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Abstract

In this paper, by virtue of the image space analysis, we investigate general scalar
robust optimization problems with uncertainties both in the objective and constraints.
Under mild assumptions, we characterize various robust solutions for different kinds
of robustness concepts, by introducing suitable images of the original uncertain prob-
lem, or the images of its counterpart problems appropriately, which provide a unified
approach to tackling with robustness for uncertain optimization problems. Several
examples are employed to show the effectiveness of the results derived in this paper.
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1 Introduction

In most real-world applications, optimization problems (OPs) contain uncertain data.
The reasons for data uncertainty include, for example, measurement errors (induced by
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temperature, pressure or material properties), estimation errors (imprecision in evalu-
ating system performance), implementation errors and unknown future developments.
Sometimes, solutions to OPs can exhibit remarkable sensitivity to perturbations in the
parameters of the problem, thus often rendering a computed solution that is highly
infeasible, suboptimal or both (i.e., completely meaningless). Particularly, one cannot
ignore this case from the practical point of view.

Nowadays, there have been two prominent approaches to dealing with uncertain
OPs, one is robust optimization and the other is stochastic programming. The former
is an effective methodology to handle some practical OPs with uncertainties, in which
the uncertain parameters belong to a known set. The idea is to minimize the worst
possible objective function value, and look for a solution, that is immunized against
the effect of data uncertainty. Unlike the former, the latter consists in finding is a
better style commonly to find a feasible solution that optimizes the expected value of
some objectives or cost function. The uncertain data are assumed to be random and
obey a probability distribution known prior. Both methodologies are complementary
for handling data uncertainty in optimization, and each has its own advantages and
drawbacks.

Robust optimization is becoming more and more popular in solving scalar OPs with
uncertain data in last two decades. The first scholar to investigate robust linear OPs
under ellipsoidal uncertainty sets was Soyster [1]. Above all, we refer to Ben-Tal and
Nemirovski [2], who gave a seminal paper in the early stage of robustness exploration.
Specifically, two detailed monographs [3,4], that provided extensive collections of the-
oretical results and applications, play a significant role in the development of robust
optimization. In the context of computational attractiveness, the modeling power and
broad applicability of robust optimization approach, some recent results, both theo-
retical and applied, were summarized in [5]. Additionally, Goerigk and Schobel [6]
revealed the close connections between algorithm engineering and robust optimiza-
tion. They also pointed out some open research directions from a new perspective
on algorithm engineering. By means of nonlinear scalarization method, Klamroth et
al. [7] unified many different concepts of robustness and stochastic programming. Sub-
sequently, they developed a unified characterization of various concepts from vector
optimization, set-valued optimization and scalarization points of view in [8], where the
uncertain scalar OPs contains infinite scenario sets. Recently, under various constraint
qualifications and convexity assumptions, there have been many studies on character-
izing robust dual and robust solutions for uncertain convex OPs. For more details, one
can refer to [9—13] and reference therein. However, to the best of our knowledge, very
few papers concentrate on deriving robust optimality conditions for general uncer-
tain scalar OPs, without any convexity or concavity assumptions. Besides, whether
there exists another tool to generate a unified approach to characterizing a variety of
robust solutions? These problems facilitate us to make further explorations, as well as
contribute the motivation of this paper.

Image space analysis (for short, ISA) was born with [14]. Its gestation has been
a long way. A trace was found in C. Charathédory in his book on Calculus of Vari-
ations of 1935. Subsequently, several contributions [15—17] have been brought, but
independently each other. One of them, very important, is due to M. Hestenes in his
book [16]. Such an analysis has begun to grow, when separation arguments have been
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introduced; in this sense, among others, we mention [17]. It has been proven to be a
powerful methodology to study, from the geometrical point of view, different kinds of
OPs, for example, constrained extremum problems, variational inequalities, noncon-
vex vector OPs and so on. By constructing the impossibility of a parametric system, the
disjunction of two suitable subsets in the image space, one is the image of the functions
and the other is a convex cone, can be obtained. Simultaneously, it also can be reached,
by showing that the two subsets lie in two disjoint level sets of a linear or nonlinear
separation function, which is the main feature of the ISA approach. Thus, separation
is vital in the process of implementation. By exploiting separation arguments in the
image space, some theoretical aspects, such as optimality conditions, duality, penalty
methods, variational principles, gap functions and error bounds, have been developed;
see [14,18-28]. While, the classical image problem of uncertain OP is not equivalent
to itself because of the parameters. Then, it seems to be useless to immediately con-
sider the classical image problem, which leads to the failure in investigating this kind
of problem by virtue of ISA. Furthermore, if we only consider the image of robust
counterpart problem, it may hide the structure of the uncertain problem; see [14, p. 7,
lines 9—12]. Therefore, how to introduce an appropriate image problem, such that it is
not only equivalent to the corresponding counterpart problem, but also contains some
properties of original uncertain problem, is the key to success.

At present, by defining a suitable image, Wei et al. [29] established an equivalence
relation between the uncertain OP and its image problem for strictly robustness, as
well as achieved some robust optimality conditions. Besides, based on separation,
a unified characterization of several multiobjective robustness concepts [30-32] for
uncertain multiobjective OPs, was presented in [33,34]. Some characterizations of
multiobjective robustness on vectorization counterparts were also provided in [35].
Motivated greatly by the works reported in [7,8,14,29,33-36], this paper focuses on
a unified approach to characterizing various robust solutions by virtue of ISA. By
defining suitable images of original problem, or the images of its counterpart prob-
lems appropriately, the corresponding equivalent problems for most known robustness
concepts are described, which provide a unified approach to tackling with robustness
for uncertain OPs. Meanwhile, ISA has been proven to be an effective and promi-
nent tool for studying scalar robust OPs. It is worthwhile to notice that this paper
provides a full answer to the open question (ii) posed in [29]: by virtue of the ISA,
it may be interesting to develop a unified approach to dealing with uncertain prob-
lems by defining new images for different robustness concepts (such as optimistic
robustness, regret robustness, reliable robustness, light robustness, weighted robust-
ness, adjustable robustness and e-constraint robustness, as well as Benson robustness
and Elastic robustness recently proposed by Wei et al. [36]) to make two suitable
subsets of the image space separable.

