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Abstract
In this paper, we establish strong duality between affinely adjustable two-stage robust
linear programs and their dual semidefinite programs under a general uncertainty set,
that covers most of the commonly used uncertainty sets of robust optimization. This
is achieved by first deriving a new version of Farkas’ lemma for a parametric linear
inequality system with affinely adjustable variables. Our strong duality theorem not
only shows that the primal and dual program values are equal, but also allows one to
find the value of a two-stage robust linear program by solving a semidefinite linear
program. In the case of an ellipsoidal uncertainty set, it yields a corresponding strong
duality result with a second-order cone program as its dual. To illustrate the efficacy
of our results, we show how optimal storage cost of an adjustable two-stage lot-sizing
problem under a ball uncertainty set can be found by solving its dual semidefinite
program, using a commonly available software.
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1 Introduction

Duality theory of linear programming and optimality principles of many classes of
nonlinear optimization problems are often grounded in Farkas’ lemma or its general-
izations. In 1901, Farkas [1] initially established a dual characterization for a system
of linear inequalities, which was then used to derive necessary optimality principles
for nonlinear programming problems, and these principles, known as Kuhn–Tucker
conditions, were published in the early 1950s by Kuhn and Tucker [2]. Importantly,
Farkas’ lemma provides a numerically verifiable dual condition for non-negativity of a
linear function over a system of linear inequalities as the dual condition can be verified
by solving a linear program. We refer the interested reader to [3–8] for the general-
izations of Farkas’ lemma and their applications to linear and nonlinear optimization
problems.

In this paper, by establishing a new generalization of Farkas’ lemma, we present
strong duality theorems for affinely adjustable two-stage robust linear programs with
a general uncertainty set. Affinely adjustable two-stage robust linear programs appear
in dynamic decision-making models in the face of evolving uncertainty (see Sect. 3 of
this paper and also [9,10]). Adjustable robust optimization is a powerful methodology,
which was pioneered by Ben-Tal and his co-workers (see, e.g., [11]) for treating
multi-stage robust optimization problems. It offers less conservative decisions than
the classical (deterministic) robust optimization [9] as some of the decisions can be
adjusted at later stages.

However, even two-stage robust optimizationproblemswith adjustable variables are
in general computationally intractable. Indeed, the second-stage adjustable decision
is a mapping and so it is generally very difficult to establish numerically verifiable
solvability characterizations or approximations of the systemwith amappingunless the
system is restricted to some special classes ofmappings. A great deal of recent research
on two-stage adjustable robust linear programming assumes that the second-stage
adjustable decision satisfies an affine decision rule, which restricts the second-stage
mapping to depend affinely on the uncertain parameters (see, e.g., [9,11–16] and the
references therein).

Our main contributions in this paper include the following:

(i) By introducing the notion of a parameterized affine rule, we first establish a
new affinely adjustable two-stage version of Farkas’ lemma (see Theorem 2.1).
This two-stage Farkas’ lemma provides a numerically verifiable dual condi-
tion for non-negativity of a linear function over a two-stage system of linear
homogeneous inequalities with affinely adjustable variables, where the dual
condition can be verified by solving a semidefinite linear program. We give
a direct and self-contained proof for deriving the generalized Farkas’ lemma
using the Hahn–Banach hyperplane separation theorem together with a variable
transformation.

(ii) Employing the adjustable Farkas’ lemma, we then establish strong duality
between an affinely adjustable two-stage robust linear program and its dual
semidefinite program. In the case of an ellipsoidal uncertainty set, we derive a
strong duality for a two-stage robust linear program with its dual second-order
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cone program. These strong duality theorems not only show that the primal and
dual program values are equal, but also allow one to find the optimal value of
a two-stage robust linear program by solving a conic linear program such as a
semidefinite linear program or a second-order cone program.

Although we employ a traditional approach by making use of the Hahn–Banach
hyperplane separation theorem to establish the new version of Farkas’ lemma, our use
of a variable transformation permits us to obtain numerically verifiable dual conditions
and consequently formulate a dual conic linear program for a two-stage robust linear
program. We utilize a general closed cone regularity condition, which guarantees that
strong duality holds between the primal and dual pairs, and hence obtain an exact
conic linear program for the two-stage robust program.

The regularity condition is guaranteed by a Slater-type strict inequality condition.
As an illustration, we obtain a semidefinite linear program as an exact dual problem for
an adjustable two-stage lot-sizing problemon anetwork under a simple strict inequality
condition and show how optimal storage cost of an adjustable two-stage lot-sizing
problem under a ball uncertainty set can be found by solving its dual semidefinite
program, using a commonly available software package.

The outline of the paper is as follows. Section 2 presents generalizations of Farkas’
lemma for systems of parametric linear inequalities involving adjustable variables.
Section 3 establishes strong duality between two-stage robust linear programs and
their dual conic linear programs and provides exact conic linear programs for these
two-stage programs under a regularity condition. Section 4 describes an application of
our duality results to find the optimal storage cost of an adjustable two-stage lot-sizing
problem with uncertain demand by solving its dual semidefinite program. Numerical
examples are also given to illustrate how a two-stage program and a two-stage lot-
sizing problem can be solved, using a MATLAB software package. The last section
summarizes the main results and provides perspectives.

2 Adjustable Farkas’ Lemma

Let us first start by fixing some notations and definitions. The notationRn signifies the
Euclidean space whose norm is denoted by ‖ · ‖ for each n ∈ N. The inner product in
R
n is defined by 〈x, y〉 := x�y for all x, y ∈ R

n . The origin of any space is denoted
by 0 but we may use 0n for the origin ofRn in situations, where some confusion might
be possible. For a non-empty set Ω ⊂ R

n, convΩ denotes the convex hull of Ω and
clΩ stands for the closure ofΩ , while conecoΩ := R+convΩ stands for the convex
conical hull of Ω ∪ {0n}, where R+ := [0,+∞[⊂ R. As usual, the symbol In stands
for the identity (n × n) matrix. A symmetric (n × n) matrix A is said to be positive
semidefinite, denoted by A 
 0, whenever x�Ax ≥ 0 for all x ∈ R

n . If x�Ax > 0
for all x ∈ R

n \ {0n}, then A is called positive definite, denoted by A � 0.
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A general parametric (semi-infinite) linear homogeneous system with adjustable
variables reads as follows:

x ∈ R
n, x(·), (a0j +

s∑

r=1

ura
r
j )

�x + θ�
j x(u) ≤ 0, j = 1, . . . , q, ∀u ∈ U , (1)

where arj ∈ R
n, r = 0, 1, . . . , s, j = 1, . . . , q and θ j := (θ1j , . . . , θ

m
j ) ∈ R

m, j =
1, . . . , q are fixed and the setU is assumed to be a spectrahedron (see, e.g., [17]) given
by

U := {u := (u1, . . . , us) ∈ R
s : A0 +

s∑

r=1

ur Ar 
 0} (2)

with the symmetric square matrices Ar , r = 0, 1, . . . , s. In what follows, we assume
that U is non-empty and bounded.

Note that, in (1), the adjustable variable x(·) is a mapping x : U → R
m , and so it

is generally hard to obtain numerically verifiable dual solvability characterizations of
the system with a mapping x(·) unless the system is restricted to some special classes
of mappings. We now introduce a parameterized affine rule, where the mapping x(·)
satisfies the rule:

x(u) := ρy + (1 − ρ)Wu. (3)

Here, y ∈ R
m and W ∈ R

m×s are non-adjustable variables and ρ ∈ [0, 1] is a scale
parameter. If ρ ∈]0, 1[ then, by considering ỹ := ρy and W̃ := (1 − ρ)W , the
second-stage decision rule in (3) becomes the standard affine rule x(u) := ỹ + W̃u
(cf. [11, Page 356]) (see also, [10, Equation (8)]), where ỹ ∈ R

m and W̃ ∈ R
m×s are

non-adjustable variables. Other special cases of commonly used affine rules and their
corresponding results are given later in this section.

We now consider a parametric linear homogeneous inequality system with affinely
adjustable variables as follows:

x ∈ R
n, y ∈ R

m,W ∈ R
m×s, (a0j +

s∑

r=1

ura
r
j )

�x + θ�
j x(u) ≤ 0, j = 1, . . . , q,

(RS)

x(u) = ρy + (1 − ρ)Wu, ∀u ∈ U ,

whereU is the parameter set given as in (2). In what follows, we useWr , r = 1, . . . , s
as the columns of the matrix W .

Let a j : Rs → R
n, j = 1, . . . , q, be given by

a j (u) := a0j +
s∑

r=1

ura
r
j for u := (u1, . . . , us) ∈ R

s (4)
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with arj ∈ R
n, r = 0, 1, . . . , s, j = 1, . . . , q fixed as above and denote

C := coneco
{(
a j (u), ρθ j , (1 − ρ)u1θ j , . . . , (1 − ρ)usθ j

) : j = 1, . . . , q, u := (u1, . . . , us) ∈ U
}
.

(5)

Theorem 2.1 (Adjustable Farkas’ Lemma) Let ℘ ∈ R
n, υ ∈ R

m, σr ∈ R
m, r =

1, . . . , s and assume that the adjustable linear homogeneous inequality system (RS)
has a solution; i.e.,

X := {(x, y,W ) ∈ R
n+m+m×s : a j (u)�x + θ�

j x(u) ≤ 0, j = 1, . . . , q,

x(u) = ρy + (1 − ρ)Wu,∀u ∈ U } �= ∅.

