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Abstract
In this paper, by means of linear and nonlinear (regular) weak separation functions, we
obtain some characterizations of robust optimality conditions for uncertain optimiza-
tion problems, especially saddle point sufficient optimality conditions. Additionally,
the relationships between three approaches used for robustness analysis: image space
analysis, vector optimization and set-valued optimization, are discussed. Finally, an
application for finding a shortest path is given to verify the validity of the results
derived in this paper.

Keywords Image space analysis · Robust optimization · Vector/set-valued
optimization · Robust optimality condition

Mathematics Subject Classification 90C31 · 90C30 · 90C29 · 90C46

1 Introduction

Uncertainty is ubiquitous in the natural world, engineering systems and our social
life. In most real-world applications, the parameters in optimization problems (OPs)
are not known exactly, and solutions to OPs can exhibit remarkable sensitivity to
perturbations in the parameters of the problem. So, it is very important to explore
uncertain optimization. Robust optimization, as one of the most effective approaches
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to dealing with uncertain OPs, is becoming more and more popular. The focus of this
method lies on minimizing the worst possible objective function value, and looking
for a solution, that is immunized against the effect of data uncertainty, where the
uncertain parameters belong to a known set. Robust OPs were introduced by Soyster
[1] for the first time and have been extensively studied in the literature. We refer to
two monographs [2,3] for extensive collections of results and to [4,5] for a survey on
recent developments.

Nowadays,many interesting and important conclusions have beenmade on the topic
of characterizing robust solutions for uncertainOPs.Under a variety of constraint qual-
ifications and convexity assumptions, some scholars devoted themselves to deriving
robust optimality conditions for uncertain convex OPs. For more details, one can refer
to [6–10] and reference therein. Furthermore, falling back on the convex uncertain sets
and the concave constraint functions, a necessary optimality condition for nonsmooth
robust OPs was shown in [11]. By using nonlinear scalarization technique, Klamroth
et al. [12] unified many different concepts of robustness and stochastic programming.
Subsequently, they developed a unified characterization of various robustness con-
cepts from vector optimization, set-valued optimization and scalarization points of
view [13], while, as far as we know, very few papers have concentrated on studying
robust optimality conditions for general uncertain scalar OPs, without any convex-
ity or concavity assumptions. Besides, whether there exists another tool to develop a
unified approach to characterizing a variety of robust solutions is worth considering.
The above problems prompted us to make further explorations and contributed the
motivation of this paper.

After a long gestation, in which we can mention paper [14] as well as a writing
by Hestenes in his book [15], image space analysis (for short, ISA) was born with
[16]. It has been proven to be a very fruitful method in investigating some topics of
the optimization theory for different kinds of OPs, for example, optimality conditions,
duality, variational principles, penalty methods, gap functions and error bounds and
so on; see [16–26]. One of the main features of the ISA consists in stating the given
problem bymeans of the impossibility of a parametric system,which can be reduced to
the disjunction of two suitable subsets of the image space. It can be realized by allowing
them to lie in two disjoint level sets of a linear or nonlinear separation function. Then,
separation is vital in the process of implementation, and how to choose appropriate
separation function is the key in the ISA.

Very recently, by defining a suitable image, Wei et al. [27] established an equiva-
lence relation between the uncertain OP and its image problem for strictly robustness.
Besides, based on separation, a unified characterization of several multiobjective
robustness concepts [28] for uncertain multiobjective OPs was provided in [29,30].
Some necessary and sufficient conditions of multiobjective robust efficiency on vec-
torization counterparts were derived in [31]. Under mild assumptions, various robust
solutions for different kinds of robustness concepts were characterized on the frame
of ISA [32], which lead to a unified approach to tackling with robustness for uncer-
tain OPs. As a continuation, motivated greatly by the works [12,13,16,17,27,29–32],
this paper is dedicated to deriving some characterizations of robust optimality con-
ditions for uncertain OPs in the sense of separation and exploring the relationships
between ISA approach and vector/set-valued optimizationmethod for robustness anal-
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ysis. Specifically, by virtue of linear and nonlinear (regular) weak separation functions,
some robust optimality conditions are achieved. Above all, based on some notations of
ISA presented in [32, Sect. 3], we introduce a collection of vector OPs and set-valued
OPs in the context of image space and discuss their relations to robustness concepts. It
provides a brand-new perspective in face of concrete OPs with uncertainties and may
be helpful for decision making.

The remainder of this paper is organized as follows. In Sect. 2, we recall some
preliminaries and formulate the uncertain problem. Some characterizations of robust
optimality conditions for uncertain OPs are achieved by virtue of linear and nonlinear
(regular) weak separation functions in Sect. 3. Section 4 reveals the relationships
between ISA, vector optimization and set-valued optimization approaches. In Sect. 5,
an application for the shortest path problem is employed to verify the usefulness of the
results obtained in this paper, and a short conclusion of the paper is given in Sect. 6.

2 Preliminaries

In this section, we shall recall some notations and definitions, which will be used in
the sequel. Let X ⊆ R

n be a nonempty subset and Y be a normed linear space. The
topological interior, closure, boundary and complement of a set M ⊆ Y are denoted
by intM, clM, bdM, Mc, respectively. For the Euclidean space R

m , 〈·, ·〉 represents
the scalar product. A nonempty subset C ⊆ R

m is said to be a cone, if and only
if tC ⊆ C for all t ≥ 0. A cone C ⊆ R

m is said to be convex (resp. pointed),
if and only if C + C ⊆ C (resp. C ∩ (−C) = {0Rm }). The positive polar cone of
a cone C ⊆ R

m is given by C∗ := {l ∈ R
m : 〈l, z〉 ≥ 0, ∀ z ∈ C}. The set

coneM := ⋃
t≥0 tM is the cone generated by M . For a function h : X → R and

α ∈ R, the set lev≥(>)αh := {x ∈ X : h(x) ≥ (>)α} is called (strict) upper-level set
of h.

Now a general OP with uncertainties both in the objective and constraints is con-
sidered. Assume that the nonempty set U of a finite-dimensional space defines an
uncertainty set (convex or nonconvex, compact or noncompact, discrete scenarios or
continuous interval), where ξ ∈ U is a parameter, which represents an uncertain real
number, vector or scenario. Let f : X ×U → R and Fi : X ×U → R, i = 1, . . . ,m.
Then, an uncertain scalar OP is defined as a parametric OP

(Q(ξ), ξ ∈ U ), (1)

where for a given ξ ∈ U the OP (Q(ξ)) is described by

min f (x, ξ) s.t. Fi (x, ξ) ≤ 0, i = 1, . . . ,m, x ∈ X .

We denote by ξ̂ ∈ U the nominal value, i.e., the value of ξ that we believe is true
today. (Q(ξ̂ )) is called the nominal problem.

Under mild assumptions, a unified approach to characterizing various robust solu-
tions for different kinds of robustness conceptswas proposed in [32], for example, strict
robustness, optimistic robustness, reliable robustness, light robustness, ε-constraint
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robustness and adjustable robustness. More precisely, one can refer to [32, Theorems
3.1-3.6]. In this paper, we mainly focus on analyzing the concepts of strict robustness
and optimistic robustness in the context of ISA. In what follows, two basic mathemat-
ical models and some notations used within the ISA approach from the works [27,32]
are recalled.

