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Abstract
In this paper, we introduce an inertial projection-type method with different updat-
ing strategies for solving quasi-variational inequalities with strongly monotone and
Lipschitz continuous operators in real Hilbert spaces. Under standard assumptions,
we establish different strong convergence results for the proposed algorithm. Primary
numerical experiments demonstrate the potential applicability of our scheme com-
pared with some related methods in the literature.
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1 Introduction

In this paper,we study theQuasi-Variational Inequality (QVI) problem,whichgeneral-
izes the classicalVariational Inequality (VI) problemof Fichera [1,2] and Stampacchia
[3] (see also Kinderlehrer and Stampacchia [4]). In a QVI, the associated feasible set
of the problem is not fixed, but varies according to some explicit or implicit rule.
For example, in many applications, the feasible set is defined as a “moving set,” i.e.,
there is a closed and convex set, also known as the core set, that is shifted by another
single-valued mapping; see, for example, [5–9] and the references therein. In such a
setting, the problem is often called “moving set” QVI.

There existmany techniques for solvingQVIs; for example, very recently,Antipin et
al. [5] presented gradient projection and extragradient methods for solvingQVIs under
the assumptions of strong monotonicity and Lipschitz continuity of the associated
mappings. The main disadvantage of the extragradient method, with respect to the
classical gradient projection algorithm, is that the number of orthogonal projections
and mapping evaluations is doubled per each iteration. Moreover, while in the context
of VIs, the extra projection and evaluation per iteration of the extragradient method
guarantee convergence under weaker assumptions than strong monotonicity of the
associated mapping, for QVIs, this is not the case and thus the extragradient does not
have any advantage over the gradient projection method.

A more general gradient projection method, with strong convergence, for solving
QVIs in real Hilbert spaces, is introduced by Mijajlović et al. in [10]. This method
holds great potential since it works well on different practical applications. Other
efficient solution methods for solving QVIs can be found in [11–14].

In the field of continuous optimization, inertial-type algorithms attracted much
interest in recent years mainly due to their convergence properties. The idea is derived
from the field of second-order dissipative dynamical systems [15,16]. It is shown that
such inertial terms speed up the convergence rate of the existing algorithms; see, e.g.,
the inertial proximal point algorithm [17–21], the inertial forward–backward splitting
method [22–24], the inertial Douglas–Rachford splitting method [25,26], the inertial
ADMM [27,28], and the inertial forward–backward–forward method [29].

Motivated by the above results, we wish to present a new inertial-type algorithm
for solving QVIs with the following three major advantages.

1. We consider general QVIs, in contrast to what is done; e.g., in [5] where only the
“moving set” case, described above, is analyzed.

2. Our newproposed scheme requires only one operator evaluation and one projection
per each iteration, in contrast to other methods such as those provided in [5,10],
just to name a few.

3. The convergence speed of our proposed method is better than other projection
methods for solving QVIs; see e.g., [10].

The outline of the paper is as follows. In Sect. 2 we list some basic facts, concepts,
and lemmas, which are needed for the rest of the paper. In Sect. 3 the new method
with two different inertial and relaxation parameters is presented and analyzed. In
Sect. 4, numerical examples illustrate the practical behavior of the proposed schemes
and, finally, in Sect. 5 conclusion is given.
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2 Preliminaries

LetH be a real Hilbert spacewith inner product 〈·, ·〉 and norm ‖·‖. LetF : H → H be
a nonlinear operator and K : H ⇒ H be a set-valued mapping which, for any element
u ∈ H, associates a closed and convex set K (u) ⊂ H. With the above data, we are
concerned with the following Quasi-Variational Inequality (QVI), which consists of
finding a point u∗ ∈ H such that u∗ ∈ K (u∗) and

〈F(u∗), v − u∗〉 ≥ 0 for all v ∈ K (u∗). (1)

Clearly, if K (u) ≡ K for all u ∈ H, then the problem reduces to the classical
variational inequality; that is, finding a point u∗ ∈ K such that

〈F(u∗), v − u∗〉 ≥ 0 for all v ∈ K . (2)

Definition 2.1 Let T : H → H be a given mapping.

– The mapping T is called L-Lipschitz continuous (L > 0), if

‖F(x) − F(y)‖ ≤ L‖x − y‖ for all x, y ∈ H. (3)

– The mapping T is called μ-strongly monotone (μ > 0), if

〈T (x) − T (y), x − y〉 ≥ μ‖x − y‖2 for all x, y ∈ H. (4)

– The mapping T is called monotone, if

〈F(x) − F(y), x − y〉 ≥ 0 for all x, y ∈ H. (5)

Let K be a nonempty, closed, and convex subset of H. For each point x ∈ H, there
exists a unique nearest point in K , denoted by PK (x), such that

‖x − PK (x)‖ ≤ ‖x − y‖ for all y ∈ K . (6)

The mapping PK : H → K is called the metric projection of H onto K and is
characterized; see e.g., [30, Section 3], by the following two properties:

PK (x) ∈ K (7)

and
〈x − PK (x) , PK (x) − y〉 ≥ 0 for all x ∈ H, y ∈ K , (8)

and if K is a hyper-plane, then (8) becomes an equality.
The following result, which is proved in [31], gives sufficient conditions for the

existence of solutions of QVIs (1).
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Lemma 2.1 Let F : H → H be L-Lipschitz continuous and μ-strongly monotone on
H, and K (·) be a set-valued mapping with nonempty, closed, and convex values such
that there exists λ ≥ 0 such that

‖PK (x)(z) − PK (y)(z)‖ ≤ λ‖x − y‖, x, y, z ∈ H, λ +
√

1 − μ2

L2 < 1. (9)

Then the QVI (1) has a unique solution.