Let Wr , r = 1, . . . , s be the columns of the matrix W. Suppose that the cone C in (5)
is closed. Then, the following statements are equivalent:

(a) The following implication holds:

[
x ∈ R

n, y ∈ R
m,W ∈ R

m×s, a j (u)�x + θ�
j x(u) ≤ 0, j = 1, . . . , q,

x(u) = ρy + (1 − ρ)Wu, ∀u ∈ U
] �⇒ ℘�x + υ�y +

s∑

r=1

σ�
r Wr ≥ 0.

(b) There exist λ0j ≥ 0, λrj ∈ R, j = 1, . . . , q, r = 1, . . . , s such that

℘ +
q∑

j=1

(λ0j a
0
j +

s∑

r=1

λrj a
r
j ) = 0, υ +

q∑

j=1

λ0jρθ j = 0,

σr +
q∑

j=1

λrj (1 − ρ)θ j = 0, r = 1, . . . , s, λ0j A0 +
s∑

r=1

λrj Ar 
 0, j = 1, . . . , q.

To prove this theorem, we need the following technical lemma.

Lemma 2.1 Consider the cone C given as in (5). Then, for each v∗ ∈ C, there exist
α j ≥ 0, j = 1, . . . , q and u j := (u j

1, . . . , u
j
s ) ∈ U , j = 1, . . . , q such that
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v∗ =
q∑

j=1

α j
(
a j (u

j ), ρθ j , (1 − ρ)u j
1θ j , . . . , (1 − ρ)u j

s θ j
)
,

where the affine maps a j , j = 1, . . . , q are given as in (4) and the convex set U is
defined as in (2).

Proof Let v∗ ∈ C . By the definition of C and the Carathéodory’s theorem, we find
α j i ≥ 0, j = 1, . . . , q and u ji := (u ji

1 , . . . , u ji
s ) ∈ U , j = 1, . . . , q, i = 1, . . . , n +

m + ms + 1 such that

v∗ =
q∑

j=1

n+m+ms+1∑

i=1

α j i
(
a j (u

ji ), ρθ j , (1 − ρ)u ji
1 θ j , . . . , (1 − ρ)u ji

s θ j
)
. (6)

For each j ∈ {1, . . . , q}, let α j :=
n+m+ms+1∑

i=1
α j i ≥ 0. If α j = 0, then we take

u j := (u j1
1 , . . . , u j1

s ) ∈ U . If α j > 0, then we put u j := 1
α j

n+m+ms+1∑
i=1

α j i u ji ∈ U ,

where the latest relation holds due to the convexity of U . As a j is an affine map, it

holds that α j a j (u j ) =
n+m+ms+1∑

i=1
α j i a j (u ji ). Now, we get by (6) that

v∗ =
q∑

j=1

α j
(
a j (u

j ), ρθ j , (1 − ρ)u j
1θ j , . . . , (1 − ρ)u j

s θ j
)
,

which completes the proof of the lemma. ��
Proof of Theorem 2.1 [(a) �⇒ (b)] Assume that (a) holds. We first show that

−(℘, υ, σ1, . . . , σs) ∈ C, (7)

where C is given by (5).

(Applying the separation theorem)Supposeby contradiction that−(℘, υ, σ1, . . . , σs)

/∈ C . As C is closed and convex, we can invoke the strong separation theorem (see,
e.g., [18, Theorem 2.2]) to find (x∗, y∗, z∗1, . . . , z∗s ) ∈ R

n+m+ms \ {0n+m+ms} such
that

sup
{〈(x∗, y∗, z∗1, . . . , z∗s ), c〉 : c ∈ C

}
< −℘�x∗ − υ�y∗ −

s∑

r=1

σ�
r z∗r . (8)

Note by 0n+m+ms ∈ C that

℘�x∗ + υ�y∗ +
s∑

r=1

σ�
r z∗r < 0. (9)
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We assert further that

〈(x∗, y∗, z∗1, . . . , z∗s ), c〉 ≤ 0 for all c ∈ C . (10)

Otherwise, there exists c0 ∈ C such that 〈(x∗, y∗, z∗1, . . . , z∗s ), c0〉 > 0. This, together
with the fact that λc0 ∈ C for all λ > 0, implies that

〈(x∗, y∗, z∗1, . . . , z∗s ), λc0〉 = λ〈(x∗, y∗, z∗1, . . . , z∗s ), c0〉 → +∞ as λ → +∞.

This clearly contradicts (8), and hence, assertion (10) is valid. This, together with the
fact that

(
a j (u), ρθ j , (1−ρ)u1θ j , . . . , (1−ρ)usθ j

) ∈ C, j = 1, . . . , q for all u ∈ U ,
implies that

a j (u)�x∗ + ρθ�
j y

∗ + (1 − ρ)

s∑

r=1

ur θ
�
j z

∗
r ≤ 0, j = 1, . . . , q, ∀u := (u1, . . . , us) ∈ U . (11)

By X �= ∅, we find (x, y,W ) ∈ R
n+m+m×s such that a j (u)�x + ρθ�

j y + (1 −
ρ)

s∑
r=1

urθ�
j Wr ≤ 0, j = 1, . . . , q for all u ∈ U , where Wr , r = 1, . . . , s, are the

columns of the matrix W . This, together with (11), entails that

a j (u)�xλ + ρθ�
j y

λ + (1 − ρ)

s∑

r=1

ur θ
�
j W

λ
r ≤ 0, j = 1, . . . , q, ∀u := (u1, . . . , us) ∈ U ,

(12)

where xλ := x + λx∗, yλ := y + λy∗,W λ
r := Wr + λz∗r , r = 1, . . . , s for λ > 0. In

other words, by denotingW λ, λ > 0, thematrix with its columns asW λ
r , r = 1, . . . , s,

we assert by (12) that xλ ∈ R
n, yλ ∈ R

m,W λ ∈ R
m×s and a j (u)�xλ + θ�

j x(u) ≤
0, x(u) = ρyλ + (1 − ρ)W λu, j = 1, . . . , q for all u ∈ U . On the one hand, as (a)
holds, we arrive at

℘�xλ + υ�yλ +
s∑

r=1

σ�
r W λ

r ≥ 0 for all λ > 0. (13)

Now, by (9), we obtain that

℘�xλ + υ�yλ +
s∑

r=1

σ�
r W λ

r = ℘�x + υ�y +
s∑

r=1

σ�
r Wr + λ(℘�x∗ + υ�y∗ +

s∑

r=1

σ�
r z∗r ) → −∞

as λ → +∞. This clearly contradicts (13), and consequently, (7) holds.

(Employing a variable transformation) By (7) and Lemma 2.1, we find α j ≥ 0, j =
1, . . . , q and u j := (u j

1, . . . , u
j
s ) ∈ U , j = 1, . . . , q such that

− ℘ =
q∑

j=1

α j
(
a0j +

s∑

r=1

u j
r a

r
j

)
,
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− υ =
q∑

j=1

α jρθ j , −σr =
q∑

j=1

α j u
j
r (1 − ρ)θ j , r = 1, . . . , s.

Letting λ0j := α j ≥ 0, λrj := α j u
j
r ∈ R, j = 1, . . . , q, r = 1, . . . , s, we obtain that

℘ +
q∑

j=1

(λ0j a
0
j +

s∑

r=1

λrj a
r
j ) = 0, υ +

q∑

j=1

λ0jρθ j = 0,

σr +
q∑

j=1

λrj (1 − ρ)θ j = 0, r = 1, . . . , s.

The relation u j ∈ U means that A0 +
s∑

r=1
u j
r Ar 
 0 for j = 1, . . . , q. We show that

λ0j A0 +
s∑

r=1

λrj Ar 
 0, j = 1, . . . , q. (14)

Let j ∈ {1, . . . , q} be arbitrary. If λ0j = 0, then λrj = 0 for all r = 1, . . . , s, and

hence, (14) holds trivially. If λ0j �= 0, then

λ0j A0 +
s∑

r=1

λrj Ar = λ0j

(
A0 +

s∑

r=1

λrj

λ0j
Ar

)
= λ0j

(
A0 +

s∑

r=1

u j
r Ar

)

 0,

showing (14) holds, too. So, we arrive at the conclusion that (b) holds.

[(b) �⇒ (a)] Assume that (b) holds. Then, there exist λ0j ≥ 0, λrj ∈ R, j =
1, . . . , q, r = 1, . . . , s such that

℘ +
q∑

j=1

(λ0j a
0
j +

s∑

r=1

λrj a
r
j ) = 0, υ +

q∑

j=1

λ0jρθ j = 0, (15)

σr +
q∑

j=1

λrj (1 − ρ)θ j = 0, r = 1, . . . , s, λ0j A0 +
s∑

r=1

λrj Ar 
 0, j = 1, . . . , q.

(16)

(Employing an inverse variable transformation)Given j ∈ {1, . . . , q}, we consider
the following matrix inequality

λ0j A0 +
s∑

r=1

λrj Ar 
 0. (17)
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We claim by (17) and the boundedness of U that if λ0j = 0, then λrj = 0 for all

r = 1, . . . , s. Suppose, on the contrary, that λ0j = 0 but there exists r0 ∈ {1, . . . , s}
with λ

r0
j �= 0. In this case, (17) becomes

s∑
r=1

λrj Ar 
 0. Let u := (u1, . . . , us) ∈ U .

It follows by definition that A0 +
s∑

r=1
ur Ar 
 0 and

A0 +
s∑

r=1

(ur + γ λrj )A
r
j =

(
A0 +

s∑

r=1

ur Ar

)
+ γ

s∑

r=1

λrj Ar 
 0 for all γ > 0.