For problem (1), the classical robustness concept is called strict robustness, which
was originally proposed by Soyster [1] and developed by Ben-Tal et al. [2]. The idea is
tominimize the worst possible objective function value and search for a solution that is
good enough in the worst case. Strict robustness is a conservative concept and reveals
the pessimistic attitude of a decision maker. Then, the strictly robust counterpart of
problem (1) is given by

min sup
ξ∈U

f (x, ξ) s.t. Fi (x, ξ) ≤ 0, ∀ ξ ∈ U , i = 1, . . . ,m, x ∈ X . (2)

Set D1 := −R
m+ and F(x, ξ) := (F1(x, ξ), . . . , Fm(x, ξ)) for a given ξ ∈ U .

The set of feasible solutions of problem (2) is denoted as X1 := {x ∈ X : F(x, ξ) ∈
D1, ∀ξ ∈ U }. It follows from [2, pp. 9–10] that, if a feasible solution x ∈ X1 is optimal
to problem (2), then it is called a strictly robust solution to problem (1). Assume that
supξ∈U f (x, ξ) < ∞ and supξ∈U Fi (x, ξ) < ∞, i = 1, . . . ,m for all x ∈ X . Let
x̄ ∈ X . Define the map

A1
x̄ : X ×U → R

1+m, A1
x̄ (x, ξ) :=

(

f (x̄, ξ) − sup
ξ∈U

f (x, ξ), F1(x)

)

,

where F1(x) :=
(
sup
ξ∈U

F1(x, ξ), . . . , sup
ξ∈U

Fm(x, ξ)
)
, and consider the following sets

K1
x̄ := {(u, v) ∈ R

1+m : (u, v) = A1
x̄ (x, ξ), x ∈ X , ξ ∈ U },

H1 := {(u, v) ∈ R
1+m : u > 0, v ∈ D1} = R++ × (−R

m+).

K1
x̄ is called corrected image of problem (1) and R

1+m is the image space. It follows
from [27] that x̄ ∈ X1 is a strictly robust solution to problem (1), if and only if
K1

x̄ ∩ H1 = ∅.
While strict robustness concentrates on theworst case, optimistic robustness aims at

minimizing the best possible objective function value over X2 and shows an optimistic
attitude of a decision maker, where X2 := {x ∈ X : F(x, ξ) ∈ D1 for some ξ ∈ U }
stands for the set of optimistic feasible solutions. The optimistic counterpart was pro-
posed by Beck and Ben-Tal [33] in studying robust duality theory. Then, the optimistic
counterpart of problem (1) is denoted by

min inf
ξ∈U f (x, ξ) s.t. Fi (x, ξ) ≤ 0, for some ξ ∈ U , i = 1, . . . ,m, x ∈ X . (3)

If a feasible solution x ∈ X2 is optimal to problem (3), then it is an optimistic robust
solution of problem (1). To introduce some notations associated with ISA, we recall
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the assumptions that the values of infξ∈U f (x, ξ) and infξ∈U Fi (x, ξ), i = 1, . . . ,m
are finite for all x ∈ X , and infξ∈U Fi (x, ξ), i = 1, . . . ,m are attained for all x ∈ X .

Let x̄ ∈ X and F2(x) :=
(
min
ξ∈U F1(x, ξ), . . . ,min

ξ∈U Fm(x, ξ)
)
. Define the map

A2
x̄ : X ×U → R

1+m, A2
x̄ (x, ξ) :=

(

inf
ξ∈U f (x̄, ξ) − f (x, ξ), F2(x)

)

,

and consider the following sets

K2
x̄ := {(u, v) ∈ R

1+m : (u, v) = A2
x̄ (x, ξ), x ∈ X , ξ ∈ U }, H2 := H1.

K2
x̄ is called corrected image of problem (1) under the optimistic robust counterpart.

We achieve from [32, Theorem 3.2] that x̄ ∈ X2 is an optimistic robust solution to
problem (1), if and only if K2

x̄ ∩ H2 = ∅.
Let A, B ⊆ R

p be nonempty subsets, and K ⊆ R
p be a convex and pointed cone.

The set of maximal elements of A with respect to K (see [34, Definition 4.1]) is
denoted by

Max(A, K ) := {a ∈ A : A ∩ ({a} + K ) = {a}}.

LetC ⊆ R
p be a proper, convex, closed and pointed cone. In set-valuedOPs, in order to

compare two sets A and B, we recall the upper (resp., lower) set less order relation�u
C

(resp., �l
C ) [28, Definition 2.6.9] defined byA �u

C B :⇔ A ⊆ B − C (resp., A �l
C

B :⇔ B ⊆ A + C).

It is well known that the relationship between upper set less order relation and lower
set less order relation can be described by A �u

C B ⇔ B �l
−C A.

In the next, we recall two kinds of famous nonlinear scalarizing functions (Ger-
stewitz (Tammer) function and the oriented distance function), and some of their
properties, which are employed to achieve (regular) weak separation functions.

Definition 2.1 [35] Let C ⊂ Y be a proper, convex, closed and pointed cone with
nonempty interior. Given a fixed point k ∈ −intC , the Gerstewitz (Tammer) function
ϕC,k : Y → R has the form

ϕC,k(y) := min{t ∈ R : y ∈ tk + C}, y ∈ Y .

Proposition 2.1 [28,35] For any given k ∈ −intC and t ∈ R, it holds:

(i) ϕC,k(y) < t ⇔ y ∈ tk + intC;
(ii) ϕC,k(y) ≤ t ⇔ y ∈ tk + C;
(iii) ϕC,k(y) = t ⇔ y ∈ tk + bdC.

Definition 2.2 [36] For a set A ⊆ Y , let the oriented distance function �A : Y →
R∪{±∞} be defined as�A(y) := dA(y)−dY\A(y),where dA(y) = infa∈A ‖ y−a ‖,
d∅(y) = +∞, and ‖ y ‖ denotes the norm of y in Y .
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In general, this function is presented to analyze the geometry of nonsmoothOPs and
derive necessary optimality conditions. Some properties of �A are gathered together
in the following proposition.

Proposition 2.2 [37] If the set A is nonempty and A �= Y , then

(i) �A is real valued;
(ii) if int A �= ∅, then �A(y) < 0 for every y ∈ int A;
(iii) �A(y) = 0 for every y ∈ bd A;
(iv) if int Ac �= ∅, then �A(y) > 0 for every y ∈ int Ac.

3 Separation Functions and Robust Optimality Conditions

Based on the idea of ISA, some equivalent characterizations of various robust solutions
have been established by constructing the impossibility of parametric systems (i.e., the
separation of two suitable subsets in the image space) in [32], which lead to a unified
framework to deal with uncertain OPs. With the purpose of deriving robust optimality
conditions for varieties of robustness concepts, we recall linear and nonlinear (regular)
weak separation functions such that the sets obtained in [32] are separable, and analyze
different kinds of robust counterpart problems.

Let � denote a set of parameters to be specified case by case, andH ⊂ R
1+m be a

nonempty set. We firstly recall the definitions of weak separation function and regular
weak separation function.

