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Abstract
The Levenberg–Marquardt algorithm is one of the most popular algorithms for finding
the solution of nonlinear least squares problems. Across different modified variations
of the basic procedure, the algorithm enjoys global convergence, a competitive worst-
case iteration complexity rate, and a guaranteed rate of local convergence for both
zero and nonzero small residual problems, under suitable assumptions. We introduce
a novel Levenberg-Marquardt method that matches, simultaneously, the state of the
art in all of these convergence properties with a single seamless algorithm. Numerical
experiments confirm the theoretical behavior of our proposed algorithm.
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1 Introduction

In this paper, we consider solving general nonlinear least-squares problems where one
may or may not have a solution with a zero residual. Problems of this nature arise in
several important practical contexts, including inverse problems for ill-posed nonlinear
continuous systems [1] with applications such as data assimilation [2]. Usually, the
resulting least-squares problems do not necessarily have a zero residual at any point,
although the minimum residual may be small.

Recall that theGauss–Newtonmethod is an iterative procedure for solving nonlinear
least-squares problems by iteratively solving a linearized least-squares subproblem.
This subproblem may not be well-posed in the case of rank deficiency of the resid-
ual Jacobian function. Furthermore, the Gauss–Newton method may not be globally
convergent. The Levenberg–Marquardt (LM) method [3–5] was developed to deal
with the rank deficiency of the Jacobian matrix and also to provide a globalization
strategy for Gauss–Newton. In this paper, we will present and analyze the global and
local convergence results of a novel LM method for solving general nonlinear least-
squares problems that carefully balances the opposing objectives of ensuring global
convergence and stabilizing a fast local convergence regime.

In general, the goals of encouraging global and local convergence compete against
each other. Namely, the regularization parameter appearing in the subproblem should
be allowed to become arbitrarily large in order to encourage global convergence, by
ensuring the local accuracy of the linearized subproblem, but the parameter must
approach zero in order to function as a stabilizing regularization that encourages
fast local convergence. In the original presentation of the LM method in [3,4], the
regularization parameter is not permitted to go to zero, and only global convergence
is considered.

The strongest results for local convergence of LM are given in a series of papers
beginning with [6] (followed by, e.g., [7] and [8]; see also [9]), wherein it is assumed
that the residual function is zero at the solution. For the global convergence, the
algorithm considered is a two-phase one, where quadratic decline in the residual is
tested with each step that is otherwise globalized by a line-search procedure.

In the case of nonzero residuals, it has been found that a LM method converges
locally at a linear rate, if the norm of the residual is sufficiently small and the regular-
ization parameter goes to zero [10]. Our proof of linear convergence is simpler than
in [10]. Worst-case iteration complexity bounds for LM methods applied to nonlinear
least-squares problems can be found in [13–15]. We show that our proposed algorithm
has a complexity bound that matches these results, up to a logarithmic factor.

In this paper,we propose amethod that successfully balances themultiple objectives
in theoretical convergence properties, including (a) global convergence for exact and
inexact solutions of the subproblem, (b) worst-case iteration complexity, and (c) local
convergence for both zero and nonzero residual problems. Table 1 summarizes the
literature on this class of methods; our proposed algorithm uniquely matches the state
of the art in all of these properties.

The outline of this paper is as follows. In Sect. 2, we present the proposed LM
algorithm and address the inexact solution of the linearized least-squares subproblem.
Section 3 contains a worst-case complexity and global convergence analysis of the
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Table 1 Convergence properties of Levenberg–Marquardt algorithms

[3–5] [13–15] [6,7,9] [10] This work

Global convergence Yes Yes Two-phase or No Yes Yes

Complexity analysis No Yes No No Yes

Local zero residual No No Quadratic Superlinear Quadratic

Local nonzero small residual No No No Linear Linear

proposed method. In Sect. 4, we derive the local convergence theory. In Sect. 5,
preliminary numerical experiments are presented to demonstrate the behavior of our
algorithm. Finally, we conclude in Sect. 6.

2 A Novel Levenberg–Marquardt Algorithm

In this paper, we consider the following nonlinear least-squares problem

min
x∈Rn

f (x) := 1

2
‖F(x)‖2, (1)

where F : R
n → R

m is a (deterministic) vector-valued function, assumed twice
continuously differentiable. Here and in the rest of the text, ‖ · ‖ denotes the vector or
matrix l2-norm. At each iteration j , the LM method computes (approximately) a step
s j of the form −(J�

j J j + γ j I )−1 J�
j Fj , corresponding to the unique solution of

min
s∈Rn

m j (s) := 1

2
‖Fj + J j s‖2 + 1

2
γ j‖s‖2, (2)

where γ j > 0 is an appropriately chosen regularization parameter, Fj := F(x j ) and
J j := J (x j ) denotes the Jacobian of F at x j .

In deciding whether to accept a step s j generated by the subproblem (2), the LM
method can be seen as precursor of the trust-region method [12]. In fact, it seeks to
determine when the Gauss–Newton step is applicable or when it should be replaced by
a slower but safer steepest descent step. One considers the ratio ρ j between the actual
reduction f (x j ) − f (x j + s j ) attained in the objective function and the reduction
m j (0) − m j (s j ) predicted by the model. Then, if ρ j is sufficiently greater than zero,
the step is accepted and γ j is possibly decreased. Otherwise, the step is rejected and
γ j is increased.