The remainder of this paper is organized as follows. In Sect. 2, we make some
preliminaries and formulate the uncertain problem. By introducing suitable images of
the original problem, or the images of its counterpart problems, Sect. 3 characterizes
various robust solutions on the unified framework of ISA. Section 4 gives some inter-
pretations for ISA approach, and proposes several open problems. A short conclusion
of the paper is provided in Sect. 5.
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2 Preliminaries

In this section, we shall recall some notations and definitions, which will be used in
the sequel. Let R" be the n-dimensional Euclidean space, where n is a positive integer.
Let X € R” be a nonempty subset and Y be a normed linear space. The closure of
aset M C Y is denoted by cl M. Y\ M implies a set consisting of all elements that
belong to Y but not in M. A nonempty subset C C R” is said to be a cone iff tC C C
forall t > 0. A cone C C R™ is said to be convex (resp. pointed) iff C + C € C
(resp. C N (—C) = {Ogm}). The set coneM := |, tM is the cone generated by M.

Now, a general OP with uncertainties both in the objective and constraints is con-
sidered. Assume that U is a nonempty subset of a finite dimensional space and an
uncertainty set (convex or nonconvex, compact or noncompact, discrete scenarios or
continuous interval), where £ € U implies an uncertain parameter, i.e., a real number,
areal vector or a scenario. Let f: X x U - Rand F;: X xU - R, i=1,...,m.
Then, an uncertain scalar OP is defined as a parametric OP

(Q(), § €U), (D
where for a given & € U the OP (Q(£)) is described by
min f(x,&) s.t. Fi(x,&) <0,i=1,...,m, x e X.

We denoteAby é € U the nominal value, i.e., the value of & that we believe is true
today. (Q(§)) is called the nominal problem.

3 Unified Characterizations of Various Robust Solutions

As far as we know, there is no appropriate methodology to directly solve uncertain
problems; thus, it is necessary to replace the uncertain OP by a deterministic version,
called the robust counterpart of the uncertain problem. By this means, various robust-
ness concepts, that describe the decision maker’s preferences, have been proposed on
the basis of different robust counterparts. With the help of ISA, this section is dedi-
cated to characterizing a variety of robust solutions for different kinds of robustness
concepts existing in the literature, which can form a unified approach to tackling with
uncertain OPs. In general, the equivalence of problem (1) and its image problem does
not hold, due to the effect of parameters; thus, it seems to be meaningless to immedi-
ately investigate the image of problem (1). Additionally, if we only consider the image
of robust counterpart problem, it may hide the structure of the uncertain problem.
Therefore, it is vital to define a proper image problem, such that it can not only be
equivalent to the corresponding counterpart problem, but also contain the uncertain
parameter on the framework of ISA.
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3.1 Strict Robustness

The first classical robustness concept is called strict robustness, which was originally
proposed by Soyster [1], for investigating the robust linear OPs under ellipsoidal uncer-
tainty sets. Subsequently, this concept has been extensively researched and developed
by Ben-Tal and Nemirovski [2] and Ben-Tal et al. [3]. The idea is to minimize the
worst possible objective function value, and search for a solution that is good enough
in the worst case. Meanwhile, the constraints should be satisfied for every parameter
& e U. Strict robustness is a conservative concept and reveals the pessimistic attitude
of a decision maker. Then, the strictly robust counterpart of problem (1) is given by

min sup f(x,§) st. Fj(x,§) <0, VéeU,i=1,...,m, xelX. 2)
EeU

Set D! = —R¥ and F(x,§) := (Fi(x,§),..., Fy(x,§)) foragiven £ € U.
It is obvious that D! € R™ is a closed and convex cone, and F(x,§) € D! for
feasible points of problem (Q(£)). The set of feasible solutions of problem (2) is
denoted as X := {x € X: F(x,£) € D', V& € U}. According to [3, pp. 9-10], if a
feasible solution x € X is optimal to problem (2), then it is called a strictly robust
solution to problem (1). In Sects. 3.1 and 3.3, assume that SUPg ey f(x, &) <
and SUPg ey Fi(x,&) < o00,i = 1,...,m for all x € X. Some notations are given
to describe the main features of the ISA for problem (1) under the strictly robust
counterpart. Let x € X. Define the map

ALx xU - R, Alx, &) = <f()"c,.§) — sup f(x, £), F‘(x)>,
EeU

where F1(x) := (supgey Fi1(x,§), ..., supgey Fm(x, §)),and consider the following
sets

Kl = !(u, v) € R (u,v) = AL(x,£), x e X, & € U},
H' = {u,v) e R"™"™:u >0, ve D'y =Ry x (—R™).

IC)I? is called corrected image of problem (1) and R!*” is the image space. By means
of corrected image, an equivalent characterization of strictly robust solutions for the
uncertain OP can be obtained. We should mention that, this separation characterization
for the strict robustness has been proposed by authors in [29]. Herein, we make further
discussions on it. Particularly, separation characterizations for the weighted robustness
and the regret robustness (also known as deviation robustness) will be simultaneously
deduced.

Theorem 3.1 A feasible solution X € X is a strictly robust solution to problem (1) if

and only if
KinH!' =0. A3)
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Proof Necessity. Suppose thatx € X is a strictly robust solution to problem (1). Then
one can read that

sup f(x,§) <sup f(x,§), VxeXi. 4)
EelU EeU

The inequality (4) is equivalent to

f(x,&) —sup f(x,£6) <0, VxeX;,V&eU. (5)
EeU

In addition, it holds F'(x) ¢ D' for any x € X'\ X|. This, together with inequality
(5), one can see that (3) is true.