Definition 3.1 [16] The class of all the functions w : R
1+m × � → R, such that

(i) lev≥0 w(·;π) ⊇ H, ∀π ∈ �,
(ii)

⋂
π∈� lev>0 w(·;π) ⊆ H,

is called the class of weak separation functions and is denoted by W (�).

Definition 3.2 [16] The class of all the functions w : R
1+m × � → R, such that

⋂

π∈�

lev>0 w(·;π) = H,

is denoted by WR(�) and is called the class of regular weak separation functions.

Consider the following linear and nonlinear separation functions:
w1(u, v; θ, λ) := θu + 〈λ, v〉, (u, v) ∈ R

1+m , (θ, λ) ∈ �1 := (R+ × D1∗) \ {0R1+m };
wl(u, v; θ, λ) := θu + ωl(v; λ), (u, v) ∈ R

1+m , (θ, λ) ∈ �2 := R
2+ \ {0R2 }, l = 2, 3, 4,

where ωl : R
m × R+ → R are given by

ωl(v; λ) :=
⎧
⎨

⎩

−λ �D1(v), l = 2,
−λ ϕD1,k1(v), l = 3,
supz∈{v}−D1(−λ ϕD1,k1(z) − r σ(z)), l = 4,
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and k1 ∈ −intRm+ is given, r > 0 is a real constant and the augmented function
σ : R

m → R is upper semicontinuous such that

arg min
z∈Rm

σ(z) = {0Rm }, σ (0Rm ) = 0.

The linear separation function w1 has been employed to investigate various OPs
[16,19,21], and some optimality conditions aswell as duality results have been derived.
For the nonlinear weak separation function w2, it was introduced to study the opti-
mality conditions and error bounds for Ky Fan quasi-inequalities in [25]. By means of
the Gerstewitz function, the nonlinear weak separation functions w3 andw4 were pre-
sented and used to analyze inverse variational inequalities [26]. If we replace �1 and
�2 by �3 := R++ × D1∗ and �4 := R++ × R+, respectively, then wl , l = 1, 2, 3, 4
are regular. By applying the linear and nonlinear separation functions, our aim is to
derive some robust optimality conditions for general uncertain OPs.

Remark 3.1 When the sets cone(Ki
x̄ ) and Hi for i = 1, 2 are convex, the linear sep-

aration can be ensured. Unfortunately, the inverse implication usually does not hold.
One can refer to [32, Example 3.2], in which K1

0 ∩ H1 = ∅ and cone(K1
0) is non-

convex for strict robustness, while the separation is linear (see [32, Fig. 4]). Thus, the
convexity of sets is only a sufficient condition for linear separation. Naturally, if the
linear separation holds, then the nonlinear separation must be obtained, but the reverse
implication is in general not true. Moreover, another equivalence of linear (regular)
separation betweenKi

x̄ andHi has been given, one can refer to [19] and [24, Theorems
4.1 and 4.3].

Remark 3.2 The motivation for the function w3 introduced is twofold. First, it is con-
venient and efficient in calculation as w2 by choosing appropriate k1 ∈ −intRm+.
Second, w3 as a nonlinear separation function is valid, when D is a general closed
convex set and not necessary a cone.

We now use the specific linear or nonlinear functions wl , l = 1, 2, 3, 4 to derive
Lagrangian-type sufficient robust optimality conditions. Before that, it is necessary to
define the linear and nonlinear regular separation.

Definition 3.3 The sets Ki
x̄ and Hi admit a

(i) linear regular separation for i = 1, 2, if and only if there exists (θ̄ , λ̄) ∈ �3, such
that

w1(u, v; θ̄ , λ̄) := θ̄u + 〈λ̄, v〉 ≤ 0, ∀ (u, v) ∈ Ki
x̄ ; (4)

(ii) nonlinear regular separation for i = 1, 2, if and only if there exists (θ̄ , λ̄) ∈ �4,
such that

wl(u, v; θ̄ , λ̄) := θ̄u + ωl(v; λ̄) ≤ 0, ∀ (u, v) ∈ Ki
x̄ , l = 2, 3, 4. (5)

Proposition 3.1 If Ki
x̄ and Hi admit a (linear/nonlinear) regular separation for i =

1, 2, then x̄ ∈ X1 (resp., X2) is (a/an) strictly (resp., optimistic) robust solution of
problem (1).
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Proof We only verify the linear result, since the proof of nonlinear case is similar.
By Definition 3.3, if Ki

x̄ and Hi admit a linear regular separation for i = 1, 2, then
∃ (θ̄ , λ̄) ∈ �3 such that (4) holds. It follows from Definition 3.2 that

⋂

(θ,λ)∈�3

lev>0 w1(·; θ, λ) ⊇ Hi . (6)

Combining (4) and (6), one can reach that Ki
x̄ ∩ Hi = ∅. Thus, x̄ ∈ X1 (resp., X2) is

a strictly (resp., optimistic) robust solution of problem (1). ��
BeforewededuceLagrangian-type robust optimality conditions for the scalar robust

OP, we mainly consider the concepts of strict robustness and optimistic robustness.
Then, the corresponding generalizedLagrangian functions associatedwith inequalities
(4) and (5) are described as follows:

(i) For strict robustness, the generalized Lagrangian functions L1
1 : X × �3 → R

and L1
l : X × �4 → R (where l = 2, 3, 4 for (i), (ii) and (iii)) are denoted by

L1
1(x; θ, λ) := θ sup

ξ∈U
f (x, ξ) − 〈λ, F1(x)〉 and

L1
l (x; θ, λ) := θ sup

ξ∈U
f (x, ξ) − ωl(F

1(x); λ);

(ii) For optimistic robustness, the generalized Lagrangian functions L2
1 : X × �3 →

R, L2
l : X × �4 → R are defined by

L2
1(x; θ, λ) := θ inf

ξ∈U f (x, ξ) − 〈λ, F2(x)〉,
L2
l (x; θ, λ) := θ inf

ξ∈U f (x, ξ) − ωl(F
2(x); λ).

Under mild assumptions, the following theorems establish equivalent relationships
between separation and saddle point in the ISA.

Theorem 3.1 Let x̄ ∈ X1. Assume that supξ∈U f (x̄, ξ) is attained. The sets K1
x̄ and

H1 admit a

(i) linear regular separation, if and only if there exists (θ̄ , λ̄) ∈ �3, such that (x̄, λ̄)

is a saddle point for the generalized Lagrangian functionL1
1(x; θ̄ , λ) onX ×D1∗,

i.e.,
L1
1(x̄; θ̄ , λ) ≤ L1

1(x̄; θ̄ , λ̄) ≤ L1
1(x; θ̄ , λ̄), ∀ x ∈ X , ∀ λ ∈ D1∗;

(ii) nonlinear regular separation, if and only if there exists (θ̄ , λ̄) ∈ �4, such that
(x̄, λ̄) is a saddle point for the generalized Lagrangian functions L1

l (x; θ̄ , λ) on
X × R+ for l = 2, 3, 4.

