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Abstract
Demiclosedness principles are powerful tools in the study of convergence of iterative
methods. For instance, a multi-operator demiclosedness principle for firmly nonex-
pansivemappings is useful in obtaining simple and transparent arguments for the weak
convergence of the shadow sequence generated by the Douglas–Rachford algorithm.
We provide extensions of this principle, which are compatible with the framework of
more general families of mappings such as cocoercive and conically averaged map-
pings. As an application, we derive the weak convergence of the shadow sequence
generated by the adaptive Douglas–Rachford algorithm.
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1 Introduction

Demiclosedness principles play an important role in convergence analysis of fixed
point algorithms. The concept of demiclosedness sheds light on topological properties
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of mappings, in particular, in the case where a weak topology is considered. More
precisely, given a weakly sequentially closed subset D of a Hilbert space H, the
mapping T : D → H is said to be demiclosed at x ∈ D, if for every sequence (xk)

in D such that (xk) converges weakly to x and T (xk) converges strongly, say, to u,
it follows that T (x) = u. By its definition, demiclosedness holds trivially whenever
T is weakly sequentially continuous; however, it does not hold in general. Let Id
denote the identity mapping onH. A fundamental result in the theory of nonexpansive
mappings is Browder’s celebrated demiclosedness principle [1], which asserts that,
if T is nonexpansive, then the mapping Id−T is demiclosed at every point in D.
Browder’s result holds in more general settings and, by now, has become a key tool in
the study of asymptotic and ergodic properties of nonexpansive mappings; see [2–5],
for example.

In [6], Browder’s demiclosedness principle was extended and a version for finitely
many firmly nonexpansive mappings was provided. As an application, a simple proof
of the weak convergence of the Douglas–Rachford (DR) algorithm [7,8] was also
provided in [6]: The DR algorithm belongs to the class of splitting methods for the
problem of finding a zero of the sum of two maximally monotone operators A, B :
H ⇒ H; see (25). TheDRalgorithmgenerates a sequence by an iterative application of
the DR operator (see (26), (27) and the comment thereafter), which can be expressed in
terms of the resolvents (see Definition 2.3) of A and B. If the solution set is nonempty,
then the DR sequence converges weakly to a fixed point such that the resolvent of A
maps it to a zero of A+B. Thus,we see that, in fact, we are interested in the image of the
DR sequence under the resolvent of A. This image is often referred to as the shadow
sequence. The resolvent of a maximally monotone operator is continuous (in fact,
firmly nonexpansive), but not weakly continuous, in general. Hence, the convergence
of the shadow sequence cannot be derived directly from the convergence of the DR
sequence, unless the latter converges in norm. However, in general, norm convergence
does not hold: In [9], an example of a DR iteration which does not converge in norm
was explicitly constructed. Regardless of this fact, theweak convergence of the shadow
sequence was established by Svaiter in [10]. A simpler and more accessible proof of
the weak convergence of the shadow sequence was later given in [6] by employing a
multi-operator demiclosedness principle.Ademiclosedness principle for circumcenter
mappings, a class of operators that is generally not continuous, was recently developed
in [11].

In this paper, we present an extended demiclosedness principle for more general
families of operators,which are not necessarilyfirmlynonexpansive, provided that they
satisfy a (firm) nonexpansiveness balance condition.We are motivated by the adaptive
Douglas–Rachford (aDR) algorithmwhichwas recently studied in [12] in order to find
a zero of the sum of a weakly monotone operator and a strongly monotone operator.
Furthermore, the framework of [12] has been recently extended in [13] in order to
hold for monotonicity and comonotonicity settings as well. In both studies [12,13],
the convergence of the shadow sequence generated by the aDR is guaranteed only
under the assumption that the sum of the operators is strongly monotone. Moreover,
the corresponding resolvents in the aDR are not necessarily firmly nonexpansive,
and consequently, the demiclosedness principles of [6] cannot be directly applied in
this framework. Our current approach is compatible with the framework of the aDR.
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Consequently, we employ our generalized demiclosedness principles in order to obtain
weak convergence of the shadow sequence of the aDR in most cases. To this end, we
employ and extend techniques and results from [6].

The remainder of this paper is organized as follows: In Sect. 2, we review pre-
liminaries and basic results. New demiclosedness principles are provided in Sect. 3.
In Sect. 4, we employ the demiclosedness principles from Sect. 3 in order to obtain
the weak convergence of the shadow sequence of the adaptive Douglas–Rachford
algorithm. Finally, in Sect. 5, we conclude our discussion.

2 Preliminaries

Throughout this paper,H is a real Hilbert space equipped with inner product 〈·, ·〉 and
induced norm ‖ · ‖. The weak convergence and strong convergence are denoted by ⇀

and →, respectively. We set R+ := {r ∈ R : r ≥ 0} and R++ := {r ∈ R : r > 0}.
Given a set-valued operator A : H ⇒ H, the graph, the domain, the set of fixed points
and the set of zeros of A, are denoted, respectively, by gra A, dom A, Fix A and zer A;
i.e.,

gra A := {
(x, u) ∈ H × H : u ∈ A(x)

}
, dom A := {

x ∈ H : A(x) �= ∅
}
,

Fix A := {
x ∈ H : x ∈ A(x)

}
and zer A := {

x ∈ H : 0 ∈ A(x)
}
.

