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Abstract
This paper presents a novel approach for the numerical solution of differential linear
matrix inequalities. The solutions are searched in the class of piecewise-quadratic
functions with symmetric matrix coefficients to be determined. To limit the numbers
of unknowns, congruence constraints are considered to guarantee continuity of the
solution and of its derivative. In Example section, some control problems involving
differential linearmatrix inequalities are considered and solved in order to compare the
proposed approach with alternative approximation methods adopted in the literature.
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1 Introduction

In this paper, we deal with the problem of numerically solving, and hence approx-
imating, a set of differential linear matrix inequalities (DLMIs). DLMIs arise in a
number of different problems in control theory: in [1,2], DLMIs are used to study sta-
bility of impulsive linear systems, both deterministic and stochastic; a DLMI approach
is adopted to design optimal sampled-data control laws for linear system in [3] and
for continuous-time Markov jump linear systems in [4]; in [5], a DLMI approach is
introduced for the solution of control design problems under uncertainty, focusing
on finite-horizon linear systems. The books [6,7] collect a number of different anal-
ysis and design problems, where conditions based on DLMIs are used in the context
of finite-time stability and stabilization; these conditions are extended to the case of
Markov jump linear systems in [8] and to the case of Itô stochastic linear systems
in [9]; a possible application of such control techniques can be found in [10].

Typically, DLMIs are solved by dividing the time interval in equally spaced subin-
tervals and assuming a piecewise-linear trend in each subinterval; as a consequence,
there are some points where the function is not differentiable, and thus additional
constraints on the left and right derivatives must be taken into account to guarantee
that the DLMIs are satisfied everywhere. Moreover, there are some cases when the
time derivative of the solution needs to be calculated (see, for instance, chap. 3 in [6]).
In this paper, we rather propose to use a piecewise-quadratic (PWQ) trend in each
subinterval; indeed, this approach prompts the immediate advantage of allowing one
to impose that the solution be differentiable in all the time interval.

The results obtained with this solution will be examined throughout the work. In
particular, by means of several examples, we show that the PWQ approximation per-
forms better than the piecewise-linear approximation in terms of: (a) computational
time needed to solve a given feasibility problem, (b) minimum cost achieved in opti-
mization problems. The numerical solution of DLMIs has been tackled also in [11],
where the authors propose methods alternative to piecewise-linear approximation to
perform DLMIs optimization. In particular, they introduce approximations based on
Taylor and Fourier truncated series. Our last example shows that our proposed PWQ
approach performs slightly better than those proposed in [11].

In what follows, first we formally introduce the family of PWQ solutions that we
will consider in the remainder of the paper. The class of PWQ solutions is then used
in Sect. 3 to numerically solve the optimization or feasibility problems with DLMI
constraints involved in various control problems. It will be shown that the use of PWQ
class improves the quality of the solution, i.e., it permits to better approximate the
optimal solution of the considered problem and, at the same time, it permits to reduce
both the computational burden and the memory required to solve the problem, when
compared with other possible approaches. Moreover, in the optimization problems,
fixing the computational burden, the PWQ approximation permits to achieve better
results. Finally, in Sect. 4, some conclusive remarks are drawn.
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2 Numerical Solution of DLMIs

In this section, we introduce the class of piecewise-quadratic solutions that we will
use in the next section to solve optimization problems that involve DLMIs constraints.

Let us consider the following optimization problemover the finite time interval� =[
t0, t f

]

min
X(·) F (X(t)) , t ∈ �, (1)

subject to

G (
Ẋ(t), X(t)

)
< 0, t ∈ �, (2a)

H (X(t)) < 0, t ∈ �, (2b)

where X(·) : � �→ R
ν×ν is a continuously differentiable matrix-valued function,

while F(·) is the cost function to be minimized. The constraints G(·, ·) in (2) are the
DLMI ones, i.e., a set of linear matrix inequalities that involve both X(·) and its time
derivative Ẋ(·), whileH(·) contains the possibly remaining LMI constraints on X(·).

