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Abstract
The present paper is devoted to building degree theory for a generalized mixed quasi-
variational inequality in finite dimensional spaces. Then, by employing the obtained
results, we prove the existence and stability of solutions to the considered generalized
mixed quasi-variational inequality.
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1 Introduction

Variational inequalities are a flexible and unifying framework, which incorporates
optimization problems, fixed point problems, transportation problems, financial equi-
librium problems, migration equilibrium problems, saddle point problems and so on;
see, e.g., [1–7]. This is the reason why there is vast literature studying the theory and
applications of variation inequalities. There are two kinds of important extensions of
the classic variational inequalities. One is the mixed variational inequality (MVI, also
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known as Hemivariational inequality), which is characterized by the involvement of a
proper, convex and lower semicontinuous function into the classic variational inequal-
ity. The mixed variational inequality has been studied by many scholars and has also
been applied to many practical problems, such as circuits in electronics, power control
problems in ad hoc networks and economic equilibrium problems (see, [8–13]). The
other important extension of the classic variational inequalities is the quasi-variational
inequality (QVI), whose constraint set depends on the decision variables. This char-
acterization of the quasi-variational inequality allows one to model many complex
problems, such as impulse control problems, frictional elastostatic contact problems,
and power markets and generalized Nash equilibrium problems in game theory (see,
[1,2,14–17]). However, the above-mentioned two kinds of extensions of variational
inequalities are not enough for the applications of variational inequalities. In some
practical situations,weneed to considermoregeneral extensions of variational inequal-
ities to model more complicated problems, and thus, it is necessary for us to study
them first from the theoretical point of view.

The generalized mixed quasi-variational inequality (GMQVI) considered in this
paper is, obviously, a generalization of the abovementionedMVI andQVI. In addition,
the GMQVI can be also applied to model the noncooperative game in practice; see
Example 2.1.

The degree theory is widely used in the study of differential equations and more
general functional equations. Particularly, it is also a powerful way to study the exis-
tence and stability of solutions for various kinds of variational inequalities. Facchinei
and Pang [2] employ the degree theory to obtain some existence theorems for varia-
tional inequalities and quasi-variational inequalities (see Proposition 2.2.3, Theorems
2.3.4, 2.8.3 and Corollary 2.8.4 of [2]). These results give some necessary and suffi-
cient conditions for the existence of solutions of the variational inequalities and the
quasi-variational inequalities. Later, some results by Facchinei and Pang are extended
by Kien et al. in [3] to the cases of the variational inequality and the generalized
variational inequality (GVI) in infinite dimensional reflexive Banach spaces. Also, in
[18], Kien et al. build a degree theory for the GVI in finite dimensional spaces by
using a different method under different conditions. As an application, they employ
the obtained degree theory to prove some results of existence and stability of solutions
to the GVI. Recently, Wang and Huang [19] build a degree theory for a so-called
generalized set-valued variational inequality which is actually a generalization of the
GVI and utilize the obtained results to prove an existence of solutions to the gener-
alized set-valued variational inequality in Banach spaces. For more related works on
the applications of the degree theory to variational inequalities, we refer readers to
[20–27] and the references therein.

As mentioned above, there are few papers studying the GMQVI theoretically, espe-
cially constructing the degree theory for the GMQVI although there are abundant
results on the degree theory for variational inequalities and quasi-variational inequal-
ities in the literature. In this paper, by means of the generalized f -projection operator
and the Brouwer degree, we focus on the establishment of a degree theory for the
GMQVI and then employ the obtained results to prove the existence and stability of
solutions to the GMQVI. The results presented in this paper extend and improve some
corresponding results in [2,18].
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The rest of the paper is organized as follows. In Sect. 2, we recall some basic
notation and preliminary results. Then, in Sect. 3, we build the degree theory for the
GMQVI. As applications, by using the obtained results, we show some results on the
existence and stability of solutions to the GMQVI.

2 Preliminaries

Throughout this paper, unless otherwise stated, we suppose that the norm and the
dual pair in Euclidean spaces Rn are denoted by ‖ · ‖ and 〈·, ·〉, respectively. Let
f : Rn → R be a convex function, K : Rn ⇒ Rn be a set-valued mapping with
nonempty, closed and convex values, and F : Rn ⇒ Rn be a set-valued mapping. In
this paper, we are interested in the following GMQVI: find x ∈ K (x) and x∗ ∈ F(x)
such that

〈x∗, y − x〉 + f (y) − f (x) ≥ 0, for all y ∈ K (x). (1)

The GMQVI is a class of general models in the study on variational inequalities,
and many kinds of existing problems can be cast as its special cases, some of which
are listed as follows:

� If f (x) = 0 for all x ∈ Rn , then the GMQVI reduces to the following generalized
quasi-variational inequality problem (GQVI) : find x ∈ K (x) and x∗ ∈ F(x)
satisfying

〈x∗, y − x〉 ≥ 0, for all y ∈ K (x), (2)

which is introduced and studied in [1] by Chan and Pang.
� If F : Rn → Rn is a single-valued mapping and K (x) = C with C being
a nonempty, closed and convex subset of Rn , then the GMQVI reduces to the
following MVI: find x ∈ C such that

〈F(x), y − x〉 + f (y) − f (x) ≥ 0, for all y ∈ C, (3)

which has been considered by Facchinei and Pang in [2].
� If f (x) = 0 for all x ∈ Rn and K (x) = C with C being a nonempty, closed
and convex subset of Rn , then the GMQVI reduces to the GVI: find x ∈ C and
x∗ ∈ F(x) such that

〈x∗, y − x〉 ≥ 0, for all y ∈ C . (4)

which has been studied by many authors; see, e.g., [1–3].

Among many GMQVI’s applications, the following general noncooperative game is
used to illustrate its importance in practice.

Example 2.1 Consider a general noncooperative game, in which we suppose that there
are N players each of whom has a certain cost function and strategy set which depends
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on the other players’ strategies. For each i ∈ {1, 2, · · · , N }, we use the set-valued
mapping Ki : Rn−ni ⇒ Rni to denote the i th player’s strategy and his/her cost
function is defined by

θi (x) =: gi (x) + fi (xi ), ∀ xi ∈ Rni , x = (xi )
N
i=1 ∈ Rn1+n2+···+nN = Rn,

where fi : Rni → R and gi : Rn → R are two convex functions.
It is known that a point (x∗

i )Ni=1 is called a generalized Nash equilibrium for the
general noncooperative game if for each fixed but arbitrary tuple of rival action x−i :=
(x∗

1 , · · · , x∗
i−1, x

∗
i+1, · · · , x∗

N ), x∗
i solves the costminimization problem in the variable

yi defined as

minimizeyi θi (yi , x−i ) = gi (yi , x−i ) + fi (yi )

subject to yi ∈ Ki (x−i ).

