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Abstract
The notion of a normal cone of a given set is paramount in optimization and variational
analysis. In this work, we give a definition of a multiobjective normal cone, which is
suitable for studying optimality conditions and constraint qualifications for multiob-
jective optimization problems. A detailed study of the properties of the multiobjective
normal cone is conducted.With this tool, wewere able to characterize weak and strong
Karush–Kuhn–Tucker conditions by means of a Guignard-type constraint qualifica-
tion. Furthermore, the computation of the multiobjective normal cone under the error
bound property is provided. The important statements are illustrated by examples.

Keywords Multiobjective optimization · Optimality conditions · Constraint
qualifications · Regularity · Weak and strong Kuhn–Tucker conditions

Mathematics Subject Classification 90C29

1 Introduction

Multiobjective optimization problems (MOPs) are a class of optimization problems
involving more than one objective function to be optimized. Many real-life problems
can be formulated as MOPs, which include engineering design, economics, financial
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investment, mechanics, etc. See [1,2] and references therein. For several theoretical
and numerical issues related to MOPs, see [3–6].

Due to the possible conflicting nature of the objective functions, it is not expected
to find a solution that optimizes all of the objective functions simultaneously. Thus,
different notions of optimality are developed for MOPs, where one aims at finding
best trade-off options (strong/weak Pareto points, see Definition 2.1). As in nonlinear
programming, optimality conditions play a crucial role in the development of efficient
methods for solving MOPs. Some methods are Newton’s methods [7], SQP methods
[8], trust-region methods [9,10] and scalarization methods such as weighted sum
methods [11,12], ε-constraintmethods [13],Charnes–Cooper [14,15],Gerstewitz [16],
Pascoletti–Serafini [17] scalarizations, and others.

In scalar optimization problems, the Karush–Kuhn–Tucker (KKT) conditions play
a major role in theoretical and numerical optimization. To guarantee the fulfillment
of KKT conditions at a minimizer, one needs constraint qualifications (CQs), that
is, properties depending only on the functions defining the constraints, which ensure
the KKT conditions at local minimizers. For MOPs, the corresponding KKT con-
ditions take into account, simultaneously, multipliers for the constraints and for the
objective functions, with the multipliers associated with the objective functions being
nonnegative. If there exists at least one positive multiplier corresponding to the objec-
tive functions, we say that weak Karush–Kuhn–Tucker (weak KKT) conditions hold,
and when all the multipliers corresponding to the objective functions are positive, we
say that strong Karush–Kuhn–Tucker (strong KKT) conditions hold. But, differently
from the scalar case, usual CQs, in general, do not ensure weak/strong KKT condi-
tions. Thus, additional conditions, which take into account the objective functions, are
introduced: the so-called regularity conditions (RC). Such conditions have been used
for establishing first-order and second-order optimality conditions for smooth MOPs.
For more information, see [18–21] and references therein.

In this work, we take a new look at CQs forMOPs.We are interested in establishing
the weakest possible CQs that guarantee the validity of weak/strong KKT conditions
at locally weak Pareto solutions. To develop our new CQs, we rely on a new notion
of normal cone adapted to MOPs and some variational analysis tools. For details, see
Sect. 4.

The paper is organized as follows: In Sect. 2, we introduce the basic assumptions
and concepts useful in our analysis. In Sect. 3, we introduce the multiobjective normal
cone and we study its properties and calculus rules. In Sect. 4, we introduce new CQs
for MOP and we study their properties. Our concluding remarks are given in Sect. 5.

2 Preliminaries and Basic Assumptions

Our notation is standard in optimization and variational analysis: R
n is the n-

dimensional real Euclidean space, n ∈ N. R+ is the set of nonnegative numbers
and a+ := max{0, a}, a ∈ R. We denote by ‖ · ‖ the Euclidean norm in R

n and by
‖ · ‖1 the �1-norm, i.e., ‖z‖1 := |z1| + · · · + |zn|, for z ∈ R

n . Given a differentiable
mapping F : Rs → R

d , we use ∇F(x) to denote the Jacobian matrix of F at x . For a
set-valued mapping Γ : Rs ⇒ R

d , the sequential Painlevé-Kuratowski outer limit of
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Γ (z) as z → z∗ is denoted by

limsupz→z∗Γ (z) := {w∗ ∈ R
d : ∃ (zk, wk) → (z∗, w∗) with wk ∈ Γ (zk)}.

For a cone K ⊂ R
s , its polar is K◦ := {v ∈ R

s : 〈v, k〉 ≤ 0 for all k ∈ K}. It
is always the case that K ⊂ K◦◦, and when K is a closed convex set, the equality
K◦◦ = K holds.

Given X ⊂ R
n and z̄ ∈ X , we define the tangent cone to X at z̄ by

T (z̄, X) := {d ∈ R
n : ∃ tk ↓ 0, dk → d with z̄ + tkd

k ∈ X},

and the regular normal cone to X at z̄ ∈ X by

̂N (z̄, X) :=
{

w ∈ R
n : lim sup

z→z̄,z∈X
〈w, z − z̄〉
‖z − z̄‖ ≤ 0

}

.

The (Mordukhovich) limiting normal cone to X at z̄ ∈ X is defined by

N (z̄, X) := lim sup
z→z̄,z∈X

̂N (z, X).

For a function φ : Rn → [−∞,∞] and a point z̄ ∈ R
n where φ(z̄) is finite. We write

z →φ z̄ when z → z̄ and φ(z) → φ(z̄). The regular subdifferential of φ at z̄ is defined
as

̂∂φ(z̄) :=
{

v ∈ R
n : lim inf

z→z̄,z∈X
φ(z) − φ(z̄) − 〈v, z − z̄〉

‖z − z̄‖ ≥ 0

}

.

The limiting subdifferential of φ at z̄ is defined as

∂φ(z̄) := lim sup
z→φ z̄

̂∂φ(z). (1)

. When X is a nonempty closed set and ıX is the indicator function, we see that
̂N (z̄, X) = ̂∂ıX (z̄) and N (z̄, X) = ∂ıX (z̄). For a detailed treatment of variational
analysis and optimization, we recommend [22–24].