The DLMI constraints (2a) need to be rewritten as LMIs in order to numerically
solve problem (1)-(2), by means of off-the-shelf optimization software tools, such as
SeDuMi [12], SDPT3 [13] or MOSEK [14]. Different approaches can be adopted to
recast DLMIs into LMIs, by looking to specific class of solutions to problems (1)-
(2). The most common and straightforward approach is to assume the matrix-valued
function X(·) to be piecewise affine (PWA) (among the various authors that proposed
such an approach see [4–6,11]). If this is the case, then the time interval � is divided
into ns = �/Ts subintervals, where Ts represents the chosen sampling time, and in
each subinterval, X(·) is assumed equal to

X(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Xi + �i (t − iTs − t0),

for t ∈ [t0 + iTs, t0 + (i + 1)Ts), i = 0, . . . , ns − 2,

Xns−1 + �ns−1 (t − (ns − 1) Ts − t0) ,

for t ∈ [t0 + (ns − 1)Ts, t f ],

being Xi ,�i ∈ R
ν×ν the optimization variables, and the following congruence con-

straints must be added to guarantee continuity of X(·) in �

Xi + Ts�i = Xi+1, i = 0, . . . , ns − 2.

Hence, given ns subintervals, the PWA solution implies the definition of ns + 1
optimization matrices in R

ν×ν . However, the PWA class is not included within the
continuously differentiable solutions to (1)-(2). It follows that the optimization prob-
lem should beoverconstrainedwhen looking for a PWAsolution, therefore introducing
further conservatism. Indeed, the DLMI constraints must be fulfilled for both the left
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and right derivatives of X(·) at the extrema of each subinterval, i.e., inequalities (2a)
must be replaced by the following additional LMIs

G (�i , Xi ) < 0, (3a)

G (�i , Xi + Ts�i ) < 0, (3b)

for each i = 0, . . . , ns − 1.
In order to overcome these limitations, in this paper we propose to solve prob-

lems (1)–(2) by searching for PWQ solutions. Hence, in each subinterval, the unknown
matrix-valued function X(·) is assumed to be equal to

X(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Xi + �i (t − iTs − t0) + �i (t − iTs − t0)2 ,

for t ∈ [t0 + iTs, t0 + (i + 1)Ts), i = 0, . . . , ns − 2,

Xns−1 + �ns−1 (t − (ns − 1)Ts − t0) + �ns−1 (t − (ns − 1)Ts − t0)2 ,

for t ∈ [t0 + (ns − 1)Ts, t f ],

where Xi ,�i , �i ∈ R
ν×ν are the optimization variables. Similarly to what has been

done for the PWA solution, the following congruence constraints must be added to
ensure continuity of the solution

Xi + Ts�i + T 2
s �i = Xi+1, i = 0, . . . , ns − 2.

Moreover, the PWQ class permits also to guarantee continuity of the derivative, by
means of the following additional constraints

�i + 2Ts�i = �i+1, i = 0, . . . , ns − 2. (4)

Therefore, when dealing with PWQ solutions, there is no need to duplicate the DLMI
constraints (2a) as in the PWA case. It should be noticed that, differently from (3),
being congruence constraints, Equations (4) do not introduce additional conservatism.
Furthermore, given the congruence constraints, the number of ν × ν optimization
matrices needed to describe a PWQ solution in ns subintervals is equal to ns + 2, just
one more than the ones needed for a PWA solution.

Despite the additional conservatism attached to the PWA class, both the PWA
and PWQ solutions can be used to approximate a general continuous matrix func-
tion X(·) with adequate accuracy, provided that Ts is sufficiently small. Since the use
of the latter class rather than the former generally guarantees a better accuracy by
considering a similar or lower number of optimization matrices, it may result in a
decrease in the computational burden, as it will be shown in the next section.