Sufficiency. Assume (3) holds and F I(x) e D! for any x € X1, then we have
inequality (5). It follows from the equivalence of (4) and (5) that x € X is a strictly
robust solution to problem (1). O

Generally, the image of a generalized system is not convex, even when the functions
involve some convexity properties. To avoid this drawback, we introduce an extended
image £ )% , that is a regularization to /C )]E with respect to the cone cl H e,

gli=K! —an! = {(u, v) € Ry < £(7, €)= sup f(x,£),v € Fl(x)
EeU

X
—Dl, xeX,EeU}.

Similarly as in [14], the following proposition can be derived by virtue of the extended
image, and we state it without proof.

Proposition 3.1 A feasible solution x € X is a strictly robust solution to problem (1)
if and only if
EinH =9, (©6)

or equivalently, cone 5)% NH =0, or equivalently, 5)% N H(l) = (), where
M = {(u, v) eRFMy >0, v = oRm} — Ry x {Ogn).

Remark 3.1 (i) If we consider the classical definition of image set of problem (1), and
define the map

Ap: X x U — R Az(x,8) = (f(5. &) — f(x,§), F(x,§)),
where F(x, &) == (F1(x,&), ..., F,(x, £)), then the image of problem (1) is
K = {(u, v) € R (u,v) = Az(x,6), x € X, & € U}.

While, x € X being a strictly robust solution to problem (1) cannot ensure
the equality Kz N H! = @. This is because the inequality supgey f(x,§) <
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supg gy f(x, §) usually does not imply the inequality f(x,§) < f(x,§) for all
x € Xy and & € U. Thus, the equivalence of robust counterpart problem (2) and
the classical image problem of (1) are not satisfied.

(i1) Another approach, which is from [14, p. 7, lines 9-12] in face of minimax prob-
lems, is to discuss directly the image of problem (2). In this circumstance, the
strictly robust counterpart can be viewed as a special case of constrained extremum
problems. That is, define the map

Ap: X — R A (x) = (sup f(E, &) —sup f(x, &), F1<x>>,
EeU EeU

and the image of (2) is E} = {(u,v) € R (u,v) = X;z(x), x € X}.
This method hides the structure of problem (1), although supgcy f(x,§) <
supgcy f(x, §) is tantamount to f(x, &) < supgey f(x,§) forall x € X and
Eel.

Remark3.2 Let U := {&,...,&,} be a finite set of scenarios. If some scenarios
are more likely to be realized than others, to assign weights w; > 0 to each sce-
nario§; € U,j = 1,...,q, then the weighted robust counterpart of the uncertain

OP can be presented, by using sup ¢y, 4 W f(x, &) instead of the objective func-
tion SUPgcp f(x,&)in 2). If w; = 1 forevery j = 1,..., g, the weighted robust
counterpart is reduced to (2). The concept of weighted robustness is a general-
ization of strictly robustness and can be described by the weighted Tschebyscheff
scalarization. Additionally, let f*:U — R be a function given by f*(&) :=
min{f(x,&):x € X(&)}, where X(§) := {x € X:F;i(x,§) <0,i = 1,...,m}.
Here, we assume that an optimal solution exists for every fixed scenario &. The
optimal value of problem (Q(&)) for a given &€ € U is f*(&¢), and it can be inter-
preted as an ideal point. If we replace the objective function supg f(x, §) by
supSEU( f(x,&) — f*()) in (2), the regret robust counterpart of the uncertain OP
can be addressed. The regret robustness is also known as deviation robustness, in
which one evaluates a solution by comparing it with the best possible solution
for the realized scenario in the worst case. By making a proper modification of

,,,,,

AL(x, 8) = (f(X,8) = f*(€) — supgcy (f (x, §) — f*(§)), F'(x))), the correspond-
ing results of Theorem 3.1 and Proposition 3.1 for weighted (regret) robust counterpart
problem would be obtained.

Three examples are employed to emphasize the importance of the theoretical results
obtained above for (strictly/weighted/regret) robust counterpart. The uncertainty set
contains finite scenario in Examples 3.1 and 3.2, while it is regarded as a closed interval
in Example 3.3. In this case, the weighted robustness is invalid in the third example.

Example 3.1 For problem (1), take X = R and U = {&1, &} be the parameter set.
Let f(x,&) = x, f(x,&) = —x, F(x,&) =x — 1 and F(x, &) = x — 2. Thus,
maxgey f(x,§) = |x|, maxgey F(x,§) = x — 1 and X :=] — oo, 1]. For strict
robustness, one can reach that x* = 0 is the unique strictly robust solution. (i) Set x =
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Fig.1 The corrected images for strict robustness in Example 3.1

0. Since £ (0, &) = f(0, &) = 0,itholds A(l)(x, &) = A(l)(x, &) = (—|x|,x—1).Let
u=—|x|andv = x—1,wecanderivev = —u—1,u < 0andv = u—1, u < 0. Then,
the corrected image setis kC}) = {(u, v) € RZ:v=—u—1, u <0}U{(u,v) e R%:v =
u—1, u <0} (i) Takex = 1.If§ =& oré = 52,thenA}(x, E=>0—|x],x—1)
and A}(x, &) = (—1—|x|,x — 1). Two cases are discussed and the corrected image
set is

Ki={w,v)eR>v=u—2 u<1}U{@u,v) eRv=—u, u<l)
Uf{w,v) eRv=u, u<—-1}U{u,v) eR*v=—-u—-2, u<-1}.