In this paper, we use the standard choice of the regularization parameter

γ j := μ j‖F(x j )‖2,

where μ j is updated according to the ratio ρ j . The considered LM algorithm using
the above update strategy, as described in Algorithm 1, will be shown to be globally
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convergent with a complexity bound of order ε−2 and have strong local convergence
properties.

Algorithm 1: A Levenberg–Marquardt algorithm.
Initialization

Choose the constants η ∈]0, 1[, μmin > 0 and λ > 1. Select x0 and μ0 ≥ μmin. Set
γ0 = μ0‖F(x0)‖2 and μ̄ = μ0.

For j = 0, 1, 2, . . .

1. Solve (or approximately solve) (2), and let s j denote such a solution.

2. Compute ρ j := f (x j )− f (x j+s j )
m j (0)−m j (s j )

.

3. If ρ j ≥ η, then set x j+1 = x j + s j and μ j+1 ∈ [max{μmin, μ̄/λ}, μ̄] and μ̄ = μ j .
Otherwise, set x j+1 = x j and μ j+1 = λμ j .

4. Compute γ j+1 = μ j+1‖F(x j+1)‖2.

This algorithm has one particularly novel feature among LM methods: we have an
auxiliary parameter μ̄which represents the last parameter corresponding to a success-
ful step, introduced to balance the requirements of global and local convergence. If
the model is inaccurate, then μ j is driven higher; however, when we reach a region
associated with the local convergence regime, the residual ‖F(x j )‖ should ultimately
dominate the behavior of γ j for successful steps. Step 1 of Algorithm 1 requires the
approximate solution of subproblem (2). As in trust-region methods, there are differ-
ent techniques to approximate the solution of this subproblem that yield a globally
convergent step. For that it suffices to compute a step s j that provides a reduction in
the model at least as good as the one produced by the so-called Cauchy step (defined
as the minimizer of the model along the negative gradient) which is given by

scj := − ‖∇ f (x j )‖2
∇ f (x j )�(J�

j J j + γ j I )∇ f (x j )
∇ f (x j ).

TheCauchy step is cheap to calculate as it does not require any system solve.Moreover,
the LM method will be globally convergent if it uses a step that attains a reduction
in the model as good as a multiple of the Cauchy decrease. Thus, we will impose the
following assumption on the step calculation:

Assumption 2.1 There exists θ f cd > 0 such that for every iteration j:

m j (0) − m j (s j ) ≥ θ f cd

2

‖∇ f (x j )‖2
‖J j‖2 + γ j

.

Despite providing a sufficient reduction in the model and being cheap to compute, the
Cauchy step is scaled steepest descent. In practice, a version of Algorithm 1 based
solely on the Cauchy step would suffer from the same drawbacks as the steepest
descent algorithm on ill-conditioned problems.
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Since the Cauchy step is the first step of the conjugate gradient method (CG) when
applied to the minimization of the quadratic s → m j (s), it is natural to propose
running CG further and stopping only when the residual becomes sufficiently small.
Since the CG generates iterates byminimizing the quadratic model over nested Krylov
subspaces, and the first subspace is the one generated by ∇ f (x j ) (see, e.g., [16,
Theorem 5.2]), the decrease obtained at the first CG iteration (i.e., by the Cauchy step)
is at least attained by the remaining iterations. Thus, Assumption 2.1 holds for all
the iterates s

cg
j generated by the truncated-CG whenever it is initialized by the null

vector. The following lemma is similar to [17, Lemma 5.1] and will be useful for our
worst-case complexity analysis.

Lemma 2.1 For the three steps proposed (exact, Cauchy, and truncated-CG), one has
that

‖s j‖ ≤ ‖∇ f (x j )‖
γ j

and |s�
j (γ j s j + ∇ f (x j ))| ≤ ‖J j‖2‖∇ f (x j )‖2

γ 2
j

.

In what comes next, we will call all iterations j for which ρ j ≥ η successful, and we
denote the set of their indices by the symbol S, i.e., S := { j ∈ N| ρ j ≥ η}.

3 Worst-Case Iteration Complexity and Global Convergence

We now establish a worst-case complexity bound of Algorithm 1. Namely, given a
tolerance ε ∈]0, 1[, we aim at deriving the number of iterations, in the worst case,
needed to reach an iterate x j such that

∥
∥∇ f (x j )

∥
∥ < ε or

∥
∥F(x j )

∥
∥ < max

{

ε, (1 + ε)‖F(x̄ j )‖
}

(3)

where x̄ j ∈ argmin{x∈Rn :∇ f (x)=0} ‖x j −x‖.Without loss of generality, wewill assume
that ‖F(x̄ j )‖ is unique and independent from x j , we will denote it by f̄ . It can be
seen that, if we drop this assumption, then the same arguments in this section show
asymptotic global convergence. Then, f̄ := √

2 f (x̄ j ) = ‖F(x̄ j )‖ can just be taken to
be the value at the limit point of the sequence. We start now by giving some classical
assumptions.

Assumption 3.1 The function f is continuously differentiable in anopen set containing
L(x0) := {x ∈ R

n : f (x) ≤ f (x0)} with Lipschitz continuous gradient on L(x0) with
the constant ν > 0.

Assumption 3.2 The Jacobian J of F is uniformly bounded, i.e., there exists κJ > 0
such that ‖J‖ ≤ κJ for all x.