This guarantees that u + γ (λ1j , . . . , λ
s
j ) ∈ U for all γ > 0, which contradicts the fact

that U is a bounded set. So, our claim must be true.
By U �= ∅, for each j ∈ {1, . . . , q}, we can take û j := (̂u j

1, . . . , û
j
s ) ∈ U and

define ũ j := (̃u j
1, . . . , ũ

j
s ), where

ũ j
r :=

⎧
⎨

⎩
û j
r , if λ0j = 0,

λrj

λ0j
, if λ0j �= 0,

r = 1, . . . , s.

Then, it can be checked that

A0 +
s∑

r=1

ũ j
r Ar =

⎧
⎪⎪⎨

⎪⎪⎩

A0 +
s∑

r=1
û j
r Ar , if λ0j = 0,

1
λ0j

(λ0j A0 +
s∑

r=1
λrj Ar ), if λ0j �= 0,

which shows that A0 +
s∑

r=1
ũ j
r Ar 
 0, and so, ũ j ∈ U . Then, we have

q∑

j=1

(λ0j a
0
j +

s∑

r=1

λrj a
r
j ) =

q∑

j=1

λ0j
(
a0j +

s∑

r=1

ũ j
r a

r
j

)
, (18)

q∑

j=1

λrjθ j =
q∑

j=1

λ0j ũ
j
r θ j , r = 1, . . . , s, (19)

where we note that if λ0j = 0, then λrj = 0 for all r = 1, . . . , s, j = 1, . . . , q as shown
above.

To prove (a), let (x, y,W ) ∈ R
n+m+m×s be such that a j (u)�x + θ�

j x(u) ≤ 0, j =
1, . . . , q for all u ∈ U , where x(u) = ρy + (1 − ρ)Wu. It means that

a j (u)�x + ρθ�
j y + (1 − ρ)

s∑

r=1

urθ
�
j Wr ≤ 0,

123



Journal of Optimization Theory and Applications (2020) 187:488–519 497

j = 1, . . . , q, ∀u := (u1, . . . , us) ∈ U , (20)

where Wr , r = 1, . . . , s are the columns of the matrix W . Observe by (15), (16), (18)
and (19) that

℘�x + υ�y +
s∑

r=1

σ�
r Wr

= −
⎛

⎝
q∑

j=1

λ0j

(
a j (̃u

j )�x + ρθ�
j y + (1 − ρ)

s∑

r=1

ũ j
r θ

�
j Wr

)⎞

⎠ ≥ 0,

where the last inequality holds due to (20) and the fact that ũ j ∈ U , j = 1, . . . , q.

So, (a) holds. The proof of the theorem is complete. ��
Let us now examine some particular cases of the adjustable linear homogeneous

inequality system (RS). The first particular case is x(u) := ρ(x1, . . . , xm)+(1−ρ)Wu
with 1 ≤ m < n; i.e., the adjustable variable x(·) depends on some components of
the non-adjustable (first-stage) variable x := (x1, . . . , xm, . . . , xn).

Corollary 2.1 (Partially adjustable Farkas’ lemma) Let 1 ≤ m < n and denote
x := (ξ, ζ ), where ξ := (x1, . . . , xm) and ζ := (xm+1, . . . , xn) are partitions of
x := (x1, . . . , xm, . . . , xn). Let (℘1, ℘2) ∈ R

m × R
n−m, σr ∈ R

m, r = 1, . . . , s, and
assume that the adjustable linear homogeneous inequality system (RS) with x(u) :=
ρξ + (1 − ρ)Wu has a solution; i.e.,

X2 := {(x,W ) ∈ R
n × R

m×s : a j (u)�x + θ�
j x(u) ≤ 0, j = 1, . . . , q,

x(u) = ρξ + (1 − ρ)Wu,∀u ∈ U } �= ∅.

Suppose that the following cone

C2 := coneco
{(
a1j (u) + ρθ1j , . . . , a

m
j (u) + ρθmj , am+1

j (u), . . . , anj (u),

(1 − ρ)u1θ j , . . . , (1 − ρ)usθ j
) :

j = 1, . . . , q, u := (u1, . . . , us) ∈ U
}

(21)

is closed, where a j (u) = (a1j (u), . . . , anj (u)) for u ∈ U . We also partition arj as

arj := (arj1, a
r
j2) with arj1 ∈ R

m and arj2 ∈ R
n−m for r = 0, 1, . . . , s, j = 1, . . . , q.

Then, the following statements are equivalent:
(i) The following implication holds:

[
x ∈ R

n,W ∈ R
m×s, a j (u)�x + θ�

j x(u) ≤ 0, j = 1, . . . , q,

x(u) = ρξ + (1 − ρ)Wu, ∀u ∈ U
] �⇒

(
℘1
℘2

)�
x +

s∑

r=1

σ�
r Wr ≥ 0,

where Wr , r = 1, . . . , s are the columns of the matrix W.

123



498 Journal of Optimization Theory and Applications (2020) 187:488–519

(ii) There exist λ0j ≥ 0, λrj ∈ R, j = 1, . . . , q, r = 1, . . . , s such that

℘1 +
q∑

j=1

(λ0j a
0
j1 + λ0jρθ j +

s∑

r=1

λrj a
r
j1) = 0, ℘2 +

q∑

j=1

(λ0j a
0
j2 +

s∑

r=1

λrj a
r
j2) = 0,

σr +
q∑

j=1

λrj (1 − ρ)θ j = 0, r = 1, . . . , s, λ0j A0 +
s∑

r=1

λrj Ar 
 0, j = 1, . . . , q.

Proof Let x̃ := (ξ, ζ,W1, . . . ,Ws), ã0j := (a0j1 + ρθ j , a0j2, 0m, . . . , 0m), ãrj :=
(arj1, a

r
j2,Θ

r
j ), r = 1, . . . , s, j = 1, . . . , q, where Θr

j := (0m, . . . , (1 −
ρ)θ j , . . . , 0m) ∈ R

m×s with θ j standing at the r th position, and define affine maps
ã j : Rs → R

n+m×s, j = 1, . . . , q as

ã j (u) := ã0j +
s∑

r=1

ur ã
r
j for u := (u1, . . . , us) ∈ R

s .

In what follows, we also use the notation ã j (u) := (̃a1j (u), . . . , ãn+m×s
j (u)) for u ∈ U

and j = 1, . . . , q. Set θ̃ j := 0m, j = 1, . . . , q, and observe that X2 �= ∅, if and only
if X̃ �= ∅, where

X̃ := {(̃x, ỹ, W̃ ) ∈ R
n+m×s × R

m × R
m×s : ã j (u)� x̃ + θ̃�

j x̃(u) ≤ 0, j = 1, . . . , q,

x̃(u) = ρ ỹ + (1 − ρ)W̃u,∀u ∈ U }.

Assume (i) holds. Then, the following implication holds:

[
x̃ ∈ R

n+m×s, ỹ ∈ R
m, W̃ ∈ R

m×s, ã j (u)� x̃ + θ̃�
j x̃(u) ≤ 0, j = 1, . . . , q,

x̃(u) = ρ ỹ + (1 − ρ)W̃u, ∀u ∈ U
] �⇒ ℘̃� x̃ ≥ 0, (22)

where ℘̃ := (℘1, ℘2, σ1, . . . , σs). Moreover, it can be verified that the closedness of
C2 guarantees the closedness of the following cone C̃ , where

C̃ := coneco
{(
ã j (u), ρθ̃ j , (1 − ρ)u1θ̃ j , . . . , (1 − ρ)us θ̃ j

)
, j = 1, . . . , q |

u := (u1, . . . , us) ∈ U
} = coneco

{(
a1j (u) + ρθ1j , . . . , a

m
j (u) + ρθmj , am+1

j (u),

. . . , anj (u), (1 − ρ)u1θ j , . . . , (1 − ρ)usθ j , 0m, . . . , 0m
) : j = 1, . . . , q,

u := (u1, . . . , us) ∈ U
}
.

Applying the adjustable Farkas’ lemma given in Theorem 2.1, we find λ0j ≥ 0, λrj ∈
R, j = 1, . . . , q, r = 1, . . . , s such that

℘̃ +
q∑

j=1

(λ0j ã
0
j +

s∑

r=1

λrj ã
r
j ) = 0, λ0j A0 +

s∑

r=1

λrj Ar 
 0, j = 1, . . . , q,

123



Journal of Optimization Theory and Applications (2020) 187:488–519 499

which shows that

℘1 +
q∑

j=1

(λ0j a
0
j1 + λ0jρθ j +

s∑

r=1

λrj a
r
j1) = 0, ℘2 +

q∑

j=1

(λ0j a
0
j2 +

s∑

r=1

λrj a
r
j2) = 0,

σr +
q∑

j=1

λrj (1 − ρ)θ j = 0, r = 1, . . . , s, λ0j A0 +
s∑

r=1

λrj Ar 
 0, j = 1, . . . , q.

This means that (ii) is valid. In this way, we can employ Theorem 2.1 to show that the
inverse implication also holds and so, the proof is complete. ��
Remark 2.1 For the case of x(u) := ρx + (1 − ρ)Wu (i.e., the adjustable variable
depends on the entire components of the non-adjustable variable), we can employ
the adjustable Farkas’ lemma in Theorem 2.1 to derive the following version of the
Farkas’ lemma.