Here, we consider the smooth constrained multiobjective optimization problem
(MOP) of the form:

minimize f (x) := ( f1(x), f2(x), . . . , fr (x)),
subject to hi (x) = 0, i = 1, . . . ,m;

g j (x) ≤ 0, j = 1, . . . , p,
(2)

where h(·) := (h1(·), . . . , hm(·)) and g(·) := (g1(·), . . . , gp(·)) are continuously
differentiable on Rn . We denote by Ω := {x ∈ R

n : h(x) = 0, g(x) ≤ 0} the feasible
set of (2), which is assumed to be a nonempty set.
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Due to the possible conflicting nature of the objective functions, it is not expected to
find a solution that can locally optimize all of the objective functions simultaneously.
Therefore, different notions of optimality are developed for MOPs, where one aims at
finding best trade-off options (local Pareto points, see Definition 2.1). We give below
some important definitions.

Definition 2.1 Let x̄ be a feasible point of (2). Then,

1. We say that x̄ is a local (strong1) Pareto optimal point if there is a δ > 0 such that
there is no x ∈ Ω∩B(x̄, δ)with f�(x) ≤ f�(x̄),∀� ∈ {1, . . . , r} and f (x) �= f (x̄);

2. We say that x̄ is a local weak Pareto optimal point if there is a δ > 0 such that there
is no x ∈ Ω ∩ B(x̄, δ) with f�(x) < f�(x̄),∀� ∈ {1, . . . , r}.

There is a natural way to relate local weak/strong Pareto optimal points with a
scalar optimization problem. Indeed, given a set of not all zero scalars (weights)
θ1 ≥ 0, . . . , θr ≥ 0, all local minimizers of the scalarized problem of minimizing
θ1 f1(x) + · · · + θr fr (x) subject to x ∈ Ω are local weak Pareto points, while the
reverse implication holds under convexity. See [3]. By considering the scalarized prob-
lem with positive weights θ1 > 0, . . . , θr > 0, all its local minimizers are local Pareto
solutions, and, under convexity and compacity assumptions, a dense subset of the local
Pareto solutions (so-called proper local Pareto solutions) coincides with the local min-
imizers of this scalarized problem. See [26]. This suggests the following definitions
of Karush–Kuhn–Tucker (KKT) notions associated with local weak and strong Pareto
solutions. See [21,27].

Definition 2.2 Let x be a feasible point of (2) and assume that f is continuously
differentiable. Suppose that there exists a vector 0 �= (θ, λ, μ) ∈ R

r+ ×R
m ×R

p
+ such

that μ j g j (x) = 0, for j = 1, . . . , p and

r
∑

�=1

θ�∇ f�(x) +
m

∑

i=1

λi∇hi (x) +
p

∑

j=1

μ j∇g j (x) = 0. (3)

Then, we say that:

a) x is a weak KKT point, if (3) holds with θ �= 0.
b) x is a strong KKT point, if (3) holds with θ� > 0, ∀� = 1, . . . , r .

When r = 1, both concepts reduce to the classical KKT conditions, which are
known to hold at a local minimizer only under a CQ. Among the most known ones, we
mention the linear independence CQ (LICQ), which states the linear independence of
all the gradients of active constraints, and the Mangasarian-Fromovitz CQ (MFCQ),
which states the positive linear independence of such gradients, see [28]. We men-
tion that necessary optimality conditions are not only useful for identifying possible
candidate solutions to a problem, but also crucial in designing numerical methods

1 We sometimes use the term strong Pareto to refer to a Pareto point only to emphasize the contrast with
the notion of a weak Pareto point. This is not related to the notion of strong minimality defined in [25].
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for solving such problems. Also, many CQs (but not all) can be used in the conver-
gence analysis of numerical methods for scalar optimization problems. See [29–31]
and references therein.

Finally, we recall some basic results on MOPs. In this paper, we use V = (v�)
r
�=1

to denote a n × r matrix whose columns are the vectors v1, v2, . . . , vr in R
n . Thus,

V θ = θ1v1 + · · · + θrvr for θ := (θ1, . . . , θr ) ∈ R
r . From [27,32], we have the

following

Lemma 2.1 Let x̄ be a local weak Pareto point of (2). Consider the scalar optimization
problem

minimize Φ(x) := max
�=1,...,r

( f�(x) − f�(x̄)), subject to x ∈ Ω. (4)

Then, x̄ is a local solution of (4). Furthermore, if f is a C1 function, max�=1,...,r
〈∇ f�(x̄), d〉 ≥ 0, ∀d ∈ T (x̄,Ω).

Remark 2.1 Under the assumptions of Lemma 2.1, it is not difficult to see that there
exists δ > 0 such that x̄ is the unique minimizer of

minimize max
�=1,...,r

( f�(x) − f�(x̄)) + 1

2
‖x − x̄‖2, s.t.x ∈ Ω, ‖x − x̄‖ ≤ δ. (5)

From [33], we have the following theorem of alternative

Lemma 2.2 Let A, B, C be given matrices with n columns and A �= 0. Then, exactly
one of the following statements is true:

(s1) Az > 0, Bz ≥ 0, Cz = 0 has a solution z;
(s2) AT y1 + BT y2 + CT y3 = 0, y1 ≥ 0, y2 ≥ 0, y1 �= 0 has solution y1, y2, y3.

3 AMultiobjective Normal Cone

In this section, we will introduce a notion of normal cone for multiobjective optimiza-
tion problems and derive its properties. To the best of our knowledge, this has not been
previously considered. We start by taking a closed subset Ω of Rn and a point x̄ ∈ Ω .