See Fig. 1; the red lines denote IC(1) and the blue ones represent IC}.
For weighted robustness, let w; = 1 and wp = 2. One can see that

max(wi £ (r. 1), W2 £ (x. £)} = max{x, ~2x} = {x’ *=0

B ’ ’ —2x, x<0.
It is not difficult to see that x™ = 0 is the unique weighted robust solution. (i) Taking
X = 0, we obtain wy £(0,&1) = w2 f(0,&) = 0 and AJ(x,§1) = AJ(x,8) =
(—max{x, —2x},x — 1). Setting © = — max{x, —2x} and v = x — 1, the relation
between u and v can be formulated asv = —u — 1,u <0, v = % —1,u < 0. The
corrected image set is

/cgz{(u,v)eRZ:vz—u—l, ufO}U{(u,v)eR2:v=g—1, u<0}.
(ii) Set x = 1, itis obvious that wy f(1, &) = 1, AV (x, &1) = (1 —max{x, —2x}, x —
1), and wa f (1, &) = =2, AY(x, &) = (=2 — max{x, —2x}, x — 1). By analyzing

two cases, the corresponding corrected image set can be presented by
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Fig.2 ICOW and ICYV are corrected images for weighted robustness in Example 3.1

3
Y:[(u,v)eRZ:vz—u, ufl}U{(u,v)eRzzvzg—z, u<l}

U{(u,v)eRz:vz—u—S, u§—2}U{(u,v)eR2:v=g, u<—2}.

In Fig. 2, the red lines and blue ones describe K and K", respectively.

For regret robustness, let ¥ = [—2, 1] C R, the feasible set of problem (2) is
Xy :=[—2, 1]. It follows from Remark 3.2 that f*(£;) = minyex(g,) f(x, &) = =2
and f*(&) = minyex () f(x, &) = —1. One can read that

max{f(x, &) — f* &), f(x, &) — f7 (&)} = max{x + 2, —x + 1}

x4+ 2, xe[—l,l],
Cxdl xe[- 2L

and x* = —% is the unique regret robust solution. (i) Setx = —%.Foré =& oré =6,
itholds A" | (x,&) = (%—max{x+2, —x+1}, x—l).Letu = %—max{x—i—Z, —x+1}
-2

and v = x — 1, the corrected image set can be given by

>

3 3
U R*:p=u—= - =,0] ¢t.
{(u,v)e v=1u > ue|: X |:}

[N]

Ky :{(M,U)ER2:1):—M—§ ue[—%,O]}

(ii) Take x = 0. If & = & (or &), then f(0, &) — f*(&;) —max{x +2,—x + 1} =
2 —max{x+2, —x+1}and f(0, &) — f*(&) —max{x+2, —x + 1} = 1 —max{x +
2, —x + 1}. The corresponding corrected image set is
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Fig.3 For regret robustness, the corrected images K | and K, in Example 3.1
-2

1

KS:{(u,v)eRzzvz—u—l, u€|:—1,§:|}
) 1
Uju,v)eRv=u—-2, ue| —1, 7

U, v) e R%v=—u—2, u€|:—2,—5:|}

1
@) (u,U)ERZ:Uzu—I’ue[_z’_z[}'

See Fig. 3; the red lines and blue ones denote K™ | and K, respectively.

2
Example 3.2 For problem (1), let ¥ = [—1,1], U = {&1, &}, f(x, &) = V1 — x2,
f(x, &) =1- %x, F(x,&) =xand F(x, &) = x — 1. Itis not difficult to see that

1-3x, xe[-10/U[$1].

1
— M1—x2 1 — b —
mgeag](f(x,é)_max{ 1 —x-,1 2x}—{ T2, xe[O,%],

and maxgey F(x,§) = x, X1 = [— 1, 0]. For strict robustness, by simple calculation,
one can read that x* = 0 is the unique strictly robust solution. (i) Take x = O.
Analogous to the process in Example 3.1, the corrected image can be obtained, i.e.,
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Fig.4 The red and blue lines denote the corrected images IC(I) and ICI_] , respectively

IC(I):{(u,v)eRzz(u—l)2+U2=1, ue[O,%},UE[O,g]}

U{(u,v)eR2:v=2u, u e |:—%,0:|U|:§,%i“_

(i) Let x = —1. By discussing two cases & = & or £ = &, we can achieve the
corrected image set

3 3 1
1 2
= Rev=2u+2 — =, —1|{U|—=,—=
K2, {(u,v)e v u ,ue|: X i| |: 5 2]}

3 4
U{ @, v) e R%:u? +0% =1, ue[—l,——],ve[o,g]}

1 9
Ud(u,v) e R*v=2u—1, ue[O,E]U[—,l:“

3\? 19 4
U{ (u,v) e R?: (u—§> +v2=1,u€[§,m],v€[0,§H-

See Fig. 4; since H! = {(u,v) € R*:u > 0, v < 0}, then K} N H! = 0.
For weighted robustness, let f(x, &) =1 —x, w; = 2 and wp = 1. Then, we get

max{w; f(x, &), W f (x, &)} = max {2 1—x2,1 —x}
_ {2\/1—x2, xel[-2.1],

Tl ==, xe[—l,—%].
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Fig.5 The corrected images for weighted robustness: W 3 (red lines) and ICOW (blue ones)
-3

Due to X; = [— 1, 0], one can easily reach that x* = —% is the unique weighted

robust solution. (i) Taking x = —%, it follows from the process in Example 3.1 that
the corrected image set is

_§)2

u 2 8 3

= RZ:—( 2L 42 =1 ——=, = ——,1
{(u,v)e ) v , u€ 35 ,VE 3’

3 2
U (u,v)eRz:vzu——,ue ——=,0]¢.
5 5

]CW

_3
5

(ii) Set x = 0. We consider two cases § = & or § = &; and derive the corrected image
set

)

—2)? 3
Kg:{(u,v)eRzz(uT—l—vzzl, u€[0,2],v€|:—§,1]}

2
U (u,v)eRz:vzu—l, u€|:(),§i|}

—1)2 3
U (u,v)eR2:¥+v2=1, ue[—l,l],ve[—g,l]}

3
Udw,v)eR*v=u, uec |:—1,_§i|}'
In Fig. 5, the red lines represent K% ,, and K} is presented by blue ones. It is not
-3

difficult to see that %, N H! =¢.