Proof The detailed proofs of parts (i) and (ii) can be seen in [27] (i.e., the proof of
Theorem 3.4), where the optimality conditions for strictly robust solutions have been
investigated. ��
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Theorem 3.2 Let x̄ ∈ X2. Assume that infξ∈U f (x̄, ξ) is attained. The sets K2
x̄ and

H1 admit a

(i) linear regular separation, if and only if there exists (θ̄ , λ̄) ∈ �3, such that (x̄, λ̄)

is a saddle point for the generalized Lagrangian functionL2
1(x; θ̄ , λ) onX ×D1∗,

i.e.,
L2
1(x̄; θ̄ , λ) ≤ L2

1(x̄; θ̄ , λ̄) ≤ L2
1(x; θ̄ , λ̄), ∀ x ∈ X , ∀ λ ∈ D1∗; (7)

(ii) nonlinear regular separation, if and only if there exists (θ̄ , λ̄) ∈ �4, such that
(x̄, λ̄) is a saddle point for the generalized Lagrangian functions L2

l (x; θ̄ , λ) on
X × R+ for l = 2, 3, 4.

Proof (i) Necessity. Assume that K2
x̄ and H1 admit a linear regular separation. It

follows from Definition 3.3 that there exists (θ̄ , λ̄) ∈ �3 such that (4) holds, i.e.,

θ̄
(
inf
ξ∈U f (x̄, ξ) − f (x, ξ)

)
+ 〈λ̄, F2(x)〉 ≤ 0, ∀ x ∈ X , ∀ ξ ∈ U . (8)

Since infξ∈U f (x̄, ξ) is attained, there exists ξ̄ ∈ U such that f (x̄, ξ̄ ) =
infξ∈U f (x̄, ξ). By taking x = x̄ and ξ = ξ̄ , we achieve from (8) that
〈λ̄, F2(x̄)〉 ≤ 0. Due to x̄ ∈ X2, it holds 〈λ̄, F2(x̄)〉 ≥ 0. Thus, we conclude
〈λ̄, F2(x̄)〉 = 0. One can reach that

L2
1(x̄; θ̄ , λ) = θ̄ inf

ξ∈U f (x̄, ξ) − 〈λ, F2(x̄)〉 ≤ θ̄ inf
ξ∈U f (x̄, ξ) − 〈λ̄, F2(x̄)〉

= L2
1(x̄; θ̄ , λ̄), ∀ λ ∈ D1∗. (9)

It follows from 〈λ̄, F2(x̄)〉 ≥ 0 and (8), for any x ∈ X , that

θ̄
(
inf
ξ∈U f (x̄, ξ) − f (x, ξ)

)
+ 〈λ̄, F2(x)〉 ≤ 0 for all ξ ∈ U

⇔ θ̄ inf
ξ∈U f (x̄, ξ) ≤ θ̄ f (x, ξ) − 〈λ̄, F2(x)〉 for all ξ ∈ U

⇔ θ̄ inf
ξ∈U f (x̄, ξ) ≤ θ̄ inf

ξ∈U f (x, ξ) − 〈λ̄, F2(x)〉
⇒ θ̄ inf

ξ∈U f (x̄, ξ) − 〈λ̄, F2(x̄)〉 ≤ θ̄ inf
ξ∈U f (x, ξ) − 〈λ̄, F2(x)〉

⇔ L2
1(x̄; θ̄ , λ̄) ≤ L2

1(x; θ̄ , λ̄).

(10)

We achieve from (9) and (10) that (7) holds. Hence, (x̄, λ̄) is a saddle point.
Sufficiency. Let x̄ ∈ X2. Suppose that (x̄, λ̄) be a saddle point for L2

1(x; θ̄ , λ).
Then, inequality (7) is true. From the first inequality of (7), one can see that
0 ≤ 〈λ̄, F2(x̄)〉 ≤ 〈λ, F2(x̄)〉 for all λ ∈ D1∗. Set λ = 0Rm ∈ D1∗, we have
〈λ, F2(x̄)〉 = 0, which implies 〈λ̄, F2(x̄)〉 = 0. Combining the second inequality
of (7) and the inverse direction of (10), one can read that the inequality (8) holds
(note that the attainment property of infξ∈U f (x̄, ξ) is unnecessary). It follows
from Definition 3.3 that K2

x̄ and H1 admit a linear regular separation.
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(ii) If x̄ ∈ X2, it holds F2(x̄) ∈ D2. Since k2 ∈ −intRm+ is given, it fol-
lows from Propositions 2.1 (ii) and 2.2 (ii)-(iii) that ϕD2,k2(F

2(x̄)) ≤ 0 and
�D2(F2(x̄)) ≤ 0. Since 0Rm ∈ {F2(x̄)} − D2 and σ(0Rm ) = 0, one can reach
that supz∈{F2(x̄)}−D2(−λ ϕD2,k2(z)−r σ(z)) ≥ 0. To be precise, essential to adapt
the proof of (i) are ωl(F2(x̄); λ) ≥ 0 and ωl(F2(x̄); 0) = 0 for all l = 2, 3, 4. It
should be pointed out that the rest can be easily checked.

��

Combined Proposition 3.1 with Theorems 3.1 and 3.2, the following corollaries
can be reached. Thus, we state it without detailed proof.

Corollary 3.1 Let x̄ ∈ X1. If there exists (θ̄ , λ̄) ∈ �3 (resp., �4), such that (x̄, λ̄) is a
saddle point for the generalized Lagrangian function L1

1(x; θ̄ , λ) (resp., L1
l (x; θ̄ , λ)

for some l ∈ {2, 3, 4}) onX ×D1∗ (resp.,X ×R+), then x̄ is a strictly robust solution
of problem (1).

Corollary 3.2 Let x̄ ∈ X2. If there exists (θ̄ , λ̄) ∈ �3 (resp., �4), such that (x̄, λ̄) is a
saddle point for the generalized Lagrangian function L2

1(x; θ̄ , λ) (resp., L2
l (x; θ̄ , λ)

for some l ∈ {2, 3, 4}) on X × D1∗ (resp., X × R+), then x̄ is an optimistic robust
solution of problem (1).

By means of linear and nonlinear regular weak separation functions, we provide
necessary and sufficient robust optimality conditions for the scalar robust OP.

Theorem 3.3 (i) Let θ̄ ∈ ]0,+∞[ and x̄ ∈ X1. Assume that supξ∈U f (x̄, ξ) is
attained. Then, x̄ is a strictly robust solution of problem (1), if and only if

sup
(x,ξ)∈X×U

inf
λ∈D1∗

[
θ̄
(
f (x̄, ξ) − sup

ξ∈U
f (x, ξ)

)
+ 〈λ, F1(x)〉

]
= 0, (11)

or

sup
(x,ξ)∈X×U

inf
λ∈R+

[
θ̄
(
f (x̄, ξ) − sup

ξ∈U
f (x, ξ)

)
+ ωl(F

1(x); λ)
]

= 0, l = 2, 3, 4.