The next result is a fixed point formulation characterizing the solutions of the
QVI (1).

Lemma 2.2 Let K (·)bea set-valuedmappingwith nonempty, closed and convex values
in H. Then x∗ ∈ K (x∗) is a solution of the QVI (1) if and only if for any γ > 0 it
holds that

x∗ = PK (x∗)(x
∗ − γF(x∗)).

A technical result, which is useful for our analysis, is given next; see [32].

Lemma 2.3 Let {ak} be a sequence of nonnegative real numbers satisfying the follow-
ing relation:

ak+1 ≤ (1 − αk)ak + αkσk + γk, k ≥ 1,

where

(a) {αk} ⊂ [0, 1], ∑∞
k=1 αk = ∞;

(b) lim sup σk ≤ 0;
(c) γk ≥ 0 (n ≥ 1),

∑∞
k=1 γk < ∞.

Then, ak → 0 as k → ∞.

3 Inertial Method

In this section, we introduce the inertial-type method and establish its strong conver-
gence theorems.

Algorithm 3.1 Initialization: Select arbitrary starting points x0, x1 ∈ H.
Iterative step:Given the iterates xk and xk−1, compute the next iterate xk+1 as follows

yk = xk + θk(x
k − xk−1),

xk+1 = (1 − αk)y
k + αk PK (yk )(y

k − γF(yk)) (10)

Set k ← k + 1 and go to the Iterative step.

In Algorithm 3.1, {θk} and {αk} are sequences that must satisfy different conditions,
specified in the results below, to get convergence to solutions of the QVI.
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Remark 3.1 1. If θk = 0 for all k ≥ 1, in Algorithm 3.1, then [10, Algorithm 1]
is obtained. Thus, Algorithm 3.1 is actually [10, Algorithm 1] with an inertial
extrapolation step yk .

2. If both θk = 0 and αk = 1, for all k ≥ 1 in Algorithm 3.1, we obtain the procedure
[5, Eq. (5)] (also studied in [7,33–35]).

We start the strong convergence analysis of Algorithm 3.1 with the special choice
of parameters:

0 ≤ θk ≤ θ̄k, θ̄k :=
{
min

{
k−1

k+η−1 ,
εk

‖xk−xk−1‖
}

, if xk �= xk−1,

k−1
k+η−1 , if xk = xk−1,

(11)

for some η ≥ 3 and εk ∈]0,∞[.
We observe that in this case Algorithm 3.1 generates a sequence such that∑∞
k=1 θk‖xk − xk−1‖ < ∞, because for every k ≥ 1 we get θk‖xk − xk−1‖ ≤ εk

when xk �= xk−1 and θk‖xk − xk−1‖ = 0 when xk = xk−1.

Theorem 3.1 Consider theQVI (1)withF beingμ-stronglymonotone and L-Lipschitz
continuous and assume there exists λ ≥ 0 such that (9) holds. Let {xk} be any sequence
generated by Algorithm 3.1 with the updating rule given by (11). Assume in addition
that γ ≥ 0 satisfies

∣∣∣γ − μ

L2

∣∣∣ <

√
μ2 − L2λ(2 − λ)

L2 , (12)

the sequence {αk} ⊆]0, 1] is such that ∑∞
k=1 αk = ∞, and the sequence {εk} satisfies∑∞

k=1 εk < ∞, then {xk} converges strongly to the unique solution x∗ ∈ K (x∗) of the
QVI (1).

Proof We know that

x∗ = (1 − αk)x
∗ + αk PK (x∗)(x

∗ − γF(x∗)).

Now,

‖xk+1 − x∗‖ = ‖(1 − αk)y
k + αk PK (yk )(y

k − γF(yk))

− (1 − αk)x
∗ + αk PK (x∗)(x

∗ − γF(x∗))‖
≤ ‖(1 − αk)(y

k − x∗)‖ + αk‖PK (yk )(y
k − γF(yk)) − PK (x∗)(x

∗ − γF(x∗))‖
≤ (1 − αk)‖yk − x∗‖ + αk‖PK (yk )(y

k − γF(yk)) − PK (x∗)(y
k − γF(yk))‖

+αk‖PK (x∗)(y
k − γF(yk)) − PK (x∗)(x

∗ − γF(x∗))‖
≤ (1 − αk)‖yk − x∗‖ + αkλ‖yk − x∗‖

+αk‖(yk − γF(yk)) − (x∗ − γF(x∗))‖. (13)
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Using the fact that F is μ-strongly monotone and L-Lipschitz continuous, we
obtain