Definition 3.1 Given x̄ ∈ Ω and r ∈ N, the regular r-multiobjective normal cone to
Ω at x̄ is the cone defined as

̂N (x̄,Ω; r) :=
{

V = (v�)
r
�=1 ∈ R

n×r : lim sup
x→x̄,x∈Ω

min
�=1,...,r

〈v�, x − x̄〉
‖x − x̄‖ ≤ 0

}

. (6)

For a lower semicontinuous mapping f having lower semicontinuous extended real-
valued components f� : R

n →] − ∞,∞], � = 1, . . . , r , we define the regular
r -multiobjective subdifferential of f at x̄ , denoted bŷ∂ f (x̄; r), as the set
{

V = (v�)
r
�=1 ∈ R

n×r : lim inf
x→x̄

(

max
�=1,...,r

f�(x) − f�(x̄) − 〈v�, x − x̄〉
‖x − x̄‖

)

≥ 0

}

.
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Furthermore, we define the limiting r-multiobjective normal cone to Ω at x̄ by

N (x̄,Ω; r) := lim sup
x→x̄,x∈Ω

̂N (x,Ω; r)

and the limiting r -multiobjective subdifferential of f at x̄

∂ f (x̄; r) := lim sup
x→ f x̄

̂∂ f (x; r).

where x → f x̄ means that x → x̄ with f (x) → f (x̄). Clearly, when r = 1, the (lim-
iting/regular) r -multiobjective normal cones and (limiting/regular) r -multiobjective
subdifferential coincide with their scalar counterparts which are very well studied in
[22,23]. In the rest of this section, we will analyze the main properties of the multi-
objective normal cone. Thus, we start by computing them for some simple cases.

Proposition 3.1 Let Ω be a closed convex set, x̄ ∈ Ω , and r ∈ N. Then, we have that
N (x̄,Ω; r) = ̂N (x̄,Ω; r). Furthermore,

̂N (x̄,Ω; r) = {V = (v�)
r
�=1 ∈ R

n×r : min
�=1,...,r

〈v�, x − x̄〉 ≤ 0, ∀x ∈ Ω}. (7)

Proof First, we will show the equality in (7). Take V ∈ ̂N (x̄,Ω; r) and x ∈ Ω . For
every t ∈ [0, 1], set x(t) := x̄ + t(x − x̄) ∈ Ω . Thus, since x(t) − x̄ = t(x − x̄), we
obtain that

min
�=1,...,r

〈v�, x − x̄〉
‖x − x̄‖ = lim

t→0
min

�=1,...,r

〈v�, x(t) − x̄〉
‖x(t) − x̄‖ ≤ lim sup

z→x̄,z∈Ω

min
�=1,...,r

〈v�, z − x̄〉
‖z − x̄‖ ≤ 0,

which implies that min�=1,...,r 〈v�, x − x̄〉 ≤ 0.
Clearly, if V = (v�)

r
�=1 satisfies min�=1,...,r 〈v�, x − x̄〉 ≤ 0 ∀x ∈ Ω , we have that

V ∈ ̂N (x̄,Ω; r). From (7), we obtain that N (x̄,Ω; r) = ̂N (x̄,Ω; r). ��
When Ω is a polyhedral cone, we can obtain a nice characterization of the r -
multiobjective normal cone.

Proposition 3.2 Suppose that Ω = {x ∈ R
n : Ax ≤ 0} for some matrix A ∈ R

m×n.
Then, for every x̄ ∈ Ω , ̂N (x̄,Ω; r) = N (x̄,Ω; r) holds and

N (x̄,Ω; r) =
{

V = (v�)
r
�=1 ∈ R

n×r : V θ = AT λ, with λ ∈ N (Ax̄,Rm−)

and 0 �= θ ∈ R
r+

}

. (8)

Proof This will follow by the more general result proved in Corollary 4.1, for every
constraint set satisfying the error bound property. ��

It is well known that the regular normal cone can be characterized by viscosity
subgradients [22, Theorem 6.11]. Here, we have a variational characterization of the
regular r -multiobjective normal cone, which extends the viscosity characterization of
the classical normal cone when r = 1.
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Theorem 3.1 Let x̄ be a feasible point of (2). Then, the following statements are
equivalent

(a) V = (v�)
r
�=1 ∈ R

n×r belongs to ̂N (x̄,Ω; r);
(b) There is a C1 mapping f (x) = ( f�(x))r�=1 such that x̄ is a local weak Pareto

optimal point relative to Ω , and v� = −∇ f�(x̄), for every � = 1, . . . , r;
(c) For every d ∈ T (x̄,Ω), we have that min�=1,...,r 〈v�, d〉 ≤ 0.

As a consequence

̂N (x̄,Ω; r) = {V = (v�)
r
�=1 ∈ R

n×r : min
�=1,...,r

〈v�, d〉 ≤ 0, ∀d ∈ T (x̄,Ω)}. (9)

Proof First, we will show that (a) implies (b). Take V = (v�)
r
�=1 ∈ ̂N (x̄,Ω; r). We

will use an argument similar to [22, Theorem 6.11]. We define

η0(r) := Sup { min
�=1,...,r

〈v�, x − x̄〉 : x ∈ Ω, ‖x − x̄‖ ≤ r}. (10)

Clearly, η0(r) ≤ r min�=1,...,r ‖v�‖ and 0 = η0(0) ≤ η0(r) ≤ o(r). By using [22,
Theorem 6.11], there is η : R+ → R continuously differentiable on R+ with η0(r) ≤
η(r), η′(r) → 0 and η(r)/r → 0 as r → 0. Thus, for every � ∈ {1, . . . , r} define
f�(x) := −〈v�, x − x̄〉 + η(‖x − x̄‖) and f (x) = ( f�(x))r�=1. Clearly, f is a C1

mapping with f (x̄) = 0. To show that x̄ is a local weak Pareto point for f relative to
Ω , suppose that this is not the case. Then, there is a sequence xk → x̄ with xk ∈ Ω ,
∀k ∈ N such that f�(xk) < f�(x̄) = 0, ∀� = 1, . . . , r . Since η0(r) ≤ η(r) and, by
definition of f�(x), we see that −〈v�, xk − x̄〉 + η0(‖xk − x̄‖) < 0, ∀� and hence
η0(‖xk − x̄‖) < min�=1,...,r 〈v�, xk − x̄〉 for k large enough, which is a contradiction
with (10).

To show that (b) implies (c), suppose that there exists a C1 mapping f (x) =
( f�(x))r�=1 such that x̄ is a local weak Pareto optimal point relative to Ω . From
Lemma 2.1, max�=1,...,r 〈∇ f�(x̄), d〉 ≥ 0, ∀d ∈ T (x̄,Ω). Thus, if

V := (v�)
r
�=1 with v� := −∇ f�(x̄), ∀�, we get that min�=1,...,r 〈v�, d〉 ≤ 0.