The identity mapping is denoted by Id and the inverse of A is denoted by A−1, i.e.,
gra A−1 := {(u, x) ∈ H × H : u ∈ A(x)}.
Definition 2.1 Let D ⊆ H be nonempty, let T : D → H be a mapping, set τ > 0 and
θ > 0. The mapping T is said to be

(i) nonexpansive, if

∥∥T (x) − T (y)
∥∥ ≤ ‖x − y‖, ∀x, y ∈ D;

(ii) firmly nonexpansive, if

∥∥T (x) − T (y)
∥∥2 + ∥∥(Id−T )(x) − (Id−T )(y)

∥∥2 ≤ ‖x − y‖2, ∀x, y ∈ D,

equivalently,

〈
x − y, T (x) − T (y)

〉 ≥ ∥∥T (x) − T (y)
∥∥2, ∀x, y ∈ D;

(iii) τ -cocoercive, if τT is firmly nonexpansive, i.e.,

〈
x − y, T (x) − T (y)

〉 ≥ τ
∥∥T (x) − T (y)

∥∥2, ∀x, y ∈ D;

(iv) conically θ -averaged, if there exists a nonexpansive operator R : D → H such
that

T = (1 − θ) Id+θ R.

123



762 Journal of Optimization Theory and Applications (2020) 186:759–778

Conically θ -averaged mappings, introduced in [14] and originally named conically
nonexpansive mappings, are natural extensions of the classical θ -averaged mappings;
more precisely, a conically θ -averaged mapping is θ -averaged whenever θ ∈ ]0, 1[.
Additional properties and further discussions of conically averaged mappings, such
as the following result, are available in [13,15].

Fact 2.1 Let D ⊆ H be nonempty, let T : D → H and let θ, σ > 0. Then the
following assertions are equivalent:

(i) T is conically θ -averaged;
(ii) (1 − σ) Id+σ T is conically σθ -averaged;
(iii) For all x, y ∈ D,

∥∥T (x) − T (y)
∥∥2 ≤ ‖x − y‖2 − 1 − θ

θ

∥∥(Id−T )(x) − (Id−T )(y)
∥∥2.

Proof See [13, Proposition 2.2]. �
Lemma 2.1 Let D ⊆ H be nonempty, let T : D → H and let τ, θ > 0.

(i) If T is τ -cocoercive, then it is τ ′-cocoercive for any τ ′ ∈ ]0, τ ].
(ii) If T is conically θ -averaged, then it is conically θ ′-averaged for any θ ′ ∈ [θ,∞[.
Proof (i): Follows immediately from the definition of cocoercivity. (ii): Follows from
the equivalence (i) ⇐⇒ (iii) in Fact 2.1. �
Remark 2.1 We note that cocoercivity and conical averagedness generalize the notion
of firm nonexpansiveness as follows:

(i) ByDefinition2.1(ii) and (iii) , themappingT is firmlynonexpansive if andonly ifT
is 1-cocoercive. Consequently, by employing Lemma 2.1(i), we see that whenever
τ ≥ 1, a τ -cocoercive mapping is firmly nonexpansive.

(ii) Similarly, the mapping T is firmly nonexpansive if and only if it is conically
1
2 -averaged. Consequently, by employing Lemma 2.1(ii), we see that whenever
θ ≤ 1

2 , a conically θ -averaged mapping is firmly nonexpansive.

In our study, we will employ the following generalized notions of monotonicity.

Definition 2.2 Let A : H ⇒ H and let α ∈ R. Then A is said to be

(i) α-monotone, if

〈x − y, u − v〉 ≥ α‖x − y‖2, ∀(x, u), (y, v) ∈ gra A;

(ii) α-comonotone, if A−1 is α-monotone, i.e.,

〈x − y, u − v〉 ≥ α‖u − v‖2, ∀(x, u), (y, v) ∈ gra A.

The α-monotone operator A is said to be maximally α-monotone (resp. maximally α-
comonotone), if there is no α-monotone (resp. α-comonotone) operator B : H ⇒ H
such that gra A is properly contained in gra B.
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Remark 2.2 Common notions of monotonicity are related to the notions in Definition
2.2 as follows:

– In the case where α = 0, 0-monotonicity and 0-comonotonicity simply mean
monotonicity (see, for example, [16, Definition 20.1]).

– In the case where α > 0, α-monotonicity is also known as α-strong monotonicity
(see, for example, [16, Definition 22.1(iv)]). Similarly, α-comonotonicity is α-
cocoercivity in Definition 2.1(iii).

– In the case where α < 0, α-monotonicity and α-comonotonicity are also known
as α-hypomonotonicity and α-cohypomonotonicity, respectively (see, for exam-
ple, [17, Definition 2.2]). In addition, α-monotonicity is referred to as α-weak
monotonicity in [12].

We continue our preliminary discussion by recalling the definition of the resolvent.

Definition 2.3 Let A : H ⇒ H. The resolvent of A is the operator defined by

JA := (Id+A)−1.

The relaxed resolvent of A with parameter λ > 0 is defined by

Jλ
A := (1 − λ) Id+λJA.

When λ = 2, we set RA := J 2
A = 2JA − Id, also known as the reflected resolvent of

A.

We conclude our preliminary discussion by relating monotonicity and comono-
tonicity properties with corresponding properties for resolvents by recalling the
following facts.

Fact 2.2 (resolvents of monotone operators) Let A : H ⇒ H be α-monotone, where
α ∈ R. If γ > 0 is such that 1 + γα > 0, then

(i) Jγ A is single-valued and (1 + γα)-cocoercive;
(ii) dom Jγ A = H if and only if A is maximally α-monotone.