We could prove that a point (x∗
i )Ni=1 is a generalized Nash equilibrium for the general

noncooperative game if and only if for each i ∈ {1, 2, · · · , N },

0 ∈ ∂ fi (x
∗
i ) + ∂xi gi (x

∗
i , x∗−i ) + NKi (x∗−i )

(x∗
i ), (5)

where NKi (x∗−i )
(x∗

i ) denotes the normal cone of Ki (x∗−i ) at x∗
i , and ∂ fi (x∗

i ) and
∂xi gi (x

∗
i , x∗−i ) denote subdifferential of fi and gi with respect to xi , respectively.

Moreover, the problem (5) is equivalent to finding x∗
i ∈ Ki (x∗−i ), u

∗
i ∈ ∂xi gi (x

∗
i , x∗−i )

and s∗
i ∈ ∂ fi (x∗

i ) such that

〈u∗
i , yi − x∗

i 〉 + 〈s∗
i , yi − x∗

i 〉 ≥ 0,∀ yi ∈ Ki (x
∗−i ).

Now, let F(x) = ∏N
i=1 ∂xi gi (x), f (x) = ∑n

i=1 fi (xi ) and K (x) = ∏N
i=1 Ki (x−i ).

As done in the proof of Proposition 1 in [28], the problem (5) can be formulated as
follows: find x∗ = (x∗

i )Ni=1 ∈ K (x∗) and u∗ ∈ F(x∗) such that

〈u∗, y − x∗〉 + f (y) − f (x∗) ≥ 0,∀ y ∈ K (x∗), (6)

which is a form of GMQVI.

Next, we present the definition of the Brouwer degree and its properties, which
could be found in [29–31]. To this end, we assume that D is an open, bounded set in
Rn with the boundary ∂D and the closure clD.

Definition 2.1 Suppose that φ : clD → Rn is a continuous mapping and p ∈
Rn\φ(∂D). Then we define d(φ, D, p) := d(φ̂, D, p) = ∑

x∈φ̂−1(p) sgn(Jφ̂(x),

where sgn is the sign function, φ̂ : clD → Rn is a continuously differential function
such that ‖φ(x) − φ̂(x)‖ < dist(p, φ(∂D)) for all x ∈ clD, and J

φ̂
(x) denotes the

Jacobian determinant of φ̂.

123



Journal of Optimization Theory and Applications (2020) 187:43–64 47

Theorem 2.1 Suppose that φ : clD → Rn is a continuous mapping and p ∈
Rn\φ(∂D). Then, the Brouwer degree d(φ, D, p) has the following properties:

(a1) (Normalization) If p ∈ D, then d(I , D, p) = 1, where I denotes the identity
mapping, that is, I (x) = x for all x ∈ Rn .

(a2) (Existence) If d(φ, D, p) 
= 0, then there is x ∈ D such that φ(x) = p.
(a3) (Additivity) Suppose that D1 and D2 are disjoint open subsets of D. If p /∈
φ(clD\(D1

⋃
D2)), then

d(φ, D, p) = d(φ, D1, p) + d(φ, D2, p).

(a4) (Homotopy) If φt : [0, 1]×clD → Rn is continuous and p /∈ ∪t∈[0,1]φt (∂D),
then d(φt , D, p) does not depend on t ∈ [0, 1].
(a5) (Excision) If D0 ⊂ clD is closed and p /∈ φ(D0), then d(φ, D, p) =
d(φ, D\D0, p).
(a6) If p /∈ φ(∂D), then d(φ, D, p) = d(φ − p, D, 0).

Then, we introduce some basic notation and preliminary results as follows.

Definition 2.2 Let O ⊂ Rn be a nonempty set and F : O ⇒ Rn be a set-valued
mapping.

(a1) F is said to be upper semicontinuous at x ∈ O, if for any open set V ⊂
Rn with F(x) ⊂ V , there exists an open neighborhoodU of x such that F(y) ⊂ V
for all y ∈ U ∩ O. If F is upper semicontinuous at every x ∈ O, we say that F is
upper semicontinuous on O.
(a2) F is said to be lower semicontinuous at x ∈ O, if for any open set W ⊂
Rn with F(x) ∩ W 
= ∅, there exists an open neighborhood U of x such that
F(y) ∩ W 
= ∅ for all y ∈ U ∩ O. If F is lower semicontinuous at every x ∈ O,
we say that F is lower semicontinuous on O.

Suppose that K : Rn ⇒ Rn is a set-valued mapping with nonempty, closed and
convex values. For each x ∈ Rn , the generalized f -normal cone operator associated
with the set K (x) at x ′ is defined as follows:

N f
K (x)(x

′) =
{ {ϕ ∈ Rn : 〈ϕ, y − x ′〉 + f (x ′) − f (y) ≤ 0,∀y ∈ K (x)}, if x ′ ∈ K (x),

∅, otherwise.

Obviously, the problem (1) is equivalent to the following problem: find x ∈ K (x)
such that

0 ∈ F(x) + N f
K (x)(x).

For any fixed ρ > 0, let N ⊂ Rn be a nonempty, closed and convex set, f :
N → R ∪ {+∞} be a proper, convex and lower semicontinuous function, and G :
Rn × N → ] − ∞,+∞] be a function defined as follows:

G(ϕ, x) = ‖x‖2 − 2〈ϕ, x〉 + ‖ϕ‖2 + 2ρ f (x), ∀ ϕ ∈ Rn, ∀ x ∈ N . (7)
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Through the rest of this paper, unless otherwise stated, we take ρ = 1 in (7).

Definition 2.3 [32] We say thatΠ f
N : Rn ⇒ N is a generalized f -projection operator

if

Π
f
Nϕ = {u ∈ N : G(ϕ, u) = infy∈NG(ϕ, y)}, ∀ ϕ ∈ Rn .

Remark 2.1 The generalized f -projection operator is a generalization of the resolvent
operator for the subdifferential ∂ f of a proper, convex and lower semi-continuous
functional f ; see Remark 3.2 of [33]. In addition, if f (x) ≡ 0 for all x ∈ N , then the
generalized f -projection operatorΠ f

N is equivalent to the following metric projection
operator

ΠN (ϕ) = {u ∈ N : ‖u − ϕ‖ = infy∈N ‖y − ϕ‖}, ∀ ϕ ∈ Rn .

Lemma 2.1 [32,34] The following statements hold:

(i) For any given ϕ ∈ Rn, Π f
N ϕ is a nonempty and single-valued.

(ii) For any given ϕ ∈ Rn, x = Π
f
Nϕ if and only if

〈x − ϕ, y − x〉 + f (y) − f (x) ≥ 0, ∀ y ∈ N .

(iii) ‖Π f
N x − Π

f
N y‖ ≤ ‖x − y‖, for all x, y ∈ N .

Lemma 2.2 [35] Let X be a topological space, Y be a regular topological space and
F : X ⇒ Y be an upper semicontinuous mapping with closed values. Then F is closed
(i.e., its graph is closed).