3 Application to Control Problems

In this section, we consider different control problems involving DLMI feasibility
conditions, in order to investigate the computational efficiency and performance of
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the proposed DLMI solving approach. As discussed in Sect. 2, the proposed approach
is based on a PWQ approximation of the solution, and it will be compared with
alternative approximation techniques, such as a PWA approximation or the ones based
on truncated Taylor or Fourier series considered in [11].

The problems considered in this section are the following:

1. the finite-time stability (FTS) conditions of a linear time-varying (LTV ) system
proposed in [6];

2. the finite-horizon state-feedback control problem appeared in [5];
3. the H∞ sampled-data state-feedback control problem appeared in [4].

All the results presented in this sectionhavebeenobtainedby recasting theDLMIs in
the original problem as LMIs, and by solving them using MOSEK [14], a commercial
optimization software that deals with semidefinite programming and has a MATLAB
API accessible via the YALMIP parser [15]. The setup of the machine that has been
used is as follows: 2.5 GHz Intel Core i5-7200U processor and 8GB 1600MHzDDR3
running the MATLAB R2017b version.

Example 3.1 (FTS assessment for LTV systems) The aimof this example is to compare
the computational burden related to the PWA and to the PWQ approximations when
solving DLMIs.

Taking into account the FTS conditions appeared in [6, Theorem 2.1], the LTV
system

ẋ(t) = A(t)x(t), x(t0) = x0, (5)

is finite-time stable with respect to (t0, T , R, �(·)) iff there exists a symmetric matrix
function P(·), which satisfies, for all t ∈ [t0, t0 + T ], the following DLMIs/LMIs
feasibility problem

Ṗ(t) + AT (t)P(t) + P(t)A(t) < 0, (6a)

P(t) > �(t), (6b)

P(t0) < R. (6c)

In this example, we have considered several random systems of order n = 2, . . . , 5.
For each system, the dynamicmatrix was chosen as A(t) = A0+at In , where A0 and a
are a randomly generated n × n matrix and a random scalar, respectively, being In
the n × n identity matrix. The sampling time Ts has been assumed to belong to the
following set

Ts ∈ { 1
32 ,

1
16 ,

1
8 ,

1
4 ,

1
2 , 1

}
. (7)

For each n we have considered 100 systems which admitted a piecewise-quadratic
solution to the feasibility problem (6), with the following FTS parameters
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Table 1 Example 3.1: number of PWA failures solving 100 DLMI problems (6) for each order n by using
MOSEK. Note that all the considered DLMI problems admit a solution when using the PWQ family of
solutions

n 2 3 4 5

# PWA failures 28 45 53 83
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Fig. 1 Example 3.1: comparison between the sampling times needed to solve theDLMIs problem (6) using a
piecewise-affine approximation and a piecewise-quadratic approximation. A null value indicates a problem
that cannot be solved with the piecewise-affine approximation

t0 = 0, T = 2, R = In, �(t) = 0.1e−t/3 · In,

and for a value of Ts belonging to set (7).
The PWQ solution to the considered FTS problem was evaluated by discretizing

the DLMIs with the approach described in Sect. 2 and by using the MOSEK solver.
The same DLMI feasibility problem was then solved looking for a PWA solution.

Table 1 shows the number of failures of the PWA approach in solving the DLMI
problem (6). A PWA failure indicates that the problem could not be solved with the
PWA approach, even using the minimum sampling time in set (7). It should indeed
be considered that the advantage given by the higher number of degrees of freedom
in the PWA case for smaller sampling times is partially neutralized by the increased
number of constraints that need to be added to fulfill conditions of type (2a) by both
left and right derivatives (see also the discussion in Sect. 2). The results also show that
the number of failures of the PWA approximation increases with the order of the LTV
systems.