Proof See [12, Lemma 3.3(ii) and Proposition 3.4]. �

Fact 2.3 (resolvents of comonotone operators) Let A : H ⇒ H be α-comonotone,
where α ∈ R. If γ > 0 is such that γ + α > 0, then

(i) Jγ A is at most single-valued and conically γ
2(γ+α)

-averaged;
(ii) dom Jγ A = H if and only if A is maximally α-comonotone.

Proof See [13, Propositions 3.7 and 3.8(i)]. �
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3 NewDemiclosedness Principles for Generalized Nonexpansive
Mappings

In this section, we extend the multi-operator demiclosedness principles for firmly
nonexpansive mappings from [6] to more general families of operators. To this end,
we employ and extend techniques and results from [6] in a weighted inner product
space. We begin our discussion by recalling the following fact.

Fact 3.1 Let F : H → H be a firmly nonexpansive mapping, let (xk)
∞
k=0 be a sequence

in H, and let C, D ⊆ H be closed affine subspaces such that C − C = (D − D)⊥.
Suppose that

xk⇀x, (1a)

F(xk)⇀y, (1b)

F(xk) − PC (F(xk)) → 0, (1c)

(xk − F(xk)) − PD(xk − F(xk)) → 0. (1d)

Then y ∈ C, x ∈ y + D, and y = F(x).

Proof See [6, Corollary 2.7]. �

3.1 Demiclosedness Principles for Cocoercive Operators

Let n ≥ 2 be an integer and set ω := (ω1, ω2, . . . , ωn) ∈ R
n++. We equip the space

H := Hn = H × H × · · · × H︸ ︷︷ ︸
n

, (2a)

with the weighted inner product 〈·, ·〉ω defined by

〈x, y〉ω :=
n∑

i=1

ωi 〈xi , yi 〉, ∀x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ H.

(2b)

Thus, H is a Hilbert space with the induced norm ‖x‖ω = √〈x, x〉ω.
Let τ := (τ1, τ2, . . . , τn) ∈ R

n
�

{
(0, . . . , 0)

}
. Let C ⊂ H be the subspace defined

by
C := {

(τ1x, τ2x, . . . , τn x) : x ∈ H}
.

In the following lemma, we provide a formula for the projector PC , which will be
useful later.

Lemma 3.1 Let x := (x1, x2, . . . , xn) ∈ H. Then the projection of x onto C is

PC(x) = (τ1u, τ2u, . . . , τnu) , where u :=
∑n

i=1 ωiτi xi∑n
i=1 ωiτ

2
i

. (3)
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Proof Fix x := (x1, x2, . . . , xn) ∈ H. Since
∑n

i=1 ωiτ
2
i > 0, u is well defined by (3).

Set y = (τ1u, τ2u, . . . , τnu).We prove that (x− y) ⊥ z for each z ∈ C; consequently,
PC(x) = y. Indeed, let z = (τ1v, τ2v, . . . , τnv) ∈ C. Then

〈z, x − y〉ω =
n∑

i=1

ωi 〈τiv, xi − τi u〉

=
〈

v,

n∑

i=1

ωiτi (xi − τi u)

〉

=
〈

v,

n∑

i=1

ωiτi xi −
( n∑

i=1

ωiτ
2
i

)
u

〉

= 〈v, 0〉 = 0.

�
Theorem 3.1 (demiclosedness principle for cocoercive operators) Let
(ρ1, ρ2, . . . , ρn), (τ1, τ2, . . . , τn) ∈ R

n++. For each i ∈ {1, 2, . . . , n}, let Fi : H → H
be τi -cocoercive and let

(
xi,k

)∞
k=0 be a sequence in H. Suppose that

∀i ∈ {1, 2, . . . , n}, xi,k⇀xi , (4a)

∀i ∈ {1, 2, . . . , n}, Fi (xi,k)⇀y, (4b)
n∑

i=1

ρi (xi,k − τi Fi (xi,k)) → −
(

n∑

i=1

ρiτi

)

y +
n∑

i=1

ρi xi , (4c)

∀i, j ∈ {1, 2, . . . , n}, Fi (xi,k) − Fj (x j,k) → 0. (4d)

Then F1(x1) = F2(x2) = · · · = Fn(xn) = y.

Proof For each i ∈ {1, 2, . . . , n}, set

ωi := ρi

τi

and equipH with the inner product 〈·, ·〉ω as in (2). Let F : H → H be the mapping
defined by

F(z) = (τ1F1(z1), τ2F2(z2), . . . , τn Fn(zn)), z = (z1, z2, . . . , zn) ∈ H.

Then for every u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn) ∈ H, since Fi is τi

cocoercive, it follows that

〈
u − v, F(u) − F(v)

〉
ω

=
n∑

i=1

ωi 〈ui − vi , τi Fi (ui ) − τi Fi (vi )〉

≥
n∑

i=1

ωiτ
2
i ‖Fi (ui ) − Fi (vi )‖2 = ‖F(u) − F(v)‖2ω,
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which implies that F is firmly nonexpansive. Set x := (x1, x2, . . . , xn), y :=
(τ1y, τ2y, . . . , τn y) and, for each k = 0, 1, 2, . . ., set xk := (x1,k, x2,k, . . . , xn,k).
Then

xk⇀x and F(xk)⇀ y. (5)

Let C and D be the affine subspaces of H defined by

C := {(τ1x, τ2x, . . . , τn x) : x ∈ H} and D := x − y + C⊥.

