i (τ ) + UΠ
i (τ )

]2
dτ

)1/2

. (96)

By applying Young’s inequality and some algebra, the right-hand side of (96) and∣
∣
∣θ̃i (t)

∣
∣
∣ can be majorized by

∣
∣
∣θ̃i (t)

∣
∣
∣ ≤

√
2 (1 +√Di )

(∣
∣
∣θ̃i (t − Di ) − θ̃Π

i (t − Di )

∣
∣
∣
2 +

∣
∣
∣θ̃Π

i (t − Di )

∣
∣
∣
2 +

+
∫ t

t−Di

[
Ui (τ ) − UΠ

i (τ )
]2
dτ +

∫ t

t−Di

[
UΠ

i (τ )
]2
dτ

)1/2

. (97)

According to the averaging theorem by [32], we can conclude that the actual state
converges exponentially to the periodic solution, i.e., θ̃i (t − Di ) − θ̃Π

i (t − Di ) → 0

and
∫ t

t−Di

[
Ui (τ ) − UΠ

i (τ )
]2
dτ → 0, exponentially.

Hence,

lim sup
t→+∞

|θ̃i (t)| = √
2
(
1 +√Di

)

×
(∣
∣
∣θ̃Π

i (t − Di )

∣
∣
∣
2 +

∫ t

t−Di

[UΠ
i (τ )]2dτ

)1/2

.

Then, from (58), we canwrite lim supt→+∞ |θ̃ (t)| = O(1/ω). From (35) and recalling
that θ(t) = θ̂ (t)+ S(t) in (34) with S(t) in (31), one has that θ(t)− θ∗ = θ̃ (t)+ S(t).
Since the first term on the right-hand side is ultimately of orderO(1/ω) and the second
term is of order O(|a|), we arrive at (59). ��

5 Noncooperative Scenario with Delays

In the game under the noncooperative scenario, again subject to multiple and distinct
delays, the purpose of the extremum seeking is still to estimate the Nash equilibrium
vector θ∗, but without allowing any sharing of information among the players. Each
player only needs to measure the value of its own payoff function
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yi (t) = Ji (θ(t − D)), (98)

with Ji given by (1). In this sense, we are able to formulate the closed-loop system in
a decentralized fashion, where no knowledge about the payoffs y−i or actions θ−i of
the other players is required.

5.1 Decentralized Predictor Using Only the Known Diagonal Terms of the Hessian

In such a decentralized scenario, the dither frequencies ω−i , the excitation amplitudes
a−i , and consequently, the individual control laws U−i (t) are not available to the
Player i . Recalling that the model of the payoffs (1) are also assumed to be unknown,
it becomes impossible to reconstruct individually or estimate completely the Hessian
matrix H given in (7) by using demodulating signals such as in (33). Hence, the
predictor design presented in Sect. 4 must be reformulated for noncooperative games.

However, it is still possible to design Nash equilibrium seeking control laws for a
class of weakly coupled noncooperative games, as shown in the following. For such a
class of games, we consider εi

i i = 1 and εi
jk = εi

k j = ε, ∀ j 
= k, such that 0 < ε < 1
in (1) and (7).

Following the non-sharing information paradigm, the i th-player is only able to
estimate the element Hi

ii of the H matrix (7) by itself, and this being so for all players.
Therefore, only the diagonal of H can be properly recovered in the average sense. In
this way, the signal Ni (t) is now simply defined by:

Ni (t):=Nii (t) = 16

a2
i

(

sin2(ωi t) − 1

2

)

, (99)

according to (33). Then, the average version of

Ĥi (t) = Ni (t)yi (t) (100)

is given by

Ĥ av
i (t) = [Ni (t)yi (t)]av = Hi

ii . (101)

In order to compensate the time-delays, we propose the following predictor-based
update law:

˙̂
θi (t) = Ui (t), (102)

U̇i (t) = − ciUi (t) + ci ki

(

Ĝi (t) + Ĥi (t)
∫ t

t−Di

Ui (τ )dτ

)

, (103)

for positive constants ki and ci .
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5.2 ISS-Like Properties for PDE Representation

For the sake of simplicity, we assume ci → +∞ in (103), resulting in the following
expression:

Ui (t) = ki

(

Ĝi (t) + Ĥi (t)
∫ t

t−Di

Ui (τ )dτ

)

, (104)

such that the delayed closed-loop system (27) and (104) in its average version can be
written in the corresponding PDE representation form, given by

˙̂Gav
i (t) =

N∑

j=1

εi
i j H i

i j u
av
j (0, t), (105)

∂t u
av
i (x, t) = ∂x uav

i (x, t), x ∈ ]0, Di [, i = 1, 2, . . . , N , (106)

uav
i (Di , t) = U av

i (t). (107)

The relation between uav
i and U av

i is given by uav
i (x, t) = U av

i (x + t − Di ).
Analogous to the developments carried out in Sect. 4.2, we use the transformation

[37]

Ḡav
i (t) = Ĝav

i (t) +
N∑

j=1

εi
i j H i

i j

∫ t

t−D j

U av
j (τ )dτ

= Ĝav
i (t) +

N∑

j=1

εi
i j H i

i j

∫ D j

0
uav

j (ξ, t)dξ. (108)

Taking the time-derivative of (108), we obtain

˙̄Gav
i (t) = ˙̂Gav

i (t) +
N∑

j=1

εi
i j H i

i j

∫ D j

0
∂t u

av
j (ξ, t)dξ. (109)

Then, by plugging (105) and (106) into (109), one has

˙̄Gav
i (t) =

N∑

j=1

εi
i j H i

i j u
av
j (0, t) +

N∑

j=1

εi
i j H i

i j

∫ D j

0
∂x uav

j (ξ, t)dξ

=
N∑

j=1

εi
i j H i

i j u
av
j (0, t) +

N∑

j=1

εi
i j H i

i j

[
uav

j (D j , t) − uav
j (0, t)

]

=
N∑

j=1

εi
i j H i

i j u
av
j (D j , t). (110)
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Substituting (107) in (110), it is not difficult to see that Ḡav
i satisfies

˙̄Gav
i (t) =

N∑

j=1

εi
i j H i

i jU
av
j (t). (111)

Now, after adding and subtracting the next terms outside the parentheses into (104),
Ui (t) can be rewritten as:

Ui (t) = ki

⎛

⎝Ĝi (t) + Ĥi (t)
∫ t

t−Di

Ui (τ )dτ +
∑

j 
=i

εi
i j H i

i j

∫ t

t−D j

U j (τ )dτ

⎞

⎠+

− ki

∑

j 
=i

εi
i j H i

i j

∫ t

t−D j

U j (τ )dτ , (112)

whose average is

U av
i (t) = ki

⎛

⎝Ĝav
i (t) + Ĥ av

i (t)
∫ t

t−Di

U av
i (τ )dτ +

∑

j 
=i

εi
i j H i

i j

∫ t

t−D j

U av
j (τ )dτ

⎞

⎠+

− ki

∑

j 
=i

εi
i j H i

i j

∫ t

t−D j

U av
j (τ )dτ

= ki

⎛

⎝Ĝav
i (t) + εi

i i H i
ii

∫ t

t−Di

U av
i (τ )dτ +

∑

j 
=i

εi
i j H i

i j

∫ t

t−D j

U av
j (τ )dτ

⎞

⎠+

− ki

∑

j 
=i

εi
i j H i

i j

∫ t

t−D j

U av
j (τ )dτ

= ki

⎛

⎝Ĝav
i (t) +

N∑

j=1

εi
i j H i

i j

∫ t

t−D j

U av
j (τ )dτ

⎞

⎠+

− ki

∑

j 
=i

εi
i j H i

i j

∫ t

t−D j

U av
j (τ )dτ. (113)

By defining the auxiliary signals

φi (D, t):= −
∑

j 
=i

H i
i j

∫ t

t−D j

U j (τ )dτ,

φi (1, t):= −
∑

j 
=i

H i
i j

∫ 1

0
D j u j (ξ, t)dξ, (114)
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and recalling that εi
jk = ε, ∀ j 
= k, Eq. (113) can be rewritten from (108) as

U av
i (t) = ki Ḡ

av
i (t) + εkiφ

av
i (D, t). (115)