Let ℘ ∈ R
n, σr ∈ R

n, i = 1, . . . , s, and assume that the adjustable linear homo-
geneous inequality system (RS) with m = n and x(u) := ρx + (1 − ρ)Wu has a
solution; i.e.,

X1 := {(x,W ) ∈ R
n × R

n×s : a j (u)�x + θ�
j x(u) ≤ 0, j = 1, . . . , q,

x(u) = ρx + (1 − ρ)Wu,∀u ∈ U } �= ∅.

Suppose that the following cone C1 is closed, where

C1 := coneco
{(
a j (u) + ρθ j , (1 − ρ)u1θ j , . . . , (1 − ρ)usθ j

) :
j = 1, . . . , q, u := (u1, . . . , us) ∈ U

}
.

Then, the following statements are equivalent:

(i) The following implication holds:

[
x ∈ R

n,W ∈ R
n×s, a j (u)�x + θ�

j x(u) ≤ 0, j = 1, . . . , q,

x(u) = ρx + (1 − ρ)Wu, ∀u ∈ U
] �⇒ ℘�x +

s∑

r=1

σ�
r Wr ≥ 0,

where Wr , r = 1, . . . , s are the columns of the matrix W .
(ii) There exist λ0j ≥ 0, λrj ∈ R, j = 1, . . . , q, r = 1, . . . , s such that

℘ +
q∑

j=1

(λ0j a
0
j +λ0jρθ j +

s∑

r=1

λrj a
r
j )=0, σr +

q∑

j=1

λrj (1 − ρ)θ j =0, r =1, . . . , s,

λ0j A0 +
s∑

r=1

λrj Ar 
 0, j = 1, . . . , q.
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In the second particular case, where θ j := 0m, j = 1, . . . , q (i.e., there are no
adjustable variables in the system (RS)), the adjustable Farkas’ lemma reduces to
the semi-infinite Farkas’ lemma (see, e.g., [19]) for a linear homogeneous inequality
system.

Corollary 2.2 (Semi-infinite Farkas’ Lemma) Let ℘ ∈ R
n, and assume that the

adjustable linear homogeneous inequality system (RS) with θ j := 0m, j = 1, . . . , q
has a solution; i.e.,

X̃ := {x ∈ R
n : a j (u)�x ≤ 0, j = 1, . . . , q, ∀u ∈ U } �= ∅.

Suppose that the following cone C̃ is closed, where

C̃ := coneco
{
a j (u) : j = 1, . . . , q, u ∈ U

}
. (23)

Then, the following statements are equivalent:

(i) The following implication holds:

[
x ∈ R

n, a j (u)�x ≤ 0, j = 1, . . . , q, ∀u ∈ U
] �⇒ ℘�x ≥ 0.

(ii) There exist λ0j ≥ 0, λrj ∈ R, j = 1, . . . , q, r = 1, . . . , s such that

℘ +
q∑

j=1

(λ0j a
0
j +

s∑

r=1

λrj a
r
j ) = 0, λ0j A0 +

s∑

r=1

λrj Ar 
 0, j = 1, . . . , q.

Proof Observe first that X̃ �= ∅, if and only if X �= ∅, where

X := {(x, y,W ) ∈ R
n+m+m×s : a j (u)�x + θ�

j x(u) ≤ 0, j = 1, . . . , q,

x(u) = ρy + (1 − ρ)Wu,∀u ∈ U },

with θ j := 0m, j = 1, . . . , q.

Assume (i) holds. Then, by letting υ := σr := 0m, r = 1, . . . , s, we get from (i)
the following implication

[
x ∈ R

n, y ∈ R
m,W ∈ R

m×s, a j (u)�x + θ�
j x(u) ≤ 0, j = 1, . . . , q,

x(u) = ρy + (1 − ρ)Wu, ∀u ∈ U
] �⇒ ℘�x + υ�y +

s∑

r=1

σ�
r Wr ≥ 0, (24)

which lands in the form (a) of Theorem 2.1. In this setting, it can be verified that the
closedness of C̃ implies the closedness of C in (5) as

C = coneco
{(
a j (u), 0m, 0m, . . . , 0m

) : j = 1, . . . , q, u ∈ U
}
.
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Applying now Theorem 2.1, we assert that (24) is equivalent to saying that there exist
λ0j ≥ 0, λrj ∈ R, j = 1, . . . , q, r = 1, . . . , s such that

℘ +
q∑

j=1

(λ0j a
0
j +

s∑

r=1

λrj a
r
j ) = 0, υ +

q∑

j=1

λ0jρθ j = 0, (25)

σr +
q∑

j=1

λrj (1 − ρ)θ j = 0, r = 1, . . . , s, λ0j A0 +
s∑

r=1

λrj Ar 
 0, j = 1, . . . , q.

(26)

Note that conditions (25) and (26) are exactly (ii) because υ = σr = 0m, r = 1, . . . , s
and θ j := 0m, j = 1, . . . , q. In this way, we can employ Theorem 2.1 to show that
the inverse implication also holds, and so the proof is complete. ��

We close this section with a remark that, in a special case where the parameter set
U in (2) is a singleton, the adjustable Farkas’ lemma reduces to a classical form of
the Farkas’ lemma for a linear homogeneous inequality system.

3 Exact SDPs for Two-Stage Robust Linear Programs

In this section, we apply the adjustable Farkas’ lemma obtained in Theorem 2.1 to
derive strong duality relations for a two-stage robust linear optimization problem,
where the dual problem is a conic linear program and so, the optimal value of the
underlying two-stage robust linear optimization problem can be found by solving this
conic linear program.

A linear program in the face of constraint data uncertainty can be captured by the
program

inf
x∈Rn

{c�x : a j (u)�x ≤ b j (u), j = 1, . . . , q}, (27)

where c ∈ R
n is fixed, u ∈ U , the uncertainty set

U := {
u := (u1, . . . , us) ∈ R

s : A0 +
s∑

i=1

ui Ai 
 0
}

is a non-empty bounded spectrahedron defined as in (2), and a j : R
s → R

n, b j :
R
s → R, j = 1, . . . , q are affine mappings given, respectively, by

a j (u) := a0j +
s∑

i=1

uia
i
j , b j (u) := b0j +

s∑

i=1

uib
i
j for u := (u1, . . . , us) ∈ R

s,

where aij ∈ R
n, bij ∈ R, i = 0, 1, . . . , s, j = 1, . . . , q are fixed.
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We consider an adjustable uncertain two-stage linear program of (27) as

inf
x∈Rn ,x(·) {c

�x : a j (u)�x + θ�
j x(u) ≤ b j (u), j = 1, . . . , q}, (UP)

where θ j := (θ1j , . . . , θ
m
j ) ∈ R

m, j = 1, . . . , q are fixed, x := (x1, . . . , xn) is the
first-stage (here-and-now) decision vector and x(·) is the second-stage (wait-and-see)
adjustable decision vector given by

x(u) := ρy + (1 − ρ)Wu

with the non-adjustable y ∈ R
m , W ∈ R

m×s and ρ ∈ [0, 1] as in (3). The first-stage
decisions x1, . . . , xn aremade before the uncertain parameters u1, . . . , us are realized,
whereas the second-stage adjustable decisions can bemade after some of the uncertain
parameters have revealed their values.

The adjustable robust two-stage counterpart of (UP) reads as follows:

inf
x∈Rn ,y∈Rm ,W∈Rm×s

{c�x : a j (u)�x + θ�
j x(u) ≤ b j (u), (RP)

x(u) = ρy + (1 − ρ)Wu, j = 1, . . . , q, ∀u ∈ U }.

We propose a semidefinite programming (SDP) dual problem for (RP) as

sup
(λ0j ,λ

i
j )

{
−

q∑

j=1

(λ0j b
0
j +

s∑

i=1

λij b
i
j ) : c +

q∑

j=1

(λ0j a
0
j +

s∑

i=1

λij a
i
j ) = 0,

q∑

j=1

λ0jρθ j = 0,

(DP)
q∑

j=1

λij (1 − ρ)θ j = 0, λ0j A0 +
s∑

i=1

λij Ai 
 0,

λ0j ∈ R+, λij ∈ R, i = 1, . . . , s, j = 1, . . . , q
}
.

The following theorem describes a strong duality relation between the adjustable
robust two-stage linear problem (RP) and its semidefinite programming dual prob-
lem (DP).

Theorem 3.1 (Strong duality with SDP duals) Let the feasible set of problem (RP)
be non-empty and let the following cone CP be closed, where

CP := coneco
{(
a j (u), b j (u), ρθ j , (1 − ρ)u1θ j , . . . , (1 − ρ)usθ j

) :
j = 1, . . . , q, u := (u1, . . . , us) ∈ U

}
. (28)

Then, we have

inf (RP) = max
(λ0j ,λ

i
j )

{
−

q∑

j=1

(λ0j b
0
j +

s∑

i=1

λij b
i
j ) : c +

q∑

j=1

(λ0j a
0
j +

s∑

i=1

λij a
i
j ) = 0,
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q∑

j=1

λ0jρθ j = 0,
q∑

j=1

λij (1 − ρ)θ j = 0, λ0j A0 +
s∑

i=1

λij Ai 
 0,

λ0j ∈ R+, λij ∈ R, i = 1, . . . , s, j = 1, . . . , q
}
.

Proof (Verifying weak duality) Let us first show that

inf (RP) ≥ sup (DP). (29)

This holds trivially if the feasible set of problem (DP) is empty. Now, take any λ0j ≥
0, λij ∈ R, , j = 1, . . . , q, i = 1, . . . , s such that

c +
q∑

j=1

(λ0j a
0
j +

s∑

i=1

λij a
i
j ) = 0,

q∑

j=1

λ0jρθ j = 0,
q∑

j=1

λij (1 − ρ)θ j = 0, i = 1, . . . , s,

(30)

λ0j A0 +
s∑

i=1

λij Ai 
 0, j = 1, . . . , q. (31)

Consider any j ∈ {1, . . . , q}. By the compactness of U , as shown in the proof of
Theorem 2.1, we conclude by (31) that if λ0j = 0, then λij = 0 for all i = 1, . . . , s.