(12)
(ii) Let θ̄ ∈ ]0,+∞[ and x̄ ∈ X2. Assume that infξ∈U f (x̄, ξ) is attained. Then, x̄ is

an optimistic robust solution of problem (1), if and only if

sup
(x,ξ)∈X×U

inf
λ∈D1∗

[
θ̄
(
inf
ξ∈U f (x̄, ξ) − f (x, ξ)

)
+ 〈λ, F2(x)〉

]
= 0, (13)

or

sup
(x,ξ)∈X×U

inf
λ∈R+

[
θ̄
(
inf
ξ∈U f (x̄, ξ)− f (x, ξ)

)
+ωl(F

2(x); λ)
]

= 0, l = 2, 3, 4.

(14)
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Proof The statement of part (i) is just [27, Theorem 3.3], and one can refer to the proof
of the result. By a tiny change of the proof, the conclusions of part (ii) can be verified.
It is noteworthy that the assumption of part (ii) (i.e., infξ∈U f (x̄, ξ) is attained) is
employed to verify the necessity. ��

Remark 3.3 Based on analysis of equivalence relations between separation and saddle
point for the above two robustness concepts (Theorems 3.1 and 3.2), we can divide
six robustness concepts discussed in [32, Sect. 3] into three cases: (i) For strict robust-
ness, reliable robustness and adjustable robustness, we assume that the supremum of
objective function is attained for some x̄ ∈ X1; (ii) for optimistic robustness, it is
required that the infimum of objective function is attained for some x̄ ∈ X2; (iii) for
light robustness and ε-constraint robustness, no additional assumptions are needed
for the corresponding counterpart problem, which can be seen as a special case of the
constrained extremum problem (1.1.1) described in [16]. Therefore, the corresponding
conclusions of Proposition 3.1, Theorems 3.1–3.3 and Corollaries 3.1–3.2 for reliable
robustness (resp., light robustness, ε-constraint robustness, adjustable robustness) also
can be obtained. Thus, various sufficient and necessary robust optimality conditions
can be reached.

4 Relationships to Vector/Set-Valued Optimization

In Sect. 3, the robust optimality conditions are obtained by virtue of linear and non-
linear regular weak separation functions, especially saddle point sufficient optimality
conditions for different kinds of robustness concepts. In what follows, by means of
some notations of ISA, a family of vector OPs and set-valued OPs are introduced. We
investigate their relations to robustness concepts. More precisely, Sects. 4.1 and 4.2
explore the relationships between ISA approach and vector (resp., set-valued) opti-
mization, respectively.Besides, some close connections to the existingmethods (vector
optimization and set-valued optimization) presented in [13] are well established.

4.1 Relationships to Vector Optimization

In this subsection, we introduce a family of vector OPs by virtue of sets Ki
x̄ and

Hi for i = 1, 2 and investigate their relationships to strict robustness and opti-
mistic robustness, since others are analogous to both. For each x̄ ∈ Xi , i = 1, 2,
letAi (x̄) := Ki

x̄ ∪ {0R1+m } and K := H1 ∪ {0R1+m } (due toH2 := H1), obviously, K
is a convex and pointed cone. Then, a family of vectorOPs can be defined, i.e., compute
(Max(Ai (x̄), K ), x̄ ∈ Xi ). By analysis, one can obtain the following conclusion.

Theorem 4.1 A feasible solution x̄ ∈ X1 (resp., X2) is a strictly (resp., an opti-
mistic) robust solution to problem (1), if and only if 0R1+m ∈ Max(A1(x̄), K ) (resp.,
Max(A2(x̄), K )).
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Proof Since 0R1+m /∈ Hi for i = 1, 2, then one has

0
R1+m ∈ Max(Ai (x̄), K ) ⇔ 0

R1+m ∈ Max(Ki
x̄ ∪ {0

R1+m },Hi ∪ {0
R1+m })

⇔ (Ki
x̄ ∪ {0

R1+m }) ∩ ({0
R1+m } + Hi ∪ {0

R1+m }) = {0
R1+m }

⇔ [Ki
x̄ ∩ (Hi ∪ {0

R1+m })] ∪ {0
R1+m } = {0

R1+m }
⇔ [(Ki

x̄ ∩ Hi ) ∪ (Ki
x̄ ∩ {0

R1+m })] ∪ {0
R1+m } = {0

R1+m }
⇔ Ki

x̄ ∩ Hi = ∅
⇔ x̄ is a strictly (resp., an optimistic) robust solution to problem (1).

The proof is complete. ��

Remark 4.1 With the help of the notations of ISA, a family of vector OPs for strict
robustness (resp., optimistic robustness) have been introduced. Subsequently, the rela-
tions between vector OPs and two robustness concepts have been discussed; more
precisely, one can refer to Theorem 4.1. Note that the corresponding conclusion of
Theorem 4.1 for reliable robustness (resp., light robustness, ε-constraint robustness,
adjustable robustness) also can be derived by introducing setsA(x̄) and K , appropri-
ately. Then, an equivalent characterization of various robust solutions can be obtained
from vector optimization point of view. What is noteworthy is that the proof of The-
orem 4.1 makes full use of the conclusions of [32, Theorems 3.1 and 3.2]. Thus, the
tool of vector optimization has close connections to ISA approach. An example is
employed to visualize the fact in Theorem 4.1 for the strict robustness case.

Example 4.1 For problem (1), take X = R andU = {ξ1, ξ2} be the parameter set. Let
f (x, ξ1) = x , f (x, ξ2) = −x , F(x, ξ1) = x − 1 and F(x, ξ2) = x − 2. By simple
calculation, one has maxξ∈U f (x, ξ) = |x |, maxξ∈U F(x, ξ) = x − 1 and X1 :=
]−∞, 1]. For strict robustness, one can reach that x∗ = 0 is the unique strictly robust
solution. Set x̄ = 0. It follows from [32, Example 3.1] that the corrected image set is
K1

0 = {(u, v) ∈ R
2 : v = −u−1, u ≤ 0}∪{(u, v) ∈ R

2 : v = u−1, u < 0}. Due to
A1(0) := K1

0 ∪ {0R2} and K := H1 ∪ {0R2} = {(u, v) ∈ R
2 : u > 0, v ≤ 0} ∪ {0R2},

it is not difficult to verify the conclusion of Theorem 4.1, i.e., 0R2 ∈ Max(A1(0), K ).

By defining two kinds of vector orderings, i.e., sup-order relation (αsup) and inf-
order relation (αinf ), Klamroth et al. [13] developed a unified characterization of five
concepts of robust optimization in terms of vector optimization. We recall some basic
notations associated with the vector optimization approach. For a given x ∈ X , when
U is not a finite set, letFx : U → R be function, whereFx (ξ) = f (x, ξ) contains the
objective function value of x in scenario ξ , ξ ∈ U . In order to compare two feasible
solutions x and y, order relations αsup and αinf in the real linear functional space R

U

of all mappings F : U → R were considered. Let Fx ,Fy ∈ R
U be given, αsup and

αinf are described by

Fx αsup Fy :⇔ sup
ξ∈U

Fx (ξ)≤ sup
ξ∈U

Fy(ξ) and Fx αinf Fy :⇔ inf
ξ∈U Fx (ξ)≤ inf

ξ∈U Fy(ξ),
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respectively. Particularly, in the case of a finite uncertainty set U := {ξ1, . . . , ξq},
αsup corresponds to the max-order relation in multiobjective optimization [38], where
Fx := ( f (x, ξ1), . . . , f (x, ξq)) ∈ R

q .
In what follows, taking into account strict robustness and optimistic robustness,

the relationships between ISA approach and vector optimization method described in
[13] are revealed on the basis of Theorem 4.1. Corollary 4.1 is corresponding to [13,
Theorems 1 and 4], and the detailed proof is omitted. For regret robustness, reliable
robustness and adjustable robustness, the order relation used is also αsup; so, it is
analogous to the case of strict robustness.