Taking into account all players and defining Ḡ(t):=[Ḡ1(t), . . . , Ḡ N (t)]T ∈ R
N ,

U (t):=[U1(t), . . . , UN (t)]T ∈ R
N and φ(D, t):=[φ1(D, t), . . . , φN (D, t)]T ∈ R

N ,
it is possible to find a compact form for the overall average game from Eqs. (111) and
(115) such as

˙̄Gav(t) = H K Ḡav(t) + εH Kφav(1, t), (116)

∂t u
av(x, t) = D−1∂x uav(x, t), x ∈ ]0, 1[, (117)

uav(1, t) = K Ḡav(t) + εKφav(1, t), (118)

K = diag {k1, . . . , kN } being a positive-definite diagonal matrix, with entries ki > 0.
From (116), it is clear that the dynamics of the ODE state variable Ḡav(t) is expo-

nentially ISS [31] with respect to the PDE state u(x, t) by means of the function
φav(1, t). Moreover, the PDE subsystem (117) is ISS (finite-time stable) [31] with
respect to Ḡav(t) in the boundary condition uav(1, t).

5.3 Stability Analysis

In this sub-section, we will show that this hyperbolic PDE-ODE loop (116)–(118)
contains a small-parameter ε which can lead to closed-loop stability if it is chosen
sufficiently small. To this end, in addition to Assumption 1 formulated in Sect. 4.3,
we further assume/formalize the following condition for noncooperative games.

Assumption 2 The parameters εi
jk and εi

k j which appear in theHessianmatrix H given
by (7) satisfy the conditions below:

εi
i i = 1, εi

jk = εi
k j = ε, ∀ j 
= k, (119)

with 0 < ε < 1 in the payoff functions (1).

Assumption 2 could be relaxed to consider different values of the coupling param-
eters εi for each Player i . However, without loss of generality, we have assumed the
same weights for the interconnection channels among the players in order to facilitate
the proof of the next theorem, but also to guarantee that the considered noncooperative
game is not favoring any specific player. To attain θ∗ stably in real time, without any
model information (except for the delays Di ), each Player i employs the noncooper-
ative extremum seeking strategy (103) via predictor feedback.

The next theorem provides the stability/convergence properties of the closed-loop
extremum seeking feedback for the N -player noncooperative game with delays and
non-sharing of information.

Theorem 5.1 Consider the closed-loop system (105)–(107) under Assumptions 1 and
2 and multiple and distinct input delays Di for the N-player quadratic noncooperative
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game with no information sharing, with payoff functions given in (1) and control laws
Ui (t) defined in (103). There exist c > 0 and ω > 0 sufficiently large as well as
ε > 0 sufficiently small such that closed-loop system with state θ̃i (t − Di ), Ui (τ ),
∀τ ∈ [t − Di , t] and ∀i ∈ 1, 2, . . . , N, has a unique locally exponentially stable
periodic solution in t of period Π , denoted by θ̃Π

i (t − Di ), UΠ
i (τ ), ∀τ ∈ [t − Di , t]

satisfying, ∀t ≥ 0:

(
N∑

i=1

[
θ̃Π

i (t − Di )
]2 +

∫ t

t−Di

[
UΠ

i (τ )
]2

dτ

)1/2

≤ O(1/ω). (120)

Furthermore,

lim sup
t→+∞

|θ(t) − θ∗| = O(|a| + 1/ω), (121)

where a = [a1 a2 · · · aN ]T and θ∗ is the unique Nash equilibrium given by (8).

Proof The proof of Theorem 5.1 follows steps similar to those employed to prove
Theorem 4.1. In this sense, we will simply point out the main differences, instead of
giving the full independent proof.

While in Theorem 4.1 it was possible to prove the local exponential stability of the
average closed-loop system using a Lyapunov functional (76), a different approach
is adopted here for the noncooperative scenario. We will show that it is possible to
guarantee the local exponential stability for the average closed-loop system (116)–
(118) by means of a small-gain analysis.