Then, take û j := (̂u j
1, . . . , û

j
s ) ∈ U and define ũ j := (̃u j

1, . . . , ũ
j
s ) with

ũ j
i :=

⎧
⎨

⎩

û j
i , if λ0j = 0,

λij

λ0j
, if λ0j �= 0,

i = 1, . . . , s.

It shows that ũ j ∈ U . Then, we have

q∑

j=1

(λ0j a
0
j +

s∑

i=1

λij a
i
j ) =

q∑

j=1

λ0j
(
a0j +

s∑

i=1

ũ j
i a

i
j

)
,

q∑

j=1

(λ0j b
0
j +

s∑

i=1

λij b
i
j ) =

q∑

j=1

λ0j
(
b0j +

s∑

i=1

ũ j
i b

i
j

)
, (32)

q∑

j=1

λijθ j =
q∑

j=1

λ0j ũ
j
i θ j , i = 1, . . . , s, (33)

where we note that if λ0j = 0, then λij = 0 for all i = 1, . . . , s, j = 1, . . . , q as said
above.

Now, let (x, y,W ) ∈ R
n+m+m×s be a feasible point of problem (RP);
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i.e., a j (u)�x + θ�
j

(
ρy + (1 − ρ)Wu

) ≤ b j (u), j = 1, . . . , q for all u ∈ U . Denote
by Wi , i = 1, . . . , s the columns of the matrix W . We get by (30), (32) and (33) that

− c�x −
q∑

j=1

(λ0j b
0
j +

s∑

i=1

λij b
i
j )

=
q∑

j=1

λ0j
[
(a0j +

s∑

i=1

ũ j
i a

i
j )

�x + ρθ�
j y + (1 − ρ)

s∑

i=1

ũ j
i θ

�
j Wi − (b0j +

s∑

i=1

ũ j
i b

i
j )
]

=
q∑

j=1

λ0j
[
a j (̃u

j )�x + θ�
j

(
ρy + (1 − ρ)Wũ j )− b j (̃u

j )
] ≤ 0,

where we should remind that ũ j ∈ U for j = 1, . . . , q. It entails that c�x ≥
−

q∑
j=1

(λ0j b
0
j +

s∑
i=1

λij b
i
j ), and so (29) is valid.

(Verifying strong duality) To prove the converse inequality of (29), we may assume
μ := inf (RP) ∈ R. Then, it holds that

[
x ∈ R

n, y ∈ R
m,W ∈ R

m×s, a j (u)�x + θ�
j x(u) ≤ b j (u), j = 1, . . . , q,

x(u) = ρy + (1 − ρ)Wu, ∀u ∈ U
] �⇒ c�x − μ ≥ 0. (34)

We now verify that

[
x ∈ R

n, y ∈ R
m,W ∈ R

m×s, t ∈ R, a j (u)�x + θ�
j

x(u) + b j (u)t ≤ 0, j = 1, . . . , q, t ≤ 0,

x(u) = ρy + (1 − ρ)Wu, ∀u ∈ U
] �⇒ c�x + μt ≥ 0. (35)

To see this, assume on the contrary that there exist (̂x, ŷ, Ŵ ) ∈ R
n+m+m×s and t̂ ≤ 0

such that

a j (u)� x̂ + ρθ�
j ŷ + (1 − ρ)

s∑

i=1

uiθ
�
j Ŵi + b j (u)̂t ≤ 0, j = 1, . . . , q, ∀u ∈ U ,

(36)

c� x̂ + μ̂t < 0, (37)

where Ŵi , i = 1, . . . , s are the columns of thematrix Ŵ .Let us consider the following
possibilities:
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Case 1 (̂t = 0): We get by (36) and (37) that

a j (u)� x̂ + ρθ�
j ŷ + (1 − ρ)

s∑

i=1

uiθ
�
j Ŵi ≤ 0, j = 1, . . . , q, ∀u ∈ U ,

c� x̂ < 0.

Let (x, y,W ) ∈ R
n+m+m×s be a feasible point of problem (RP);

i.e., a j (u)�x + ρθ�
j y + (1 − ρ)

s∑
r=1

urθ�
j Wr ≤ b j (u), j = 1, . . . , q for all u ∈ U ,

where Wr , r = 1, . . . , s are the columns of the matrix W . It entails that

a j (u)�xλ + ρθ�
j y

λ + (1 − ρ)

s∑

r=1

urθ
�
j W

λ
r ≤ b j (u), j = 1, . . . , q, ∀

u := (u1, . . . , us) ∈ U , (38)

where xλ := x + λx̂, yλ := y + λŷ,W λ
i := Wi + λŴi , i = 1, . . . , s for λ > 0. In

other words, by denotingW λ, λ > 0, the matrix with its columns asW λ
i , i = 1, . . . , s

we assert by (38) that xλ ∈ R
n, yλ ∈ R

m,W λ ∈ R
m×s and a j (u)�xλ + θ�

j x(u) ≤
b j (u), x(u) = ρyλ + (1 − ρ)W λu, j = 1, . . . , q for all u ∈ U . Then, by (34), we
arrive at the assertion that c�xλ ≥ μ for all λ > 0. This assertion contradicts the fact
that c� x̂ < 0 and thus

c�xλ = c�x + λc� x̂ → −∞ as λ → +∞.

Case 2 (̂t < 0): We get by (36) that

a j (u)�
(

x̂

−̂t

)
+ ρθ�

j

(
ŷ

−̂t

)
+ (1 − ρ)

s∑

i=1

uiθ
�
j

×
(
Ŵi

−̂t

)
≤ b j (u), j = 1, . . . , q, ∀u ∈ U .

Similarly, by (34), we obtain that c�
(

x̂
−̂t

)
≥ μ, which contradicts to the inequality

in (37). Consequently, (35) holds.

(Homogenization of (35)) Let x̃ := (x, t), ãrj := (arj , b
r
j ), r = 0, 1, . . . , s, j =

1, . . . , q, ã0q+1 := (0n, 1), ãrq+1 := (0n, 0), r = 1, . . . , s and θq+1 := 0m , and define

affine maps ã j : Rs → R
n+1, j = 1, . . . , q + 1 as

ã j (u) := ã0j +
s∑

r=1

ur ã
r
j for u := (u1, . . . , us) ∈ R

s .
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In what follows, we also use the notation ã j (u) := (̃a1j (u), . . . , ãn+1
j (u)) for u ∈ U

and j = 1, . . . , q + 1. From (35), we obtain the following implication:

[
x̃ ∈ R

n+1, y ∈ R
m,W ∈ R

m×s, ã j (u)� x̃ + θ�
j x(u) ≤ 0, j = 1, . . . , q + 1,

x(u) = ρy + (1 − ρ)Wu, ∀u ∈ U
] �⇒ c̃� x̃ ≥ 0, (39)

where c̃ := (c, μ). Moreover, it can be verified that the closedness of CP guarantees
the closedness of the following cone C̃ , where

C̃ := coneco
{(
ã j (u), ρθ j , (1 − ρ)u1θ j , . . . , (1 − ρ)usθ j

) :
j = 1, . . . , q + 1, u := (u1, . . . , us) ∈ U

}

= coneco
{(
0n, 1, 0m, 0m, . . . , 0m

)
,
(
a j (u), b j (u), ρθ j , (1 − ρ)u1θ j , . . . ,

(1 − ρ)usθ j
) : j = 1, . . . , q, u := (u1, . . . , us) ∈ U

}
.

Applying the adjustable Farkas’ lemma given in Theorem 2.1, we find λ0j ≥ 0, λrj ∈
R, j = 1, . . . , q + 1, r = 1, . . . , s such that

c̃ +
q+1∑

j=1

(λ0j ã
0
j +

s∑

r=1

λrj ã
r
j ) = 0,

q+1∑

j=1

λ0jρθ j = 0,

q+1∑

j=1

λrj (1 − ρ)θ j = 0, r = 1, . . . , s, λ0j A0 +
s∑

r=1

λrj Ar 
 0, j = 1, . . . , q + 1,

which shows that

c +
q∑

j=1

(λ0j a
0
j +

s∑

i=1

λij a
i
j ) = 0,

q∑

j=1

λ0jρθ j = 0,

q∑

j=1

λrj (1 − ρ)θ j = 0, r = 1, . . . , s, λ0j A0 +
s∑

r=1

λrj Ar 
 0, j = 1, . . . , q,

μ + λ0q+1 +
q∑

j=1

(λ0j b
0
j +

s∑

i=1

λij b
i
j ) = 0.

The last equality entails that μ ≤ −
q∑
j=1

(λ0j b
0
j +

s∑
i=1

λij b
i
j ). So, μ ≤ sup (DP), which,

together with (29), guarantees that inf (RP) = sup (DP) and the dual problem (DP)
attains its solutions. The proof of the theorem is complete. ��
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Remark 3.1 For the case of x(u) := ρ(x1, . . . , xm) + (1 − ρ)Wu with 1 ≤ m < n
(i.e., the second-stage decision variable x(·) depends on some components of the
first-stage decision variable x := (x1, . . . , xm, . . . , xn)), we can employ the Farkas’
lemma in Corollary 2.1 instead of Theorem 2.1 to derive a strong duality relation
between the adjustable robust two-stage linear problem (RP) and its corresponding
dual semidefinite programming problem.