‖(yk − γF(yk)) − (x∗ − γF(x∗))‖2 = ‖yk − x∗‖2 − 2γ 〈F(yk) − F(x∗), yk − x∗〉
+ γ 2‖F(yk) − F(x∗)‖2

≤ (1 − 2μγ + γ 2L2)‖yk − x∗‖2. (14)

Combining (13) and (14), we get

‖xk+1 − x∗‖ ≤ (1 − αk)‖yk − x∗‖ + αkλ‖yk − x∗‖
+αk

√
1 − 2μγ + γ 2L2‖yk − x∗‖

= (1 − αk)‖yk − x∗‖ + αkβ‖yk − x∗‖, (15)

where β := √
1 − 2μγ + γ 2L2 + λ. Now,

‖yk − x∗‖ = ‖xk − x∗ + θk(x
k − xk−1)‖

≤ ‖xk − x∗‖ + θk‖xk − xk−1‖. (16)

Plugging (16) into (15), we get

‖xk+1 − x∗‖ ≤ (1 − αk)‖yk − x∗‖ + αkβ‖yk − x∗‖
= (1 − αk(1 − β))‖yk − x∗‖
≤ (1 − αk(1 − β))(‖xk − x∗‖ + θk‖xk − xk−1‖)
≤ (1 − αk(1 − β))‖xk − x∗‖ + θk‖xk − xk−1‖. (17)

Observe that by (12), we have 0 < β < 1. Since
∑∞

k=1 θk‖xk − xk−1‖ < ∞, using
Lemma 2.3, we get that xk → x∗, k → ∞, and the proof is complete. ��
Remark 3.2 Inequality (condition) (12) can always be satisfied by setting γ sufficiently
close to the ratio μ

L2 .

Moreover, Theorem 3.1 still holds if in (11) the term k−1
k+η−1 is replaced with some

constant in [0, 1[. The idea of using it with η ≥ 3 derives from the recent inertial
extrapolated step introduced in [19,36].

Next we present the complexity bound of Algorithm 3.1 with the updating rule
(11).

Theorem 3.2 Consider the QVI (1) with the same assumptions as in Theorem 3.1. Let
{xk} be any sequence generated by Algorithm 3.1 with the updating rule (11) and let
x∗ ∈ K (x∗) be the unique solution of the QVI (1). Let αk = α and εk = ε be constant.
Then, given ρ ∈]0, α(1 − β)[, for any

k ≥ k̄ :=
⌊
log(1−ρ)

((
ε

‖x0 − x∗‖
)(

1 − α(1 − β)

α(1 − β) − ρ

)) ⌋
,
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assuming k̄ ≥ 0, it holds that

‖xk − x∗‖ ≤ ε

(
1 − α(1 − β)

α(1 − β) − ρ
+ 1

)
. (18)

Proof From the proof of Theorem 3.1, for any k ≥ 1, we get

‖xk+1 − x∗‖ ≤ (1 − α(1 − β))(‖xk − x∗‖ + θk‖xk − xk−1‖)
≤ (1 − α(1 − β))(‖xk − x∗‖ + ε), (19)

because (1 − α(1 − β)) ≥ 0. Without the loss of generality, assume that for every
k < k̄ we get

‖xk − x∗‖ ≥ ε
1 − α(1 − β)

α(1 − β) − ρ
. (20)

Concatenating (19) and (20), we obtain, for every k < k̄,

‖xk+1 − x∗‖ ≤ (1 − α(1 − β))

(
1 + α(1 − β) − ρ

1 − α(1 − β)

)
‖xk − x∗‖

= (1 − ρ)‖xk − x∗‖. (21)

Therefore, by the definition of k̄, it holds that

‖xk̄ − x∗‖ ≤ (1 − ρ)k̄‖x0 − x∗‖ ≤ ε
1 − α(1 − β)

α(1 − β) − ρ
.

For any k > k̄, there are two possibilities. If

‖xk−1 − x∗‖ ≤ ε
1 − α(1 − β)

α(1 − β) − ρ
,

then, by (19) and recalling that (1 − α(1 − β)) ≤ 1, we obtain that xk satisfies (18).
Otherwise, if

ε
1 − α(1 − β)

α(1 − β) − ρ
≤ ‖xk−1 − x∗‖ ≤ ε

(
1 − α(1 − β)

α(1 − β) − ρ
+ 1

)
,

then

‖xk − x∗‖ ≤ (1 − ρ)‖xk−1 − x∗‖ ≤ ‖xk−1 − x∗‖,

and the desired result holds. ��
Remark 3.3 We observe that, in contradiction with the assumptions of Theorem 3.1,
in Theorem 3.2 the summability of {εk} is not required. However if one wants a good
bound in (18) then a small value of ε must be set; but in this case, small values of θk
are allowed.
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Now, we present another convergence theorem for Algorithm 3.1 under different
conditions on the inertial terms.