Lemma 2.3 [35] Let X and Y be topological spaces and F : X ⇒ Y be an upper
semicontinuous mapping with compact values. Then for any compact subset E of X,
F(E) is compact.

Definition 2.4 [36] Let O be a nonempty subset of Rp and K ′ : O ⇒ Rn be a
set-valued mapping.

(a1) K ′ is said to be outer semicontinuous atw0 ∈ O , if lim supw→w0∈O K ′(w) ⊂
K ′(w0). If K ′ is outer semicontinuous at every w ∈ O , we say that K ′ is outer
semicontinuous on O .
(a2) K ′ is said to be inner semicontinuous at w0 ∈ O , if K ′(w0) ⊂
lim infw→w0∈O K ′(w). If K ′ is inner continuous at every w ∈ O , we say that
K ′ is inner semicontinuous on O .
(a3) K ′ is said to be continuous at w0 ∈ O , if lim infw→w0∈O K ′(w) =
lim supw→w0∈O K ′(w) = K ′(w0). If K ′ is continuous at every x ∈ O , we say
that K ′ is continuous on O .

According to Exercise 5.6 and Theorem 5.19 of [36], K ′ is inner semicontinuous
at a point w0 ∈ O if and only if K ′ is lower semicontinuous at the point w0 ∈ O ,
while the outer semicontinuity of K ′ at the point w0 ∈ O is equivalent to its upper
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semicontinuity at the point w0 ∈ O and the closedness of K ′(w0), if K ′ is locally
bounded at the point w0 ∈ O . Moreover, it follows from Theorem 5.7 of [36] and
Lemma 2.2 that K ′ is outer semicontinuous, if K ′ is an upper semicontinuousmapping
with closed values. Obviously, the mapping K ′ is continuous at w0 ∈ O if and only
if for any {wn} ⊂ O with wn → w0 ∈ O , K ′(wn) Mosco-converges to K ′(w0); see
Definition 3.2 of [23] and page 152 of [36]. By Theorem 3.2 of [23], it is easy to obtain
the following lemma.

Lemma 2.4 Assume that K ′ : Rp ⇒ Rn is a set-valued mapping with nonempty,
closed and convex values. Suppose that f : Rn → ] − ∞,+∞[ is convex, and K ′
is continuous at λ0 ∈ Rp. Then for each sequence {(u∗

n, λn)} ⊂ Rn × Rp such that

u∗
n → u∗

0 and λn → λ0 ∈ Λ as n → +∞, Π f
K ′(λn)u

∗
n converges to Π

f
K ′(λ0)u

∗
0.

3 Degree Theory for the GeneralizedMixed Quasi-variational
Inequality

In this section, we build the degree theory for the GMQVI. To this end, we first give
the following approximate continuous selection lemma.

Lemma 3.1 [37] Suppose T : Rn ⇒ Rn is an upper semicontinuous mapping with
closed and convex values. Then, for any ε > 0, there exists a continuous and single-
valued mapping Tε : Rn → Rn such that for every x ∈ Rn, there exist y ∈ Rn and
z ∈ T (y) satisfying

‖y − x‖ < ε and ‖z − Tε(x)‖ < ε. (8)

Assume that F satisfies the conditions for the existence of an ε-approximation. We
define Φε : Rn → Rn by the following formula

Φε(x) = x − Π
f
K (x)(x − fε(x)),

where fε is an approximate continuous selection of F which satisfies (8).
The following lemma aboutΦε plays an essential role in building the degree theory

for the GMQVI.

Lemma 3.2 Let f : Rn → R be a convex function, K : Rn ⇒ Rn be a set-
valued mapping with nonempty, closed and convex values and F : Rn ⇒ Rn be an
upper semicontinuous mapping with nonempty, compact and convex values. Besides,
suppose that Ω ⊂ Rn is a nonempty, bounded and open set, K is continuous on clΩ
and 0 /∈ F(∂Ω) + N f

K (∂Ω)(∂Ω). Then the following assertions hold:
(a1) There exists ε1 > 0 such that 0 /∈ Φε(∂Ω) for all ε ∈]0, ε1].
(a2) There exists ε2 > 0 such that

d(Φε,Ω, 0) = d(Φε′ ,Ω, 0), ∀ ε, ε′ ∈]0, ε2].
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Proof (a1) Suppose the conclusion is not true. Then there exists a sequence {εk} with
εk → 0+ and a sequence {xk}with xk ∈ ∂Ω such thatΦεk (xk) = 0.Due toLemma2.1,

we know Π
f
K (xk )

(·) is single-valued and

xk = Π
f
K (xk )

(xk − fεk (xk)). (9)

In light of compactness of ∂Ω , we can assume that xk → x̄ ∈ ∂Ω . Since K : Rn ⇒
Rn is continuous on Ω and xk ∈ K (xk), we know x̄ ∈ K (x̄). Lemma 3.1 implies that
there exist yk ∈ Rn and zk ∈ F(yk) such that

‖yk − xk‖ < εk and ‖zk − fεk (xk)‖ < εk,

and thus {yk} is bounded and yk → x̄ . Since F is an upper semicontinuous mapping
with compact and convex values, Lemma 2.3 implies that cl(F({yk})) ⊂ cl(F(cl{yk}))
is a compact set. By {zk} ⊂ cl(F({yk})), without loss of generality, we can assume
that zk → z0. Since ‖zk − fεk (xk)‖ < εk and εk → 0+, we obtain fεk (xk) → z0.

Since F is an upper semicontinuous mapping with closed values, we deduce from
Lemma 2.2 and zk ∈ F(yk) that z0 ∈ F(x̄).

Taking k → ∞ in (9), Lemma 2.4 implies that x̄ = Π
f
K (x̄)(x̄−z0). NowLemma 2.1

and the definition of N f
K (·)(·) yield

0 ∈ z0 + N f
K (x̄)(x̄) ⊂ F(x̄) + N f

K (x̄)(x̄),

which contradicts 0 /∈ (F(∂Ω) + N f
K (∂Ω)(∂Ω)). The proof of the part (a1) is com-

pleted.
(a2) Assume that there exist sequences {εk} and {ε′

k} with 0 < εk < ε′
k → 0

satisfying

d(Φεk ,Ω, 0) 
= d(Φε′
k
,Ω, 0). (10)

Let

H(t, x) = x − tΠ f
K (x)(x − fεk (x)) − (1 − t)Π f

K (x)(x − fε′
k
(x)), ∀ (t, x) ∈ [0, 1] × clΩ.

This indicates that

H(0, x) = x − Π
f
K (x)(x − fε′

k
(x)) = Φε′

k
(x)

and

H(1, x) = x − Π
f
K (x)(x − fεk (x)) = Φεk (x).