First, consider the equivalent hyperbolic PDE-ODE representation (116)–(118)
rewritten for each Player i :

˙̄Gav
i (t) = Hi

ii ki Ḡ
av
i (t) + εHi

ii kiφ
av
i (1, t), (122)

∂t u
av
i (x, t) = D−1

i ∂x uav
i (x, t), x ∈ ]0, 1[, (123)

uav
i (1, t) = ki Ḡ

av
i (t) + εkiφ

av
i (1, t), (124)

where Hi
ii < 0, ki > 0, 0 < ε < 1 and D−1

i > 0. The average closed-loop system
(122)–(124) satisfies both Assumptions (H1) and (H2) of the small-gain theorem [31,
Theorem 8.1, p. 198] for the hyperbolic PDE-ODE loops (see also Theorem A.2 in
the Appendix) with n = N , c = D−1

i , F(Ḡav
i , uav, 0) = Hi

ii ki Ḡav
i + εHi

ii kiφ
av
i (1),

a(x) = f (x , t) = g(x , Ḡav
i , uav) = 0, ϕ(0, uav, Ḡav

i ) = ki Ḡav
i + εkiφ

av
i (1), N̄ =

max(ki , εki kH DN ), L = max(|Hi
ii |ki , ε|Hi

ii |ki kH DN ), γ2 = ki , A = γ1 = 0,
B = εki kH DN , b2 = 0 for each i ∈ {1 , . . . , N }.. Assumption (H1) holds with
M = 1, γ3 = ε|Hi

ii |ki kH DN , σ = |Hi
ii |ki as it can be readily verified by means of

the variations of constants formula

Ḡav
i (t) = exp(−|Hi

ii |ki t)Ḡ
av
i (0) +

∫ 1

0
exp(−|Hi

ii |ki (t + s))εHi
ii kiφ

av
i (1, s)ds,
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and from the application of the Cauchy–Schwarz inequality to the term φav(1, t) in
Eq. (114):

φav
i (1, t) ≤

∑

j 
=i

|Hi
i j |
(∫ 1

0
D2

j dτ

) 1
2

×
(∫ 1

0
[uav

j (ξ, t)]2dξ
) 1

2

≤ kH DN

(∫ 1

0
uav(ξ, t)T uav(ξ, t)dξ

) 1
2

, (125)

since
∑N

j 
=i |Hi
i j | < kH < 1

ε
|Hi

ii |, where kH is a positive constant of order O(1),
according to Assumptions 1 and 2.

It follows that the small-gain condition in Theorem A.2 in the Appendix holds
provided 0 < ε < 1 is sufficiently small. Therefore, if such a small-gain condition
holds, then Theorem A.2 (see the Appendix) allows us to conclude that there exist
constants δ,Θ > 0 such that for every uav

0 ∈ C0([0, 1]), Ḡav
0 ∈ R

N , the unique
generalized solution of this initial-boundary value problem, with uav(x, 0) = uav

0 and
Ḡav(0) = Ḡav

0 , satisfies the following estimate:

|Ḡav(t)| + ‖uav(t)‖∞ ≤ Θ(|Ḡav
0 | + ‖uav

0 ‖∞) exp(−δt), ∀t ≥ 0. (126)

Therefore, we conclude that the origin of the average closed-loop system (116)–(118)
is exponentially stable under the assumption of 0 < ε < 1 being sufficiently small.
Then, from (28) and (108), we can conclude the same results in the norm

(
N∑

i=1

[
θ̃avi (t − Di )

]2 +
∫ Di

0

[
uav

i (τ )
]2 dτ

)1/2

(127)

since H is non-singular, i.e., |θ̃avi (t − Di )| ≤ |H−1||Ĝav(t)|.
As developed in the proof ofTheorem4.1, the next steps to complete the proofwould

be the application of the local averaging theory for infinite-dimensional systems in
[32] showing that the periodic solutions indeed satisfy inequality (120) and then the
conclusion of the attractiveness of the Nash equilibrium θ∗ according to (121). ��

6 Trade-Off BetweenMeasurement Requirements and System
Restrictions in the Cooperative and Noncooperative Nash
Equilibrium Seeking Approaches