Theorem 3.3 Consider theQVI (1)withF beingμ-stronglymonotone and L-Lipschitz
continuous and assume there exists λ ≥ 0 such that (9) holds. Let {xk} be any sequence
generated by Algorithm 3.1 with γ ≥ 0 satisfying (12), and {αk} and {θk} satisfying
the following conditions for some ε ∈]0, 1[:
1. 0 < 1

2(1−β)
≤ αk < 1

1+ε
, with β := √

1 − 2μγ + γ 2L2 +λ, and
∑∞

k=1 αk = ∞;

2. 0 ≤ θk ≤ θk+1 ≤ θ <
√
1+8ε−1−2ε
2(1−ε)

< 1.

Then {xk} converges strongly to the unique solution x∗ ∈ K (x∗) of the QVI (1).

Proof Define T (yk) := PK (yk )(y
k −γF(yk)). Then for the unique solution x∗ of (1),

we obtain

‖T (yk) − T (x∗)‖ = ‖PK (yk )(y
k − γF(yk)) − PK (x∗)(x

∗ − γF(x∗))‖
≤ ‖PK (yk )(y

k − γF(yk)) − PK (x∗)(y
k − γF(yk))‖

+‖PK (x∗)(y
k − γF(yk)) − PK (x∗)(x

∗ − γF(x∗))‖
≤ λ‖yk − x∗‖ + ‖yk − x∗ + γ (F(x∗) − F(yk))‖. (22)

Since F is μ-strongly monotone and L−Lipschitz continuous, we get

‖yk − x∗ − γ (F(x∗) − F(yk))‖2 = ‖yk − x∗‖2 − 2γ 〈F(yk) − F(x∗), yk − x∗〉
+ γ 2‖F(yk) − F(x∗)‖2

≤ (1 − 2μγ + γ 2L2)‖yk − x∗‖2. (23)

Combining (22) and (23), we get

‖T (yk) − T (x∗)‖ ≤ λ‖yk − x∗‖ +
√
1 − 2μγ + γ 2L2‖yk − x∗‖

= β‖yk − x∗‖
≤ ‖yk − x∗‖. (24)

From the definition of Algorithm 3.1, we get

‖xk+1 − x∗‖2 = (1 − αk)‖yk − x∗‖2 + αk‖T (yk) − x∗‖2
−αk(1 − αk)‖yk − T (yk)‖2

≤ ‖yk − x∗‖2 − αk(1 − αk)‖yk − T (yk)‖2. (25)
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Now,

‖yk − x∗‖2 = ‖xk + θk(x
k − xk−1) − x∗‖2

= ‖(1 + θk)(x
k − x∗) − θk(x

k−1 − x∗)‖2
= (1 + θk)‖xk − x∗‖2 − θk‖xk−1 − x∗‖2

+ θk(1 + θk)‖xk − xk−1‖2. (26)

Observe that

‖xk+1 − yk‖2 = α2
k‖yk − T (yk)‖2

and so

‖yk − T (yk)‖2 = 1

α2
k

‖xk+1 − yk‖2. (27)

Combining (27) with (25) yields

‖xk+1 − x∗‖2 ≤ ‖yk − x∗‖2 − αk(1 − αk)

α2
k

‖xk+1 − yk‖2

= ‖yk − x∗‖2 − (1 − αk)

αk
‖xk+1 − yk‖2. (28)

Now,

‖xk+1 − yk‖2 = ‖xk+1 − xk − θk(x
k − xk−1)‖2

= ‖xk+1 − xk‖2 + θ2k ‖xk − xk−1‖2 − 2θk〈xk+1 − xk, xk − xk−1〉
≥ ‖xk+1 − xk‖2 + θ2k ‖xk − xk−1‖2 − 2θk‖xk+1 − xk‖‖xk − xk−1‖
≥ (1 − θk)‖xk+1 − xk‖2 + (θ2k − θk)‖xk − xk−1‖2. (29)

Using (26) and (29) with (28), we get

‖xk+1 − x∗‖2 ≤ (1 + θk)‖xk − x∗‖2 − θk‖xk−1 − x∗‖2

+ θk(1 + θk)‖xk − xk−1‖2 − (1 − αk)

αk

[
(1 − θk)‖xk+1 − xk‖2

+ (θ2k − θk)‖xk − xk−1‖2
]

= (1 + θk)‖xk − x∗‖2 − θk‖xk−1 − x∗‖2

− (1 − αk)

αk
(1 − θk)‖xk+1 − xk‖2

+
[
θk(1 + θk) − (1 − αk)

αk
(θ2k − θk)

]
‖xk − xk−1‖2
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= (1 + θk)‖xk − x∗‖2 − θk‖xk−1 − x∗‖2
− ρk‖xk+1 − xk‖2 + σk‖xk − xk−1‖2, (30)

where ρk := (1−αk )
αk

(1 − θk) and σk := θk(1 + θk) − (1−αk )
αk

(θ2k − θk).