If 0 /∈ H(t, ∂Ω) for all t ∈ [0, 1], then, in view of (a4) of Theorem 2.1, we have

d(H(0, ·),Ω, 0) = d(H(1, ·),Ω, 0),
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which is in contradiction with (10). Hence, for each k, there exists tk ∈ [0, 1] such
that 0 ∈ H(tk, ∂Ω). This implies that, for each k, there exists xk ∈ ∂Ω such that

xk = tkΠ
f
K (xk )

(xk − fεk (xk)) + (1 − tk)Π
f
K (xk)

(xk − fε′
k
(xk)). (11)

By compactness of [0, 1], it is reasonable to suppose that tk → t̄ . Thanks to com-
pactness of ∂Ω , we assume naturally that xk → x̄ ∈ ∂Ω . Since K : Rn ⇒ Rn is
continuous on clΩ and xk ∈ K (xk), we get x̄ ∈ K (x̄). Lemma 3.1 implies that there
exist yk, y′

k ∈ Rn ; zk ∈ F(yk) and z′k ∈ F(y′
k) such that

‖yk − xk‖ < εk, ‖zk − fεk (xk)‖ < εk, ‖y′
k − xk‖ < ε′

k and ‖z′k − fε′
k
(xk)‖ < ε′

k .

Hence {yk} and {y′
k} are bounded, and both of them converge to x̄ . Since F is an upper

semicontinuous mapping with compact and convex values, it follows from Lemma 2.3
that cl(F({y′

k})) and cl(F({yk})) are two compact sets. Owing to {zk} ⊂ cl(F({yk}))
and {z′k} ⊂ cl(F({y′

k})), without loss of generality, we can suppose that zk → z0 and
z′k → z′0. Since ‖zk − fεk (xk)‖ < εk , εk → 0+, ‖z′k − fε′

k
(xk)‖ < ε′

k and ε′
k → 0+,

we know fεk (xk) → z0 and fε′
k
(xk) → z′0.

Since F is an upper semicontinuous mapping with closed values, z′k ∈ F(y′
k) and

zk ∈ F(yk), Lemma 2.2 implies that z′0 ∈ F(x̄) and z0 ∈ F(x̄).

Letting k → ∞ in (11), Lemma 2.4 implies that x̄ = t̄Π f
K (x̄)(x̄ − z0) + (1 −

t̄)Π f
K (x̄)(x̄ − z′0), and thus

x̄ ∈ t̄Π f
K (x̄)(x̄) − F(x̄)) + (1 − t̄)Π f

K (x̄)(x̄ − F(x̄)) = Π
f
K (x̄)(x̄ − F(x̄)).

Therefore 0 ∈ F(x̄) + N f
K (x̄)(x̄). Since x̄ ∈ ∂Ω , this is in conflict with 0 /∈ F(∂Ω) +

N f
K (∂Ω)(∂Ω). This completes proof of Lemma 3.2. ��
Thanks to Lemma 3.2, we know there exists ε̄ > 0 such that 0 /∈ Φε(∂Ω) and

d(Φε,Ω, 0) = d(Φε′ ,Ω, 0) for all ε, ε′ ∈ ]0, ε̄], which allows us to give the
following definition.

Definition 3.1 Let f : Rn → R be convex function, K : Rn ⇒ Rn be a continuous
and set-valued mapping with nonempty, closed and convex values and F : Rn ⇒ Rn

be an upper semicontinuous mapping with nonempty, compact and convex values.
Besides, suppose that Ω ⊂ Rn is a nonempty, bounded and open set, K is continuous
onΩ and 0 /∈ F(∂Ω)+N f

K (∂Ω)(∂Ω). The degree of the GMQVI defined by F and K
with respect to Ω at 0 is the common value d(Φε,Ω, 0) for ε > 0 sufficiently small
and denoted by d(F + N f

K ,Ω, 0).

Remark 3.1 (1) Though there have been a large number of papers on the degree theory
for set-valued mappings heretofore (see [37–39]), we point that to some extent, the
degree theory for the generalized mixed quasi-variational inequality in the present
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paper is different from degree theory for upper semicontinuous and set-valued map-
pings with compact and convex values. It is established by the single-valued mapping
Φε .

(2) If f (x) = 0 and K (x) = C for all x ∈ Rn with C being a nonempty, closed
and convex subset of Rn , then Definition 3.1 reduces to Definition 2.1 of [18].

The following theorem gives some properties of the degree for the generalized
mixed quasi-variational inequality.

Theorem 3.1 Let f : Rn → R be a convex function, K : Rn ⇒ Rn be a set-
valued mapping with nonempty, closed and convex values and F : Rn ⇒ Rn be an
upper semicontinuous mapping with nonempty, compact and convex values. Besides,
suppose that Ω ⊂ Rn is a nonempty, bounded and open set, K is continuous on clΩ
and 0 /∈ F(∂Ω) + N f

K (∂Ω)(∂Ω). Then the following assertions hold:
(a1) (Normalization) Assume that there exists x̂ ∈ Ω ∩ (∩x∈Rn K (x)) such that

f (x̂) = inf y∈K (x) f (y). If F = I − x̂ for any x ∈ Rn, then d(F + N f
k ,Ω, 0) = 1.

(a2) (Existence) If d(F + N f
K ,Ω, 0) 
= 0, then there exists x̄ ∈ Ω such that

0 ∈ F(x̄) + N f
K (x̄)(x̄).

(a3) (Additivity) If Ω1, Ω2 are disjoint open subsets of Ω such that 0 /∈ (F(·) +
N f
K (·)(·))(clΩ\(Ω1 ∪ Ω2)), then

d(F + N f
K ,Ω, 0) = d(F + N f

K ,Ω1, 0) + d(F + N f
K ,Ω2, 0).

(a4) (Homotopy) For ĩ ∈ {1, 2}, Fĩ : Rn ⇒ Rn is an upper semicontinuous
and set-valued mapping with nonempty, compact and convex values. Moreover, 0 /∈
t F1(∂Ω) + (1 − t)F2(∂Ω) + N f

K (∂Ω)(∂Ω) for all t ∈ [0, 1]. Then

d(F1 + N f
K ,Ω, 0) = d(F2 + N f

K ,Ω, 0).

(a5) (Excision) If D ⊂ Ω is a closed set such that 0 /∈ F(D) + N f
K (D)(D), then

d(F + N f
K ,Ω, 0) = d(F + N f

K ,Ω\D, 0).

(a6) If f̃ : Rn → Rn is a single-valued and continuous mapping such that f̃ (x) ∈
F(x) for all x ∈ Rn, then d(F + N f

K ,Ω, 0) = d(Φ,Ω, 0), where Φ(x) = x −
Π

f
K (x)(x − f̃ (x)).

Proof (a1) According to Definition 3.1, there exists ε̃ > 0 such that

d(I + N f
K ,Ω, 0) = d(Φε̃,Ω, 0),
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where

Φε̃(x) = x − Π
f
K (x)(x − (x − x̂)) = x − Π

f
K (x)(x̂), ∀ x ∈ Rn .

Since f (x̂) = inf y∈K (x) f (x), we know that Φε̃(x) = x − x̂ for all x ∈ Rn .