In the cooperative approach, there is a kind of information sharing that collectively
facilitates the elaboration of the control law implemented by each player. In the con-
text of extremum seeking, such information are the frequencies {ω1, . . . , ωN } and
the amplitudes {a1, . . . , aN } of the dither signals as well as the players’ actions
{U1, . . . , UN } and the delays {D1, . . . , DN }, which are known to all players in the
prediction process. From this perspective, through appropriate signals S(t), M(t) and
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N (t), each ith player is able to individually estimate (on average) the portion of the
advanced gradient of his payoff function, i.e., Ĝav

i (t + Di ), and the Hessian matrix H
in (7) by employing (55) and (56). Note that Eq. (38) can be interpreted as a filtering
version of the advanced estimate Ĝav

i (t + Di ). In other words, by assuming ci = c to
be sufficiently large (c → +∞) in (38) and using (41), it is possible to rewrite (42) in
the following vector form:

U (t) = K Ĝ(t + D), K = diag(k1 · · · kN ), ki > 0,

Ĝ(t + D) = Ĝ(t) + Ĥ(t)
N∑

j=1

e j

∫ t

t−D j

U j (τ )dτ, (128)

where e j ∈ R
N stands for the i th column of the identity matrix IN ∈ R

N×N for each
j ∈ {1, 2, . . . , N }, and Ĝ(t), Ĥ(t) are given in (64) and (65), respectively. Therefore,
in the cooperative approach, the control law is able to predict totally the gradient such
that the average closed-loop equation in (29) is rewritten by

˙̂Gav(t) = HU av(t − D) = H K Ĝav(t),

with U av(t − D) = [
U av
1 (t − D1), U av

2 (t − D2), . . . , U av
N (t − DN )

]T . Hence, for

H K Hurwitz, we can conclude Ĝav(t) → 0. Moreover, from (28) and the assumption
of H being invertible, one has θ̃av(t) → 0. Consequently, θ̂av(t) → θ∗, i.e., the Nash
equilibrium is reached at least asymptotically, as shown in Theorem 4.1.

In the noncooperative scenario, there is no sharing of information among the players
and the construction of an estimate of the advanced gradient Ĝ(t +D) as in (41) cannot
be conceived as described before for the cooperative case. On the other hand, the
control law (103) is designed using only information from the i-th player. In this case,
the closed-loop system is rigorously analyzed under a new perspective, by exploring
the small gains in the interconnections of the PDE-ODE cascades. In practice, the
control law (103) differs from (38) by estimating only the diagonal terms of the matrix
Ĥ(t) in (65), such that (104) can be written as

U (t) = K

(

Ĝ(t) + diag
{

Ĥ(t)
}∑N

j=1
e j

∫ t

t−D j

U j (τ )dτ

)

︸ ︷︷ ︸

= Ĝ(t+D) in eq. (128)

.

Thus, unlike (41), there is no classical prediction a priori of Ĝ(t + D) in the non-
cooperative scheme. However, after some mathematical manipulations carried out in
Sect. 5.2, it is possible to rewrite (112) in the vector form:

U (t) = K Ḡ(t) + εKφ(D, t),

Ḡ(t) = Ĝ(t) +
[
diag

{
Ĥ(t)

}
+ H − diag {H}

] N∑

j=1

e j

∫ t

t−D j

U j (τ )dτ,

123



728 Journal of Optimization Theory and Applications (2021) 191:700–735

where Ḡ(t):=[Ḡ1(t), . . . , Ḡ N (t)]T ∈ R
N and φ(D, t):=[φ1(D, t), . . . , φN (D, t)]T ∈ R

N , with
Ḡav

i (t) and φi (D, t) defined in (108) and (114), respectively. Now, it is easy to verify
that even with Ḡ(t) 
= Ĝ(t + D), the average estimate is

Ḡav(t) = Ĝav(t + D) = Ĝav(t) + H
N∑

j=1

e j

∫ t

t−D j

U av
j (τ )dτ,

since
[
diag

{
Ĥ(t)

}]

av
= diag {H} according to (7) and (101). Hence,

U av(t) = K Ḡav(t) + εKφav(D, t),

= K Ĝav(t + D) + εKφav(D, t). (129)

Finally, by plugging (129) into (29), we obtain

˙̂Gav(t) = HU av(t − D) = H K Ĝav(t) + εH Kφav(D, t − D).