Finally, to see that (c) implies (a), assume that V does not belong to ̂N (x̄,Ω; r).
Thus, there exist a scalar α > 0 and a sequence {xk} ⊂ Ω converging to x̄ such that

lim
k→∞ min

�=1,...,r

〈v�, xk − x̄〉
‖xk − x̄‖ > α > 0. (11)

Taking a further subsequence of {xk}, we may assume that (xk − x̄)/‖xk − x̄‖
converges to some vector d ∈ R

n . Clearly, d ∈ T (x̄,Ω). From (11), we get that
min�=1,...,r 〈v�, d〉 ≥ α > 0, a contradiction. Thus, V ∈ ̂N (x̄,Ω; r). ��
Remark 3.1 When r = 1, the right-hand side of (9) coincides with T (x̄,Ω)◦. Thus,
̂N (x̄,Ω) = ̂N (x̄,Ω; 1) = T (x̄,Ω)◦.

We have also the following
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Lemma 3.1 Consider f and g two lower semicontinuous mappings having lower
semicontinuous extended-real-valued components, andΩ a closed subset ofRn. Then,
we always have that

1. ̂∂ ı̄Ω(x; r) = ̂N (x,Ω; r) where ı̄Ω is the indicator mapping, that is, a mapping
defined by ı̄Ω(x) = 0 if x ∈ Ω and ı̄Ω(x) = ∞ otherwise.

2. V = (v�)
r
�=1 ∈ ̂∂ f (x; r) iff there is a C1 mapping h such that x is a local weak

Pareto solution of minimizing f − h, and v� = ∇h�(x), ∀� = 1, . . . , r .
3. If x is a local weak Pareto solution of minimizing f , then 0 ∈ ̂∂ f (x; r).
4. If f is a C1 mapping, then

̂∂ f (x; r) = {U ∈ R
n×r : Uθ = ∇ f (x)T θ, ‖θ‖1 = 1, θ ≥ 0}.

5. If f is a C1 mapping, then

̂∂( f + g)(x; r) = ∇ f (x)T +̂∂g(x; r).

Proof First, it is straightforward to see that item 1 holds. Also, observe that item 2 is
just a modification of Theorem 3.1.

Item 3: Since x̄ is a local weak Pareto solution of minimizing f , we have that
max�=1,...,r ( f�(x) − f�(x̄)) ≥ 0 for every x near x̄ , (see Lemma 2.1), and thus,
0 ∈ ̂∂ f (x̄; r).

Item 4: Take V = (v�)
r
�=1 ∈ ̂∂ f (x̄; r). By item 2, there exists a C1 mapping h

such that x̄ is a local weak Pareto solution of minimizing f − h and v� = ∇h�(x̄),
∀� = 1, . . . , r . Then, max�=1,...,r ( f�(x) − h�(x) − ( f�(x̄) − h�(x̄))) ≥ 0, for every
x near x̄ . Thus, by Fermat’s rule and computing Clarke’s subdifferential, there exists
θ ≥ 0with ‖θ‖1 = 1 such that

∑r
�=1 θ�(∇ f�(x̄)−∇h�(x̄)) = 0, i.e., V θ = ∇ f (x̄)T θ .

Now, take U = (u�)
r
�=1 such that Uθ = ∇ f (x)T θ for θ ≥ 0, ‖θ‖1 = 1. Observe

that

max
�=1,...,r

f�(x) − f�(x̄) − 〈u�, x − x̄〉
‖x − x̄‖ ≥

r
∑

�=1

θ� f�(x) − θ� f�(x̄) − θ�〈u�, x − x̄〉
‖x − x̄‖

≥
r

∑

�=1

θ� f�(x) − θ� f�(x̄) − θ�〈∇ f�(x̄), x − x̄〉
‖x − x̄‖

≥
r

∑

�=1

θ�

(

f�(x) − f�(x̄) − 〈∇ f�(x̄), x − x̄〉
‖x − x̄‖

)

.

Taking limit inferior as x → x̄ in the last expression, we get U ∈ ̂∂ f (x; r).
Item 5: By item 2 of this lemma, we see that V = (v�)

r
�=1 ∈ ̂∂( f + g)(x; r). iff

there is a C1 mapping h such that x is a local weak Pareto solution of ( f + g)− h and
v� = ∇h�(x), ∀� iff x is also a local weak Pareto solution of g− (h− f ) where h− f
is a C1 mapping iff (using again the item 2) V − ∇ f (x)T = (∇h�(x) − ∇ f�(x))r�=1
is in̂∂g(x; r). ��
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We end this section with the following observation: If x̄ is a local Pareto solution of
minimizing f (x) = ( f1(x), . . . , fr (x)) subject to x ∈ Ω , then x̄ is also a local Pareto
solution of the unconstrained MOP of minimizing f (x) + ı̄Ω(x), where ı̄Ω(x) is the
indicator mapping defined in Lemma 3.1, Item 1. Thus, by Lemma 3.1, Item 3, we
obtain that 0 ∈ ̂∂( f + ı̄Ω)(x̄; r). If we assume that f (x) is a C1 mapping, by Lemma
3.1, Item 5, we obtain that 0 ∈ (∇ f1(x), . . . ,∇ fr (x)) + ̂N (x̄,Ω; r).
Corollary 3.1 If x̄ is a local weak Pareto optimal point of (2), then

0 ∈ (∇ f1(x), . . . ,∇ fr (x)) + ̂N (x,Ω; r). (12)

Thus, (12) can be interpreted as Fermat’s rule using the r -multiobjective normal cone.

4 On Constraint Qualifications for Multiobjective Optimization

In this section, we will focus on the use of the r -multiobjective normal cone to define
CQs to characterize the weak/strong KKT conditions. Later, we will analyze the rela-
tions of the r -multiobjective cones with the tangent cone and normal cone of the
feasible set.

Let us consider the tangent cone to Ω at x̄ , T (x̄,Ω), and its first-order approxima-
tion, L(x̄,Ω), which is called the linearized tangent cone to Ω at x̄ , and is defined
by

L(x̄,Ω) :=
{

d ∈ R
n : 〈∇hi (x̄), d〉 = 0, i = 1, . . . ,m

〈∇g j (x̄), d〉 ≤ 0, j ∈ A(x̄)

}

,

where A(x̄) := { j = 1, . . . , p : g j (x̄) = 0}. Given a feasible point x̄ ∈ Ω ,Guignard’s
CQ is stated as T (x̄,Ω)◦ = L(x̄,Ω)◦, while Abadie’s CQ states the stronger equality
T (x̄,Ω) = L(x̄,Ω).