Then C − C = (D − D)⊥. Consequently, by employing Lemma 3.1, we arrive at

PC (F(xk)) = (τ1vk , . . . , τnvk), where vk :=
∑n

i=1 ωi τ
2
i Fi (xi,k)

∑n
i=1 ωi τ

2
i

=
∑n

i=1 ρi τi Fi (xi,k)∑n
i=1 ρi τi

.

Since vk is a weighted average of the Fi (xi,k)’s, (4d) implies that

∀i ∈ {1, 2, . . . , n}, Fi (xi,k) − vk → 0 as k → ∞;

consequently, we conclude that

F(xk) − PC (F(xk)) → 0. (6)

We now employ the projections

PC (xk − F(xk)) = (τ1uk, . . . , τnuk), where uk =
∑n

i=1 ρi
(
xi,k − τi Fi (xi,k)

)

∑n
i=1 ρiτi

,

and

PC (x − y) = (τ1u, . . . , τnu) − y, where u =
∑n

i=1 ρi xi∑n
i ρiτi

.

By invoking (4c), we see that uk → −y + u, which, in turn, implies that

PC (xk − F(xk)) → PC (x − y) .

Consequently,

xk − F(xk)−PD (xk − F(xk))

= xk − F(xk) − Px− y+C⊥ (xk − F(xk))

= xk − F(xk) − (
x − y + PC⊥ (xk − F(xk) − (x − y))

)

= (Id−PC⊥) (xk − F(xk)) − (Id−PC⊥) (x − y)

= PC (xk − F(xk)) − PC (x − y) → 0.

(7)
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Finally, since (5), (6) and (7) satisfy (1), we may employ Fact 3.1 in order to obtain
y = F(x), that is,

Fi (xi ) = y, ∀i ∈ {1, 2, . . . , n},
which concludes the proof. �

As a consequence of Theorem 3.1, we obtain the demiclosedness principle for
firmly nonexpansive operators [6, Theorem 2.10].

Corollary 3.1 (demiclosedness principle for firmly nonexpansive operators) For each
i ∈ {1, 2, . . . , n} let Fi : H → H be firmly nonexpansive and let

(
xi,k

)∞
k=0 be a

sequence in H. Suppose further that

∀i ∈ {1, 2, . . . , n}, xi,k⇀xi , (8a)

∀i ∈ {1, 2, . . . , n}, Fi (xi,k)⇀y, (8b)
n∑

i=1

(xi,k − Fi (xi,k)) → −ny +
n∑

i=1

xi , (8c)

∀i, j ∈ {1, 2, . . . , n}, Fi (xi,k) − Fj (x j,k) → 0. (8d)

Then F1(x1) = F2(x2) = · · · = Fn(xn) = y.

Proof The proof follows by observing that firmly nonexpansive operators are coco-
ercive with constant τ = 1 and by setting τ1 = τ2 = · · · = τn = 1 and
ρ1 = ρ2 = · · · = ρn = 1 in Theorem 3.1. �
Remark 3.1 By letting n = 1 in Corollary 3.1, we obtain a special case of Fact 3.1
where C = H and D = {x − y}, which, in turn, is equivalent to Browder’s original
demiclosedness principle [1] (alternatively, see [16, Theorem 4.27]).

Remark 3.2 (Theorem 3.1 vs. Corollary 3.1) A demiclosedness principle for cocoer-
cive mappings can be derived directly from Corollary 3.1 when we apply the latter
to the firmly nonexpansive mappings τ1F1, τ2F2, . . . , τn Fn . However, this does not
yield Theorem 3.1: In this case, the cocoercivity constants will appear in (8b) and
(8d); however, they are neither a part of (4b) nor (4d).

Following Remark 3.2, in Theorem 3.1, the cocoercivity constants τi are not a part
of the conditions in (4) except for the condition (4c). In the following result, we do
not incorporate cocoercivity constants in any of the convergence conditions; however,
in exchange, we do impose a certain balance condition on these constants.

Theorem 3.2 (closedness principle for balanced cocoercive operators) For each
i ∈ {1, 2, . . . , n}, let Fi : H → H be a τi -cocoercive mapping where τi > 0 and
let

(
xi,k

)∞
k=0 be a sequence in H. Suppose that there exists (ρ1, ρ2, . . . , ρn) ∈ R

n++
such that the weighted average

∑n
i=1 ρiτi∑n

i=1 ρi
≥ 1, (9)
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and suppose further that

∀i ∈ {1, 2, . . . , n}, xi,k⇀xi , (10a)

∀i ∈ {1, 2, . . . , n}, Fi (xi,k)⇀y, (10b)
n∑

i=1

ρi (xi,k − Fi (xi,k)) → −
( n∑

i=1

ρi

)
y +

n∑

i=1

ρi xi , (10c)

∀i, j ∈ {1, 2, . . . , n}, Fi (xi,k) − Fj (x j,k) → 0. (10d)

Then F1(x1) = F2(x2) = · · · = Fn(xn) = y.

Proof In view of (9), we may choose (τ ′
1, τ

′
2, . . . , τ

′
n), τ ′

i ∈]0, τi ] such that

∑n
i=1 ρiτ

′
i∑n

i=1 ρi
= 1.

By invoking Lemma 2.1(i), we see that for each i ∈ {1, 2, . . . , n}, Fi is τ ′
i -cocoercive.