Next, we consider a comparison between the computational burden needed to solve
the DLMI problem (6) using the MOSEK solver for computing a PWA and a PWQ
approximation of the solution, respectively. In particular, we analyze the sampling
times and the computational times needed to compute the two solutions.
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Table 2 Example 3.1: smaller sampling time for solving DLMIs in Example 3.1. The table considers only
the cases when both approaches give a solution; in the other cases, the PWA does not provide a solution

n 2 3 4 5

PWQ 0 0 0 0

PWA 8 6 12 4

same 64 49 35 13

Table 3 Smaller computational time for solving DLMIs in Example 3.1. The table considers only the cases
when both approaches give a solution; in the other cases, the PWA does not provide a solution

n 2 3 4 5

PWQ 55 48 44 17

PWA 17 7 3 0

Figure 1 shows the ratio between the sampling times Ts used to discretize and
solve the 100 DLMI problems (6) for n = 4 considering either a PWA or a PWQ
solution. The comparison for each order n is synthesized in Table 2, which indicates
how many times each approach has required a smaller sampling time, for the cases
in which a solution has been found by means of the PWA approach. It looks evident
that the sampling time needed to find the PWA solutions is never higher than the one
needed in the PWQ case, which implies that the number of LMIs needed to compute
a PWA solution is always higher. Furthermore, also the number of unknowns needed
to compute a PWA solution is higher when the sampling time is smaller than the one
needed in the PWQ case.

Based on the above results, we analyze the computational time needed to solve the
DLMIs by using the two approaches. Figure 2 shows the ratio between the compu-
tational times for the considered LTV systems for n = 4. A null value indicates a
problems that cannot be solved with the piecewise-affine approximation also using
the chosen minimum sampling time. The comparison for each order n is synthesized
in Table 3, which indicates how many times one approach needed a smaller computa-
tional time than the other, for the cases in which a solution has been found by means
of the PWA approach. It can be noted that, even when the PWA approach did not fail,
it generally needed a larger computational time to find the solution to the considered
FTS problem.

Example 3.2 (Estimation of the FTS initial domain) The aim of this example is to
compare the conservativeness implied by the class of PWA and PWQ solutions used
to solve a problem that involves DLMI constraints.

We focus again on the FTS problem (6) applied to the LTV system (5), which
has been introduced in the previous example. This time, the following parameters are
assumed for the DLMI feasibility problem

t0 = 0, T = 2, R = β · I , �(t) = 0.25e−t/3 · I .
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Fig. 2 Example 3.1: comparison on a logarithmic axis between the computational times needed to solve
the DLMIs problem (6) using a piecewise-affine approximation and a piecewise-quadratic approximation.
A null value indicates a problem that cannot be solved with the piecewise-affine approximation

Letting R = β · I , we can estimate, by means of a linear search, the minimum
value βmin in [0.25, 5], such that the DLMIs (6) can be solved; 1/βmin corresponds
to the maximum radius of the circular initial domain such that the system is FTS with
respect to (t0, T , R, �(t)).

A set of random LTV systems (5) of order n = 2, 3, 4 were considered, defined as
in Example 3.1. In particular, we considered 300 systems for which a PWA solution
with sampling time Ts = 0.1 and 0.25 ≤ β ≤ 5 could be found. For these systems,
the same DLMI feasibility problem has been solved, searching for a PWQ solution
with 0.25 ≤ β ≤ 5. The resulting values of βmin have been finally compared. The
outcome of this analysis, carried out by using the MOSEK solver, can be summarized
as follows:

1. The PWA approximation never provided a larger maximum radius estimate;
2. In the 46% of the cases, the PWQ approximation provided a larger maximum

radius estimate;
3. In the 54% of the cases, the two approaches obtained a same result.

Example 3.3 (Optimal control design) Another comparison between the use of a PWA
and the proposedPWQsolutionwas carried out by considering thefinite-horizon, time-
varying, state-feedbackdesignproblemappeared in [5],which involves theDLMI/LMI
feasibility problem described below.