5
For regret robustness, let X = [—1, 0], and the other conditions are same to
weighted robustness. We achieve from Remark 3.2 that f*(&1) = minyex(g,) f(x, &1)

=0, f*(§2) = mincex () f(x.§) =l and
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max{f(x, &) — f &), f(x, &) — f* ()}
VI—22, xe _ﬁ,o],

2
:max{\/l—x2,—x}: NG
—X, xe|—1,— T] .
It is obvious that x* = —‘/75 is the unique regret robust solution. (i) Let x = —4.

Similar to the process in Example 3.1, the corrected image set can be given by

2
2 2 2
w er (e Y2) pvrmt we| — 14 Y20 ve| - Y20
2 2 2
2 2
U (u,v)eR2:v=u—£,ue —l+£,0 .
2 2
(i1) Set x = 0. The corresponding corrected image set is
2 2
IC6={(u,v)eRZ:(u—l)z—i—vz:l,ue|:0,l—§:|,ve|:—§,0:|}

Ui, v)eRv=u—1, MG[O’I_Q]}

ICV

o

2

2 2
U@, v) eR2:u>+0v> =1, ue[—l,—%—:|,v6|:—\/7_,0:|}

U (u,v)eRzzv:u, ue[—l,—%ﬁ}}.

From Fig. 6, it can be seen that /" 5N H! = g.

oo

Example 3.3 For problem (1),let ¥ =R, U =[1,2], f(x,§) =x+&and F(x,&) =
x% — £. Then, we achieve maxgey f(x,§) = x + 2, maxgey F(x,§) = x2—1and
X1 = [— 1, 1]. One can see that x* = —1 is the unique strictly robust solution. Taking
% = —1(resp. ¥ = 1),itfollows from [29, Example 2.6] that K' | = {(u, v) € R?:v =
w+3-86>-1¢eUland K] = {(u,v) e R:v=(u+1-§7>—-1,¢ € U},
respectively. Combined with Fig. 7, one can see that C! N H! = 0.

For regret robustness, since f*(§) = minyex) f(x,&) = —/& + &, then the
objective function is maxgey (f (x, §)— f*(§)) = x++/&, we can obtain that x* = —1
is the unique regret robust solution. Setting x = —1 (resp. x = 0), the corrected image
sets can be reached by

ICC]={(u,v)eRz:v=(u+1+~/§—\/§)2—1v$GU}
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-2

Fig.7 For strict robustness, the corrected images ICL1 (red parts) and IC} (blue ones)

and Ky = {(u,v) € R%v=(u++2— VB2 -1, €U}, respectively. Analogous
to Fig. 7, itholds K ; N H! = 9.

3.2 Optimistic Robustness

While strict robustness concentrates on the worst case, and can be seen as a pessimistic
model, optimistic robustness aims at minimizing the best possible objective function
value over X», and shows an optimistic attitude of a decision maker, where X, := {x €
X:F(x,£) € D! for some & € U} stands for the set of optimistic feasible solutions.
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The optimistic counterpart was proposed by Beck and Ben-Tal [12], in the context
of studying robust duality theory. Then, we formulate the optimistic counterpart of
problem (1) as follows

minsin(f]f(x,é) s.t. Fi(x,&) <0, forsomeé eU, i=1,....m, xeX. (7)
€

If a feasible solution x € X is optimal to problem (7), then it is an opti-
mistic robust solution of problem (1). To introduce a suitable corrected image of
problem (1) under the optimistic robust counterpart, we assume that the values
of infeey f(x,8) and infeey Fi(x,8),i = 1,...,m are finite for all x € &,
and infeey Fi(x,§),i = 1,...,m are attained for all x € X. Let x € X and

F2(x) := (mingey Fi(x,€),...,mingey Fp(x, “g‘)). Define the map

ALX XU - R™" AZ(x, &) = (;n{, fx,8) — f(x,8), Fz(X)>,
€
and consider the following set

K2 = {(u, v) € R (u,v) = A2(x,£), x € X, £ € U} ,
H? = H.

By virtue of the corrected image set IC)%, a necessary and sufficient condition of opti-
mistic robust solutions for the uncertain OP can be derived.

Theorem 3.2 A feasible solution x € X, is an optimistic robust solution to problem
(1) if and only if
K2nH? = 0.

Proof Necessity. Suppose that ¥ € X5 is an optimistic robust solution. Then it holds
inf f(x,&) < inf ,€), YxelXo. 8
slleluf(x 5)—52Uf(" £), YxeXp ®)

Since infeey f(x,8) < f(x,&) forall x € X and & € U, together with inequality
(8), it is obvious that

Sinlfj.f(f,é)—f(x,E)SO, VxeXp VéEeU. ©)

When x € X\ X, there is at least one j € {1, ..., m} such that F;(x, &) > O for
all § € U. Then, we have mingey F;(x,§) > 0 for x € A\ X5, which implies that
F2(x) ¢ D'. From above analysis, one can obtain that IC)% NH? = 0.

Sufficiency. Since F 2(x) € D' for x € X», it follows from IC)% NH? = ¢ that
inequality (9) holds. Based on equivalence of (8) and (9), it is not difficult to see that
X € X» is an optimistic robust solution. O
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Remark 3.3 Another formulation of the corrected image is defined by
= [ ) € R = £(.6) = inf f(x, )0 = P x € X, £ € UJ.
€

It is not difficult to see that a solution x € X» is an optimistic robust solution to

problem (1) if and only if IC)% NH? = @. Forall x € X and all £ € U, since
f(x, &) —infeey f(x,8) < Oimpliesinfecy f(x,8)— f(x, &) < 0, but the converse
is, in general, not true. Then, the conditions of this conclusion seem to be stronger than
the ones of Theorem 3.2. Moreover, the corresponding conclusion of Proposition 3.1
for optimistic robust counterpart can be reached, by introducing an extended image
of IC)%. Three examples are given to emphasize the importance of Theorem 3.2 in the
following.