Webegin by obtaining a condition on the parameterμ j that is sufficient for an iteration
to be successful. We omit the proof as it is standard, see for instance Lemma 5.2 in
[17].
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Lemma 3.1 Let Assumptions 2.1, 3.1, and 3.2 hold. Suppose that at the j-th iteration
of Algorithm 1, one has

μ j >
κ

‖F(x j )‖2 (4)

where

κ :=
a +

√

a2 + 4aκ2
J (1 − η)

2(1 − η)
and a :=

ν
2 + 2κ2

J

θ f cd
.

Then, the iteration is successful.

Our next result states that, when the gradient norm stays bounded away from zero,
the parameter μ j cannot grow indefinitely. Without loss of generality, we assume that

ε ≤
√

λκ
μ0
, where κ is the same as in the previous lemma.

Lemma 3.2 Under Assumptions 2.1, 3.1, and 3.2 , let j be a given iteration index such
that for every l ≤ j it holds that ‖F(xl)‖ ≥ max

{

ε, (1 + ε) f̄
}

where ε ∈]0, 1[. Then,
for every l ≤ j , one also has

μl ≤ μmax := λκ

max
{

ε2, (1 + ε)2 f̄ 2
} .

Proof We prove this result by contradiction. Suppose that l ≥ 1 is the first index such
that

μl >
λκ

max
{

ε2, (1 + ε)2 f̄ 2
} . (5)

By the updating rules on μl , either the iteration l−1 is successful, in which case μl ≤
μl−1 ≤ λκ

max
{

ε2,(1+ε)2 f̄ 2
} which contradicts (5), or the iteration l − 1 is unsuccessful,

and thus,

μl = λμl−1 ⇒ μl−1 = μl

λ
>

κ

max
{

ε2, (1 + ε)2 f̄ 2
} >

κ

‖F(xl)‖2 ;

therefore, using Lemma 3.1 this implies that the (l−1)-th iteration is successful which
leads to a contradiction again. 
�
Thanks to Lemma 3.2, we can now bound the number of successful iterations needed
to drive the gradient norm below a given threshold.

Proposition 3.1 Under Assumptions 2.1, 3.1, and 3.2 . Let ε ∈]0, 1[ and jε be the
first iteration index such that (3) holds. Then, if Sε is the set of indexes of successful
iterations prior to jε , one has:

|Sε | ≤ Cε−2 with C := 2
(

κ2
J + μmax‖F(x0)‖2

)

ηθ f cd
f (x0).
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Proof For any j ∈ Sε , one has

f (x j ) − f (x j+1) ≥ η
(

m j (0) − m j (s j )
) ≥ η

θ f cd

2

‖∇ f (x j )‖2
κ2
J + μ j‖F(x j )‖2

.

Hence, using the fact that ‖∇ f (x j )‖ ≥ ε, ‖F(x j )‖ ≤ ‖F(x0)‖ and μ j ≤ μmax, we
arrive at

f (x j ) − f (x j+1) ≥ η
θ f cd

2

ε2

κ2
J + μmax‖F(x0)‖2

.

Consequently, by summing on all iteration indices within Sε ,
we obtain

f (x0) − 0 ≥
∑

j∈Sε

f (x j ) − f (x j+1) ≥ |Sε | ηθ f cd

2
(

κ2
J + μmax‖F(x0)‖2

)ε2,

hence the result. 
�

Lemma 3.3 Under Assumptions 2.1, 3.1, and 3.2 . LetUε denote the set of unsuccessful
iterations of index less than or equal to jε . Then,

|Uε | ≤ logλ

(
κ

μminε2

)

|Sε |. (6)

Proof Note that we necessarily have jε ∈ Sε (otherwise it would contradict the defini-
tion of jε). Our objective is to bound the number of unsuccessful iterations between two
successful ones. Let this { j0, . . . , jt = jε} be an ordering of Sε , and i ∈ {0, . . . , t−1}.

Due to the updating formulas for μ j on successful iterations, we have:

μ ji+1 ≥ max{μmin, μ̄/λ} ≥ μmin.

Moreover, we have ‖F(x ji+1)‖ ≥ ε by assumption. By Lemma 3.1, for any unsuc-
cessful iteration j ∈ { ji + 1, . . . , ji+1 − 1}, we must have: μ j ≤ κ

ε2
, since otherwise

μ j > κ
ε2

≥ κ
‖F(x j )‖2 and the iteration would be successful.

Using the updating rules for μ j on unsuccessful iterations, we obtain:

∀ j = ji + 1, . . . , ji+1 − 1, μ j = λ j− ji−1μ ji+1 ≥ λ j− ji−1μmin.

Therefore, the number of unsuccessful iterations between ji and ji+1, equal to ji+1 −
ji − 1, satisfies:

ji+1 − ji − 1 ≤ logλ

(
κ

μminε2

)

. (7)
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By considering (7) for i = 0, . . . , t − 1, we arrive at

t−1
∑

i=0

( ji+1 − ji − 1) ≤ logλ

(
κ

μminε2

)

[|Sε | − 1] . (8)

What is left to bound is the number of possible unsuccessful iterations between the
iteration of index 0 and the first successful iteration j0. Since μ0 ≥ μmin, a similar
reasoning as the one used to obtain (7) leads to

j0 − 1 ≤ logλ

(
κ

μminε2

)

. (9)

Putting (8) and (9) together yields the expected result. 
�
By combining the results from Proposition 3.1 and Lemma 3.3, we thus get the fol-
lowing complexity estimate.