Under the condition of H K being Hurwitz (with H being invertible), the small-gain
analysis performed in the proof of Theorem 5.1 guarantees that the Nash equilibrium
can be reached if ε > 0 is sufficiently small, even in this more restrictive scenario of
measurement requirements and system restrictions. Additionally, in the limiting case
where ε = 0 both cooperative and noncooperative Nash seeking strategies become
equivalent.

7 Simulations with a Two-Player Game Under Constant Delays

For an example of a noncooperative game with 2 players that employ the proposed
extremum seeking strategy for delay compensation, we consider the following payoff
functions (1) subject to distinct delays D1 = 20 and D2 = 15 in the players’ decisions,
i ∈ {1, 2}:

J1(θ(t − D)) = −5 θ21 (t − D1) + 5 εθ1(t − D1)θ2(t − D2)+
+ 250 θ1(t − D1) − 150 θ2(t − D2) − 3000, (130)

J2(θ(t − D)) = −5 θ22 (t − D2) + 5 εθ1(t − D1)θ2(t − D2)+
− 150 θ1(t − D1) + 150 θ2(t − D2) + 6000, (131)

which, according to (8), yield the unique Nash equilibrium

θ∗
1 = 100 + 30ε

4 − ε2
, (132)

θ∗
2 = 60 + 50ε

4 − ε2
. (133)
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Fig. 3 Nash equilibrium seeking
schemes with delay
compensation for a two-player
noncooperative game
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In order to attain theNash equilibrium (132) and (133) without any knowledge ofmod-
eling information, the players implement a non-model-based real-time optimization
strategy, e.g., the proposed deterministic extremum seeking with sinusoidal perturba-
tions based on prediction of Sect. 5, to set their best actions despite of the delays (see
Fig. 3). Specifically, the players P1 and P2 set their actions, θ1 and θ2 according to (15)
with adaptation laws θ̂i (t) in (102) and (103), respectively. The gradient estimates Ĝi

for each player and the diagonal estimate Ĥi of the Hessian are given respectively in
(19) and (100), where the dither signals Si (t), Mi (t) and Ni (t) are presented in (10),
(11) and (99).

For comparison purposes, except for the delays, the plant and controller parameters
were chosen as in [18] in all simulation tests: ε = 1, a1 = 0.075, a2 = 0.05,
k1 = 2, k2 = 5, ω1 = 26.75 rad/s, ω2 = 22 rad/s and θ1(0) = θ̂1(0) = 50,
θ2(0) = θ̂2(0) = θ∗

2 = 110/3. In addition, the time-constants of the predictor filters
were set to c1 = c2 = 100.

Unlike other classical strategies for non-cooperative games [13] (free of delays),
when using the proposed extremum seeking algorithm, the players only need to mea-
sure the value of their own payoff functions, J1 and J2.

In Fig. 4a, b, we can check the extremum seeking approach proposed in [18] is
effective when delays in the decision variables are not taken into account. The players
find the Nash equilibrium in about 100 seconds. On the other hand, in the presence of
delays D1 and D2 in the input signals θ1 and θ2, but without considering any kind of
delay compensation, Fig. 5a, b show that the game collapses with the explosion of its
variables. On the other hand, Fig. 6a, b show that the proposed predictor scheme fixes

123



730 Journal of Optimization Theory and Applications (2021) 191:700–735

0 100 200 300 400
35

40

45

50

55

0 100 200 300 400
0

500

1000

1500

Fig. 4 Delay free

0 50 100 150
0

50

100

150

0 50 100 150
-1000

0

1000

2000

Fig. 5 Uncompensated delays

this with a remarkable evolution in searching theNash equilibrium and simultaneously
compensating the effect of the delays in our noncooperative game.

This first set of simulations indicates that even under an adversarial scenario of
strong coupling between the players with ε = 1, the proposed approach has behaved
successfully. This suggests our stability analysis may be conservative and the theoret-
ical assumption 0 < ε < 1 may be relaxed given the performance of the closed-loop
control system. In Fig. 6c, d, different values ε = 0.5 and ε = 0.1 are considered in
order to evaluate the robustness of the proposed scheme under different levels of cou-
pling between the two players and the corresponding impact on the transient responses
(the smaller coupling ε is, the faster is the convergence rate).