Let �k := ‖xk − x∗‖2 − θk‖xk−1 − x∗‖2 + σk‖xk − xk−1‖2. Then we obtain from
(30) that

�k+1 − �k = ‖xk+1 − x∗‖2 − (1 + θk+1)‖xk − x∗‖2
+ θk‖xk−1 − x∗‖2 + σk+1‖xk+1 − xk‖2 − σk‖xk − xk−1‖2

≤ ‖xk+1 − x∗‖2 − (1 + θk)‖xk − x∗‖2
+ θk‖xk−1 − x∗‖2 + σk+1‖xk+1 − xk‖2 − σk‖xk − xk−1‖2

≤ − (ρk − σk+1)‖xk+1 − xk‖2. (31)

Since 0 ≤ θk ≤ θk+1 < θ , we have

ρk − σk+1 = (1 − αk)

αk
(1 − θk) − θk+1(1 + θk+1)

+ (1 − αk+1)

αk+1
(θ2k+1 − θk+1)

≥ (1 − αk)

αk
(1 − θk+1) − θk+1(1 + θk+1)

+ (1 − αk+1)

αk+1
(θ2k+1 − θk+1)

≥ ε(1 − θ) − θ(1 + θ) + ε(θ2 − θ)

= ε − 2εθ − θ − θ2 + εθ2

= − (1 − ε)θ2 − (1 + 2ε)θ + ε. (32)

Combining (31) and (32), we get

�k+1 − �k ≤ −δ‖xk+1 − xk‖2, (33)

where δ := −(1 − ε)θ2 − (1 + 2ε)θ + ε. Therefore, �k+1 ≤ �k . Hence {�k} is
nonincreasing. Furthermore,

�k = ‖xk − x∗‖2 − θk‖xk−1 − x∗‖2 + σn‖xk − xk−1‖2
≥ ‖xk − x∗‖2 − θk‖xk−1 − x∗‖2.

Therefore,
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‖xk − x∗‖2 ≤ θk‖xk−1 − x∗‖2 + �k

≤ θ‖xk−1 − x∗‖2 + �1

...

≤ θk‖x0 − x∗‖2 + �1(θ
k−1 + θk−2 + . . . + 1)

≤ θk‖x0 − x∗‖2 + �1

1 − θ
(34)

and it can also be seen that

− θ‖xk−1 − x∗‖2 ≤ ‖xk − x∗‖2 − θ‖xk−1 − x∗‖2
≤ �k ≤ �1. (35)

Note that

�k+1 = ‖xk+1 − x∗‖2 − θk+1‖xk − x∗‖2 + σk+1‖xk+1 − xk‖2
≥ − θk+1‖xk − x∗‖2. (36)

Using (34) and (36), we get

−�k+1 ≤ θk+1‖xk − x∗‖2 ≤ θ‖xk − x∗‖2

≤ θk+1‖x0 − x∗‖2 + θ�1

1 − θ
.

By (33), we have

δ‖xk+1 − xk‖2 ≤ �k − �k+1,

and so by (34) and (35), we get

δ

k∑

j=1

‖x j+1 − x j‖2 ≤ �1 − �k+1

≤ �1 + θ‖xk − x∗‖2

≤ �1 + θk+1‖x0 − x∗‖2 + θ�1

1 − θ

= θk+1‖x0 − x∗‖2 + �1

1 − θ
.

This shows that

∞∑

k=1

‖xk+1 − xk‖2 < ∞
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and hence also,

∞∑

k=1

θk‖xk+1 − xk‖2 < ∞.

From the above, we deduce that limk→∞ ‖xk+1 − xk‖ = 0. Following the same
arguments derived (17) from the proof of Theorem 3.1, we obtain

‖xk+1 − x∗‖2 ≤ (1 − αk(1 − β))‖yk − x∗‖2
≤ (1 − αk(1 − β))(‖xk − x∗‖ + θk‖xk − xk−1‖)2
≤ (1 − αk(1 − β))(‖xk − x∗‖2 + 2θk‖xk − x∗‖‖xk − xk−1‖

+ θk‖xk − xk−1‖2). (37)

Since 2αk(1 − β) ≥ 1, it implies that

‖xk+1 − x∗‖2 ≤ (1 − αk(1 − β))‖xk − x∗‖2
+ 2(1 − αk(1 − β))θk‖xk − x∗‖‖xk − xk−1‖ + θk‖xk − xk−1‖2

≤ (1 − αk(1 − β))‖xk − x∗‖2
+ 2αk(1 − β)θk‖xk − x∗‖‖xk − xk−1‖ + θk‖xk − xk−1‖2. (38)

Observe that

lim sup
k→∞

(2αk(1 − β)θk‖xk − x∗‖‖xk − xk−1‖)

= lim
k→∞(2αk(1 − β)θk‖xk − x∗‖‖xk − xk−1‖)

= 0,

since {xk} is bounded and limn→∞ ‖xk+1 − xk‖ = 0. Applying Lemma 2.3 to (38),
we get that xk → x∗, k → ∞ and the desired result is obtained. ��
We discuss some relationships between the sets of assumptions of {θk} given in The-
orems 3.1 and 3.3 in the following remark.