Now, it follows from Theorem 2.1 that

d(I + N f
K ,Ω, 0) = d(Φε̃,Ω, 0) = d(I − x̂,Ω, 0) = d(I ,Ω, x̂) = 1.

(a2) Owing to Definition 3.1, there exists ε̄ > 0 such that d(F + N f
K ,Ω, 0) =

d(Φε,Ω, 0) for all ε ∈ (0, ε̄]. Suppose that {εk} is a sequence satisfying εk → 0+.
Thus, d(Φεk ,Ω, 0) 
= 0 for k sufficiently large. From (a2) of Theorem 2.1, it follows
that there exists xk ∈ Ω such that Φεk (xk) = 0. Therefore,

xk = Π
f
K (xk )

(xk − fεk (xk)). (12)

By similar arguments as the proof of (a1) in Lemma 3.2, we know xk → x̄ , fεk (xk) →
z0 and zk → z0 ∈ F(x̄). Letting k → ∞ in (12), we obtain x̄ = Π

f
K (x̄)(x̄ − z0) . In

light of Lemma 2.1, the definition of N f
K (·)(·) implies that

0 ∈ z0 + N f
K (x̄)(x̄) ⊂ F(x̄) + N f

K (x̄)(x̄).

Since 0 /∈ (F(∂Ω) + N f
K (∂Ω))(∂Ω), we have x̄ ∈ K (x̄) ∩ Ω .

(a3) We show that there exists ε̄ > 0 such that 0 /∈ Φε(clΩ\(Ω1 ∪ Ω2)) for all
ε ∈ ]0, ε̄]. Indeed, if the conclusion is not true, then there are sequences {εk} and {xk}
with εk → 0+ and xk ∈ clΩ\(Ω1 ∪ Ω2) such that

xk = Π
f
K (xk )

(xk − fεk (xk)). (13)

Using similar arguments as the proof of (a1) in Lemma 3.2, we know that xk, yk →
x̄ , fεk (xk) → z0 and zk → z0 ∈ F(x̄). Taking k → ∞ in (13), we have

x̄ = Π
f
K (x̄)(x̄ − z0).

From Lemma 2.1 and the definition of N f
K (·)(·), we deduce that

0 ∈ z0 + N f
K (x̄)(x̄) ⊂ F(x̄) + N f

K (x̄)(x̄), for some x̄ ∈ clΩ\(Ω1 ∪ Ω2),

which contradicts 0 /∈ (F(·) + N f
K (·)(·))(clΩ\(Ω1 ∪ Ω2)). Thus, 0 /∈ Φε(clΩ\(Ω1 ∪

Ω2)) for all ε ∈ ]0, ε̄]. From (a3) of Theorem 2.1, it follows that

d(Φε,Ω, 0) = d(Φε,Ω1, 0) + d(Φε,Ω2, 0).
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This implies that

d(F + N f
K ,Ω, 0) = d(F + N f

K ,Ω1, 0) + d(F + N f
K ,Ω2, 0).

(a4) For ĩ ∈ {1, 2}, suppose that f ĩε : Rn → Rn is an approximate selection of Fĩ
satisfying the conclusion of Lemma 3.1. Set

Hε(t, x) = x − Π
f
K (x)[x − (t f 1ε (x) + (1 − t) f 2ε (x))].

We assert that there is ε̄ > 0 such that 0 /∈ Hε(t, ∂Ω) for all t ∈ [0, 1] and
ε ∈ [0, ε̄].

In fact, if the claim is not true, then there exist a sequence {tk} with tk ∈ [0, 1] and
a sequence {εk} with εk → 0+ such that 0 ∈ Hεk (tk, ∂Ω). This means that, for each
k, there exists xk ∈ ∂Ω such that

xk = Π
f
K (xk )

[xk − (tk f
1
εk

(xk) + (1 − tk) f
2
εk

(xk))]. (14)

By compactness of [0, 1], assume that tk → t0. By the same methods as the proof of
(a2) in Lemma 3.2, it is easy to show that xk → x̄ ∈ ∂Ω , f 1εk (xk) → z1 for some
z1 ∈ F1(x̄) and f 2εk (xk) → z2 for some z2 ∈ F2(x̄). Letting k → ∞ in (14), yields

x̄ = Π
f
K (x̄)[x̄ − (t0z1 + (1 − t0)z2)]. From Lemma 2.1 and the definition of N f

K (·)(·)
we can infer that

0 ∈ (t0z1 + (1 − t0)z2) + N f
K (x̄)(x̄) ⊂ t0F1(x̄) + (1 − t0)F2(x̄) + N f

K (x̄)(x̄),

which contradicts 0 /∈ t F1(∂Ω) + (1 − t)F2(∂Ω) + N f
K (∂Ω)(∂Ω) for all t ∈ [0, 1].

Thus, the assertion is true and (a4) of Theorem 2.1 implies that

d(Hε(0, ·),Ω, 0) = d(Hε(1, ·),Ω, 0) for all ε ∈]0, ε̄].

Therefore

d(F1 + N f
K ,Ω, 0) = d(F2 + N f

K ,Ω, 0).

(a5) Using the similar arguments as the proof of (a1) in Lemma 3.2, we can prove
that there exists ε̄ > 0 such that 0 /∈ Φε(D) for all ε ∈ (0, ε̄]. Applying (a5) of
Theorem 2.1 to Φε , we know that the property (a5) holds.

(a6) Taking fε = f̃ for all ε > 0, we can obtain the desired conclusion.
This completes the proof of Theorem 3.1. ��
Obviously, if K (x) ≡ C withC being a nonempty, closed and convex subset inRn ,

then the condition (a1) can be easily satisfied in Theorem 3.1. Next we give a simple
example with K (x) depending on x such that the condition (a1) holds.
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For any x ∈ Rn , let K (x) = {u ∈ Rn : ‖u‖ ≤ ‖x‖ + 2}, f (x) = ‖x‖2 and
Ω = {u ∈ Rn : ‖x‖ ≤ r , (r > 0)}. It is easy to check that x̂ = 0 ∈ Ω∩(∩x∈Rn K (x))
satisfies f (x̂) = inf y∈K (x) f (y) for any x ∈ Rn .

In order to study the stability of isolated solutions to the GMQVI, we first introduce
the following definition.

Definition 3.2 A vector x0 ∈ K is called an isolated solution of the GMQVI, if there
exists a neighborhood V1 ⊂ Rn of x0 such that x0 is the unique solution of the GMQVI
in clV1.

Theorem 3.2 Assume that f : Rn → R is a convex function, K : Rn ⇒ Rn is
a continuous and set-valued mapping with nonempty, closed and convex values and
F : Rn ⇒ Rn is an upper semicontinuous mapping with nonempty, compact and
convex values. Suppose that x0 is an isolated solution of the GMQVI and U is the
collection of all open and bounded neighborhoods V1 of x0 such that clV1 does not
contain another solution of the GMQVI. Then

d(F + N f
K , V2, 0) = d(F + N f

K , V3, 0)

for all V2, V3 ∈ U. The common value d(F + N f
K , V1, 0) for all V1 ∈ U is called the

index of F + N f
K and denoted by i(F + N f

K , x0, 0).