Consequently, we may assume without loss of generality that there is equality in (9),
which we rewrite in the form

ρ1(τ1 − 1) + ρ2(τ2 − 1) + · · · + ρn(τn − 1) = 0. (11)

Conditions (10a), (10b) and (10d) are the same as (4a), (4b) and (4d), respectively.
Thus, in order to employ Theorem 3.1 3.1 and complete the proof, it suffices to prove
that (4c) holds. Indeed, by combining (10c), (10d) and (11), we arrive at

n∑

i=1

ρi
(
xi,k − τi Fi (xi,k)

) =
n∑

i=1

ρi
(
xi,k − Fi (xi,k)

) +
n∑

i=1

ρi (1 − τi )Fi (xi,k)

=
n∑

i=1

ρi
(
xi,k − Fi (xi,k)

) +
n∑

i=2

ρi (1 − τi )
(
Fi (xi,k) − F1(x1,k)

)

→ −
( n∑

i=1

ρi

)
y +

n∑

i=1

ρi xi = −
( n∑

i=1

ρiτi

)
y +

n∑

i=1

ρi xi ,

which is (4c). �

Remark 3.3 (on the balance condition (9)) We note that the conditions in (10) for
cocoercive mappings are a weighted version of the conditions in (8) for firmly non-
expansive mappings. However, the cocoercivity constants are required to be balanced
as in (9); that is, the weighted average of the cocoercivity constants has to be at least
1, which is always true for firmly nonexpansive mappings (see Remark 2.1(i)).
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3.2 Demiclosedness Principles for Conically Averaged Operators

In this section, we provide a demiclosedness principle for finitely many conically
averaged operators. This is yet another generalization of the demiclosedness principle
for firmly nonexpansive operators (Corollary 3.1), which we employ in our proof.

Theorem 3.3 (demiclosedness principle for conically averaged operators) For each
i ∈ {1, 2, . . . , n}, let Ti : H → H be conically θi -averaged where θi > 0, and let(
xi,k

)∞
k=0 be a sequence in H. Suppose that

∀i ∈ {1, . . . , n}, xi,k⇀xi , (12a)

∀i ∈ {1, . . . , n}, Ti (xi,k)⇀2θi y + (1 − 2θi )xi , (12b)
n∑

i=1

xi,k − Ti (xi,k)

2θi
→ −ny +

n∑

i=1

xi , (12c)

∀i, j ∈ {1, 2, . . . , n}, (xi,k − x j,k) −
(

xi,k − Ti (xi,k)

2θi
− x j,k − Tj (x j,k)

2θ j

)
→ 0.

(12d)

Then Ti (xi ) = 2θi y + (1 − 2θi )xi for all i ∈ {1, . . . , n}.
Proof For each i ∈ {1, . . . , n}, set

Fi :=
(
1 − 1

2θi

)
Id+ 1

2θi
Ti = Id−

(
Id−Ti

2θi

)
.

Then Fact 2.1(ii) and Remark 2.1(ii) imply that Fi is firmly nonexpansive. By employ-
ing (12a) and (12b), we see that

Fi (xi,k) =
(
1− 1

2θi

)
xi,k + 1

2θi
Ti (xi,k)⇀

(
1− 1

2θi

)
xi + y + 1 − 2θi

2θi
xi = y. (13)

Next, by invoking (12c), we obtain

n∑

i=1

(xi,k − Fi (xi,k)) =
n∑

i=1

xi,k − Ti (xi,k)

2θi
→ −ny +

n∑

i=1

xi . (14)

Finally, by employing (12d), we see that for all i, j ∈ {1, . . . , n},

Fi (xi,k) − Fj (x j,k) =
(
1 − 1

2θi

)
xi,k −

(
1 − 1

2θ j

)
x j,k + Ti (xi,k)

2θi
− Tj (x j,k)

2θ j

= (xi,k − x j,k) + Ti (xi,k) − xi,k

2θi
− Tj (x j,k) − x j,k

2θ j
→ 0.

(15)
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Consequently, in view of (12a), (13), (14) and (15), we apply Corollary 3.1 to obtain

y = Fi (xi ) =
(
1 − 1

2θi

)
xi + 1

2θi
Ti (xi ), ∀i ∈ {1, . . . , n},

which concludes the proof. �
Remark 3.4 (Theorem 3.3 vs. Corollary 3.1) Since firmly nonexpansive operators are
conically θ -averaged with θ = 1

2 , it is clear that the assertion of Theorem 3.3 is more
general than the one of Corollary 3.1. However, in view of the proof of Theorem 3.3,
we conclude that the two assertions are equivalent.

We proceed in a similar manner to our discussion of demiclosedness principles for
cocoercive operators; namely, we would like to have convergence conditions as in (12)
of Theorem 3.3 that do not incorporate the conical average constants θi . Indeed, in
the following result, we provide such conditions while, yet again, imposing a balance
condition on the θi ’s. We focus our attention on a result concerning two mappings,
which we will use in applications.

Theorem 3.4 (demiclosedness principle for two balanced averaged operators) Let
T1, T2 : H → H be θ1- and θ2-averaged mappings where θ1, θ2 ∈]0, 1[, respectively,
and suppose that there exist scalars ρ1, ρ2 > 0 such that

θ1 ≤ ρ2

ρ1 + ρ2
and θ2 ≤ ρ1

ρ1 + ρ2
. (16)

Let (x1,k)∞k=0 and (x2,k)∞k=0 be sequences in H such that

x1,k⇀x1 and x2,k⇀x2, (17a)

T1(x1,k)⇀y and T2(x2,k)⇀y, (17b)

ρ1(x1,k − T1(x1,k)) + ρ2(x2,k − T2(x2,k)) → 0, (17c)

T1(x1,k) − T2(x2,k) → 0. (17d)

Then T1(x1) = T2(x2) = y.