Let us consider a particular case of the adjustable robust two-stage linear prob-
lem (RP), where the uncertainty set U in (2) is replaced by the following ellipsoid

E := {
u ∈ R

s : u�Mu ≤ 1
}

(40)

with a symmetric (s×s)matrixM � 0. Let B be an (s×s)matrix such thatM = B�B.
In this case, we obtain strong duality with a second-order cone programming

(SOCP) dual for the adjustable robust two-stage linear problem (RP) under ellipsoidal
uncertainty.

Corollary 3.1 (Strong duality with SOCP duals) Consider the problem (RP) with U
in (2) replaced by E in (40), and let the feasible set of problem (RP) be non-empty.
Assume the following cone CP be closed, where

CP := coneco
{(
a j (u), b j (u), ρθ j , (1 − ρ)u1θ j , . . . , (1 − ρ)usθ j

) :
j = 1, . . . , q, u := (u1, . . . , us) ∈ E

}
.

Then, we have

inf (RP) = max
(λ0j ,λ

i
j )

{
−

q∑

j=1

(λ0j b
0
j +

s∑

i=1

λij b
i
j ) :

c +
q∑

j=1

(λ0j a
0
j +

s∑

i=1

λij a
i
j ) = 0,

q∑

j=1

λ0jρθ j = 0,

q∑

j=1

λij (1 − ρ)θ j = 0, ‖B(λ1j , . . . , λ
s
j )‖ ≤ λ0j ,

λ0j ∈ R+, λij ∈ R, i = 1, . . . , s, j = 1, . . . , q
}
.

Proof Let Ai , i = 0, 1, . . . , s be (s + 1) × (s + 1) matrices given by

A0 :=
(
M−1 0
0 1

)
, Ai :=

(
0 ei
e�
i 0

)
, i = 1, . . . , s, (41)

where ei ∈ R
s is a vector whose i th component is one and all others are zero. Then,

the ellipsoid E in (40) lands in the form of the spectrahedron U in (2). Therefore, we
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invoke Theorem 3.1 to assert that

inf (RP) = max
(λ0j ,λ

i
j )

{
−

q∑

j=1

(λ0j b
0
j +

s∑

i=1

λij b
i
j ) :

c +
q∑

j=1

(λ0j a
0
j +

s∑

i=1

λij a
i
j ) = 0,

q∑

j=1

λ0jρθ j = 0,

q∑

j=1

λij (1 − ρ)θ j = 0, λ0j A0 +
s∑

i=1

λij Ai 
 0,

λ0j ∈ R+, λij ∈ R, i = 1, . . . , s, j = 1, . . . , q
}
,

where Ai , i = 0, 1, . . . , s are given as in (41). In this case, we can verify that

λ0j A0 +
s∑

i=1

λij Ai 
 0 ⇔ ‖B(λ1j , . . . , λ
s
j )‖ ≤ λ0j , j = 1, . . . , q.

So, the proof is complete. ��
As an application of Theorem 3.1, we derive, in the following corollary, a charac-

terization of solution in terms of linear matrix inequalities for the adjustable robust
two-stage linear problem (RP).

Corollary 3.2 (Characterization of solution for (RP)) Let the optimal solution set of
problem (RP) be non-empty and let the following cone CP be closed, where

CP := coneco
{(
a j (u), b j (u), ρθ j , (1 − ρ)u1θ j , . . . , (1 − ρ)usθ j

) :
j = 1, . . . , q, u := (u1, . . . , us) ∈ U

}
.

Let (x, y,W ) ∈ R
n+m+m×s be a feasible point of problem (RP). Then, (x, y,W ) is

an optimal solution of problem (RP) if and only if there exist λ0j ≥ 0, λij ∈ R, j =
1, . . . , q, i = 1, . . . , s, such that

c +
q∑

j=1

(λ0j a
0
j +

s∑

i=1

λij a
i
j ) = 0,

q∑

j=1

λ0jρθ j = 0,

q∑

j=1

λij (1 − ρ)θ j = 0, i = 1, . . . , s, λ0j A0 +
s∑

i=1

λij Ai 
 0, j = 1, . . . , q,

c�x +
q∑

j=1

(λ0j b
0
j +

s∑

i=1

λij b
i
j ) = 0. (42)
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Proof [�⇒] Let (x, y,W ) ∈ R
n+m+m×s be an optimal solution of problem (RP).

Since CP is closed, we assert by Theorem 3.1 that

c�x = max
(λ0j ,λ

i
j )

{
−

q∑

j=1

(λ0j b
0
j +

s∑

i=1

λij b
i
j ) :

c +
q∑

j=1

(λ0j a
0
j +

s∑

i=1

λij a
i
j ) = 0,

q∑

j=1

λ0jρθ j = 0,

q∑

j=1

λij (1 − ρ)θ j = 0, λ0j A0 +
s∑

i=1

λij Ai 
 0,

λ0j ∈ R+, λij ∈ R, i = 1, . . . , s, j = 1, . . . , q
}
.

This shows that there exist λ0j ≥ 0, λij ∈ R, j = 1, . . . , q, i = 1, . . . , s such that

c +
q∑

j=1

(λ0j a
0
j +

s∑

i=1

λij a
i
j ) = 0,

q∑

j=1

λ0jρθ j = 0,

q∑

j=1

λij (1 − ρ)θ j = 0, i = 1, . . . , s, λ0j A0 +
s∑

i=1

λij Ai 
 0, j = 1, . . . , q,

c�x = −
q∑

j=1

(λ0j b
0
j +

s∑

i=1

λij b
i
j ),

and so, we obtain (42).
[⇐�] Assume that there exist λ0j ≥ 0, λij ∈ R, , j = 1, . . . , q, i = 1, . . . , s such that
(42) holds. Under the closedness of CP , we invoke Theorem 3.1 again to conclude
that

min (RP) = max
(λ0j ,λ

i
j )

{
−

q∑

j=1

(λ0j b
0
j +

s∑

i=1

λij b
i
j ) :

c +
q∑

j=1

(λ0j a
0
j +

s∑

i=1

λij a
i
j ) = 0,

q∑

j=1

λ0jρθ j = 0,

q∑

j=1

λij (1 − ρ)θ j = 0, λ0j A0 +
s∑

i=1

λij Ai 
 0,

λ0j ∈ R+, λij ∈ R, i = 1, . . . , s, j = 1, . . . , q
}
. (43)
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Now, let (̂x, ŷ, Ŵ ) ∈ R
n+m+m×s be an arbitrary feasible point of problem (RP). Taking

(42) and (43) into account, we see that

c�x = −
q∑

j=1

(λ0j b
0
j +

s∑

i=1

λij b
i
j ) ≤ min (RP) ≤ c� x̂ .

So, (x, y,W ) is an optimal solution of problem (RP), which finishes the proof. ��

We now provide some sufficient criteria, which guarantee that the cone CP in
Theorem 3.1 is closed.

Proposition 3.1 (Sufficiency for the closedness of C P) Assume that one of the fol-
lowing conditions holds:

(a) The uncertainty set U of problem (RP) is a polytope;
(b) The Slater condition holds for the problem (RP); i.e., there is (̂x, ŷ, Ŵ ) ∈

R
n+m+m×s such that

a j (u)� x̂ + θ�
j x(u) < b j (u), x(u) = ρ ŷ + (1 − ρ)Ŵu, j = 1, . . . , q, ∀u ∈ U .

(44)

Then, the following cone CP is closed, where

CP := coneco
{(
a j (u), b j (u), ρθ j , (1 − ρ)u1θ j , . . . , (1 − ρ)usθ j

) :
j = 1, . . . , q, u := (u1, . . . , us) ∈ U

}
.

Proof For each j ∈ {1, . . . , q}, let us define an affine map Hj : Rs → R
n × R ×

R
m × R

ms as

Hj (u) := (
a j (u), b j (u), ρθ j , (1 − ρ)u1θ j , . . . , (1 − ρ)usθ j

)
,

u := (u1, . . . , us) ∈ U .

Then, Hj (U ) := ⋃
u∈U

Hj (u), and so it follows that

CP = coneco

⎛

⎝
q⋃

j=1

Hj (U )

⎞

⎠ .

(a) WhenU is a polytope, the set Hj (U ) is also a polytope for each j ∈ {1, . . . , q}
(see, e.g., [20, Proposition 1.29]), and so Hj (U ) is the convex hull of some finite
set (see, e.g., [20, Theorem 1.26]). It means that for each j ∈ {1, . . . , q}, there exist
k j ∈ N and ui ∈ U , i = 1, . . . , k j such that
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Hj (U ) = conv
{(
a j (ui ), b j (ui ), ρθ j , (1 − ρ)ui1θ j , . . . , (1 − ρ)uisθ j

) : i =
1, . . . , k j

}
. It follows that

conv

⎛

⎝
q⋃

j=1

Hj (U )

⎞

⎠

= conv
{(
a j (u

i ), b j (u
i ), ρθ j , (1 − ρ)ui1θ j , . . . , (1 − ρ)uisθ j

) :
i = 1, . . . , k j , j = 1, . . . , q

}

is a polytope. So,CP = coneco

[
conv

(
q⋃
j=1

Hj (U )

)]
is a polyhedral cone and hence

is closed (see, e.g., [18, Proposition 3.9]).
(b) As U is compact and Hj is affine (and thus continuous) for j ∈ {1, . . . , q},

the set Hj (U ) is a compact set. This entails that

(
q⋃
j=1

Hj (U )

)
is also a compact set.