Theorem 3.1 Under Assumptions 2.1, 3.1, and 3.2 . Let ε ∈]0, 1[. Then, the first index
jε for which ‖∇ f (x jε+1)‖ < ε or ‖F(x jε+1)‖ < max

{

ε, (1 + ε) f̄
}

, is bounded
above by

C
(

1 + logλ

[
κ

μminε2

])

ε−2, (10)

where C is the constant defined in Proposition 3.1.

For the LM method proposed in this paper, we thus obtain an iteration complexity
bound of Õ (

ε−2
)

, where the notation Õ(·) indicates the presence of logarithmic
factors in ε. Note that the evaluation complexity bounds are of the same order.

We note that by the definition of f̄ it holds that: ‖F(x j )‖ = f̄ implies that
∇ f (x j ) = 0. Thus, by letting ε → 0, Theorem 3.1 implies that

lim inf
j→∞ ‖∇ f (x j )‖ = 0.

In order to derive the global convergence result, we need to extend this to a limit result.

Theorem 3.2 Under Assumptions 2.1, 3.1, and 3.2, the sequence {x j } generated by
Algorithm 1 satisfies

lim
j→∞ ‖∇ f (x j )‖ = 0.

Proof Consider the case that S, the set of successful iterations, is finite. Then ∃ j0 such
that for all j ≥ j0, ‖∇ f (x j )‖ = ‖∇ f (x j0)‖ therefore from the previous theorem we
conclude that in this case

‖∇ f (x j0)‖ = lim
j→∞ ‖∇ f (x j )‖ = lim inf

j→∞ ‖∇ f (x j )‖ = 0.
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Alternatively, assume S is infinite and let ε > 0. Since ( f (x j )) is monotonically
decreasing and bounded from below, one has lim j→∞ f (x j ) − f (x j+1) = 0. Since

ηθ f cdε2

2(κ2J+μ0‖F(x0)‖2) > 0, we conclude, for j sufficiently large, that

0 ≤ f (x j ) − f (x j+1) ≤ ηθ f cdε
2

2(κ2
J + μ0‖F(x0)‖2)

.

Thus, for a sufficiently large j , consider the case that j ∈ S, then ρ j ≥ η and by
rearranging the terms and using Assumption 2.1 we conclude that

‖∇ f (x j )‖ ≤
√

2(m j (0) − m j (s j ))(κ2
J + μ0‖F(x0)‖2)

θ f cd

≤
√

2(κ2
J + μ0‖F(x0)‖2)

(

f (x j ) − f (x j+1)
)

ηθ f cd
≤ ε.

If j /∈ S than ‖∇ f (x j )‖ = ‖∇ f (x ĵ )‖ ≤ ε, where ĵ ∈ S is the last successful
iteration before j . Hence, it must hold that lim j→∞ ‖∇ f (x j )‖ = 0. 
�

4 Local Convergence

In this section, we prove local convergence for the algorithm, showing a quadratic
rate for zero residual problems and explicit linear rate for nonzero residuals. Since
the problem is generally nonconvex and with possibly nonzero residuals, there can
be multiple sets of stationary points with varying objective values. We consider a
particular subset with a constant value of the objective.

Assumption 4.1 There exists a connected isolated set X∗ composed of stationary
points to (1) each with the same value f ∗ of f (·) = 1

2‖F(·)‖2 and Algorithm 1
generates a sequence with an accumulation point x∗ ∈ X∗.

We note that under Assumption 4.1, the value ‖F(x̄)‖ is unique for all x̄ ∈ X∗ which
may not be the case for the residual vector F(x̄). Thus we define f̄ = √

2 f (x̄) =
‖F(x̄)‖ for x̄ ∈ X∗. Henceforth, from the global convergence analysis, we can assume,
without loss of generality, that there exists a subsequence of iterates approaching this
X∗. This subsequence does not need to be unique, i.e., there may be more than one
subsequence converging to separate connected sets of stationary points. We shall see
that eventually, one of these sets shall “catch” the subsequence and result in direct
convergence to the set of stationary points at a quadratic or linear rate, depending on
f̄ .
In the sequel, N (x, δ) denotes the closed ball with center x (a given vector) and

radius δ > 0 and dist(x, X∗) denotes the distance between the vector x and the set
X∗, i.e., dist(x, X∗) = miny∈X∗ ‖x − y‖, and x̄ ∈ argminy∈X∗ ‖x − y‖.
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Assumption 4.2 It holds that F(x) is twice continuously differentiable around x∗ ∈
X∗ with x∗ satisfyingAssumption 4.1. In particular, this implies that there exists δ1 > 0
such that for all x, y ∈ N (x∗, δ1),

‖∇ f (x)‖2 = ‖J (x)�F(x) − J (x̄)�F(x̄)‖2 ≤ L1‖x − x̄‖2, (11)

‖F(x) − F(y)‖ ≤ L2‖x − y‖, (12)

‖F(y) − F(x) − J (x)(y − x)‖ ≤ L3‖x − y‖2, (13)

where L1, L2, and L3 are positive constants.

From the triangle inequality and assuming (12), we get

‖F(x)‖ − ‖F(y)‖ ≤ ‖F(x) − F(y)‖ ≤ L2‖x − y‖. (14)

We introduce the following additional assumption.