Proof As in the proof of Theorem 3.2, by employing Lemma 2.1(ii), we may assume
without the loss of generality that there is equality in (16), which we rewrite in the
form

( 1
2 − θ1

) + ( 1
2 − θ2

) = 0, (18a)

and ρ1θ1 = ρ2θ2. (18b)

By combining (17a), (17b) and (17c), we see that ρ1(x1 − y) + ρ2(x2 − y) = 0,
equivalently,

y = ρ1x1 + ρ2x2
ρ1 + ρ2

= θ2x1 + θ1x2. (19)
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We set y := 1
2 (x1 + x2). By invoking (18a), it follows that

2θ1y + (1 − 2θ1)x1 = (1 − θ1)x1 + θ1x2 = θ2x1 + θ1x2,

2θ2y + (1 − 2θ2)x2 = θ2x1 + (1 − θ2)x2 = θ2x1 + θ1x2.
(20)

Consequently, (17b) and (19) imply that

T1(x1,k)⇀2θ1y + (1 − 2θ1)x1,

T2(x2,k)⇀2θ2y + (1 − 2θ2)x2.
(21)

Now, by (18b), (17c) and the definition of y, it follows that

x1,k − T1(x1,k)

2θ1
+ x2,k − T2(x2,k)

2θ2

= 1

2ρ2θ2

(
ρ1

(
x1,k − T1(x1,k)

) + ρ2
(
x2,k − T2(x2,k)

) ) → 0 = −2y + x1 + x2.

(22)
In addition, from (18a) it follows that

(x1,k − x2,k) −
(

x1,k − T1(x1,k)

2θ1
− x2,k − T2(x2,k)

2θ2

)
=

= T1(x1,k) − (1 − 2θ1)x1,k
2θ1

+ (1 − 2θ2)x2,k − T2(x2,k)

2θ2

= (1 − 2θ1)

2θ1

(
T1(x1,k) − x1,k

) + T1(x1,k) − T2(x2,k) + (1 − 2θ2)

2θ2

(
x2,k − T2(x2,k)

)

= (1 − 2θ2)

(
x1,k − T1(x1,k)

2θ1
+ x2,k − T2(x2,k)

2θ2

)
+ (

T1(x1,k) − T2(x2,k)
)
.

(23)

By combining (23) with (22) and (17d), we obtain

(x1,k − x2,k) −
(

x1,k − T1(x1,k)

2θ1
− x2,k − T2(x2,k)

2θ2

)
→ 0. (24)

Finally, in view of (17a), (21), (22) and (24), we employ Theorem 3.3 in order to
obtain

T1(x1) = 2θ1y + (1 − 2θ1)x1 and T2(x2) = 2θ2y + (1 − 2θ2)x2.

By recalling (19) and (20), we arrive at T1(x1) = T2(x2) = y. �
Remark 3.5 (on the balance condition) In Theorem 3.4, we did not provide an explicit
balance condition for the averagedness constants as we did in (9). However, we did
impose a stronger condition (16), which indeed implies

ρ1θ1 + ρ2θ2

ρ1 + ρ2
≤ 2ρ1ρ2

(ρ1 + ρ2)2
≤ 1

2
;
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that is, the weighted average of the θi ’s is at most 1
2 . This is always true for firmly

nonexpansive mappings (see Remark 2.1(ii)).

4 Applications to the Adaptive Douglas–Rachford Algorithm

We recall that the problem of finding a zero of the sum of two operators A, B : H ⇒ H
is

find x ∈ H such that 0 ∈ Ax + Bx . (25)

In this section, we apply our generalized demiclosedness principles and derive the
weak convergence of the shadow sequence of the adaptive Douglas–Rachford (aDR)
algorithm, originally introduced in [12], in order to solve (25) for a weakly and a
strongly monotone operators. The analysis is then extended in [13], which includes
weakly and strongly comonotone operators as well.

Given (γ, δ, λ, μ, κ) ∈ R
5++, the aDR operator is defined by

TaDR := (1 − κ) Id+κ R2R1, (26)

where
J1 := Jγ A = (Id+γ A)−1, R1 := Jλ

γ A = (1 − λ) Id+λJ1,

J2 := JδB = (Id+δB)−1, R2 := Jμ
δA = (1 − μ) Id+μJ2.

Set an initial point x0 ∈ H. The aDR algorithm generates a sequence (xk)
∞
k=0 by the

recurrence
xk+1 ∈ TaDR(xk), k = 0, 1, 2, . . . . (27)

We observe that (26) coincides with the classical Douglas–Rachford operator in the
case where λ = μ := 2, γ = δ, and κ = 1/2. Similarly to the classical DR algorithm,
the fixed points of TaDR are not explicit solutions of (25). Nonetheless, under the
assumptions (see [13, Section 5])

(λ − 1)(μ − 1) = 1 and δ = (λ − 1)γ, (28a)

equivalently,

λ = 1 + δ

γ
and μ = 1 + γ

δ
, (28b)

the fixed points are useful in order to obtain a solution as we show next.

Fact 4.1 (aDR and solutions to the inclusion problem) Suppose that (γ, δ) ∈ R
2++,

that λ,μ are defined by (28), that κ > 0, and that J1 is single-valued. Then

(i) Id−TaDR = κμ(J1 − J2R1);
(ii) J1(Fix TaDR) = zer(A + B).