Moreover, Hj (U ) is a convex set for each j ∈ {1, . . . , q} due to the convexity of U
(see, e.g., [18, Proposition 1.23]). Assume now that the Slater condition (44) holds.
We assert that

(0n, 0, 0m, 0m, . . . , 0m︸ ︷︷ ︸
s

) /∈ conv

⎛

⎝
q⋃

j=1

Hj (U )

⎞

⎠ . (45)

Assume on the contrary that there exist u j ∈ U , μ j ≥ 0, j = 1, . . . , q with
q∑
j=1

μ j =
1 such that

(0n, 0, 0m, 0m, . . . , 0m︸ ︷︷ ︸
s

)

=
q∑

j=1

μ j
(
a j (u

j ), b j (u
j ), ρθ j , (1 − ρ)u j

1θ j , . . . , (1 − ρ)u j
s θ j

)
. (46)

Denote by Ŵr , r = 1, . . . , s, the columns of the matrix Ŵ . From (44), we obtain that

q∑

j=1

μ j

(
a j (u

j )� x̂ + ρθ�
j ŷ + (1 − ρ)

s∑

r=1

u j
r θ

�
j Ŵr

)
<

q∑

j=1

μ j b j (u
j ),

which clearly contradicts (46), and so (45) holds. Invoking [7, Proposition 1.4.7], we
conclude that CP is closed. ��

We close this section with a simple example that shows how we can employ the
strong duality obtained in Theorem 3.1 to verify the optimal value of an adjustable
robust two-stage linear problem by solving its corresponding SDP dual problem.
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Example 3.1 Consider an adjustable uncertain two-stage linear problem of the form:

inf
x∈R3,x(·)

{
− x1 − 2x2 − 3x3 : u1x1 + u2x2 + u3x3 + θ�x(u) ≤ 8, (EU)

x1 + 2x2 ≤ 1, x3 ≤ 1,

− 3x1 − x2 − x3 + θ�x(u) ≤ 0
}
,

where θ := (1, 1, 1), x := (x1, x2, x3) ∈ R
3 is the first-stage decision variable and x(·)

is the second-stage decision variable, which is an adjustable variable that is depending
on uncertain u := (u1, u2, u3) ∈ U . Here, we consider a linear decision rule x(·)
given by

x(u) := ρy + (1 − ρ)Wu, u ∈ U ,

where y ∈ R
3 and W ∈ R

3×3 are non-adjustable variables, ρ ∈]0, 1[ and the uncer-
tainty U is an elliptope (see, e.g., [21, Pages 255–256]) given by

U := {(u1, u2, u3) ∈ R
3 : 2u1u2u3 − u21 − u22 − u23 + 1 ≥ 0,

1 − u21 ≥ 0, 1 − u22 ≥ 0, 1 − u23 ≥ 0}. (47)

To treat this problem, let us consider a robust counterpart of (EU) as follows:

inf
x∈R3,y∈R3,W∈R3×3

{
− x1 − 2x2 − 3x3 : u1x1 + u2x2 + u3x3 + θ�x(u) ≤ 8,

(ER)

x1 + 2x2 ≤ 1, x3 ≤ 1,−3x1 − x2 − x3 + θ�x(u) ≤ 0,

x(u) := ρy + (1 − ρ)Wu, ∀u ∈ U
}
.

Note that the uncertainty setU in (47) is a spectrahedron and is depicted in Fig. 5.8 of
[21, Page 232], and so the problem (ER) can be expressed in terms of problem (RP),
where c := (−1,−2,−3), θ1 := θ4 := (1, 1, 1), θ2 := θ3 := 03, the spectrahedron
U is described by

A0 :=
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ , A1 :=
⎛

⎝
0 1 0
1 0 0
0 0 0

⎞

⎠ , A2 :=
⎛

⎝
0 0 1
0 0 0
1 0 0

⎞

⎠ , A3 :=
⎛

⎝
0 0 0
0 0 1
0 1 0

⎞

⎠ ,

and the affine mappings a j : R
3 → R

3, b j : R
3 → R, j = 1, 2, 3, 4 are

defined by a01 := (0, 0, 0), a11 := (1, 0, 0), a21 := (0, 1, 0), a31 := (0, 0, 1), a02 :=
(1, 2, 0), a03 := (0, 0, 1), a04 := (−3,−1,−1), aij := (0, 0, 0) ∈ R

3, i = 1, 2, 3, j =
2, 3, 4, b01 := 8, b0j := 1, j = 2, 3, b04 := 0, bij := 0 ∈ R, i = 1, 2, 3, j = 1, 2, 3, 4.

123



Journal of Optimization Theory and Applications (2020) 187:488–519 513

By direct calculation, we see that the problem (ER) has optimal solutions (for
instance, (x, y,W ), where x := (1, 0, 1), y := 03 andW := 03×3, is an optimal solu-
tion of problem (ER)) with the optimal value min (ER) = −4. Let us now verify the
optimal value of problem (ER). Since the Slater condition holds for the problem (ER),
the corresponding cone CP is closed as shown by Proposition 3.1. So, we assert by
Theorem 3.1 that the exact SDP duality between (ER) and (ED) holds, where (ED) is
the following SDP dual problem:

max
(λ0j ,λ

i
j )

{
−

4∑

j=1

(λ0j b
0
j +

3∑

i=1

λij b
i
j ) : (−1,−2,−3) +

4∑

j=1

(λ0j a
0
j +

3∑

i=1

λij a
i
j ) = 0,

(ED)
4∑

j=1

λ0jρθ j = 0,
4∑

j=1

λij (1 − ρ)θ j = 0, λ0j A0 +
3∑

i=1

λij Ai 
 0,

λ0j ∈ R+, λij ∈ R, i = 1, 2, 3, j = 1, 2, 3, 4
}
,

which amounts to the following one

max
(λ0j ,λ

i
j )

{
− 8λ01 − λ02 − λ03 : λ11 + λ02 − 3λ04 − 1 = 0, λ21 + 2λ02 − λ04 − 2 = 0,

(ES)

λ31 + λ03 − λ04 − 3 = 0, λi1 + λi4 = 0, i = 0, 1, 2, 3,
⎛

⎜⎝
λ0j λ1j λ2j
λ1j λ0j λ3j
λ2j λ3j λ0j

⎞

⎟⎠ 
 0, λ0j ∈ R+, λij ∈ R, i = 1, 2, 3, j = 1, 2, 3, 4
}
.

Using the MATLAB toolbox CVX (see, e.g., [22,23]), we solve the problem (ES) and
the solver returns the optimal value as −4. It shows that the exact SDP duality holds
for the problem (ER), that is, max (ES) = −4 = min (ER).

4 Adjustable Two-Stage Lot-Sizing Problems

In this section, we describe how the optimal storage cost of an adjustable two-stage
lot-sizing problem with uncertain demand can be found by solving a corresponding
semidefinite program in our duality scheme.

A lot-sizing on a network problem is to determine the stock allocation xi , for
i ∈ {1, . . . , n} stores prior to knowing the realization of the demand u at each location,
where the demand u is uncertain and is assumed to reside in an uncertainty setU ⊂ R

n .

After we observe the realization of the demand u, we can transport stock yi j , i =
1, . . . , n, j = 1, . . . , n from store i to store j at unit cost τi j in order to meet all
demand. The goal is to minimize the worst case storage costs with unit costs ci , i =
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1, . . . , n and the cost arising from shifting the products from one store to another. This
model can be rewritten as an adjustable two-stage linear program (see, e.g., [16,24]).

We consider an adjustable uncertain two-stage lot-sizing on a network problem of
the form:

inf
x∈Rn ,t∈R {c�x + t : ∀u := (u1, . . . , un) ∈ U , ∃y := (yi j ) ∈ R

n2 , (UL)

yi j ≥ 0, i = 1, . . . , n, j = 1, . . . , n,

0 ≤ xi ≤ Mi , i = 1, . . . , n,

ui − xi ≤
n∑

j=1

y ji −
n∑

j=1

yi j , i = 1, . . . , n,

n∑

i=1

n∑

j=1

τi j yi j ≤ t},

where c := (c1, . . . , cn), ci ∈ R, i = 1, . . . , n are the storage unit costs and Mi >

0, i = 1, . . . , n are the capacities of the stores, τi j ≥ 0, τi i = 0, i = 1, . . . , n, j =
1, . . . , n are transport unit costs, u is uncertain and the uncertainty set U := {

u :=
(u1, . . . , un) ∈ R

n : A0 +∑n
r=1 ur Ar 
 0

}
is defined as in (2) with s := n.

The adjustable robust two-stage lot-sizing on a network counterpart of (UL) reads
as follows:

inf
x∈Rn ,t∈R,y:=(yi j )∈Rn2

{c�x + t : yi j ≥ 0, i = 1, . . . , n, j = 1, . . . , n, (RL)

0 ≤ xi ≤ Mi , i = 1, . . . , n,

ui − xi ≤
n∑

j=1

y ji −
n∑

j=1

yi j , i = 1, . . . , n,

n∑

i=1

n∑

j=1

τi j yi j ≤ t,∀u := (u1, . . . , un) ∈ U }.