Assumption 4.3 There exist a δ3 > 0 and M > 0 such that

∀x ∈ N (x∗, δ3), dist(x, X∗) ≤ M‖F(x) − F(x̄)‖.

As the function x → F(x)− F(x̄) is zero residual, the proposed error bound assump-
tion can be seen as a generalization of the zero residual case [6–9]. Thus, any ill-posed
zero residual problem, as considered in this line of work on quadratic local conver-
gence for LMmethods, satisfies the assumptions. Our assumptions are also covered by
a range of nonzero residual problems, for instance, standard data assimilation problems
[2] as given by Example 4.1.

Example 4.1 Consider the following data assimilation problem F : Rn → R
m defined,

for a given x ∈ R
n , by F(x) = (

(x − xb)�, (H(x) − y)�
)�

, where xb ∈ R
n is a

background vector, y ∈ R
m−n the vector of observations and H : Rn → R

m−n is a
smooth operator modeling the observations. For such problems, the set of stationary
points X∗ = {{x̄}} ⊂ R

n is a finite disjoint set, F̄ = F(x̄) and dist(x, X∗) = ‖x − x̄‖
for x̄ closest to x . Clearly, one has

‖F(x) − F(x̄)‖2 = ‖x − x̄‖2 + ‖H(x) − H(x̄)‖2 ≥ ‖x − x̄‖2 = dist(x, X∗)2.

Thus, for these typical problems arising in data assimilation, Assumptions 4.2, 4.1 and
4.3 are satisfied.

Example 4.2 Consider F : R3 → R
3 defined, for a given x ∈ R

3, by

F(x) = (exp(x1 − x2) − 1, x3 − 1, x3 + 1)�.

Clearly, F is Lipschitz smooth, hence Assumption 4.2 is satisfied. We note that for
all x , x̄ ∈ X∗ = {x ∈ R

3 : x1 = x2 and x3 = 0} satisfies F(x̄) = (0,−1, 1)� and,
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for a given x , one has dist(x, X∗) =
√

(x1−x2)2
2 + x23 . Hence, for all x ∈ R

3 such that

|x1 − x2| ≤ 1
2 , one concludes that

‖F(x) − F(x̄)‖ =
√

(exp(x1 − x2) − 1)2 + 2x23 ≥ dist(x, X∗).

Thus, for this example, Assumptions 4.1 and 4.3 are also satisfied.

From the global convergence results, we have established that there is a subsequence
of successful iterations converging to the set of stationary points X∗. In this section,
we begin by considering the subsequence of iterations that succeed the successful
iterations, i.e., we consider the subsequence K = { j + 1 : j ∈ S}. We shall present
the results with a slight abuse of notation that simplifies the presentation without
sacrificing accuracy or generality: in particular, every time we denote a quantity a j ,
the index j corresponds to an element of this subsequence K denoted above; thus,
when we say a particular statement holds eventually, this means that it holds for all
j ∈ S+1with j sufficiently large. Let μ̂ be an upper bound forμ j , note that this exists
by the formulation of Algorithm 1. We shall denote also δ as δ = min(δ1, δ2, δ3), with
{δi }i=1,2,3. In the proof, we follow the structure of the local convergence proof in [6],
with the addition that the step is accepted by the globalization procedure. We use F̄j

to denote F(x̄ j ). The first lemma is similar to [6, Lemma 2.1].

Lemma 4.1 Suppose that Assumptions 4.1 and 4.2 are satisfied.
If x j ∈ N (x∗, δ

2 ), then the solution s j to (2) satisfies

‖J j s j + Fj‖ − f̄ ≤ C1 dist(x j , X
∗)2,

where C1 is a positive constant independent of j .

Proof Let us assume that f̄ > 0. Otherwise, the proof is the same as in [6, Lemma 2.1].
Without loss of generality, since f (x j ) is monotonically decreasing, we can consider
that j is sufficiently large such that ‖Fj‖ ≤ 2 f̄ . Hence, we get

‖J j s j + Fj‖2 ≤ 2m j (x̄ j − x j ) = ‖J j (x̄ j − x j ) + Fj‖2 + μ j‖Fj‖2‖x j − x̄ j‖2
≤ (‖F̄j‖ + ‖J j (x̄ j − x j ) + Fj − F̄j‖

)2 + μ j‖Fj‖2‖x j − x̄ j‖2

≤
(

‖F̄j‖ + L3‖x j − x̄ j‖2
)2 + 4μ j‖F̄j‖2‖x j − x̄ j‖2

= L2
3‖x j − x̄ j‖4 + 2‖F̄j‖(2μ j‖F̄j‖ + L3)‖x j − x̄ j‖2 + ‖F̄j‖2

≤
((

2μ̂ f̄ + L3
) ‖x j − x̄ j‖2 + f̄

)2
,

which concludes the proof. 
�
Lemma 4.2 Suppose that Assumptions 4.1 and 4.2 are satisfied.
If x j ∈ N (x∗, δ

2 ), then the solution s j to (2) satisfies

‖s j‖ ≤ C2 dist(x j , X
∗), (15)
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where C2 is a positive constant independent of j .