Remark 3.4 1. One can see from the choices of {θk} in Theorem 3.1 (see (11)) and
Theorem 3.3 that the two choices of {θk} are independent of each other. For exam-
ple, when xk = xk−1, one can see from (11) that

θk ≤ θk+1 but θk+1 �

√
1 + 8ε − 1 − 2ε

2(1 − ε)

for all k ≥ 1 and ε ∈]0, 1[. This negates the second assumption in Theorem 3.3.
2. Also, from the proof of Theorem 3.3, we can see that

∑∞
k=1 θk‖xk+1− xk‖2 < ∞,

while in Theorem 3.1, we have
∑∞

k=1 θk‖xk+1 − xk‖ < ∞.
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4 Numerical Experiments

In this section, we compare the performances of our proposed scheme (Algorithm
3.1) with those of Algorithms 1 and 2 proposed in [10], and the extragradient method
studied in [5].

We choose to use the test problem library QVILIB taken from [37]; the feasible
map K is assumed to be given by K (x) := {z ∈ Rn : g(z, x) ≤ 0}. We implemented
Algorithm 3.1 in MATLAB/Octave. We implemented the projection over a convex
set as the solution of a convex program. We considered the following performance
measures for optimality and feasibility:

opt(x) := −min
z

{F(x)T (z − x) : z ∈ K (x)}, feas(x) := ‖max{0, g(x, x)}‖∞.

Apoint x∗ is considered as a solution of theQVI if opt(x∗) ≤1e-3 and feas(x∗) ≤1e-
3. As a nonlinear programming solver, we used the built-in function sqp with
maxiter = 1000. All the experiments were carried out on an Intel Core i7-4702MQ
CPU @ 2.20GHz x 8 with Ubuntu 14.04 LTS 64-bit and using GNU Octave version
3.8.1.

In Table 1 the results of Algorithm 3.1 with γ = 0.5 and constant sequences
{αk = α} and {θk = θ} are presented. Different values for α and θ are considered,
and we also report in Table 1 the number of iterations the algorithm requires to reach
the stopping criterion. A failure is reported whenever the algorithm does not converge
within 5000 iterations. We remark that when α = 1 and θ = 0 we obtain the classical
gradient projection algorithm, and, more in general, when θ = 0 [10, Algorithm 1] is
obtained.

It can be seen in Table 1 that small values of α increase the robustness of the
algorithm. Specifically, we observe only 5 successes when α = 1, 20 successes when
α = 0.2, and 22-24 successes when α = 0.05. On the other hand, these results also
show that the inertial step can significantly improve the performances of the projected
gradientmethod. In Table 1, we report the performancemeasure iter./success that gives
the average number of iterations needed to get a run successfully solved. These results
clearly show that the algorithm with the inertial parameter θ = 0.75 outperforms the
case with α = 0; i.e., Algorithm 1 in [10].

In Table 2, we compare our algorithm’s performances with θ = 0.75 and [10,
Algorithm 2]. Recall that [10, Algorithm 2] requires an additional projection onto a
closed and convex set per each iteration compared toAlgorithm 3.1; i.e., one additional
convex program needs to be solved at each iteration. Following this reasoning, we
report in Table 2 the time in seconds needed for the algorithms to reach the stopping
criterion. The number of iterations of [10,Algorithm2] is however reported in brackets.
Hence, clearly, the performance ofAlgorithm3.1 ismuchbetter than [10,Algorithm2].

We also tested the extragradient method proposed in [5] on the same benchmark
problems, but we do not report these results here since this algorithm does not work
well with the stepsizes considered for the other methods, and it is really slow with
smaller stepsizes.

The experiments made here clearly show how the usage of α makes Algorithm 3.1
robust, while the inertial parameter θ can be used to speed up the method. Relying
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Table 1 Numerical results of Algorithm 3.1 with γ = 0.5: number of iterations needed for satisfying the
stopping criterion

α 1 0.2 0.2 0.2 0.2 0.2 0.05 0.05 0.05 0.05 0.05

θ 0 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

OutZ40-1 Fail. 460 343 223 88 320 1854 1389 919 438 1116

OutZ40-2 Fail. 454 340 222 90 348 1825 1368 908 439 1080

OutZ40-3 Fail. 429 321 213 89 398 1718 1288 857 420 660

OutZ41-1 123 411 310 207 89 269 1638 1229 822 410 1508

OutZ41-2 115 417 312 205 82 184 1675 1256 834 403 1147

OutZ41-3 122 442 331 217 87 245 1776 1331 884 427 1066

OutZ42-1 Fail. 50 36 25 30 33 206 154 98 46 135

OutZ42-2 Fail. 44 32 22 29 60 184 137 88 41 205

OutZ42-3 Fail. 37 27 19 14 53 153 114 73 37 150

OutZ42-4 Fail. 37 26 15 25 45 159 118 73 45 216

OutZ43-1 Fail. 32 23 17 24 34 134 100 63 45 142

OutZ43-2 Fail. 27 19 14 22 33 112 83 52 40 115

OutZ43-3 Fail. 19 13 6 16 21 79 59 36 25 66

OutZ44-1 Fail. 33 23 18 24 39 137 102 64 46 106

OutZ44-2 Fail. 27 19 15 23 38 115 86 53 29 56

OutZ44-3 Fail. 21 15 13 11 27 89 66 41 25 77

MovSet1A-1 Fail. 46 33 18 21 61 192 143 90 35 194

MovSet1A-2 Fail. 63 45 21 41 56 267 198 125 50 496

MovSet2A-1 33 42 30 16 20 25 178 132 83 32 163

MovSet2A-2 42 59 42 28 39 76 252 187 117 61 418

Box1A-1 Fail. Fail. Fail. Fail. Fail. Fail. 150 112 71 75 Fail.