For a vector y ∈ R
n2 ,we can label it as y := (y11, . . . , y1n, y21, . . . , y2n, . . . , yn1, . . . ,

ynn) := ∑n
i=1

∑n
j=1 yi j ei j ,where ei j is a vector inR

n2 whose i j th element is one and

the others are zero for i, j ∈ {1, . . . , n}. In this vein,wemaywrite y := (yi j ) ∈ R
n2 for

short. We also use the notation ek to denote the unit vector ek ∈ R
n, k ∈ {1, . . . , n},

whose kth element is one and the others are zero. Let us denote c̃ := (c, 1), x̃ :=
(x, t) ∈ R

n × R,

a0i j := ari j := 0n+1, b0i j := bri j := 0, θi j := −ei j , r = 1, . . . , s, i = 1, . . . , n, j =
1, . . . , n and set
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a0k :=

⎧
⎪⎪⎨

⎪⎪⎩

(−ek , 0), k = 1, . . . , n,

(ek−n , 0), k = n + 1, . . . , 2n,

(−ek−2n , 0), k = 2n + 1, . . . , 3n,

(0n , −1), k = 3n + 1,

ark := 0n+1, k = 1, . . . , 3n + 1, r = 1, . . . , n,

b0k :=
⎧
⎨

⎩

0, k = 1, . . . , n,

Mk−n , k = n + 1, . . . , 2n,

0, k = 2n + 1, . . . , 3n + 1,
brk :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, k = 1, . . . , 2n, r = 1, . . . , n,

−1, k = 2n + i, r = i, i = 1, . . . , n,

0, k = 2n + i, r ∈ {1, . . . , n} \ {i},
i = 1, . . . , n,

0, k = 3n + 1, r = 1, . . . , n,

θk :=
⎧
⎨

⎩

0n2 , k = 1, . . . , 2n,∑n
i=1 ei(k−2n) −∑n

i=1 e(k−2n)i , k = 2n + 1, . . . , 3n,

(τ11, . . . , τ1n , τ21, . . . , τ2n , . . . , τn1, . . . , τnn) ∈ R
n2 , k = 3n + 1.

Then, the problem (RL) can be written as

inf
x̃∈Rn+1,y∈Rn2

{̃c� x̃ : ai j (u)� x̃ + θ�
i j x(u) ≤ bi j (u), i = 1, . . . , n, j = 1, . . . , n,

(AL)

ak(u)� x̃ + θ�
k x(u) ≤ bk(u), k = 1, . . . , 3n + 1, x(u) = y, ∀u ∈ U },

where ai j (u) := a0i j +
n∑

r=1
urari j , bi j (u) := b0i j +

n∑
r=1

urbri j , ak(u) := a0k +
n∑

r=1
urark , bk(u) := b0k +

n∑
r=1

urbrk for u := (u1, . . . , un) ∈ R
n .

The problem (AL) lands in the form of (RP) with ρ := 1, and therefore, we have a
corresponding SDP dual problem for (RL) as

sup
(λ0i j ,λ

r
i j ,λ

0
k ,λ

r
k )

{
−

n∑

i=1, j=1

(λ0i j b
0
i j +

n∑

r=1

λri j b
r
i j ) −

3n+1∑

k=1

(λ0kb
0
k +

n∑

r=1

λrkb
r
k) :

n∑

i=1, j=1

λ0i jθi j +
3n+1∑

k=1

λ0kθk = 0,

c̃ +
n∑

i=1, j=1

(λ0i j a
0
i j +

n∑

r=1

λri j a
r
i j ) +

3n+1∑

k=1

(λ0ka
0
k +

n∑

r=1

λrka
r
k ) = 0,

λ0i j A0 +
n∑

r=1

λri j Ar 
 0, λ0k A0 +
n∑

r=1

λrk Ar 
 0,

λ0i j ∈ R+, λri j ∈ R, λ0k ∈ R+, λrk ∈ R,

r = 1, . . . , n, i = 1, . . . , n, j = 1, . . . , n, k = 1, . . . , 3n + 1
}
,
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which amounts to the following one:

sup
(λ0i j ,λ

r
i j ,λ

0
k ,λ

r
k )

{
−

2n∑

k=n+1

λ0kMk−n +
n∑

r=1

λr2n+r : −
n∑

i=1, j=1

λ0i j ei j (DL)

+
3n∑

k=2n+1

λ0k
( n∑

i=1

ei(k−2n) −
n∑

i=1

e(k−2n)i
)

+ λ03n+1(τ11, . . . , τ1n, τ21, . . . , τ2n, . . . , τn1, . . . , τnn) = 0,

c −
n∑

k=1

λ0kek +
2n∑

k=n+1

λ0kek−n −
3n∑

k=2n+1

λ0kek−2n = 0, 1 − λ03n+1 = 0,

λ0i j A0 +
n∑

r=1

λri j Ar 
 0, λ0k A0 +
n∑

r=1

λrk Ar 
 0,

λ0i j ∈ R+, λri j ∈ R, λ0k ∈ R+, λrk ∈ R,

r = 1, . . . , n, i = 1, . . . , n, j = 1, . . . , n, k = 1, . . . , 3n + 1
}
.

The following result provides a strong duality relation between the adjustable
robust two-stage lot-sizing problem (RL) and its semidefinite programming dual prob-
lem (DL).

Corollary 4.1 (Strong SDP duality for (RL)) Assume that there exist x̂ :=
(̂x1, . . . , x̂n) ∈ R

n and ŷ := (ŷi j ) ∈ R
n2 such that ŷi j ≥ 0, i = 1, . . . , n, j =

1, . . . , n, 0 ≤ x̂i ≤ Mi , i = 1, . . . , n, ui − x̂i <
∑n

j=1 ŷ j i −
∑n

j=1 ŷi j , i = 1, . . . , n,

for all u := (u1, . . . , un) ∈ U. Then, we have

inf (RL) = max (DL). (48)

Proof As mentioned above, it holds that

inf (RL) = inf (AL), (49)

and the problem (AL) is in the form of (RP) with ρ := 1. Under our assumption, we
see that the feasible set of problem (AL) is non-empty and the following cone C0 is
closed (cf. the proof of Proposition 3.1), where

C0 := coneco
{(
ai j (u), bi j (u), θi j

)
,
(
ak(u), bk(u), θk

) : i = 1, . . . , n, j = 1, . . . , n,

k = 1, . . . , 3n + 1, u := (u1, . . . , us) ∈ U
}
.
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The closedness of C0 implies the closedness of CL , where

CL := coneco
{(
ai j (u), bi j (u), θi j , 0n2 , . . . , 0n2

)
,
(
ak(u), bk(u), θk, 0n2 , . . . , 0n2

) :
i = 1, . . . , n, j = 1, . . . , n, k = 1, . . . , 3n + 1,

u := (u1, . . . , us) ∈ U
}
.

Invoking now Theorem 3.1 with ρ := 1, we arrive at inf (AL) = max (DL). This,
together with (49), proves that (48) is valid. ��

Now, let us apply Corollary 4.1 to find the optimal storage cost of the problem (RL)
by solving its corresponding SDP dual problem (DL) in the case, where the uncertainty
set is U := {(u1, . . . , un) ∈ R

n : u21 + · · · + u2n ≤ 1}. For the purpose of simplicity,
we choose the capacities of the stores Mi := 100, i = 1, . . . , n, the unit storage costs
ci = C > 0, i = 1, . . . , n and the transport unit costs τi j := i + j if i �= j and
τi j := 0 if i = j for i = 1, . . . , n, j = 1, . . . , n.

More explicitly, we solve the SDP dual problem (DL) for n = 2, 3, 4 by using
the MATLAB toolbox CVX (see, e.g., [22,23]). The size of the SDP often depends
on the matrices Ar , r = 1, . . . , n of the uncertainty sets. For instance, when n=4,
our procedure involves 29 (5 × 5) matrices. The numerical tests are conducted on a
computer with a 3.60GHz Intel(R) Core(TM) i7-4790 and 16.0GB RAM, equipped
with MATLAB R2017b. The following table of test results shows the worst-case total
storage cost and the corresponding time in seconds for the problem (RL) (Table 1).

In passing,we note that in the case of a polytope uncertainty setU , the problem (RL)
and its reformulation (DL) reduce to linear programs, respectively. We refer the
interested reader to [24] for a dual formulation test and to [16] for a Fourier–Motzkin
elimination test on lot-sizing problems.

Table 1 Worst-case total storage costs

n Unit storage cost (C) Worst-case total storage cost Time (s)

2 10 20 1.4861

2 15 30 1.5062

2 20 40 1.5131

3 10 30 1.6628

3 15 45 1.6998

3 20 60 1.7008

4 10 40 2.3402

4 15 60 2.4692

4 20 80 2.5191
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5 Conclusion and FutureWork

In this paper, we have shown how strong duality between an affinely adjustable two-
stage robust linear program with a spectrahedron uncertainty set and its dual conic
linear program can be obtained by establishing, for the first time, a new version of
Farkas’ lemma for a parametric linear inequality system with affinely adjustable vari-
ables. We have also established that in the case of an ellipsoidal uncertainty set, our
strong duality yields a second-order cone program as its exact dual with the same
optimal value of its robust linear program. We have evaluated the efficacy of our main
duality theorem by applying it to find the optimal storage cost of an adjustable two-
stage lot-sizing problem under a ball uncertainty set via its dual semidefinite program.

Recently, exact conic programming relaxations and duals have been given for var-
ious classes of (static) single-stage robust SOS-convex polynomial programs under
suitable uncertainty sets [25–27]. This allowed robust solutions of special classes
of uncertain convex programs to be found by solving related conic programs. The
approach, presented in this paper, may be extended to study affinely adjustable robust
two-stage SOS-convex polynomial programs by way of examining suitable dual conic
programs and it will be treated in a forthcoming study.
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