Proposition 4.1 Let x̄ ∈ X1 (resp., X2). 0R1+m ∈ Max(A1(x̄), K ) (resp.,Max(A2(x̄),
K )), if and only if Fx̄ αsup Fx (resp., Fx̄ αinf Fx ) for all x ∈ X1 (resp., X2).

Proof Since x̄ ∈ X1, combining [32, Theorem 3.1] and Theorem 4.1, one can reach
that

0R1+m ∈ Max(A1(x̄), K ) ⇔ K1
x̄ ∩ H1 = ∅

⇔ f (x̄, ξ) − sup
ξ∈U

f (x, ξ) ≤ 0, ∀ x ∈ X1, ∀ ξ ∈ U

⇔ sup
ξ∈U

f (x̄, ξ) ≤ sup
ξ∈U

f (x, ξ), ∀ x ∈ X1

⇔ sup
ξ∈U

Fx̄ (ξ) ≤ sup
ξ∈U

Fx (ξ), ∀ x ∈ X1

⇔ Fx̄ αsup Fx , ∀ x ∈ X1.

Analogously, if x̄ ∈ X2, one can see that

0R1+m ∈ Max(A2(x̄), K ) ⇔ K2
x̄ ∩ H2 = ∅

⇔ inf
ξ∈U f (x̄, ξ) − f (x, ξ) ≤ 0, ∀ x ∈ X2, ∀ ξ ∈ U

⇔ inf
ξ∈U f (x̄, ξ) ≤ inf

ξ∈U f (x, ξ), ∀ x ∈ X2

⇔ inf
ξ∈U Fx̄ (ξ) ≤ inf

ξ∈U Fx (ξ), ∀ x ∈ X2

⇔ Fx̄ αinf Fx , ∀ x ∈ X2.

The proof is complete. ��
Corollary 4.1 A feasible solution x̄ ∈ X1 (resp., X2) is a strictly (resp., an optimistic)
robust solution to problem (1), if and only if Fx̄ αsup Fx (resp., Fx̄ αinf Fx ) for all
x ∈ X1 (resp., X2).

Remark 4.2 Theorem 4.1 and Corollary 4.1 provide some equivalent characterizations
to robust solutions from the vector optimization point of view. Importantly, they are
deduced by using the separation of ISA approach. The ISA used herein has shown to
be instrumental in unifying fields of robust optimization and vector optimization and
to allow one to find new results. Similar phenomena hold between the ISA approach
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and the approach based on set-valued optimization (see Theorem 4.2 and Corollary 4.2
in next subsection). About research on vector/set-valued optimization through ISA,
one could refer to [39,40].

4.2 Relationships to Set-Valued Optimization

This subsection concentrates on exploring the relationships between ISA approach
and set-valued optimization in dealing with robust OPs. First of all, a collection of
set-valued OPs can be introduced by means of Ki

x̄ for i = 1, 2. Moreover, we derive
an equivalent characterization of strict robustness (resp., optimistic robustness) from
set-valued optimization point of view. Finally, some connections to set-valued opti-
mization method proposed in [13] can be established.

For a given x ∈ X , let Bx := { f (x, ξ) : ξ ∈ U } ⊂ R and C := R+. For each
x̄ ∈ X1 (resp., X2), let

u1(x̄, x) := { f (x̄, ξ) − sup
ξ∈U

f (x, ξ) : ξ ∈ U } = { f (x̄, ξ) : ξ ∈ U } − sup
ξ∈U

f (x, ξ)

= Bx̄ − supBx ⊂ R,
(
resp., u2(x̄, x) := { inf

ξ∈U f (x̄, ξ) − f (x, ξ) : ξ ∈ U }

= inf
ξ∈U f (x̄, ξ) − { f (x, ξ) : ξ ∈ U } = inf Bx̄ − Bx ⊂ R

)

then a collection of set-valued OPs can be defined by
(
max
x∈Xi

ui (x̄, x), x̄ ∈ Xi

)
for i =

1, 2, respectively. For a given x̄ ∈ Xi , the set-valued OP is max
x∈Xi

ui (x̄, x). According to

[28, Definition 2.6.19], an element x∗ ∈ Xi is a maximal solution of the set-valued OP
with respect to �u

C , if u(x̄, x∗) �u
C u(x̄, x) for some x ∈ Xi ⇒ u(x̄, x) �u

C u(x̄, x∗).
Then, the relations between set-valued OPs and strict robustness (resp., optimistic
robustness) can be revealed.

Theorem 4.2 A feasible solution x̄ ∈ Xi for i = 1 (resp., 2) is a strictly (resp., an
optimistic) robust solution to problem (1), if and only if max

x∈Xi
ui (x̄, x) �u

C {0}, i.e.,
max
x∈Xi

ui (x̄, x) ⊆ −C.

Proof For i = 1, since x̄ ∈ X1, it holds F1(x̄) ∈ D1. Then, one has

max
x∈X1

u1(x̄, x) ⊆ −C ⇔ f (x̄, ξ) − sup
ξ∈U

f (x, ξ) ≤ 0, ∀ x ∈ X1, ∀ ξ ∈ U

⇔ K1
x̄ ∩ H1 = ∅

⇔ x̄ is a strictly robust solution to problem (1).
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For the case of i = 2, due to the fact that x̄ ∈ X2, it is obvious that F2(x̄) ∈ D2.
One can see that

max
x∈X2

u2(x̄, x) ⊆ −C ⇔ inf
ξ∈U f (x̄, ξ) − f (x, ξ) ≤ 0, ∀ x ∈ X2, ∀ ξ ∈ U

⇔ K2
x̄ ∩ H2 = ∅

⇔ x̄ is an optimistic robust solution to problem (1).

The proof is complete. ��
Remark 4.3 A collection of set-valued OPs for strict robustness and optimistic robust-
ness have been introduced by using the notations of ISA, respectively. Meanwhile, the
relationships between set-valued OPs and strict robustness (resp., optimistic robust-
ness) have been discussed. Specifically, one can see Theorem 4.2. It is worth noting
that the proof of Theorem 4.2 takes advantage of the results of [32, Theorems 3.1
and 3.2]. As a consequence, the tool of set-valued optimization has close connections
to ISA approach. Additionally, Theorem 4.2 is also suitable for reliable robustness
and adjustable robustness in view of defining the corresponding set-valued OPs. The
following example is given to illustrate the effectiveness of Theorem 4.2 for the strict
robustness case.