Box1A-2 Fail. Fail. Fail. Fail. Fail. Fail. 244 181 114 81 Fail.

BiLin1A-1 Fail. Fail. Fail. Fail. Fail. Fail. 131 96 63 36 123

BiLin1A-2 Fail. Fail. Fail. Fail. Fail. Fail. 218 160 100 44 246

#success 5 20 20 20 20 20 24 24 24 24 22

iter./success 87 157.5 117 76.7 43.2 118.25 561.92 420.38 276.17 138.75 431.14

on these considerations, we tested Algorithm 3.1 with diminishing sequences {αk}
and {θk}. Specifically, we set α0 = 0.5, θ0 = 1, and αk+1 = 0.99αk , θk+1 = 0.99θk
for k ≥ 0. Performances of this version of the algorithm can be found in Table 3.
Comparing these performances with those reported in Tables 1 and 2 indicates that
this variant is the fastest one at solving all the test problems.

We also report in Table 3 the performances of Algorithm 3.1 with the updating rule
from (11). For this algorithm we set θk = θ̄k , η = 3, and {εk} such that ε0 = 1 and
εk+1 = 0.99εk .
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Table 2 Comparison between Algorithm 2 in [10] and Algorithm 3.1 with γ = 0.5: time in seconds to
satisfy the stopping criterion. (Alg2 [10] in brackets is the number of iterations)

α = 0.2 α = 0.05

Alg2 [10] Alg. 3.1 with θ = 0.75 Alg2 [10] Alg. 3.1 with θ = 0.75

OutZ40-1 152.1 (392) 17.3 652.6 (1777) 95.1

OutZ40-2 159.2 (384) 17.7 646.3 (1746) 97.9

OutZ40-3 139.9 (360) 18.2 606.2 (1640) 94.6

OutZ41-1 98.6 (340) 14.0 448.0 (1558) 72.3

OutZ41-2 103.0 (352) 13.0 464.7 (1602) 69.3

OutZ41-3 112.1 (374) 13.9 492.4 (1698) 75.5

OutZ42-1 5.7 (47) 1.5 25.2 (203) 4.3

OutZ42-2 4.4 (42) 1.4 19.2 (182) 3.4

OutZ42-3 2.7 (36) 0.7 11.6 (152) 2.3

OutZ42-4 1.2 (39) 0.9 5.4 (160) 1.2

OutZ43-1 3.0 (33) 0.8 12.7 (135) 2.5

OutZ43-2 1.5 (28) 0.7 7.1 (113) 1.8

OutZ43-3 0.3 (20) 0.2 1.7 (81) 0.2

OutZ44-1 3.7 (33) 1.0 16.4 (137) 3.0

OutZ44-2 2.4 (28) 0.8 10.3 (116) 2.2

OutZ44-3 0.5 (23) 0.1 2.5 (91) 0.5

MovSet1A-1 6.3 (45) 1.7 26.9 (191) 3.4

MovSet1A-2 9.1 (62) 3.3 40.2 (265) 5.6

MovSet2A-1 5.2 (42) 1.7 27.0 (178) 3.3

MovSet2A-2 9.5 (59) 3.3 40.6 (252) 5.9

Box1A-1 Fail. Fail. 14.1 (149) 6.1

Box1A-2 Fail. Fail. 17.0 (242) 5.9

BiLin1A-1 Fail. Fail. Fail. 1.7

BiLin1A-2 Fail. Fail. Fail. 2.2

#success 20 20 22 24

seconds/success 41.1 5.6 163.1 23.3

Table 3 Performances of Algorithm 3.1 with diminishing rule and γ = 0.5, and with updating rule (11),
αk = 0.2, or 0.05, and γ = 0.5: time in seconds to satisfy the stopping criterion and, in brackets, the
number of iterations

Diminishing rule Rule (11) and αk = 0.2 Rule (11) and αk = 0.05

OutZ40-1 39.6 (190) 29.1 (124) 38.9 (202)

OutZ40-2 21.1 (103) 24.8 (100) 57.1 (249)

OutZ40-3 7.3 (39) 24.0 (100) 58.6 (249)

OutZ41-1 20.9 (144) 9.5 (83) 36.5 (293)

OutZ41-2 12.6 (90) 12.3 (83) 19.7 (167)

OutZ41-3 15.1 (107) 11.5 (83) 37.6 (323)

OutZ42-1 1.2 (32) 1.8 (25) 4.9 (94)
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Table 3 continued