Proof See [12, Lemma 4.1]. �
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Suppose that (xk)
∞
k=0 is generated by the aDR algorithm and converges weakly to

the limit point x ∈ Fix TaDR. Then Fact 4.1(ii) asserts that the shadow limit point
J1(x) is a solution of (25). Our aim is to prove that, under certain assumptions, the
shadow sequence (J1(xk))

∞
k=0 converges weakly to the shadow limit J1(x).

In our analysis, we will employ the convergence results [13, Theorems 5.4 and 5.7]:
Under the assumptions therein, the aDR operator (27) is shown to be averaged and,
hence, single-valued. Consequently, in these cases, we will employ equality in (27).

4.1 Adaptive DR Algorithm for Monotone Operators

We begin our discussion with the case where the operators are maximally α-monotone
and maximally β-monotone. We will prove the weak convergence of the aDR algo-
rithm shadow sequence by means of a generalized demiclosedness principle. To this
end, we recall the following fact regarding the convergence of the aDR algorithm.

Fact 4.2 (aDR for monotone operators) Let α, β ∈ R such that α + β ≥ 0 and let
A, B : H ⇒ H be maximally α-monotone and maximally β-monotone, respectively,
with zer(A + B) �= ∅. Let (γ, δ, λ, μ) ∈ R

4++ satisfy (28) and either

δ(1 + 2γα) = γ, if α + β = 0, (29a)

or (γ + δ)2 < 4γ δ(1 + γα)(1 + δβ), if α + β > 0. (29b)

Set κ ∈ ]0, κ[ where

κ :=
⎧
⎨

⎩

1, if α + β = 0;
4γ δ(1 + γα)(1 + δβ) − (γ + δ)2

2γ δ(γ + δ)(α + β)
, if α + β > 0.

(30)

Set a starting point x0 ∈ H and (xk)
∞
k=0 by xk+1 = TaDR(xk), k = 0, 1, 2, . . . . Then

(i) xk − xk+1 → 0;
(ii) xk⇀x ∈ Fix TaDR with J1(x) ∈ zer(A + B).

Proof Combine [13, Theorem 5.7] with [13, Corollary 2.10] and Fact 4.1(ii). �
Theorem 4.1 (weak convergence of the shadow sequence under monotonicity) Sup-
pose that A and B are maximally α-monotone and maximally β-monotone, respec-
tively, where α + β ≥ 0 and zer(A + B) �= ∅. Let (γ, δ, λ, μ) ∈ R

4++ satisfy (28)
and (29). Let κ ∈ ]0, κ[ where κ is defined by (30). Set a starting point x0 ∈ H and
(xk)

∞
k=0 by xk+1 = TaDR(xk), k = 0, 1, 2, . . . . Then the shadow sequence (J1(xk))

∞
k=0

converges weakly

J1(xk)⇀J1(x) ∈ zer(A + B).

Proof Fact 4.2(ii) asserts that

xk⇀x ∈ Fix TaDR with J1(x) ∈ zer(A + B). (31)
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Consequently, (xk)
∞
k=0 is bounded. By combining (28) and (29), it follows that 1 +

γα > 0 and 1 + δβ > 0 (see [13, Theorem 5.7]). Thus, we employ Fact 2.2 which
asserts that J1 and J2 are τ1-cocoercive and τ2-cocoercive, respectively, with full
domain, where

τ1 := 1 + γα and τ2 := 1 + δβ.

Due to the cocoerciveness of J1, the shadow sequence (J1(xk))
∞
k=0 is bounded and

has a weak converging subsequence, say,

J1
(
xk j

)
⇀y. (32)

Set zk := R1(xk), for each k = 0, 1, 2, . . .. Then

zk j ⇀(1 − λ)x + λy =: z. (33)

Moreover, Fact 4.2(i) and Fact 4.1(i) imply that

J1(xk) − J2(zk) → 0. (34)

which, when combined with (32), implies that

J2(zk j )⇀y. (35)

Thus, on the one hand, J1(xk j ) − J2(zk j ) → 0 while, on the other hand,

J1(xk j ) − J2(zk j ) = J1(xk j ) − R1(xk j ) + R1(xk j ) − J2(zk j )

= (λ − 1)
(
xk j − J1(xk j )

) + (
zk j − J2(zk j )

)

⇀(λ − 1)(x − y) + (z − y) = −λy + (λ − 1)x + z.

(36)
By combining (31)–(36), we see that the sequences (xk j )

∞
j=0 and (zk j )

∞
j=0 satisfy the

conditions in (10) by setting

ρ1 := λ − 1 > 0 and ρ2 := 1 > 0. (37)

With this choice of the parameters ρi ’s, we observe that the balance condition (9) is
satisfied as well. Indeed, (28) implies that

ρ1(τ1 − 1) + ρ2(τ2 − 1) = (λ − 1)γ α + δβ = δ(α + β) ≥ 0.

Consequently, we apply Theorem 3.2 in order to obtain y = J1(x). �
Remark 4.1 We observe that Theorem 4.1 guarantees the weak convergence of the
shadow sequence whenever the original sequence converges weakly. In particular,
this is guaranteed under the conditions on the parameters in Fact 4.2. However, this
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is a meaningful contribution only in the case where α + β = 0: In the case where
α + β > 0, it is known that the shadow sequence converges not only weakly but, in
fact, strongly (see [12, Theorem 4.5] and [13, Remark 5.8]).