Let us consider the LTV system

ẋ(t) = A(t)x(t) + B1(t)w(t) + B2(t)u(t), x(0) = 0 (8a)

z(t) = C1(t)x(t) + D12(t)u(t), (8b)

u(t) = K (t)x(t), (8c)
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where x(·) ∈ R
n is the state vector, u(·) ∈ R

l represents the control action and
z(·) ∈ R

m is the state combination to be attenuated. The exogenous disturbance signal
w(·) ∈ L

q
2 [0, T ] is supposed to be a vector signal of dimension q, square-summable

in the time interval [0, T ]. The matrices A(·), B1(·), B2(·),C1(·), D12(·) are time-
varying matrices of appropriate dimensions.

The problem consists in finding the state-feedback gain matrix K (·) which, for a
prescribed scalar γ > 0, for a given PT > 0 and for all w(·) ∈ L

q
2 [0, T ] minimizes

the performance index

J (w, 0, T ) = xT (T )PT x(T ) +
∫ T

0

(
zT z − γ 2wTw

)
dτ ≤ 0. (9)

In [5], the authors show that the above control design problem is equivalent to the
following optimization problem, where time dependence is omitted for the sake of
brevity

min
P(·),K (·) trace(P(t)), t ∈ [0, T ] (10a)

subject to:
⎡

⎣
�P PB1 (C1 + K D12)

T

∗ −γ 2 Iq 0
∗ ∗ −Im

⎤

⎦ ≤ 0, (10b)

where: �P = Ṗ + (A + B2K )T P + P(A + B2K )

P(t) ≥ 0, (10c)

P(T ) = PT , (10d)

from which a sequence of convex programming problems can be obtained by consid-
ering a PWA solution.

In particular, once the sampling time Ts has been fixed and the subsequent number
of subintervals N = T /Ts has been computed, constraint (10b) can be discretized by
considering a PWA approximation of the solution, and the discretized state-feedback
problem becomes a linear one consisting in finding the sequence (Pk−1, Kk) such that,
for k = N , N − 1, . . . , 1 and a given Pk , the obtained LMI with respect to Pk−1 and
Kk is satisfied with Pk−1 of minimum trace.

Here, we propose to find a PWQ solution to the optimization problem (10).
In order to linearize constraint (10b), we introduce the matrix-valued optimization
variables X(·) = P−1(·) and Y (·) = K (·)X(·), and then we pre- and post-multiply
the inequality (10b) by

⎡

⎣
P−1(·) 0 0

0 Iq 0
0 0 Im

⎤

⎦ ,

obtaining the following convex programming problem (time dependence is again omit-
ted)
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Fig. 3 Example 3.3: the evolution in time of KPWQ(t) = [K1(t) K2(t)] for t ∈ [0, T ], by considering the
parameters (12). These gains have the same time behavior of those shown in [5, Fig. 1], but they have been
obtained using a double sampling time Ts

max
X(·),Y (·) trace(X(t)), t ∈ [0, T ] (11a)

subject to:
⎡

⎣
�X B1 (C1X + K D12Y )T

∗ −γ 2 Iq 0
∗ ∗ −Im

⎤

⎦ ≤ 0, (11b)

where: �X = −Ẋ + X AT + AX + Y T BT
2 + B2Y

X(t) ≥ 0, (11c)

X(T ) = P−1
T , (11d)

With this transformation, the same procedure used to find the sequence (Pk−1, Kk)

can be applied to find a solution in terms of (Xk−1,Yk), with the only difference that
the trace of Xk must be maximized. The optimal state-feedback control gain matrix is
then given by K (t) = Y (t)X−1(t).

To compare the two approaches, we consider the control design problem [5, Exam-
ple 1] characterized by the parameters

A =
[
0 1
0 0

]
, B1 = B2 =

[
0
1

]
, (12a)

C1 =
[
1 0
0 0

]
, D12 =

[
0
1

]
, (12b)

T = 20 s, γ = 1.01. (12c)

In order to find a PWA solution to the control design problem, in [5] the sampling time
was fixed to Ts = 0.005 s, resulting in a number of subintervals of N = 4000.