In this section, we define new CQs for weak/strong KKT conditions based on the
multiobjective normal cone, and we analyze their properties.

4.1 Constraint Qualifications forWeak KKT Points

Here, we start by giving the weakest CQ that guarantees that a local weak Pareto
minimizer is, in fact, a weak KKT point. This is characterized by the fact that the
fulfillment of the CQ is equivalent to the fact that, independently of the objective
function, local weak Pareto implies weak KKT.

Theorem 4.1 Let x̄ be a feasible point of (2). Then, the weakest property under which
every localweakPareto point satisfies theweakKKTconditions, for every continuously
differentiable mapping f (x) = ( f1(x), . . . , fr (x)), is

L(x̄,Ω) ⊂ {d ∈ R
n : min

�=1,...,r
〈v�, d〉 ≤ 0, for all V = (vi )

r
i=1 ∈ ̂N (x̄,Ω; r)}.

(13)
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Proof Assume that every local weak Pareto point is actually a weak KKT point. We
will show that inclusion (13) holds. Indeed, take d ∈ L(x̄,Ω) and V = (v�)

r
�=1 ∈

̂N (x̄,Ω; r). ByTheorem3.1, there is aC1 mapping f such that x̄ is a localweak Pareto
minimizer of f over Ω and v� = −∇ f�(x̄), for every � = 1, . . . , r . By hypotheses,
we get that x̄ is a weak KKT point and thus, there exist θ ∈ R

m+, μ ∈ R
p
+ and λ ∈ R

m

such that

r
∑

�=1

θ�v� =
m

∑

i=1

λi∇hi (x̄) +
p

∑

j=1

μ j∇g j (x̄), and μ j = 0, ∀ j /∈ A(x̄).

Furthermore, we can assume that ‖θ‖1 = 1. Since d ∈ L(x̄,Ω), we see that

min
�=1,...,r

〈v�, d〉 ≤
r

∑

�=1

θ�〈v�, d〉 =
m

∑

i=1

λi 〈∇hi (x̄), d〉 +
p

∑

j=1

μ j 〈∇g j (x̄), d〉 ≤ 0.

Now, assume that (13) holds. Thus, take f (x) = ( f1(x), . . . , fr (x)) a C1 mapping
such that x̄ is a local weak Pareto optimal point over Ω . Define v� := −∇ f�(x̄),
∀� = 1, . . . , r . By Lemma 2.2, we see that x̄ is a weak KKT point, if the following
system

∇hi (x̄)
T d = 0, i = 1, . . . ,m; ∇g j (x̄)

T d ≤ 0, j ∈ A(x̄),

∇ f�(x̄)
T d < 0, � = 1, . . . , r

(14)

has no solution d ∈ R
n . Now, if we suppose that system (14) admits a solution d,

we get that d ∈ L(x̄,Ω), and by (13), min�=1,...,r 〈v�, d〉 ≤ 0, which is equivalent to
max�=1,...,r 〈∇ f�(x̄), d〉 ≥ 0, a contradiction with the second line of (14). Thus, (14)
has no solution. ��
Recall that expression (13) is a true CQ, since it only depends on the feasible set,
and no information of the objective functions is required. To continue our discussion,
define

L(x̄,Ω; r) =
{

d ∈ R
n : min

�=1,...,r
〈v�, d〉 ≤ 0,∀V = (v�)

r
�=1 ∈ ̂N (x̄,Ω; r)

}

. (15)

Using (15), Theorem 4.1 states that the weakest CQ guaranteeing that a local weak
Pareto minimizer is a weak KKT point is the inclusion L(x̄,Ω) ⊂ L(x̄,Ω; r). Note
that in the scalar case (r = 1), inclusion (13) reduces to Guignard’s CQ. Indeed, when
r = 1, we see that L(x̄,Ω; 1) = ̂N (x̄,Ω)◦ = T (x̄,Ω)◦◦. Thus, (13) is equivalent to
L(x̄,Ω) ⊂ T (x̄,Ω)◦◦, which is equivalent to the classical Guignard’s CQ.

We proceed by analyzing the relation of (13) with Abadie’s and Guignard’s CQs.
It is known that Abadie’s CQ is enough to ensure that every local weak Pareto point
satisfies the weak KKT conditions, see, for instance, [34], but Guignard’s CQ does not
ensure the validity of the weak KKT conditions at local weak Pareto points, [35]. This
is the so-called gap in scalar and multiobjective optimization, which has attracted the
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attention of many researchers. For more details, see also [36–38]. Here, we will try
to elucidate this “gap” by using the cone L(x̄,Ω; r). First, consider Proposition 4.1,
where some properties about L(x̄,Ω; r) are stated and another proof of the fact that
Abadie’s CQ ensures the validity of weak KKT at local weak Pareto points is provided
[see (18)].

Proposition 4.1 Given x̄ ∈ Ω and r ∈ N, we always have

L(x̄,Ω; r) ⊂ ̂N (x̄,Ω)◦, (16)

T (x̄,Ω) ⊂ L(x̄,Ω; r), (17)

Abadie’s CQ at x̄ implies L(x̄,Ω) ⊂ L(x̄,Ω; r), (18)

L(x̄,Ω) ⊂ L(x̄,Ω; r)implies Guignard’s CQ. (19)

Proof To see that (16) holds, take d ∈ L(x̄,Ω; r) and w ∈ ̂N (x̄,Ω). By Theorem 3.1
in the case that r = 1, we see that there exists a C1 function h(x) such that x̄ is a local
minimizer of h(x) over Ω and w = −∇h(x̄). Now, define the C1 mapping f (x) =
( f1(x), . . . , fr (x)), where each component f�(x) = h(x), ∀x , ∀� = 1, . . . , r . It is not
difficult to see that x̄ is a localweakParetominimizer for f (x) overΩ . Since∇ f�(x̄) =
∇h(x̄) for every �, we see that 〈w, d〉 = 〈−∇h(x̄), d〉 = min�=1,...,r 〈−∇ f�(x̄), d〉 ≤
0. Thus, we obtain that d ∈ ̂N (x̄,Ω)◦ and hence (16) holds. Inclusion (17) is a
simple consequence of (9). Implication (18) follows directly from inclusion (17),
when Abadie’s CQ holds at x̄ (i.e., T (x̄,Ω) = L(x̄,Ω)). To show (19), from (16)
and the equality ̂N (x̄,Ω) = T (x̄,Ω)◦, we see that

T (x̄,Ω) ⊂ L(x̄,Ω) ⊂ L(x̄,Ω; r) ⊂ ̂N (x̄,Ω)◦ = T (x̄,Ω)◦◦. (20)

Taking polar in the last sequence of inclusions, we get L(x̄,Ω)◦ = T (x̄,Ω)◦, which
is Guignard’s CQ at x̄ . ��
Finally, we show that Abadie’s CQ, Guignard’s CQ and inclusion (13) are independent
CQs.