In a nutshell, independently of the values used for ε, the simulation tests indicate
that even with multiple and distinct delays in the player actions, both of them were
able to optimize their payoff functions in the noncooperative game by seeking the
desired Nash equilibrium.
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8 Conclusions

We have introduced a non-model-based approach via extremum seeking and predic-
tor feedback to compute in a distributed way for Nash equilibria of (non)cooperative
games with N players with unknown quadratic payoff functions and time-delayed
actions, under two different information sharing scenarios—cooperative and noncoop-
erative. In the noncooperative scenario, a player can stably attain its Nash equilibrium
by measuring only the value of its payoff function (no other information about the
game is needed), while in the cooperative scenario the players must share part of
the information about the Hessian matrix estimated by each of them. Local stability
and convergence are guaranteed by means of averaging theory in infinite dimensions,
Lyapunov functionals and/or a small-gain analysis for ODE-PDE loops. Numerical
simulations conducted for a two-player game under constant delays support our the-
oretical results.
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Such approaches have potential for many applications. One possibility is in elec-
tronic markets, where players negotiate prices in real time as the supply and demand
fluctuates, such as households in a smart electric grid, and in addition time-delays
appear naturally for different reasons or can be even artificially introduced to perturb
the overall large-scale system.

For future research, it seems that the general formulation could have many possible
options or directions, with various delays needed to be compensated. The players
can have their inputs delayed and their measured payoffs delayed simultaneously.
Extension to more general non-quadratic payoff functions would be of interest as well.
Note also that for games, we only explored the gradient extremum seeking approach.
It would be important to check if the Newton-based extremum seeking would also be
viable or not for games. For a future investigation topic, it would be also interesting
to see the proposed scheme or even different extremum seeking designs [39] facing
games with other sort of infinite-dimensional PDE dynamics [40,41] rather than pure
delays.

Acknowledgements The first and second authors thank the Brazilian funding agencies CAPES, CNPq and
FAPERJ for the financial support.

Appendix: Averaging and Small-Gain Theorems

Theorem A.1 (Averaging Theorem for FDEs [32]) Consider the delay system

ẋ(t) = f (t/ε, xt ), ∀t ≥ 0, (134)

where ε is a real parameter, xt (Θ) = x(t +Θ) for −r ≤ Θ ≤ 0, and f : R+ ×Ω →
R

n is a continuous functional from a neighborhood Ω of 0 of the supremum-normed
Banach space X = C([−r , 0];Rn)of continuous functions from [−r , 0] toRn. Assume
that f (t, ϕ) is periodic in t uniformly with respect to ϕ in compact subsets of Ω and that
f has a continuous Fréchet derivative ∂ f (t, ϕ)/∂ϕ in ϕ on R+ × Ω . If y = y0 ∈ Ω

is an exponentially stable equilibrium for the average system

ẏ(t) = f0(yt ), ∀t ≥ 0, (135)

where f0(ϕ) = limT →∞ 1
T

∫ T
0 f (s, ϕ)ds, then, for some ε0 > 0 and 0 < ε ≤ ε0,

there is a unique periodic solution t �→ x∗(t, ε) of (134) with the properties of being
continuous in t and ε, satisfying |x∗(t, ε) − y0| ≤ O(ε), for t ∈ R+, and such that
there is ρ > 0 so that if x(·;ϕ) is a solution of (134) with x(s) = ϕ and |ϕ − y0| < ρ,
then |x(t) − x∗(t, ε)| ≤ Ce−γ (t−s), for C > 0 and γ > 0.