Proof We use the same arguments as in [18] for the proof below. Taking any Ṽ ∈ U,
we have

0 /∈ F(∂ Ṽ ) + N f

K (∂ Ṽ )
(∂ Ṽ ).

Therefore d(F + N f
K , Ṽ , 0) is well defined. We now assume that V2, V3 ∈ U. Put

V1 = V2 ∪ V3 ∈ U and D = clV2 ∩ V c
3 , where V c

3 = Rn\V3. We infer that D is a

bound and closed set in clV1 and 0 /∈ F(D)+ N f
K (D)(D). By (a5) in Theorem 3.1, we

have

d(F + N f
K , V1, 0) = d(F + N f

K , V1\D, 0) = d(F + N f
K , V3, 0).

Using similar arguments for D = clV3 ∩ V c
2 , we get that

d(F + N f
K , V1, 0) = d(F + N f

K , V1\D, 0) = d(F + N f
K , V2, 0),

and thus

d(F + N f
K , V2, 0) = d(F + N f

K , V3, 0), ∀ V2, V3 ∈ U.

This completes the proof of Theorem 3.2. ��
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Remark 3.2 Theorems 3.1, 3.2 and Definition 3.2 extend the corresponding theorems
and definition in [18] for the GVI to the cases of the GMQVI. In addition, if f (x) = 0,
for all x ∈ Rn and F is a continuous and single-valued mapping, then thanks to
Definition 3.1 and (a2) of Theorem 3.1, it is easy to obtain Theorem 2.8.3 of [2].

4 Applications

In this section, we employ the results presented in Sect. 3 to prove the existence and
stability of solutions for the GMQVI.

The following theorem is an extension of Corollary 2.8.4 of [2].

Theorem 4.1 Let f : Rn → R be convex, K : Rn ⇒ Rn be a set-valued mapping
with nonempty, closed and convex values and F : Rn ⇒ Rn be an upper semicontin-
uous mapping with nonempty, compact and convex values. Suppose that there exist a
bounded and open set Ω ′ ⊂ Rn and a vector x̂ ∈ Ω ′ satisfying
(a) the mapping K is continuous on clΩ ′;
(b) the vector x̂ belongs to ∩x∈clΩ ′K (x);
(c) for any x ∈ clΩ ′, f (x̂) = inf y∈K (x) f (y);
(d) the following holds

{x ∈ K (x) : inf
x∗∈F(x)

〈x∗, x − x̂〉 + f (x) − f (x̂) < 0} ∩ ∂Ω ′ = ∅.

Then the GMQVI has a solution.

Proof Assume that the GMQVI has no solution. Hence 0 /∈ F(∂Ω ′)+ N f
K (∂Ω ′)(∂Ω ′)

and thus the degree d(F + N f
K ,Ω ′, 0) is well defined. Put

H(t, x) = t F(x) + (1 − t)(x − x̂) + N f
K (x)(x), ∀ (t, x) ∈ [0, 1] × Ω ′,

which implies that H(0, x) = x − x̂ + N f
K (x)(x) and H(1, x) = F(x) + N f

K (x)(x).
We show that 0 /∈ H(t, ∂Ω ′) for all t ∈ [0, 1]. Indeed, if 0 ∈ H(0, ∂Ω ′), then there

exists x0 ∈ ∂Ω ′ such that x̂ − x0 ∈ N f
K (x0)

(x0). Owing to definition of N f
K (x0)

(x0),
we have

〈x̂ − x0, y − x0〉 + f (x0) − f (y) ≤ 0, ∀ y ∈ K (x0). (15)

Letting y = x̂ in (15), we obtain

〈x̂ − x0, x̂ − x0〉 + f (x0) − f (x̂) ≤ 0. (16)

From f (x̂) = infx∈K (x0) f (x), it follows that x0 = x̂ . This contradicts the fact that
x0 ∈ ∂Ω ′ and x̂ ∈ Ω ′. Hence 0 /∈ H(0, ∂Ω ′).

If 0 ∈ H(1, ∂Ω ′) then 0 ∈ F(∂Ω ′) + N f
K (∂Ω ′)(∂Ω ′), which is conflict with 0 /∈

F(∂Ω ′) + N f
K (∂Ω ′)(∂Ω ′).
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If there exist t0 ∈ (0, 1) and x ′
0 ∈ ∂Ω ′ such that 0 ∈ H(t0, x ′

0), then

0 ∈ t0F(x ′
0) + (1 − t0)(x

′
0 − x̂) + N f

K (x ′
0)

(x ′
0). (17)

Due to (17), there exists x∗
0 ∈ F(x ′

0) satisfying

−t0x
∗
0 − (1 − t0)(x

′
0 − x̂) ∈ N f

K (x ′
0)

(x ′
0).

Thanks to the definition of N f
K (x ′

0)
(x ′

0), we infer that

〈t0x∗
0 + (1 − t0)(x

′
0 − x̂), y − x ′

0〉 + f (y) − f (x ′
0) ≥ 0, ∀ y ∈ K (x ′

0),

and thus

〈x∗
0 , y − x ′

0〉 + 1

t0
( f (y) − f (x ′

0)) ≥ 1 − t0
t0

〈x ′
0 − x̂, x ′

0 − y〉 ∀ y ∈ K (x ′
0). (18)

Letting y = x̂ in (18), t0 ∈ (0, 1) and x̂ 
= x ′
0, yield

〈x∗
0 , x̂ − x ′

0〉 + 1

t0
( f (x̂) − f (x ′

0)) ≥ 1 − t0
t0

〈x ′
0 − x̂, x ′

0 − x̂〉 > 0.

Since t0 ∈ (0, 1) and f (x̂) = infx∈K (x ′
0)
f (x), we know that

f (x ′
0) − f (x̂) ≤ 1

t0
( f (x ′

0) − f (x̂)),

and thus

infx∗∈F(x ′
0)

〈x∗, x ′
0 − x̂〉 + f (x ′

0) − f (x̂) ≤ 〈x∗
0 , x

′
0 − x̂〉 + 1

t0
( f (x ′

0) − f (x̂)) < 0.

This conflicts with the condition (d) and thus the claim is true. By (a1) and (a4) of
Theorem 3.1, we infer that d(F + N f

K ,Ω ′, 0) = d(I − x̂ + N f
K ,Ω ′, 0) = 1. In view

of (a2) of Theorem 3.1, there exists x̄0 ∈ Ω ′ ∩ K such that 0 ∈ F(x̄0) + N f
K (x̄0)

(x̄0).

Lemma 2.1 and the definition of N f
K (·)(·) imply that x̄0 is a solution of GMQVI. This

completes the proof of Theorem 4.1. ��

Remark 4.1 If f (x) = 0, for all x ∈ Rn and F is a continuous single-valued mapping,
then Theorem 4.1 reduces to Corollary 2.8.4 of [2].