Example 4.1 (Guignard’s CQ is strictly weaker than L(x̄,Ω) ⊂ L(x̄,Ω; r)) In R
2,

take x̄ = (0, 0) and the multiobjective problem

minimize ( f1(x1, x2) := x1, f2(x1, x2) := x2) s.t. h(x1, x2) := x1x2 = 0.

It is not difficult to see that x̄ is a local weak Pareto point, which is not a weak KKT
point. Thus, Theorem 4.1 says that (13) fails. Now,we also observe that L(x̄,Ω) = R

2

and T (x̄,Ω) = {(d1, d2) ∈ R
2 : d1d2 = 0}, and thus L(x̄,Ω)◦ = T (x̄,Ω)◦ = {0}

holds, that is, Guignard’s CQ is valid at x̄ .

Clearly, Abadie’s CQ is strictly stronger than inclusion (13), since in the scalar case,
Guignard’s CQ is equivalent to (13).

Finally, we have the following

Proposition 4.2 Let x̄ be a feasible point of (2) such thatL(x̄,Ω; r) is a closed convex
cone. Then, Guignard’s CQ holds at x̄ iff L(x̄,Ω) ⊂ L(x̄,Ω; r) holds.
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Abadie’s CQ L(x̄, Ω) ⊂ L(x̄, Ω, r) Guignard’s CQ

Fig. 1 Gap between Abadie’s and Guignard’s CQ for weak KKT points

Proof By Proposition 4.1, inclusion L(x̄,Ω) ⊂ L(x̄,Ω; r) implies Guignard’s CQ
holds. For the other implication, from (16), (17) and Guignard’s CQ, we get that
T (x̄,Ω) ⊂ L(x̄,Ω; r) ⊂ T (x̄,Ω)◦◦ = L(x̄,Ω). Taking the polar and using again
Guignard’s CQ, we see that L(x̄,Ω)◦ ⊂ L(x̄,Ω; r)◦ ⊂ T (x̄,Ω)◦ = L(x̄,Ω)◦
implies that L(x̄,Ω) = L(x̄,Ω; r)◦◦ = L(x̄,Ω; r). ��

4.2 Constraint Qualifications for Strong KKT Points

Now, we focus on CQs and the fulfillment of the strong KKT conditions. It is well
known that Abadie’s CQ is not sufficient to ensure the validity of strong KKT at local
weak Pareto minimizers. Using the multiobjective normal cone, similarly to Theorem
4.1, we obtain the weakest CQ needed to guarantee that a local weak Pareto minimizer
is a strong KKT point.

Theorem 4.2 Let x̄ be a feasible point of (2). The weakest property under which every
local weak Pareto point is a strong KKT point for every continuously differentiable
mapping f (x) = ( f1(x), . . . , fr (x)) is

L(x̄,Ω) ⊂
{

d ∈ R
n : for every V = (vi )

r
i=1 ∈ ̂N (x̄,Ω; r), we have that

min�=1,...,r 〈v�, d〉 < 0 or 〈v�, d〉 = 0,∀� = 1, . . . , r

}

.

(21)

Proof To prove inclusion (21), take V = (v�)
r
�=1 ∈ ̂N (x̄,Ω; r) and a direction

d ∈ L(x̄,Ω). By Theorem 3.1, there is a C1 mapping f (x) having x̄ as a local
weak Pareto point over Ω , such that −∇ f�(x̄) = v� for every � = 1, . . . , r . By
hypotheses, x̄ must be a strong KKT point. So, there exist θ ∈ R

r+, μ ∈ R
p
+ and

λ ∈ R
m , with θ� > 0, ∀� = 1, . . . , r , such that ‖θ‖1 = 1 and

r
∑

�=1

θ�v� =
m

∑

i=1

λi∇hi (x̄) +
p

∑

j=1

μ j∇g j (x̄), μ j = 0, ∀ j /∈ A(x̄). (22)

Now, from (22) and since d ∈ L(x̄,Ω), we see that

r
∑

�=1

θ�〈v�, d〉 =
m

∑

i=1

λi 〈∇hi (x̄), d〉 +
p

∑

j=1

μ j 〈∇g j (x̄), d〉 ≤ 0. (23)

From (23), we get that min�=1,...,r 〈v�, d〉 < 0 or min�=1,...,r 〈v�, d〉 = 0. In the last
case, since θ� > 0, ∀�, we get 〈v�, d〉 = 0, for every � = 1, . . . , r .

Now, let f (x) = ( f1(x), . . . , fr (x)) be a C1 mapping such that x̄ is a local weak
Pareto optimal point over Ω . Set v� := −∇ f�(x̄), ∀� = 1, . . . , r . Using Lemma 2.2,
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we see that x̄ is a strong KKT point, if the following system

∇hi (x̄)T d = 0, i = 1, . . . ,m; ∇g j (x̄)T d ≤ 0, j ∈ A(x̄);
∇ f�(x̄)T d ≤ 0, � = 1, . . . , r; ∇ f�(x̄)T d < 0, for some � ∈ {1, . . . , r} (24)

has no solution d ∈ R
n . Indeed, if (24) admits a solution d, then d �= 0 belongs to

L(x̄,Ω). From (21), we get a contradiction. Thus, x̄ is a strong KKT point. ��
When r = 1, the right-hand side of (21) collapses to ̂N (x̄,Ω)◦. Thus, (21) coincides

with L(x̄,Ω) ⊂ T (x̄,Ω)◦◦ which is Guignard’s CQ.
Observe that inclusion (21) is a true CQ, since it does not require any information of

the objective functions for the formulation; moreover, it characterizes the fulfillment
of the strong KKT conditions at local weak Pareto points, which coincides with Guig-
nard’s CQ when r = 1. Unfortunately, for multiobjective problems (r > 1), inclusion
(21) is too strong, in the sense that even in well-behaved constrained system, where
LICQ holds, it may fail.