Example 4.2 For problem (1), letX = R,U = [1, 2], f (x, ξ) = x + ξ and F(x, ξ) =
x2 − ξ . By simple calculation, it is not difficult to see that maxξ∈U f (x, ξ) = x + 2,
maxξ∈U F(x, ξ) = x2 − 1 and X1 = [−1, 1]. One can see that x∗ = −1 is the unique
strictly robust solution. (i) Taking x̄ = −1, since max

x∈X1
u1(−1, x) = {−1 + ξ : ξ ∈

U } + max
x∈X1

(−x − 2) = {−2 + ξ : ξ ∈ U }, it holds

max
x∈X1

u1(−1, x) = [−1, 0] ⊆ −C, i.e., max
x∈X1

u1(−1, x) �u
C {0}.

(ii) Set x̄ = 1. One has max
x∈X1

u1(1, x) = {1 + ξ : ξ ∈ U } + max
x∈X1

(−x − 2) = {ξ : ξ ∈
U } = [1, 2] � −C , i.e., max

x∈X1
u1(1, x) �

u
C {0}.

Based on the notation Bx and set order relations, set-valued optimization, as a
unified approach to tackling with uncertain OP, has been developed in [13]. We recall
the upper-type set-relation βu and lower-type set-relation βl used in the literature. For
two feasible solutions x and y, the corresponding sets are Bx and By . The upper-type
set-relation βu and lower-type set-relation βl are given by

Bx βu By :⇔ supBx ≤ supBy and Bx βl By :⇔ inf Bx ≤ inf By,

respectively. In fact, the set order relations βu and βl herein are coincident with �u
C

and �l
C . Considering strict robustness and optimistic robustness, we investigate the

relationships between ISA approach and set-valued optimizationmethod stated in [13]
by virtue of Theorem 4.2 in the following. Corollary 4.2 is in accordance with [13,
Theorems 2 and 5], and the detailed proof can be omitted.
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Proposition 4.2 Let x̄ ∈ Xi for i = 1 (resp., 2). max
x∈Xi

ui (x̄, x) �u
C {0}, if and only if

Bx̄ βu Bx (resp., Bx̄ βl Bx ) for all x ∈ X1 (resp., X2).

Proof For i = 1, one can reach that

max
x∈X1

u1(x̄, x) �u
C {0} ⇔ max

x∈X1
(Bx̄ − supBx ) �u

C {0}
⇔ Bx̄ − supBx ⊆ −C, ∀ x ∈ X1

⇔ Bx̄ ⊆ supBx − C, ∀ x ∈ X1

⇔ supBx̄ ≤ supBx , ∀ x ∈ X1

⇔ Bx̄ βu Bx , ∀ x ∈ X1.

For the case of i = 2, it holds

max
x∈X2

u2(x̄, x) �u
C {0} ⇔ max

x∈X2
(inf Bx̄ − Bx ) �u

C {0}
⇔ inf Bx̄ − Bx ⊆ −C, ∀ x ∈ X2

⇔ Bx ⊆ inf Bx̄ + C, ∀ x ∈ X2

⇔ inf Bx̄ ≤ inf Bx , ∀ x ∈ X2

⇔ Bx̄ βl Bx , ∀ x ∈ X2.

The proof is complete. ��
Corollary 4.2 A feasible solution x̄ ∈ Xi for i = 1 (resp., 2) is a strictly (resp., an
optimistic) robust solution to problem (1), if and only if Bx̄ βu Bx (resp., Bx̄ βl Bx )
for all x ∈ X1 (resp., X2).

Remark 4.4 Analogously to the case of �u
C , a maximal solution of the set-valued OP

with respect to �l
C also can be given. By using �l

C , if we replace max
x∈Xi

ui (x̄, x) �u
C

{0} by {0} �l
−C max

x∈Xi
ui (x̄, x) for i = 1, 2 in Theorem 4.2 and Proposition 4.2,

the conclusions also hold. This is because {0} �l
−C max

x∈Xi
ui (x̄, x) is equivalent to

max
x∈Xi

ui (x̄, x) ⊆ −C .

5 A Specific Application: The Shortest Path Problem

Suppose that we plan to travel from A (origin) to B (destination) by self-driving and
that there are four feasible paths passing through city M at present, i.e., paths 1, 2, 3
and 4, where x1, x2, x3 and x4 are the corresponding path lengths. Let v̄ be the average
velocity from A to B for all paths. Generally, without considering other conditions,
shorter path lengths yields shorter traveling times and lower cost. However, some
inevitable factors affect the decision maker’s choice in the real world. For example,
traffic jams are a common phenomenon, which increase the traveling time. Typically,
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Fig. 1 Illustration of the shortest
path problem

Table 1 The function p(x, ξ)

concerning scenario ξ and path
x

p(x, ξ) ξ1 ξ2 ξ3 ξ4 ξ5

x1 0.5 0 0.5 0.5 0

x2 0.5 0 0.5 0.5 0

x3 0.5 0.5 0 0.5 0

x4 0.5 0.5 0.5 0 0

the city center is the most crowded. Thus, the costs have close connections to each
path. Also, it is not known beforehand whether some festival events take place or not.
If festival events are celebrated, their locations would have great effects on the nearby
path and lead to serious transportation problems. The location of festival events is thus
vital to our decision.

LetU = {ξ1, ξ2, ξ3, ξ4, ξ5} be the uncertainty set with five scenarios. The implica-
tion of every scenario is described as follows:

ξ1 : no festival; ξ2 : festival in the center M; ξ3 : festival in the north M;
ξ4 : festival in the south M; ξ5 : festival in the whole city.

Doubtlessly, traveling timewill be longer for the neighboring paths,when some festival
events occur. It is obvious that ξ1 and ξ5 are the best and worst scenarios, respectively.
Assuming that the costs are made up of fuel and tolls, the fuel is proportional to path
length, and the tolls depend on different scenario. If some festival events take place,
the tolls of the nearby highway are free. Let q, p(x, ξ), C and t(x, ξ) denote the fuel
of unit length, the tolls of unit length, the maximum acceptable cost and the extra time
produced by traffic jams or other emergencies, respectively. Now, we are interested in
a short traveling time under acceptable cost, no matter which scenario will be realized.
Naturally, the setting ofmaximumacceptable costC plays a significant role in decision
making. In order to intuitively understand this problem, one can refer to Fig. 1.

According to the above description, the following uncertain OP (Q(ξ)) can be
formulated as:
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Table 2 The function t(x, ξ)

concerning scenario ξ and path
x

t(x, ξ) ξ1 ξ2 ξ3 ξ4 ξ5

x1 0.5 0.9 0.6 0.55 0.8

x2 0.35 0.5 0.35 0.4 0.5

x3 0.1 0.2 0.6 0.15 0.35

x4 0.05 0.1 0.05 0.6 0.25

min
( x

v̄
+ t(x, ξ)

)
s.t. x(p(x, ξ) + q) − C ≤ 0, x ∈ X .

where X = {x1, x2, x3, x4}. Let X1 = {x ∈ X : x(p(x, ξ) + q) − C ≤ 0, ∀ ξ ∈ U }.
For this uncertain problem, we have obtained some known data, which are exact in
general case:

(i) The lengths of four paths (kilometer): x1 = 50, x2 = 60, x3 = 80 and x4 = 100;
(ii) The fuel fee of unit length (dollar/kilometer) is q = 0.5, and the tolls of unit length

can be seen in Table 1;
(iii) The extra time produced by traffic jams or other emergencies (hour) is summarized

in Table 2.