Proof We assume that ‖F̄j‖ = f̄ > 0, otherwise the proof is the same as in [6, Lemma
2.1]. In this case, using the fact that ‖Fj‖ ≥ f̄ and μ j ≥ μmin, one has

‖s j‖ ≤ ‖∇ f (x j )‖
γ j

= ‖∇ f (x j )‖
μ j‖Fj‖2 ≤

√
L1

μmin f̄ 2
dist(x j , X

∗),

which concludes the proof. 
�
Lemma 4.3 Suppose that Assumptions 4.1, 4.2 and 4.3 are satisfied. Consider the case
where f̄ = 0, then for j sufficiently large, one has ρ j ≥ η.

Proof In fact, for j sufficiently large, using Lemmas 4.1 and 4.2, one gets

2
(

m j (0) − m j (s j )
) = ‖Fj‖2 − ‖Fj + J j s j‖2 − γ j‖s j‖2

≥ (‖Fj‖ + ‖Fj + J j s j‖
)
(

1

M
‖x j − x̄ j‖ − C1‖x j − x̄ j‖2

)

− C2
2γ j‖x j − x̄ j‖2

≥ ‖Fj‖
(

1

M
‖x j − x̄ j‖ − C1‖x j − x̄ j‖2

)

− C2
2μ j‖Fj‖2‖x j − x̄ j‖2

≥ 1

M
‖x j − x̄ j‖

(
1

M
‖x j − x̄ j‖ − C1‖x j − x̄ j‖2

)

− L2
2C

2
2 μ̂‖x j − x̄ j‖4

= 1

M2 ‖x j − x̄ j‖2 − C1

M
‖x j − x̄ j‖3 − L2

2C
2
2 μ̂‖x j − x̄ j‖4 > 0.

On the other hand, using the fact that ‖J j‖ is bounded (by κJ > 0), Lemma 4.2
and (since F̄j = 0) 1

M ‖x̄ j − x j‖ ≤ ‖Fj‖ ≤ L2‖x̄ j − x j‖, one gets

2
∣
∣ f (x j + s j ) − m j (s j )

∣
∣ =

∣
∣
∣‖F(x j + s j )‖2 − ‖Fj + J j s j‖2 − γ j‖s j‖2

∣
∣
∣

=
∣
∣
∣

(‖F(x j + s j )‖ − ‖Fj + J j s j‖
) (‖F(x j + s j )‖ + ‖Fj + J j s j‖

) − γ j‖s j‖2
∣
∣
∣

≤ L3‖s j‖2
(‖F(x j + s j )‖ + ‖Fj‖ + ‖J j‖‖s j‖

) + γ j‖s j‖2
≤ L3‖s j‖2

(

L2‖x j + s j − x̄ j‖ + L2‖x j − x̄ j‖ + ‖J j‖‖s j‖
) + γ j‖s j‖2

≤ (C2L2 + 2L2 + C2κJ )C
2
2 L3‖x j − x̄ j‖3 + L2

2C
2
2 μ̂‖x j − x̄ j‖4.

Hence, for j sufficiently large

|1 − ρ j | =
∣
∣
∣
∣

m j (0) − f (x j ) + f (x j + s j ) − m j (s j )

m j (0) − m j (s j )

∣
∣
∣
∣

≤ (C2L2 + 2L2 + C2κJ )C2
2 L3‖x j − x̄ j‖ + L2

2C
2
2 μ̂‖x j − x̄ j‖2

1
M2 − C1

M ‖x j − x̄ j‖ − L2
2C

2
2 μ̂‖x j − x̄ j‖2

.

Thus, |1 − ρ j | → 0 as j goes to +∞. 
�
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For the nonzero residual case, we must consider a specific instance of the algorithm.
In particular, we specify Step 3 of Algorithm 1 to be,

If ρ j ≥ η, then set x j+1 = x j + s j , μ j+1 = μ̄ and μ̄ = μ j .

Note that this is still consistent with the presentation of the Algorithm.

Lemma 4.4 Suppose that Assumptions 4.1, 4.2 and 4.3 are satisfied. Consider that
f̄ > 0, then for j sufficiently large, one has ρ j ≥ η.

Proof Indeed, by the new updating mechanism, the parameter μ̄ is monotonically
nondecreasing. In particular, if there is an infinite set of unsuccessful steps, then
μ j → ∞. This implies that for some j0 it holds that for j ≥ j0, μ j > κ

f̄ 2
> κ

‖F(x j )‖2 ,
which together with Lemma 3.1 reach a contradiction. Thus, there are a finite number
of unsuccessful steps, and every step is accepted for j sufficiently large. 
�
Proposition 4.1 Suppose that Assumptions 4.1, 4.2, and 4.3 are satisfied. Let x j ,
x j+1 ∈ N (x∗, δ/2). One has

(

1 − √
mL1M

2 f̄
)

dist(x j+1, X
∗)2 ≤ C2

3 dist(x j , X
∗)4 + Ĉ2

3 f̄ dist(x j , X
∗)2,

where C3 := M
√

C2
1 + 2L3C1C2

2 + L2
3C

4
2 and Ĉ3 := M

√

2C1 + 2L3C2
2 .