Example 3.4 For problem (1), take X = R and U = {&], &} be the parameter set.
Consider two cases as follows:

Case 1 The OP with uncertainties only in the objective is introduced. Let f(x, &1) = x,
f(x,&) = —x and F(x) = x> — x — 2. It holds mingcy f(x, &) = —|x| and X, :=
[— 1, 2]. It is not difficult to see that x* = 2 is the unique optimistic robust solution.
Set x = 2. Since mingey f(2,€) = =2, then mingey f(2,8) — f(x, 1) = -2 —x
and mingey f(2,86) — f(x,&) = =2+ x. Settingu = —2 —x (oru = —2 + x),
v = x2 — x — 2, one can reach that v = u? + 5u + 4 (orv = u? + 3u). The corrected
image set is IC% ={(u,v) e R:v=u?~45u+4}U{(u,v) € R v = u? +3u}. It
follows from Fig. 8 that IC% NH? = 0.

Case 2 The OP with uncertainties both in the objective and constraints is discussed.
Let f(x, &) = x, f(x,8) = —x, F(x,&) = x> + x and F(x, &) = x> — 1. Thus,
mingey f(x,§) = —lx|,

2
. . 2 2 X+, x < -1,
gélgF(x,é)—mln{x +x,x 1}—{x2_17 P
and X, := [— 1, 1]. Itis obvious that x* = —1 (resp. 1) is an optimistic robust solution.
Taking x = —1, analogous to Case 1, the corrected image set can be calculated by

IC2_1=[(u,v)eR2:v=u2+u, uzO}U[(u,v)eRZ:vzuz—i—Zu, uSO}
U{(u,v)eRZ:v:u2+3u+2, u§—2}

U{(M,U)ERZIU:MZ_{-ZM’ ME—Z}

We achieve from Fig. 8 that ICE1 NH? = 0.

Example 3.5 See Example 3.3, one can conclude that mingey f(x,€) = x + 1,
mingey F(x,§) = x2 = 2and X» = [—+2,V2]. By simple calculation, it can
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3+

Fig.8 The corrected images for optimistic robustness: IC% (red lines) and IC2_1 (blue ones)

Fig.9 The corrected images for optimistic robustness: ICZ_ i (red parts) and IC(% (blue ones)

be seen that x* = —+/2 is the unique optimistic robust solution. Setting ¥ = —+/2
(resp. x = 0), we can obtain the corrected image sets

Kz_ﬁz{(u,v)eRzzvz(u—i-\/z—l-i-f)z—z,EEU]

and IC% = {(u,v) e R%:v = (u — 1 +&)> —2, & € U}, respectively. From Fig. 9,
one can reach that ICZ_ N NH? = 0.
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3.3 Reliable Robustness

For some practical problems, it may be hard to find a point x € X that satis-
fies constraints Fj(x,&) < 0,i = 1,...,m for every realization of the uncertain
parameter £ € U, i.e., X1 = (. To obtain an OP with feasible solutions, a less
conservative approach called the concept of reliable robustness [11] is described.
Here, the constraints F;(x, &) < O are replaced by F;(x,&) < §; forall £ € U,
where §; € R,i = 1, ..., m denote some infeasibility tolerances. But the constraints
Fi(x,€) < 0,i = 1,..., m should be fulfilled for the nominal value &. Now, the
reliable counterpart of problem (1) is given by

min  supgy f(x, §)

st. Fi(x,§)<0,i=1,...,m,
VEeU: Fi(x,§) <é,i=1,...,m,
xeX.

(10)

Let X3 := {x € X:F;(x,§) <&, Fi(x,§) <0, VE e U,i=1,...,m}be
the set of reliable feasible solutions. It is obvious that if a feasible solution x € X3 is
optimal to problem (10), then x is a reliable robust solution of problem (1). We need
introduce a proper corrected image of problem (1) under the reliable counterpart, for
the sake of achieving an equivalent characterization of reliable robust solutions. Let
xeXand§ = (61,...,8,) € R™. Define the map

ALX x U - R Ad(x £) = (f(i,é) — sup f(x,8), F3<x>),
€

where F3(x) = (F(x, §), .. Fyx, é), SUPg ey Fi(x,&) — 61,..., SUpgey Fim
(x, &) — 8;n), and consider the following sets

K3 = [(u, ») e R (u,v) = AX(x,6), x e X, £ € U} ,
H = {(u, v) eRT 50, v e D3} =Ryt X D3,

where D3 = —Ri’”.

Theorem 3.3 A feasible solution X € X3 is a reliable robust solution to problem (1) if
and only if

KnH? = 0.
Proof Analogous to the proof of Theorem 3.1, this conclusion can be verified easily,
so we omit the proof here. O
Remark 3.4 1f§; = 0,i = 1, ..., m, the reliable robustness is reduced to strict robust-

ness. This concept is described by the Tschebyscheff scalarization with the origin
as reference point, and based on a relaxed feasible set. Moreover, by introducing an
extended image of IC;, the corresponding conclusion of Proposition 3.1 for reliable
robustness can be reached.
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Example 3.6 Consider problem (1), take X = R, U = {£1, &} be the parameter set.
Let f(x, &) = x, f(x,62) = —x, F(x, &) = x> + x and F(x, &) = x> — 3x + 3.
Then, we obtain maxgey f(x, &) = |x| and

x+x X

3
IsnaxF(x &) = max{x +x,x ——x—i—z} {x _Zx"‘z’

=
=

| —n|—

In this case, the set X; = . Setting § = % and é‘ = &), the reliable feasible set
X3=[— % 0]. It is obvious that x* = 0 is the unique reliable robust solution. (i) Let
x = 0. Analogous to Example 3.1, one can reach that IC = {(u,v) € RI+2:.y =
—|x], v= (x2+x,maneU F(x,&) — ) x e X} andH = IR++ x (—R? 2). Since
—|x| < Oforall x € X, itholds ICS ﬂH3 = . (ii) Taking x = 2, by analyzing two
cases for & = & or & = &, we achieve from part (i) that the corrected image is

2

1 3
| G {(u, v)eRHz:u:—z — Ix, v=<x2+x,{§r1€al)]< F(x, &) — 5) , x € X}

1 3
U {(u,v) e]l:%l“:u:5 — |xI, v=<x2+x,1$n€al>](F(x,§) — 5), X € X}.