Additionally, assume that the average velocity of the car v̄ = 100km/h, and the
maximum acceptable cost C = 90 dollars. In what follows, we will apply some
results derived in Sect. 3 and [32, Sect. 3] to analyze this problem in the context of
various robustness concepts and provide reasonable choices for the decision maker.

(I) For strict robustness, since X1 =
{
x ∈ X : x − 90 ≤ 0, 1

2 x − 90 ≤ 0
}

=
{x1, x2, x3}, we only need to choose one path from X1. Due to maxξ∈U

(
x

100 +
t(x, ξ)

)
= x

100 + t(x, ξ5), one can reach that x∗
sr = argminx∈X1

maxξ∈U
(

x
100 +

t(x, ξ)
)

= x2 and x∗
sr

100 + t(x∗
sr , ξ5) = 1.1. Let x̄ = x1. If we take x0 = x3 and

ξ = ξ2, then the correspondingK1
x1 ∩H1 �= ∅. Simultaneously, there does not exist

(θ̄ , λ̄) ∈ �3 (resp. �4) such that inequality (4) (resp. (5)) and equality (11) (resp.
(12)) hold. Set x̄ = x3, ξ = ξ3 and x0 = x2, the same conclusions can be presented.
Thus, both x1 and x3 are not strictly robust solutions. Here, one can also refer to a
result, e.g., [32, Theorem3.1]. Taking x̄ = x2 and (θ̄ , λ̄) = ( 12 , 0) ∈ �3 (resp.�4),
it is not difficult to see thatK1

x2 ∩H1 = ∅ and inequalities (4), (5) hold.Meanwhile,
(x2, 0) is a saddle point for the generalized Lagrangian functionsL1

1(x; θ, λ) (resp.
L1
l (x; θ, λ), l = 2, 3, 4). For a given θ̄ ∈ ]0,+∞[, the equalities (11) and (12) are

true. It follows from [32, Theorem3.1], Theorem3.3 (i),Definition 3.3, Proposition
3.1 and Corollary 3.1 that x2 is a strictly robust solution, which is coincident to
the result x∗

sr we directly obtained.
(II) For optimistic robustness, due to X2 = {x ∈ X : x(p(x, ξ) + q) − C ≤

0, for some ξ ∈ U } = X and ξ1 is the best scenario, one can see that

x∗
or = argminx∈X2

min
ξ∈U

( x

100
+ t(x, ξ)

)
= argminx∈X2

( x

100
+ t(x, ξ1)

)
= x3
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and x∗
or

100 + t(x∗
or , ξ1) = 0.9. Setting x̄ = x1, x0 = x2 and ξ = ξ3, it holds

K2
x1 ∩ H2 �= ∅. Meanwhile, there do not exist (θ̄ , λ̄) ∈ �3 and (θ̄ , λ̄) ∈ �4 such

that (4), (5), (13) and (14) hold. Taking x̄ = x2, x0 = x3 and ξ = ξ1 (resp. x̄ = x4,
x0 = x2 and ξ = ξ4), we can conclude the same results. Then, x1, x2 and x4
are not optimistic robust solutions. Here, one can also refer to a result, e.g., [32,
Theorem 3.2]. Let x̄ = x3 and (θ̄ , λ̄) = (1, 0) ∈ �3 (resp.�4). One can reach that
K2

x3∩H2 = ∅ and inequalities (4), (5) are true, aswell as (x3, 0) is a saddle point for
the generalized Lagrangian functions L2

1(x; θ, λ) (resp. L2
l (x; θ, λ), l = 2, 3, 4).

In addition, the equalities (13) and (14) can be verified for a given θ̄ ∈ ]0,+∞[.
We achieve from [32, Theorem 3.2], Theorem 3.3 (ii), Definition 3.3, Proposition
3.1 and Corollary 3.2 that x3 is an optimistic robust solution.

(III) When themaximum acceptable cost is given byC = 49 dollars, in this case, the set
X1 is empty. Now, we introduce some infeasibility tolerances for the constraints
and analyze this problem with the help of reliable robustness. Set δ = 11 and

ξ̂ = ξ2. One can see that the reliable feasible set X3 =
{
x ∈ X : x − 49 ≤

11, 1
2 x1 − 49 ≤ 0, 1

2 x2 − 49 ≤ 0
}

= {x1, x2}. It is not difficult to see that

x∗
rr = argminx∈X3

maxξ∈U
(

x
100 + t(x, ξ)

)
= argminx∈X3

(
x

100 + t(x, ξ5)
)

= x2

and x∗
rr

100 + t(x∗
rr , ξ5) = 1.1. Taking x̄ = x2, one can read that K3

x2 ∩ H3 = ∅. It
can be concluded from [32, Theorem 3.3] that x2 is a reliable robust solution.

(IV) Considering ε-constraint robustness, we choose ξ3 as one particular scenario and

minimize the objective function
(
x
v̄
+ t(x, ξ3)

)
. Let ε1 = 1.0, ε2 = 1.1, ε4 = 1.05

and ε5 = 1.2. Then, the feasible set X5 =
{
x ∈ X1 : x

100 + t(x, ξl) ≤ εl , l =
1, 2, 4, 5

}
= {x2, x3}. One can reach that x∗

εcr = argminx∈X5

(
x

100 + t(x, ξ3)
)

=
x2 and

x∗
εcr
100 + t(x∗

εcr , ξ3) = 0.95. Setting x̄ = x2, it can be seen thatK5
x2 ∩H5 = ∅.

We achieve from [32, Theorem 3.5] that x2 is an ε-constraint robust solution.

Based on the above discussions, we have found the corresponding robust solutions
for several kinds of robustness concepts and verified the conclusions obtained in [32,
Sect. 3] and Sect. 3. Which robustness approach to choose concretely depends on the
preferences of the decision maker. If he/she is conservative and risk averse, then path
2 is the best choice. Inversely, the perfect decision is path 3. Especially, when the
maximum acceptable cost is changed such that X1 = ∅, it seems that reliable robust-
ness is more utility. While the decision maker’s attitudes have not been expressed, the
ε-constraint robustness would provide him/her with a wider choice of options.

6 Conclusions

On the frame of ISA, some characterizations of robust optimality conditions for scalar
robust OPs were derived. According to some notations of ISA [32, Sect. 3], the cor-
responding vector OPs and set-valued OPs were introduced, and then their relations
to robustness concepts were discussed. It has close connections to the ones presented
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in [13], such as vector optimization and set-valued optimization. As described in
Remark 3.1, the linear separation can be ensured when the sets in the image space are
convex, but this condition is only sufficient. Then, under what conditions a linear or
a nonlinear separation for the above sets exist. Additionally, the relationship between
ISA approach and scalarization techniques addressed in [13] seems to be of interest.
Above all, how can one effectively use the optimality conditions derived by ISA as
well as by other approaches like in [13], in order to design numerical algorithms for
solving robust counterpart problems? What is noteworthy is that this paper gives a
partial answer to the open question 3 posed in [32].
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