Proof Indeed, using Assumption 4.3, Lemma 4.1, the fact that the step is accepted for
j sufficiently large, and f̄ = ‖F̄j+1‖, one has

‖x j+1 − x̄ j+1‖2 ≤ M2‖F(x j + s j ) − F̄j+1‖2
≤ M2

(

‖F(x j + s j )‖2 − 2F(x j + s j )
� F̄j+1 + f̄ 2

)

≤ M2
((

‖J (x j )s j + Fj‖ + L3‖s j‖2
)2 − 2F(x j + s j )

� F̄j+1 + f̄ 2
)

≤ M2
(∥
∥J (x j )s j + Fj

∥
∥2 + 2L3‖J (x j )s j + Fj‖‖s j‖2 + L2

3‖s j‖4

−2F
(

x j + s j
)�

F̄j+1 + f̄ 2
)

≤ M2
(

C2
1

∥
∥x j − x̄ j

∥
∥4 + 2C1‖x j − x̄ j‖2 f̄ + f̄ 2 + 2L3C1‖x j − x̄ j‖2‖s j‖2

+ 2L3 f̄ ‖s j‖2 + L2
3‖s j‖4 − 2F

(

x j + s j
)�

F̄j+1 + f̄ 2
)

.

Therefore, using Lemma 4.2, one gets

‖x j+1 − x̄ j+1‖2 ≤ C2
3‖x j − x̄ j‖4 + Ĉ2

3 f̄ ‖x j − x̄ j‖2 + 2M2|F(x j + s j )
� F̄ j+1 − f̄ 2|,

(16)

whereC3 := M
√

C2
1 + 2L3C1C2

2 + L2
3C

4
2 and Ĉ3 := M

√

2C1 + 2L3C2
2 are positive

constants. Moreover, by applying Taylor expansion to x → F(x)� F̄j+1 at the point
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x j+1 = x j + s j around x̄ j+1, there exists R > 0 such that

|F�
j+1 F̄j+1 − f̄ 2| ≤ |(J (x̄ j+1)

� F̄j+1)
�
(x j+1 − x̄ j+1)| + R‖x j+1 − x̄ j+1‖2

= |∇ f (x̄ j+1)
�(x j+1 − x̄ j+1)| + R‖x j+1 − x̄ j+1‖2

= R‖x j+1 − x̄ j+1‖2 by usingx̄ j+1 ∈ X∗.

Note that the Hessian of x → F(x)� F̄j+1 is equal to
∑m

i=1 F̄(x j+1)i∇2Fi (x), and
fromAssumption 4.2we have∇2Fi (x) are bounded. Hence, the constant R is bounded

as follows R ≤ L1
2

∑m
i=1 |(F̄j+1)i | ≤

√
mL1
2 ‖F̄j+1‖. Combining the obtained Taylor

expansion and (16) gives

‖x j+1 − x̄ j+1‖2 ≤ C2
3‖x j − x̄ j‖4 + Ĉ2

3 f̄ ‖x j − x̄ j‖2 + √
mL1M

2 f̄ ‖x j+1 − x̄ j+1‖2,

which completes this proof. 
�
In next lemma, we show that, once the iterates {x j } j lie sufficiently near their limit
point x∗, the sequence {dist(x j , X∗)} j converges to zero quadratically if the problem
has a zero residual, or linearly when the residual is small.

Lemma 4.5 Suppose that Assumptions 4.1, 4.2, and 4.3 are satisfied. Let {x j } j be a
sequence generated by the proposed Algorithm. Suppose that both x j and x j+1 belong
to N (x∗, δ/2). If the problem has a zero residual, i.e., f̄ = 0, then

dist(x j+1, X
∗) ≤ C3 dist(x j , X

∗)2, (17)

where C3 is a constant defined according to Proposition 4.1.

Otherwise, if f̄ < min

{

1√
mL1M2 ,

1−C2
3 δ2

Ĉ2
3+√

mL1M2

}

, then

dist(x j+1, X
∗) ≤ C4 dist(x j , X

∗), (18)

where C4 ∈]0, 1[ is a positive constant independent of j .
Proof Indeed, under the zero residual case, i.e., f̄ = 0, then Proposition 4.1 is equiv-
alent to dist(x j+1, X∗) ≤ C3 dist(x j , X∗)2.

If the problem has a small residual, i.e., f̄ < min

{

1√
mL1M2 ,

1−C2
3 δ2

Ĉ2
3+√

mL1M2

}

, then

Proposition 4.1 will be equivalent to

dist(x j+1, X
∗)2 ≤ C2

3δ
2 + Ĉ2

3 f̄

1 − √
mL1M2 f̄

dist(x j , X
∗)2 = C2

4 dist(x j , X
∗)2,

where C4 :=
√

C2
3 δ2+Ĉ2

3 f̄

1−√
mL1M2 f̄

∈]0, 1[. 
�

The final theorem is standard (see, e.g., [6, Lemma 2.3]).
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Theorem 4.1 Suppose that Assumptions 4.1, 4.2, and 4.3 are satisfied. If f̄ = 0 then
Algorithm 1 converges locally quadratically to X∗. Otherwise, if the problem has a
small nonzero residual as in Lemma 4.5, Algorithm 1 converges locally at a linear
rate to X∗.

5 Numerical Results

In this section, we report the results of some preliminary experiments performed to test
the practical behavior of Algorithm 1. All procedures were implemented in MATLAB
and run usingMATLAB 2019a on aMacBook Pro 2,4 GHz Intel Core i5, 4 GB RAM;
the machine precision is εm ∼ 2 · 10−16.