Example 4.2 (Inclusion (21) does not imply LICQ) Consider [39, Example 4.18]: In
R, take x̄ = 0 and the constraints g1(x) := x and g2(x) := − exp(x) + 1. Note that
∇g1(x) = 1 and∇g2(x) = − exp(x), and thus LICQ fails. Now, from L(x̄,Ω) = {0},
inclusion (21) holds.

Example 4.3 (LICQ does not imply the inclusion (21)) Indeed, in R2, take x̄ = (0, 0),
a ∈ R and the multiobjective problem

min ( f1(x1, x2) := x21 , f2(x1, x2) := (x1 − a)2) s.t. g(x1, x2) := x21 − x2 ≤ 0.

It is not difficult to see that x̄ is a local weak Pareto point. Straightforward calculations
show that x̄ is not a strong KKT point. Thus, Theorem 4.2 says that (21) fails. Now,
since ∇g(x1, x2) := (2x1,−1)T , LICQ holds at x̄ .

From the examples above, we see that usual CQs are not sufficient to obtain strong
KKT points at local weak Pareto solutions. Besides this observation, it is still possible
to use CQs for obtaining strong KKT, but for a stronger notion of optimality. We focus
on the concept of proper Pareto efficiency in the sense of Geoffrion [40].

Definition 4.1 We say that a feasible point x̄ is a local Geoffrion-properly efficient
solution, if it is a local strong Pareto solution, within a neighborhood N , and there
exists a scalar M > 0 such that, for each �,

f�(x) − f�(x̄)

f j (x̄) − f j (x)
≤ M,

for some j such that f j (x̄) < f j (x), whenever x ∈ Ω ∩ N and f�(x̄) > f�(x).

Proposition 4.3 Let x̄ be a feasible point of (2). If x̄ is a Geoffrion-properly efficient
point, with Abadie’s CQ holding at x̄ , then x̄ is a strong KKT point.
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Proof By Lemma 2.2, x̄ is a strong KKT point of (2), if the following system

∇ f�(x̄)T d ≤ 0, � = 1, . . . , r; ∇ f�(x̄)T d < 0, for some � ∈ {1, . . . , r};
∇hi (x̄)T d = 0, i = 1, . . . ,m; ∇g j (x̄)T d ≤ 0, j ∈ A(x̄)

(25)

has no solution d ∈ R
n . Thus, suppose that (25) admits a nontrivial solution d. From

Abadie’s CQ, there is a sequence xk := x̄ + tkdk ∈ Ω , with tk → 0, dk → d and
xk → x̄ . Thus, set I− := {� : ∇ f�(x̄)T d < 0} and I0 := {� : ∇ f�(x̄)T d = 0}.
Now, consider the set K := {k ∈ N : f�(xk) > f�(x̄) for some � ∈ I0}. The set K is
infinite; otherwise, we get a contradiction with the fact that x̄ is a local strong Pareto
solution. Moreover, taking a further subsequence if necessary, there exists �0 ∈ I0
such that f�0(x

k) > f�0(x̄), ∀k ∈ K. Take �1 ∈ I−. By using the Taylor expansion,
we get

f�1(x
k) = f�1(x̄) + tk∇ f�1(x̄)

T dk + o(‖tkdk‖),
f�0(x

k) = f�0(x̄) + tk∇ f�0(x̄)
T dk + o(‖tkdk‖).

From f�0(x
k) > f�0(x̄), ∀k ∈ K, we see that ∇ f�0(x̄)

T dk + o(‖tkdk‖)t−1
k > 0 and

converges to ∇ f�0(x̄)
T d = 0 from the right. Thus,

f�1(x
k) − f�1(x̄)

f�0(x̄) − f�0(x
k)

= −∇ f�1(x̄)
T dk − o(‖tkdk‖)

tk

∇ f�0(x̄)
T dk + o(‖tkdk‖)

tk

→ ∞ as k → ∞,

which contradicts the definition of a Geoffrion-properly efficient point. ��

4.3 Computation of theMultiobjective Normal Cone Under the Error Bound
Property

Here, we compute the multiobjective normal cone under the error bound property,
see Definition 4.2. The error bound property has a large range of applications, which
include convergence analysis of iterative algorithms, stability of inequality systems,
to mention a few of them. For more information, see [41,42] and references therein.

Definition 4.2 We say that the Error Bound Property (EBP) holds forΩ at the feasible
point x̄ , if there is a neighborhood U of x̄ such that

dist (x,Ω) ≤ L max{‖h(x)‖,max{0, g(x)}}, for every x ∈ U .

Under EBP, it is possible to get a nice characterization of the multiobjective normal
cone. Indeed, we have that

Theorem 4.3 Suppose that EBP holds at x̄ . Then, there is a neighborhood U of x̄ such
that for every feasible point x ∈ U , we have that:
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If V = (v�)
r
�=1 ∈ N (x,Ω; r), then there exist θ ∈ R

r+ with ‖θ‖1 = 1 and
multipliers λ ∈ R

m, μ ∈ R
p
+ with μ j g j (x) = 0, ∀ j such that

V θ = ∇h(x)T λ + ∇g(x)Tμ, and ‖(λ, μ)‖ ≤ L‖V θ‖.

Proof First, suppose that V ∈ ̂N (x,Ω; r). By Theorem 3.1, there exists aC1 mapping
f having x as a local weak Pareto solution. Thus, v� = −∇ f�(x), ∀�. By Remark 2.1,
there exists δ > 0, such that x is the unique solution of

Minimize max
�=1,...,r

( f�(z) − f�(x)) + 1

2
‖z − x‖2 s.t. ‖z − x‖ ≤ δ, z ∈ Ω. (26)

If, in (26), we apply Fermat’s rule at x by using Clarke’s subdifferentials, we obtain
an optimality condition based on Clarke’s normal cone, which is usually larger than
the limiting normal cone. To avoid the use of Clarke’s subdifferentials, we proceed as
follows:

For each η > 0, consider the smoothing approximation of themax function, gη,x (z),
defined as

gη,x (z) := η ln

{

r
∑

�=1

exp

(

f�(z) − f�(x)

η

)

}

− η ln r , for every z ∈ R
n .