By repeating the same analysis with a PWQapproach, it was found that it is possible
to solve the same problem by using the MOSEK solver and by considering a sampling
time Ts = 0.01 s and a number of subintervals N = 2000. The evolution in time
of KPWQ(t) = [

K1(t) K2(t)
]
for t ∈ [0, T ] is shown in Fig. 3. To compare the PWQ
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solution with the PWA one, we first consider the control gains at the initial time. By
using the PWQ approach, we computed the gains KPWQ(0) = [−7.1233 −26.8888

]
,

whereas in [5, Example 1] the values KPW A(0) = [−7.1235 −26.8897
]
were

obtained by using the PWA approach.
Moreover, a comparison with the gains shown in [5, Fig. 1] immediately proves

that the PWQ approach allows us to compute an equivalent solution, but with a larger
sampling time and hence a smaller computational time.

Example 3.4 (Minimization ofH∞ norm) The aim of this last example is to compare
the PWQ solution to the DLMI problem with the alternative approaches proposed
in [11]. In particular, the authors in [11] propose to define the optimal solution of a
DLMI feasibility problem as a Taylor polynomial expansion of finite degree or as a
truncated Fourier series. It is worth to notice that the approaches considered in [11]
rely on Taylor and Fourier expansions on the whole time interval, while the PWQ
approach requires to divide the time interval in subintervals.

In order to investigate the proposed methods as well as to evaluate and compare
their numerical efficiency and limitations, in [11] the authors consider a series of
optimal sampled-data control design problems of increasing complexity. The one
considered here regards theminimization of theH∞ norm from the exogenous inputw
to the controlled output z of a closed-loop linear system governed by a state-feedback
sampled-data control law given by

ẋ(t) = Ax(t) + Bu(t) + Ew(t) (13a)

z(t) = Cx(t) + Du(t) (13b)

u(t) = Lx(tk) ∀t ∈ [tk, tk+1), (13c)

where t0 = 0, tk+1 − tk = h are evenly spaced sampling instants for all k ∈ N

with sampling period h > 0, and x(·) ∈ R
n , u(·) ∈ R, w(·) ∈ R and z(·) ∈ R

n+1

are the state, the control, the exogenous input and the controlled output, respectively.
The sampled-data state-feedback gain matrix L ∈ R

1×n is the design variable to be
determined.

In [11], the authors show that the problem of finding the optimalH∞ sampled-data
state-feedback control problem is equivalent to the following convex programming
problem

min
X(·),Y ,V ,μ

μ, (14a)

subject to:
⎡

⎣
−Ẋ(t) + X(t)FT + FX(t) X(t)GT J

∗ −I 0
∗ ∗ −μI

⎤

⎦ < 0, (14b)

[
V

[
V Y T

]

∗ X(t0)

]
> 0, (14c)
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⎡

⎣X(h) X(h)

[
I
0

]

∗ V

⎤

⎦ > 0, (14d)

where

F =
[
A B
0 0

]
, G = [

C D
]
, J =

[
E
0

]
,

μ is a scalar variable, Y and V are a full and a symmetric matrix variable, respec-
tively, while X(·) is a symmetric matrix-valued function. If a solution to the convex
optimization problem (14) exists, then the optimal state feedback control gain matrix
is given by L = YV−1, and μ is the minimum H∞ cost.

For the sake of completeness, it should be noted that the sampled-data control
framework presented so far has been further extended to the output feedback case
in [3]. However, in this example, we refer to the state-feedback case, which allows us
to compare our approach with results in [11].

Let us consider the open-loop unstable system proposed in [11] and given by

A =
[
0n−1 In−1

0 0Tn−1

]
, B =

[
0n−1
1

]
, (15a)

C =
[
In
0Tn

]
, D =

[
0n
1

]
, E = 1n (15b)

where In , 0n and 1n denote the identity n× n matrix, the null n× 1 vector and the one
n × 1 vector, respectively. Then, we have solved the convex problem (13) by setting
h = 1 s.