We will compare our proposed algorithm with the LM method proposed in [15].
In fact, the latter algorithm can be seen to be similar to Algorithm 1 except that
γ j := μ j‖∇ f (x j )‖ where the parameter μ j is updated in the following way. Given
some constants c0 > 1, c1 = c0(c0+1)−1 and 0 < η < η1 < η2 < 1, if the iteration is
unsuccessful then μ j is increased (i.e., μ j+1 := c0μ j ). Otherwise, if ‖∇ f (x j )‖μ j <

η1 then μ j+1 = c0μ j , if ‖∇ f (x j )‖μ j > η2 then μ j+1 = max{c1μ j , μmin}, and
μ j is kept unchanged otherwise. The LM method proposed in [15] was shown to
be globally convergent with a favorable complexity bound, but its local behavior
was not investigated. In our comparison, we will refer to the implementation of this
method as LM-(global), while Algorithm 1 will be referred to as LM-(global
and local) (since it theoretically guarantees both global and local convergence
properties). Both algorithmswerewritten inMATLAB, and the subproblemwas solved
using the backslash operator. For the LM-(global and local) method, two
variants were tested. In the first one, named LM-(global and local)-V1, we
set the parameterμ j+1 equal to max{μ̄/λ, μmin} if the iteration is declared successful.
In the second variant, named LM-(global and local)-V2, the parameter is
set μ j+1 = μ̄ if the iteration j is successful. The initial parameters defining the
implemented algorithms were set as: η = 10−2, η1 = 0.1, η2 = 0.9, λ = c0 =
5, μ0 = 1 and μmin = 10−16. As a set of problems P , we used the well known 33
Moré/Garbow/Hillstrom problems [20]. All the tested problems are smooth and have a
least-squares structure. The residual function F and the Jacobian matrix for all the test
problems [20] are implemented in MATLAB. Some of these problems have a nonzero
value at the optimum and thus are consistent with the scope of the paper. To obtain
a larger test set, we created a set of additional 14 optimization problems by varying
the problem dimension n when this was possible. For all the tested problems, we used
the proposed starting points x0 given in the problems’ original presentation [20]. All
algorithms are stopped when ‖∇ f (x j )‖ ≤ ε where ε is the regarded accuracy level.
If they did not converge within a maximum number of iterations jmax := 10000, then
they were considered to have failed.

For our test comparison, we used the performance profiles proposed by Dolan and
Moré [21] over the set of problems P (of cardinality |P|). For a set of algorithms S,
the performance profile ρs(τ ) of an algorithm s is defined as the fraction of problems
where the performance ratio rp,s is at most τ , ρs(τ ) = 1

|P | size{p ∈ P : rp,s ≤
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Fig. 1 Obtained performance profiles considering the two levels of accuracy, 10−3 and 10−5

τ }. The performance ratio rp,s is in turn defined by rp,s = tp,s
min{tp,s :s∈S} , where

tp,s > 0 measures the performance of the algorithm s when solving problem p, seen
here as the number of iterations. Better performance of the algorithm s, relatively to
the other algorithms on the set of problems, is indicated by higher values of ρs(τ ).
In particular, efficiency is measured by ρs(1) (the fraction of problems for which
algorithm s performs the best) and robustness is measured by ρs(τ ) for τ sufficiently
large (the fraction of problems solved by s). For a better visualization, we plot the
performance profiles in a log2-scale.

We present the obtained performance profiles using two levels of accuracy in Fig-
ure 1. For a level of accuracy of 10−3, LM-(global and local) variants present
a better efficiency compared to LM-(global) (in more than 60% of the tested prob-
lems LM-(global and local)-V1 performed best, and LM-(global and
local)-V2 performed better on 40% while LM-(global)was better on less than
30%). When it comes to robustness, all the solvers exhibit good performance. Using
a higher accuracy, the two variants of LM-(global and local) outperform
LM-(global). The LM-(global and local)-V1 variant shows the best per-
formance both in terms of efficiency and robustness.

In order to estimate the local convergence rate, we estimated the order of conver-
gence by

EOC := log

( ‖∇ f (x j f )‖
max{1, ‖∇ f (x0)‖}

)

/ log

( ‖∇ f (x j f −1)‖
max{1, ‖∇ f (x0)‖}

)

,

where j f is the index of the final computed iterate. When EOC ≥ 1.8, the algorithm
will be said quadratically convergent. If 1.8 > EOC ≥ 1.1, then the algorithm will be
seen as superlinearly convergent. Otherwise, the algorithm is linearly convergent or
worse. The estimation of the order of convergence (see Table 2) shows the good local
behavior of theLM-(global and local)variants compared toLM-(global).
In fact, LM-(global and local) variants converged quadratically or superlin-
early on 38 (v1) and 33 (v2) problems respectively, while LM-(global) showed
quadratic or superlinear convergence for only 17 problems.
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Table 2 Order of convergence for problems in P with the accuracy level ε = 10−5

P Method Number of problems to converge

Linear or worse Superlinear Quadratic

zero LM-(global and local)-V1 2 8 18

residual LM-(global and local)-V2 4 9 15

LM-(global) 18 9 1

nonzero LM-(global and local)-V1 7 7 5

residual LM-(global and local)-V2 10 8 1

LM-(global) 12 5 2

6 Conclusions

In this paper, we presented and analyzed a novel LM method for solving nonlinear
least-squares problems. We were able to formulate a globally convergent LM method
with strong worst-case iteration complexity bounds. The proposed method is locally
convergent at quadratic rate for zero residual problems and at a linear rate for small
residuals. Preliminary numerical results confirmed the theoretical behavior. Future
research can include problems with constraints as well as those with noisy data.
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