Theorem A.2 (Small-Gain Theorem for ODE and Hyperbolic PDE Loops [31]) Con-
sider generalized solutions of the following initial-boundary value problem

ẋ(t) = F(x(t), u(z, t), v(t)), ∀t ≥ 0, (136)
ut (z, t) + cuz(z, t) = a(z)u(z, t) + g(z, x(t), u(z, t)) + f (z, t), ∀(z, t) ∈ [0, 1] × R+,

(137)
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u(0, t) = ϕ(d(t), u(z, t), x(t)), ∀t ≥ 0, u(z, 0) = u0, x(0) = x0. (138)

The state of the system (136)–(138) is (u(z, t), x(t)) ∈ C0([0, 1] × R+) × R
n, while

the other variables d ∈ C0(R+;Rq), f ∈ C0([0, 1]×R+) and v ∈ C0(R+ ;Rm) are
external inputs. We assume that (0, 0) ∈ C0([0, 1]) × R

n is an equilibrium point for
the input-free system, i.e., F(0, 0, 0) = 0, g(z, 0, 0) = 0, and ϕ(0, 0, 0) = 0. Now,
we assume that the ODE subsystem satisfies the ISS property:

(H1) There exist constants M, σ > 0, b3, γ3 ≥ 0, such that for every x0 ∈ R
n ,

u ∈ C0([0, 1] ×R+) and v ∈ C0(R+ ;Rm) the unique solution x ∈ C1(R+ ;Rn)

of (136) with x(0) = x0 satisfies the following estimate

|x(t)| ≤ M |x0| exp(−σ t) + max
0≤s≤t

(γ3‖u(s)‖∞ + b3|v(s)|), ∀t ≥ 0. (139)

We next need to estimate the static gain of the interconnections. To this purpose,
we employ the following further assumption.
(H2) There exist constants b2, γ1, γ2, A, B ≥ 0 such that the following growth
conditions hold for every x ∈ C1(R+;Rn), u ∈ C0([0, 1] × R+) and d ∈
C0(R+;Rq):

|g(z, x, u)| ≤ A‖u‖∞ + γ1|x |, ∀z ∈ [0, 1], (140)

|ϕ(d, u, x)| ≤ B‖u‖∞ + γ2|x | + b2|d|. (141)

Let c > 02 be a given constant and a ∈ C0([0, 1]) be a given function. Consider the
mappings as F : Rn × C0([0, 1]) × R

m → R
n , g : [0, 1] × R

n × C0([0, 1]) → R,
ϕ : R

q × C0([0, 1]) × R
n → R being continuous mappings with F(0, 0, 0) = 0

for which there exist constants L > 0, N̄ ∈ [0, 1[ such that the inequalities
max0≤z≤1(|g(z, x, u) − g(z, y, w)|) + |F(x, u, v) − F(y, w, v)| ≤ L|x − y| +
L‖u − w‖∞, |ϕ(d, u, x) − ϕ(d, w, y)| ≤ N̄ |x − y| + N̄‖u − w‖∞, hold for all
u, w ∈ C0([0, 1]), x, y ∈ R

n , v ∈ R
m , d ∈ R

q . Suppose that Assumptions (H1) and
(H2) hold and that the following small-gain condition is satisfied:

(γ1γ3 + A)c−1 max
0≤z≤1

(

p(z)
∫ z

0

1

p(l)
dl

)

+ (γ2γ3 + B) max
0≤z≤1

(p(z))

+ 2

√

(γ1γ3 + A)c−1(γ2γ3 + B) max
0≤z≤1

(p(z)) max
0≤z≤1

(

p(z)
∫ z

0

1

p(l)
dl

)

< 1 (142)

with p(z):= exp
(
c−1

∫ z
0 a(w)dw

)
for z ∈ [0, 1] [recall (8.2.11) and (8.2.14)] in

[31, Section 8.2]. Then, there exist constants δ,Θ, γ > 0 such that for every u0 ∈
C0([0, 1]), x0 ∈ R

n , d ∈ C0(R+ ;Rq)with u0(0) = ϕ(d(0), u0, x0), f ∈ C0([0, 1]×
R+), and v ∈ C0(R+ ;Rm) the unique generalized solution of the initial-boundary
value problem (136), (137), (138) satisfies the following estimate:

|x(t)| + ‖u(t)‖∞ ≤ Θ(|x0| + ‖u0‖∞) exp(−δt)

+ γ

[

max
0≤s≤t

(|v(s)|) + max
0≤s≤t

(‖ f (s)‖∞) + max
0≤s≤t

(|d(s)|)
]

, ∀t ≥ 0. (143)

2 If the scalar c < 0 is considered, the direction of convection must be reversed such that the boundary
u(0, t) is replaced by u(1, t) and vice versa.
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