From Theorem 4.1, it is easy to get the following corollary.
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Corollary 4.1 Assume that K̄ ⊂ Rn is a nonempty, closed and convex set. Let F̃ :
K̄ ⇒ Rn be an upper semicontinuous mapping with nonempty, compact and convex
values. If there exists a vector x̂ ∈ K such that the set

L<(x̂) := {x ∈ K̄ : infx∗∈F̃(x)〈x∗, x − x̂〉 < 0}

is bounded (possibly empty), then the problem (4) has a solution.

Remark 4.2 If L≤(x̂) := {x ∈ K̄ : infx∗∈F̂(x)〈x∗, x− x̂〉 ≤ 0} is bounded, then L<(x̂)
is bounded. Therefore, Corollary 4.2 extends and improves Theorem 3.1 in [18].

In the following example, we apply Theorem 4.1 to a generalized Nash game
problem.

Example 4.1 In Example 2.1, we introduced a generalized Nash game problem in
which the objective functions are nonsmooth. We continue this example by showing
the associated generalized mixed quasi-variational inequality is solvable. Set n = 3,
n1 = n2 = n3 = 1, for all x = (x1, x2, x3) ∈ R3, X = ∑3

i=1 xi and

p(X) =
{

a1X − b1, − ∞ < X ≤ β1,

a2X − b2, β1 ≤ X < +∞,

where ai and bi (i = 1, 2) are positive numbers such that a1 < a2 and a1β1 − b1 =
a2β1 − b2. For i ∈ {1, 2, 3}, let fi (xi ) = |xi |, Ki (x−i ) = {ui : |ui | ≤ |xi |} and
gi (x) = xi p(X). According to the definition of subdifferential of convex functions,
we have

∂xi gi (x) =

⎧
⎪⎨

⎪⎩

p(X) + xi {a1}, − ∞ < X < β1,

p(X) + xi [a1, a2], X = β1,

p(X) + xi {a2}, β1 < X < −∞.

Obviously, for each x ∈ R3, F(x) = ∏3
i=1 ∂xi gi (x) , f (x) = max{4a2, 4}(∑3

i=1 fi (xi ))
and K (x) = ∏3

i=1 Ki (x−i ).According to Proposition 3 on page 122 of [40], it is easy
to know that F is an upper semicontinuous mapping with nonempty, compact and con-
vex values. In addition, it is obvious that, f is convex and K is a continuous mapping
with nonempty, closed and convex values. Taking x̂ = 0, we know that the conditions
(b) and (c) of Theorem 4.1 hold. Since lim inf‖x‖→+∞[infx∗∈F(x),x∈K (x)〈x∗, x〉 +
f (x)] = +∞, there exists a bounded and open set Ω ′ ⊂ R3 such that x̂ ∈ Ω ′ and the
condition (d) of Theorem 4.1 holds. The existence of an equilibrium is a consequence
of the application of Theorem 4.1.

In the rest of the section, we give a stability result of solutions to the GMQVI.
Assume that M and Λ are nonempty subsets of Rk and Rm , respectively. Let K :
Λ × Rn ⇒ Rn be a set-valued mapping with nonempty, closed and convex values,
F : M × Rn × Rn ⇒ Rn be a set-valued mapping and f : Rn → R be a convex
mapping. We introduce the following parametric generalized mixed quasi-variational
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inequality: for each given (λ, μ) ∈ Λ × M , find x ∈ K (λ, x) and x∗ ∈ F(μ, x) such
that

〈x∗, y − x〉 + f (y) − f (x) ≥ 0, for all y ∈ K (λ, x). (19)

By Lemma 2.1 and the definition of the generalized f -normal cone operator, we know
that x ∈ K (λ, x) and x∗ ∈ F(μ, x) is a solution of the problem (19) if and only if
x ∈ K (λ, x) satisfies

0 ∈ F(μ, x) + N f
K (λ,x)(x), (20)

where N f
K (λ,x)(x) is the value at x of the generalized f -normal cone operator associ-

ated with the set K (λ, x) and (μ, λ) are parameters.
Let K1 : Λ ⇒ Rn be nonempty, closed and convex values. If f = 0, K (λ, x) =

K1(λ) for all (λ, x) ∈ Λ×Rn , then the problem (20) reduces to the following problem:
find x ∈ K (λ) satisfying

0 ∈ F(μ, x) + NK1(λ)(x), (21)

The problem (21) is called the parametric generalized variational inequalities, studied
by Kien et al. [18].

We denote by S(μ, λ) the solution set of the problems (19) with parameters (μ, λ).
Our main aim is now to investigate the behavior of S(μ, λ) when (μ, λ) varies around
(μ0, λ0).

Lemma 4.1 [41] Let X be an arbitrary metric space, A be a closed subset of X, L
be a locally convex linear space and G : A → L be a continuous mapping. Then
there exists a continuous extension F : X → L of G, i.e, F(a) = G(a) for all a ∈ A.
Furthermore, F(X) ⊂ con(G(A)), where con(G(A)) is convex hull of G(A).

Theorem 4.2 Suppose x0 ∈ S(μ0, λ0) is an isolated solution. Let X0, Λ0 and M0 be
neighborhoods of x0, λ0 andμ0, respectively. Let K : Λ0×Rn ⇒ Rn be a set-valued
mapping with nonempty, closed and convex values, F : M × Rn ⇒ Rn be a set-
valued mapping and f : Rn → R be convex. Assume that the following conditions
are satisfied:

(i) F(·, ·) is a lower semicontinuous mapping with nonempty, closed and convex val-
ues on M0×X0 and F(μ0, ·) is an upper semicontinuous mapping with nonempty,
compact and convex values on X0;

(ii) K (·, ·) is continuous on B(λ0, β1)×X0,where B(λ0, β1) := {λ̄ ∈ Λ0 : ‖λ̄−λ0‖ <

β1} for some β1 > 0;
(iii) the index

i(F(μ0, ·) + N f
K (λ0,·)∩clB(x0,r1)

, x0, 0) 
= 0,

where clB(x0, r1) = {y ∈ X0 : ‖y − x0‖ ≤ r1}.
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Then there exist a neighborhood M1 of μ0, a neighborhood Λ1 of λ0 and an open
bounded neighborhood Q0 of x0 such that the following assertions are fulfilled:

(a) The solution map Ŝ : M1 × Λ1 ⇒ Rn of the problem (19) defined by Ŝ(μ, λ) =
S(μ, λ) ∩ Q0 is nonempty for all (μ, λ) ∈ M1 × Λ1 and Ŝ(μ0, λ0) = {x0}.

(b) Ŝ is lower semicontinuous at (μ0, λ0).