To compare the performance of the different approaches, we solved the convex
programming problem for an increasing system order n = 2, . . . , 5, computing the
PWQ optimal solutions for different numbers of subintervals N by using the MOSEK
solver. The number of subintervals was chosen in order to compare the results with
those presented in [11, Section IV], where the computational burden was analyzed in
terms of the number of evaluations m of the derivative Ẋ(·). In particular, in [11] it
is shown that in the PWA case m = 2N , while in the case of a solution defined as a
truncated series m ≈ 3nφ , where nφ is the number of terms in the series, excluding
the constant one. Now, by considering the discretization method presented in Sect. 2,
we have that in the PWQ case m = N + 1. In this way, the comparison between the
PWQ solution and the ones presented in [11, Table II and Table III] can be carried
out at the same computational burden, in terms of m, by evaluating the minimumH∞
cost of Problem (14).

Tables 4 and 5 summarize the minimum H∞ cost of Problem (14) by considering
the different discretization approaches and different pairs of values (m, n). It can be
noticed that at the same computational burden (i.e., oncem is fixed), the PWQ solution
allowed us to compute a lower value for the H∞ cost in all cases.
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Table 4 Example 3.4: minimumH∞ cost of problem (14) for PWQ and PWA solutions. The costs for the
PWA solution are those presented in [11, Table I]

m/n 2 3 4 5

2 PWQ 52.36 632.23 1.11 × 104 5.65 × 104

PWA 527.35 2.82 × 104 ∞ ∞
4 PWQ 19.77 116.87 667.98 4.33 × 103

PWA 122.96 2.70 × 103 8.53 × 104 ∞
8 PWQ 15.47 78.65 357.63 1..58 × 103

PWA 46.01 515.46 7.14 × 103 1.42 × 105

16 PWQ 14.23 69.85 299.75 1.22 × 103

PWA 25.90 187.95 1.45 × 103 1.40 × 104

32 PWQ 13.76 67.03 283.12 1.13 × 103

PWA 19.12 111.41 617.47 3.68 × 103

Table 5 Example 3.4: minimumH∞ cost of problem (14)–(15) for a PWQ solution and solutions defined
as truncated Taylor and Fourier series. The costs for truncated Taylor and Fourier series cases are those
presented in [11, Table II and Table III]

m/n 2 3 4 5

3 PWQ 25.04 175.65 1.32 × 103 1.31 × 104

TAYLOR 527.35 2.82 × 104 ∞ ∞
FOURIER 1.24 × 103 1.09 × 105 ∞ ∞

6 PWQ 16.58 87.52 421.61 2.04 × 103

TAYLOR 55.21 730.24 1.35 × 104 3.72 × 105

FOURIER 101.69 1.92 × 103 5.61 × 104 ∞
9 PWQ 15.16 76.28 341.40 1.47 × 103

TAYLOR 22.14 137.33 863.79 6.62 × 103

FOURIER 32.59 258.52 2.42 × 103 3.25 × 104

12 PWQ 14.60 72.28 315.01 1.31 × 103

TAYLOR 17.63 92.68 436.963 2.07 × 103

FOURIER 21.61 129.02 744.17 4.86 × 103

15 PWQ 14.30 70.30 302.52 1.24 × 103

TAYLOR 15.71 78.28 340.71 1.41 × 103

FOURIER 17.58 92.33 436.18 2.03 × 103

4 Conclusions

A novel approach for the numerical solution of DLMIs-based problems has been pre-
sented, where PWQ solutions with symmetric matrix coefficients to be determined
have been considered. The PWQ class of solutions allows us to take into account con-
gruence constraints to guarantee the continuity of both the solution and its derivative.
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In this way, (i) we limit the numbers of unknowns; (ii) we obtain a well-posed prob-
lem, when dealing with control design approaches that define the controller matrices
as functions of the derivative of the solution [16]. Some control problems, involving
differential linear matrix inequalities, have been considered and solved in order to
compare the proposed approach with alternative approximation methods adopted in
the literature. Numerical results have shown that the PWQ approximation performs
better in terms of both the computational time needed to solve a given feasibility
problem and the minimum cost achieved in optimization problems.
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