4.2 Adaptive DR Algorithm for Comonotone Operators

We now address the weak convergence of the shadow sequence in the case where the
operators are comonotone. To this end, we recall the following result regarding the
convergence of the aDR algorithm.

Fact 4.3 (aDR for comonotone operators) Let α, β ∈ R such that α + β ≥ 0 and let
A, B : H ⇒ H be maximally α-comonotone and maximally β-comonotone, respec-
tively, such that zer(A + B) �= ∅. Let (γ, δ, λ, μ) ∈ R

4++ satisfy (28) and either

δ = γ + 2α, if α + β = 0, (38a)

or (γ + δ)2 < 4(γ + α)(δ + β), if α + β > 0. (38b)

Set κ ∈ ]0, κ[ where

κ :=
⎧
⎨

⎩

1, if α + β = 0;
4(γ + α)(δ + β) − (γ + δ)2

2(γ + δ)(α + β)
, if α + β > 0.

(39)

Set a starting point x0 ∈ H and (xk)
∞
k=0 by xk+1 = TaDR(xk), k = 0, 1, 2, . . . . Then

(i) xk − xk+1 → 0;
(ii) xk⇀x ∈ Fix TaDR with J1(x) ∈ zer(A + B).

Proof Combine [13, Theorem 5.4] with [13, Corollary 2.10] and Fact 4.1(ii). �

Theorem 4.2 (weak convergence of the shadow sequence under comonotonicity) Sup-
pose that A and B are maximally α-comonotone and maximally β-comonotone such
that α +β ≥ 0 and zer(A + B) �= ∅. Let (γ, δ, λ, μ) ∈ R

4++ satisfy (28) and suppose
that

(γ + δ) ≤ min{2(γ + α), 2(δ + β)}. (40)

Let κ ∈ ]0, κ[ where κ is defined by (39). Set a starting point x0 ∈ H and (xk)
∞
k=0 by

xk+1 = TaDR(xk), k = 0, 1, 2, . . . . Then the shadow sequence (J1(xk))
∞
k=0 converges

weakly

J1(xk)⇀J1(x) ∈ zer(A + B).
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Proof We claim that (40) implies (38). Indeed, if α + β = 0, we obtain

(γ + δ) ≤ min{2(γ + α), 2(δ − α)} ⇐⇒ (γ + δ) ≤ 2(γ + α) and

(γ + δ) ≤ 2(δ − α)

⇐⇒ δ = γ + 2α,

which is (38a). On the other hand, observe that (40) trivially implies that

(γ + δ)2 ≤ (min{2(γ + α), 2(δ + β)})2 ≤ 4(γ + α)(δ + β).

Suppose that (γ + δ)2 = (min{2(γ + α), 2(δ + β)})2 = 4(γ + α)(δ + β). Then

(γ + δ) = 2(γ + α) = 2(β + δ),

which implies that α+β = 0. Thus, (38b) holds whenever α+β > 0 which concludes
the proof of our claim. Consequently, we employ Fact 4.3 in order to obtain

xk⇀x ∈ Fix TaDR with J1(x) ∈ zer(A + B).

We conclude that (xk)
∞
k=0 is bounded. Now, (28) and (38) imply that γ + α > 0

and δ + β > 0 (see [13, Theorem 5.4]). Thus, by Fact 2.3, J1 and J2 are conically
θ1-averaged and θ2-averaged, respectively, with full domain, where

θ1 := γ

2(γ + α)
and θ2 := δ

2(δ + β)
. (41)

Since J1 is conically averaged, the shadow sequence (J1(xk))
∞
k=0 is bounded and has

a weakly convergent subsequence, say, J1(xk j )⇀y. By the same arguments as in
the proof of Theorem 4.1, while employing Theorem 3.4 instead of Theorem 3.2, we
arrive at

y = J1(x),

which concludes the proof. To this end, it remains to verify that (16) holds, and then,
Theorem 3.4 is applicable. Indeed, by (41), (37) and (28),

θ1 ≤ ρ2

ρ1 + ρ2
and θ2 ≤ ρ1

ρ1 + ρ2
⇐⇒ γ

2(γ + α)
≤ 1

λ
and

δ

2(δ + β)
≤ λ − 1

λ

⇐⇒ γ

2(γ + α)
≤ 1

λ
and

γ

2(δ + β)
≤ 1

λ

⇐⇒ γ λ ≤ min{2(γ + α), 2(δ + β)}
⇐⇒ (γ + δ) ≤ min{2(γ + α), 2(δ + β)},

which is (40). �
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Remark 4.2 We note that, in contrast to Theorem 4.1, Theorem 4.2 guarantees the
weak convergence of the shadow sequence under more restrictive conditions on the
parameters than the conditions in Fact 4.3, namely in the case where α + β > 0.
Nevertheless, Theorem 4.2 covers new ground since the convergence of the shadow
sequence in the aDR for comonotone operators has not been previously addressed.
Although outside the scope of this work, we believe that the convergence of the shadow
sequence may be strong whenever α + β > 0, as in the case of monotone operators.

5 Conclusions

In this paper, we extend the multi-operator demiclosedness principle [6] to more
general classes of operators such as cocoercive and conically averaged operators. The
new findings are natural and consistent with existing theory and are later justified by
applications in which we show the weak convergence of the shadow sequence of the
adaptive Douglas–Rachford algorithm. It remains of interest to find new connections
between the demiclosedness principle and other classes of algorithms and optimization
problems.
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