> 0and (¥ + X, maxgey F(¥,6) — 3) =
= —% such that K3 | NH3 # . Hence,
~2

If we take X = —l then l — %] = Fl)
(—3.-%) € —Ri_, ie., there exists a X

= —% is not a regret robust solution.

=1

3.4 Light Robustness

It is difficult to determine the upper bounds §;,i = 1, ..., m for the constraints of
reliable robustness. To avoid these inadequacies, the concept of light robustness is
described by minimizing these tolerances. Let z* > 0 be the optimal value of the
nominal problem (Q(é‘ )), and the nominal value f(x, é ) be bounded by (1 + y)z*,
where y > 0. This approach was firstly discussed in [37], and extended to general
robust OPs by Schobel [38], which can be interpreted as a weighted-sum scalarization
on upper bounds. The light counterpart of problem (1) is defined by

By 5

st. Fi(x,8)<0,i=1,....,m,
fe &) < (1 +y)zh, (11)
VEeU:Fi(x,6)<&,i=1,...,m,
x e X,

s;ieR,i=1,...,m,
wherew; >0,i=1,...,m, Y " w; = 1.
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Let & = {(8,x) € R" x X1 Fi(x,€) <0, f(x,8) < (1 +y)z*, Fi(x,§) <
i, YVEeU,i =1, ,m} # () be the feasible set of problem (11). An optimal
solution (§*, x*) € Z of the light counterpart problem is called lightly robust. In

Sects. 3.4 and 3.5, we assume that sup; .y Fi(x,§) <oo,i =1,...,mforallx € X,
then an equivalent condition of lightly robust solutions can be captured by constructing
two suitable subsets in the image space of problem (11). Let 8§ = (81,...,8,) €

R™, x € X. Define the map

(5 o R XX = RI+@n+D) A4 50 8.x) = (Zw,(a —8;), F*(, x))

i=1

where F4(8, x) := (Fl(x, E) oo Fn(x B), fr . B)— (14 y)2", supeey Fi(x, ) —

LI SUPz ey Fp(x, &) — (Sm), and consider the following sets
4 1+Q2m+1). m
K o= {0 e R v = A% 6,0, 5 R, x e ¥,

H = {(M, U) € R1+(2m+]):u > O, S D } = R++ X D4,

where D* := —RzmH.

Theorem 3.4 Let (8, %) € E. A feasible solution (8, %) is a lightly robust solution to
problem (1) if and only if

4 4 _
IC((SX)HH = (. (12)

Proof Necessity. Assume that (8, ¥) is a lightly robust solution. For any (8, x) € &,
we can achieve F4(8, Xx) € D* and

m m m
Zwigi < ZWiSi & Zwi(gi —6)=<0. (13)
i=1 i=1

i=1

Additionally, when (§, x) € (R" x X)\Z, it holds F*(5,x) ¢ D*. This, together
with inequality (13), the equality (12) can be reached.

Sufficiency. Since F 48, x) € D* for any (6,x) € & and the equality (12) holds,
so inequality (13) can be derived. Combined with (8, X) € &, one can read that (5, X)
is an optimal solution to problem (11). O

Remark 3.5 The feasible set = can be divided into two parts: one is about variable §,
and the other is about x. Let

= {(81,...,8,n)G]R’":Elxe)(s.t. Fi,8) <0, £, &) < (1+1)2%,
Fi(x,6)<¢6;,VEeU,i=1,...,m}

and X5 := {x € X1 F;(x,§) <0, f(x,8) < (14+y)z*, Fi(x,§) <&, YEeU,i=
I,...,m} foragiven § € R™. One can read that X5 # ¢ if § belongs to €2, otherwise
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= (). By introducing the sets © and X, and setting § € €2, the set = can be
described clearly. Take

@ = {xeX:Fi(x,é)fo, FE) < (1 + )2 i=1,...,m}.

If @ is compact and U is finite, then the light counterpart problem (11) admits an
optimal solution, even when the set of strictly robust solutions (or the set of reliable
robust solutions) is empty; see [38, pp. 167-168].

Remark 3.6 In contrast to the other robustness concepts, IC? 5.5) is just the image

of problem (11), but not a corrected image of problem (1). This is because the
objective function of problem (11) is the tolerances §; with weighed sum. The struc-
tures of the images in both problems are completely different. Additionally, when

= {&1,...,&,} is afinite set of scenarios, and choose some initial feasible solution
x% € X, the Benson robustness was introduced in [36, Sect. 3.1]. By using Benson’s
method (a scalarization technique to solve MOPs [39, §4.4]), the corresponding robust

counterpart of (1) was given by

q
min — wil;
@.x) ,; 7
st. fGYE) -1 — f(x,E) =0, j=1,...,q, (14)
VEeU:Fi(x,6)<0, i=1,....m,
leRY, xeX,
wherew; >0, j=1,...,q, ijlezl.Let

= {,x) eRLx X: f(x°6) —1; — fx,6) =0, j=1,....q,
Fi(x,§) <0, VEeU,i=1,....m}#0
denote the feasible set of problem (14). A feasible solution (I*, x*) € ¥ of (14)is called

B-robust. Analogous to the descriptions of light robustness, take (I, ¥) € ]Rz_ x X, if
we replace A‘(LS 5’ (8 )(8 x) and D* by

q

B 1 B . 7 B

Ao RE x X — RV AR (1 x) = =Y wil; =1, FP.x) |,
j=1

and DB = { ORq} x D!, respectively, where
FRAx = (FG0 60 =l = fOr 60, £G0 )
_lq - f(x,éq)’ Sup Fl(-x’g)9 AL ] Sup Fm(x’s)) k)
el teU

an equivalent characterization of B-robust solutions would be achieved.