Proof Thanks to the condition (i) and the continuous selection theorem (see [42]),
we infer that there exists a continuous mapping T1 : M0 × X0 → Rn such that
T1(μ, x) ∈ F(μ, x), ∀ (μ, x) ∈ M0 × X0. According to Lemma 4.1, we can assume
that T1 is continuous on M × Rn . For any (μ, λ, x) ∈ M0 × Λ0 × X0, consider the
mapping

Φ(μ, λ, x) = x − Π
f
K (λ,x)∩clB(x0,r1)

(x − T1(μ, x)).

We now show that Φ is continuous on M0 × B(λ0, β1) × clB(x0, r1).
In fact, for any given point (μ̃0, λ̃0, x̃0) ∈ M0 × B(λ0, β1) × clB(x0, r1) and for

any sequence (μ̃n, λ̃n, x̃n) in M0 × B(λ0, β1) × clB(x0, r1) with (μ̃n, λ̃n, x̃n) →
(μ̃0, λ̃0, x̃0) as n → +∞, the continuity of T1 implies that T1(μ̃n, x̃n) → T1(μ̃0, x̃0)
as n → +∞. From the condition (ii) and Definition 2.4, K (·, ·) ∩ clB(x0, r1) is
continuous on X0 × B(λ0, β1). By Lemma 2.4, we infer that

Π
f
K (λ̃n ,x̃n)∩clB(x0,r1)

(x̃n − T1(μ̃n, x̃n)) → Π
f
K (λ̃0,x̃0)∩clB(x0,r1)

(x̃0 − T1(μ̃0, x̃0)),

as n → +∞.

Thus, Φ is continuous on M0 × B(λ0, β1) × clB(x0, r1).
Since x0 ∈ S(μ0, λ0) is an isolated solution, there exists an open and bounded

neighborhood Q0 ⊂ X0 of x0 such that x0 is the unique solution in clQ0 of the
generalized equation

0 ∈ F(μ0, x) + N f
K (λ0,x)

(x).

Since x0 belongs to the interior of clB(x0, r1), it is also the unique solution in clQ0
of the following generalized equation

0 ∈ F(μ0, x) + N f
K (λ0,x)∩clB(x0,r1)

(x).

From the condition (iii) and Theorem 3.2, it follows that

d(F(μ0, ·) + N f
K (λ0,·)∩clB(x0,r1)

, Q0, 0) = i(F(μ0, ·) + N f
K (λ0,·)∩clB(x0,r1)

, x0, 0) 
= 0.

Owing to (a6) of Theorem 3.1, we know that

d(Φ(μ0, λ0, ·), Q0, 0) = d(F(μ0, ·) + N f
K (λ0)∩clB(x0,r1)

, Q0, 0) 
= 0.
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Note that any solution of the equation Φ(μ0, λ0, x) = 0 is also a solution of the
following problem

0 ∈ F(μ0, x) + N f
K (λ0,·)∩clB(x0,r1)

(x).

Hence, x0 is a unique solution of Φ(μ0, λ0, x) = 0 in clQ0.
We now can use similar arguments as the proof of Theorem 4.1 in [23] (see also

Theorem 3.2 of [18]) to complete the proof of the theorem. This completes the proof
of Theorem 4.2. ��

By Theorem 4.2, it is easy to obtain the stability of solutions of the parametric
generalized variational inequalities (21). Below, we give an example to illustrate The-
orem 4.2.

Example 4.2 Let X0 = {(x1, x2) : x21 + x22 ≤ 100} ⊂ R2, Λ = Λ0 = [9, 80] ⊂ R
and M = M0 = [−0.5, 0.5]. Let f (x) = 0 for all x ∈ R2 and F : M ×R2 ⇒ R2 be
defined by

F(μ, x) = {(u1, u2) : (x2 − u1)
2 + (x22 + μx1 − u2)

2 ≤ 1},
∀ μ ∈ M, x = (x1, x2) ∈ R2.

Define the mapping K : Λ × R2 ⇒ R2 by the following formula

K (λ, x) = {(v1, v2) : 2v1 − v2 ≤ 4x2 + 1000, v1 + v2 = 2λx1},
∀ λ ∈ Λ, x = (x1, x2) ∈ R2.

For each ε > 0, let fε(μ, x) = (x2, x22 + μx1), ∀ μ ∈ M, x = (x1, x2) ∈ R2.
Thus fε(μ, x) ∈ F(μ, x) and Φ(μ, λ, x) = x − ΠK (λ,x)(x − fε(μ, x)) for all
(μ, x) ∈ M × R2. Furthermore,

Φ(μ, λ, (x1, x2)) = (x1, x2) − ΠK (λ,x)[(x1, x2) − fε(μ, (x1, x2))]
= (x1, x2) − ΠK (λ,x)[(x1 − x2, x2 − x22 − μx1)]
= (x1, x2) − (

1

2
x22 − x2 + 1

2
x1(2λ + μ + 1), x2

− 1

2
x22 + 1

2
x1(2λ − μ − 1))

= (x2 − 1

2
x22 + x1(

1

2
− λ − μ

2
),
1

2
x22 − x1(λ − 1

2
− μ

2
)).

Obviously, Φ(μ, λ, (x1, x2)) = 0 if and only if

⎧
⎪⎪⎨

⎪⎪⎩

x2 − 1

2
x22 + x1

(
1

2
− λ − μ

2

)

= 0,

1

2
x22 − x1(λ − 1

2
− μ

2
) = 0.

(22)
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The above system of equations admits two solutions (x11 , x
1
2) = (0, 0) and (x21 , x

2
2 ) =

(
2λ−μ−1
(2λ−1)2

,
2λ−μ−1
2λ−1 ). Taking (μ0, λ0) = (0, 10), we infer that x0 = (0, 0) and x ′

0 =
( 1
19 , 1) are the solutions of the problem (20) at (μ0, λ0).
In addition, set B(λ0, β1) = {λ ∈ Λ0 : ‖λ − 10‖ < 1}. Since the mappings F and

K are continuous, it is easy to see that the conditions (i) and (ii) of Theorem 4.2 are
fulfilled.

Set r1 = 0.4 and V = {(x1, x2) : x21 + x22 ≤ 0.16}. Since

JΦ(μ0, λ0, (x1, x2)) =
∣
∣
∣
∣

1
2 − λ0 − μ0

2 1 − x2
−(λ0 − 1

2 − μ0
2 ) x2

∣
∣
∣
∣ = −19x2 + 19

2
,

we know the index i(F(μ0, ·)+N f
K (λ0,·)∩clB(x0,0.4)

, x0, 0) = d(Φ(μ0, λ0, ·), V , 0) =
1.

Choosing M1 = M0, Λ1 = B(λ0, β1) and Q0 = V , we know that Ŝ(μ0, λ0) =
S(μ0, λ0) ∩ Q0 = {x0} and Ŝ(μ, λ) = S(μ, λ) ∩ Q0 is nonempty for all (μ, λ) ∈
M1 × Λ1 and lower semicontinuous at (μ0, λ0).
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