Diminishing rule Rule (11) and αk = 0.2 Rule (11) and αk = 0.05

OutZ42-2 1.2 (32) 2.2 (37) 4.8 (105)

OutZ42-3 1.5 (33) 1.8 (29) 3.9 (88)

OutZ42-4 1.6 (33) 0.3 (14) 1.6 (58)

OutZ43-1 0.7 (45) 1.2 (26) 4.1 (78)

OutZ43-2 0.6 (58) 0.6 (13) 2.5 (51)

OutZ43-3 0.4 (45) 0.1 (12) 0.5 (37)

OutZ44-1 2.1 (78) 1.3 (15) 4.2 (78)

OutZ44-2 1.4 (73) 1.1 (19) 2.5 (40)

OutZ44-3 1.5 (77) 0.2 (12) 0.6 (37)

MovSet1A-1 1.7 (23) 2.9 (23) 5.8 (62)

MovSet1A-2 2.5 (32) 4.4 (44) 14.7 (161)

MovSet2A-1 1.6 (21) 2.5 (22) 2.8 (31)

MovSet2A-2 2.4 (29) 5.4 (51) 15.5 (157)

Box1A-1 5.1 (148) Fail. 45.5 (457)

Box1A-2 5.3 (148) Fail. 64.7 (698)

BiLin1A-1 4.2 (219) Fail. 3.3 (44)

BiLin1A-2 4.2 (219) Fail. 5.3 (97)

#success 24 20 24

iter./success 84.08 45.75 160.67

seconds/success 6.5 6.8 18.2

5 Conclusions

In this paper, we propose a generalized gradient-type method with an inertial extrap-
olation step for solving QVIs in real Hilbert spaces and obtained strong convergence
results with different updating rules. Throughout this paper, we do not assume that
the set-valued mapping K (·) is of the form K (u) = K + m(u) for all u ∈ H, as
is commonly assumed in most published papers in this subject area. Our numeri-
cal experiments show that our suggested method outperforms most of the recently
proposed gradient-type methods for solving QVIs in real Hilbert spaces when F is
strongly monotone and Lipschitz continuous.

Acknowledgements We are grateful to the anonymous referees and editor whose insightful comments
helped to considerably improve an earlier version of this paper. The research of the first author is supported
by an ERC Grant from the Institute of Science and Technology (IST).

References

1. Fichera, G.: Sul problema elastostatico di Signorini con ambigue condizioni al contorno (English
translation: “On Signorini’s elastostatic problem with ambiguous boundary conditions”). Atti Accad.
Naz. Lincei VIII. Ser. Rend. Cl. Sci. Fis. Mat. Nat. 34, 138–142 (1963)

123



Journal of Optimization Theory and Applications (2020) 184:877–894 893

2. Fichera, G.: Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue
condizioni al contorno (English translation: “Elastostatic problems with unilateral constraints: the
Signorini’s problem with ambiguous boundary conditions”). Atti Accad. Naz. Lincei Mem. Cl. Sci.
Fis. Mat. Nat., Sez. I VIII. Ser. 7, 91–140 (1964)

3. Stampacchia, G.: Formes bilineaires coercitives sur les ensembles convexes. Acad. Sci Paris 258,
4413–4416 (1964)

4. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications.
Academic Press, New York (1980)

5. Antipin, A.S., Jaćimović, M., Mijajlovi, N.: Extragradient method for solving quasivariational inequal-
ities. Optimization 67, 103–112 (2018)

6. Mosco, U.: Implicit variational problems and quasi variational inequalities. Lecture Notes in Mathath-
ematics, vol. 543. Springer, Berlin (1976)

7. Noor, M.A.: An iterative scheme for a class of quasi variational inequalities. J. Math. Anal. Appl. 110,
463–468 (1985)

8. Noor, M.A.: Quasi variational inequalities. Appl. Math. Lett. 1, 367–370 (1988)
9. Noor, M.A., Noor, K.I., Khan, A.G.: Some iterative schemes for solving extended general quasi vari-

ational inequalities. Appl. Math. Inf. Sci. 7, 917–925 (2013)
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34. Antipin, A.S., Jaćimović, M., Mijajlovi, N.: A second-order iterative method for solving quasi-

variational inequalities. Comput. Math. Math. Phys. 53, 258–264 (2013)
35. Nesterov, Y., Scrimali, L.: Solving strongly monotone variational and quasi-variational inequalities.

Discrete Contin. Dyn. Syst. 31, 1383–1396 (2011)
36. Attouch, H., Peypouquet, J.: The rate of convergence of Nesterov’s accelerated forward-backward

method is actually faster than 1/k2. SIAM J. Optim. 26, 1824–1834 (2016)
37. Facchinei, F., Kanzow, C., Sagratella, S.: QVILIB: a library of quasi-variational inequality test prob-

lems. Pac. J. Optim. 9, 225–250 (2013)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Inertial Projection-Type Methods for Solving Quasi-Variational Inequalities in Real Hilbert Spaces
	Abstract
	1 Introduction
	2 Preliminaries
	3 Inertial Method
	4 Numerical Experiments
	5 Conclusions
	Acknowledgements
	References