Note that for each z, gμ,x (z) → max�=1,...,r ( f�(z) − f�(x)) as μ → 0, and

∇gη,x (z) =
r

∑

�=1

θ�(z)∇ f�(z), with θ�(z) := exp(( f�(z) − f�(x))/η)
∑r

�=1 exp(( f�(z) − f�(x))/η)
.

Note that ‖θ�(z)‖1 = 1. Furthermore, we see that

max
�=1,...,r

( f�(z) − f�(x)) ≤ gη,x (z) + η ln r ≤ max
�=1,...,r

( f�(z) − f�(x)) + η ln r ,

∀z ∈ R
n . (27)

For applications of the smoothing approximation technique in optimization, we men-
tion [43–45] and reference therein.

Now, let {ηk} be a sequence of positive parameters converging to 0 and denote by
xk ∈ Ω the global minimizer of following smooth minimization problem

Minimize gηk ,x (z) + 1

2
‖z − x‖2 subject to ‖z − x‖ ≤ δ, z ∈ Ω. (28)

We continue by showing that xk → x .
In fact, using the optimality of xk and (27), we get that

gηk ,x (x
k) + 1

2
‖xk − x‖2 ≤ gηk ,x (x) ≤ max

�=1,...,r
( f�(x) − f�(x)) = 0. (29)
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But, from (27), (29) and since x is a weak Pareto point for minimizing f , we see that

1

2
‖xk − x‖2 − ηk ln r ≤ max

�=1,...,r
( f�(x

k) − f�(x)) + 1

2
‖xk − x‖2 − ηk ln r

≤ gηk ,x (x
k) + 1

2
‖xk − x‖2 ≤ 0.

Taking limit in the last expression and since ηk → 0, we get that xk → x .
Consider k large enough such that ‖xk − x‖ < δ. By optimality of xk and applying

Fermat’s rule for limiting normal cones, we obtain that

− ∇gηk ,x (x
k) − (xk − x) = −

r
∑

�=1

θ�(x
k)∇ f�(x

k) − (xk − x) ∈ N (xk,Ω).

(30)

Thus, by [46, Theorem 3] applied to N (xk,Ω), there are multipliers λk ∈ R
m , μk ∈

R
p
+ with μk

j g j (xk) = 0, ∀ j such that

V kθk − (xk − x) = ∇h(xk)T λk + ∇g(xk)Tμk, (31)

‖(λk, μk)‖ ≤ L‖V kθk − (xk − x)‖ and ‖θk‖1 = 1, (32)

where V k := (−∇ f�(xk))r�=1. Clearly, V
k → V . From (31), there is no loss of

generality (after possibly taking a further subsequence), if we assume that λk and θk

converge to λ and θ respectively. Note that ‖θ‖1 = 1 and μ j g j (x) = 0, ∀ j . Thus,
taking limits in (31), (32), we get the result when V is in ̂N (x,Ω; r).

For the general case, take V ∈ N (x,Ω; r). Thus, there are sequences {V k} ⊂
̂N (xk,Ω; r), {xk} ⊂ Ω such that V k → V , and xk → x . Using the above results for
each V k and after taking a further subsequence, we obtain the desired result for V . ��
Corollary 4.1 If EBP holds at x̄ , then N (x̄,Ω; r) = ̂N (x̄,Ω; r) and

N (x̄,Ω; r) =
{

V ∈ R
n×r : V θ = ∇h(x)T λ + ∇g(x)Tμ, with

λ ∈ R
m, μ ∈ R

p
+ and 0 �= θ ∈ R

r+

}

. (33)

Proof By Theorem 4.3, N (x̄,Ω; r) is included in the right-hand side set of (33). Now,
take V = (v�)

r
�=1 ∈ R

n×r such that V θ = ∇h(x)T λ + ∇g(x)Tμ, with λ ∈ R
m , μ ∈

R
p
+ and 0 �= θ ∈ R

r+. Without loss of generality, we assume that ‖θ‖1 = 1. Consider
d ∈ T (x̄,Ω), which implies that 〈∇hi (x̄), d〉 = 0, i = 1, . . . ,m, 〈∇g j (x), d〉 ≤ 0,
j ∈ A(x̄). Thus,

min
�=1,...,r

〈v�, d〉 ≤
r

∑

�=1

θ�〈v�, d〉 = 〈
r

∑

�=1

θ�v�, d〉 = 〈V θ, d〉 = 〈∇h(x)T λ + ∇g(x)Tμ, d〉

=
m

∑

i=1

λi 〈∇hi (x̄), d〉 +
p

∑

j=1

μ j 〈∇g j (x̄), d〉 ≤ 0.
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Thus, the last expression shows that item (c) of Theorem 3.1 is satisfied and hence
V ∈ ̂N (x̄,Ω; r) ⊂ N (x̄,Ω; r), which complete the proof. ��

5 Conclusions

Constraint qualifications have an important role in nonlinear programming (NLP).
These conditions are not only useful for ensuring the validity of the KKT conditions,
as they are employed also in stability analysis and convergence of methods for solving
NLPs, but their role for MOPs is not so clear, since different notions of solutions
and KKT conditions are presented. In this work, we addressed the role of CQs for
MOPs. Our main contribution is the use of the concept of multiobjective normal cone
to obtain new CQs for MOPs. With this tool, we were able to characterize the weakest
CQ possible to guarantee the fulfillment of weak/strong KKT conditions at local weak
Pareto minimizers. To analyze the strength of such CQs, we compared them with
other CQs stated in the literature. Furthermore, we provided a characterization of the
multiobjective normal cone under the error bound property.

As further subject of investigation, we point out the relation of the multiobjective
normal cone with the sequential optimality conditions stated in [47], since sequential
optimality conditions for NLPs have been widely used for improving and unifying the
global convergence analysis of several algorithms. Another interesting sequel to this
study is to extend these ideas for multiobjective optimization problems with comple-
mentarity constraints, considering similar developments for single-objective problems
[48–51].
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