@ Springer



Journal of Optimization Theory and Applications (2020) 184:466-493 487

3.5 e-Constraint Robustness

When the preferences of a decision maker have not been represented by other
robustness approaches, one can choose to minimize only one objective function
for one particular scenario §; € U, while the remaining objectives f(x, §),l €
{1,...,q},1 # j bounded by some real values €; € R are moved to the constraints,
which is the description of e-constraint robustness. The idea is from the e-constraint
scalarization method [39] in dealing with multiobjective OPs. The e-constraint robust-
ness was initially proposed by Klamroth et al. [7] for a finite uncertainty set, and
has been generalized to an infinite compact uncertainty set in [8]. Here, we take
U:={&,....§}and € = (€1, ..., €) as a finite set of scenarios and a real vector,
respectively, the e-constraint robust counterpart is thus denoted by

min  f(x,§;)
st. V&EeU: Fi(x,6§)<0,i=1,...,m,
xeX, (as)

f &) e, lefl,....qh I #].

Let X5 := {x € X1:f(x,&) < ¢, | € {1,...,q}, ] # j} denote the set of
e-constraint feasible solutions. If a feasible solution x € X5 is optimal to problem
(15), then x is an e-constraint robust solution of problem (1). With the purpose of
deriving a necessary and sufficient condition for e-constraint robust solutions, some
new sets in the image space of problem (15) are considered. Let x € X, §; € U and
€/ =(e1,...,€-1,€j41,...,€g). Define the map

AP X — RO 4200 = (f (3 6)) — f (. §)), F()),
and consider the following sets

K3 = {(u, v) € RIFE@=14m: ) = AS(x), x € X} :

X

H = {(u, v) e RIF@=Tmy 5 0, v e DS} =Ry x D,
where

Fs(x) = (f(-xvél) —€l,..., f(-x’éj—l) —€j—1, f(-xvé:j-i-l) €ty f(xa‘(;:q)

—€q,8up Fi1(x, &), ..., sup Fy(x, §)> and D° := —R{i_l-‘_m.
EeU EeU

Theorem 3.5 A feasible solution x € X5 is an €-constraint robust solution to problem

(1) if and only if
KINH = 0. (16)

Proof Necessity. Suppose that X € X5 is an e-constraint robust solution. Then, we
have
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where &; € U is chosen beforehand. Additionally, it is obvious that F (x) ¢ D for
any x € X\Xs. This, together with inequality (17), one can reach that the equality
(16) holds.

Sufficiency. If the equality (16) holds, we can obtain the inequality (17) because
of F3(x) € DA for any x € X5, which implies that X € X5 is an optimal solution to
problem (15). O

Remark 3.7 The difficulty of e-constraint robustness is, how to choose appropriate
upper bounds ¢; for the constraints f(x, &) < €. If the vector ¢ are chosen too
small, the problem (15) may be infeasible (i.e., the feasible set X5 is empty), or the
objective function value of f(x, §;) may become very bad. In addition, if the bounds
€ are chosen too big, the quality for the other scenarios decreases, and the objective
function values may not attain the expected levels. Meanwhile, the e-constraint robust
counterpart may be hard to solve in practice, due to the added constraints f (x, &) < €.
To avoid the drawbacks, the elastic robustness was proposed in [36, Sect. 3.2], by
virtue of the elastic constraint scalarization method [39, §4.3], and the elastic robust
counterpart of (1) was defined by

min Z uis; + f(x, Sj)

(s5,x) 1£]

st. f(x, &) —s1<¢, I=1,...,q, 1 #],
s1>0, I=1,...,q, 1 #],
VEeU:Fi(x,6) <0, i=1,...,m,
x e X,

where u; > 0, ] # j. Combined with the discussions for light robustness and e-
constraintrobustness, an equivalent characterization for elastic robustness can be easily
established, when U is a finite set of scenarios.

Remark 3.8 When U contains infinite elements, lete: U — R be a function and.§ eU
be fixed, the e-constraint robust counterpart of problem (1) [8, Theorem 23] is given
by
min £ (x,§) —e®)
st. VEeU:Fi(x,8)<0,i=1,...,m,
x e X,
V& e U\{E}: f(x,8) < €(§).

In this case, since F>(x) and D> are infinitely dimensional, then the sets IC)Sz and

(18)

> are not available. It should be interesting and meaningful by introducing suitable
sets in the image space of problem (18), such that the equivalent characterization of
e-constraint robust solutions holds.

3.6 Adjustable Robustness
The concept of adjustable robustness, that has been introduced by Ben-Tal et al. [40]

and extensively studied in [3], is significantly less conservative than the usual robust-
ness concepts. It is a two-stage approach in robust optimization, in which there are two
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types of variables: one type is “here-and-now” variables x, and the other is “wait-and-
see” variables ¢. The former (nonadjustable variables) should get specific numerical
values and have to be determined, before the realization of the uncertain parameters;
while the latter (adjustable variables) can be decided, after the uncertain parame-
ters becomes known. These variables are chosen, such that the objective function is
minimized for given x and realized parameter &. Then, an uncertain problem, which
contains both “here-and-now” variables x € X and “wait-and-see” variables ¢ € R?,
is formulated as

inf f(x,¢,&) st Fi(x,0,6)<0,i=1,....m, xeX, CeR. (19

In order to solve the problem (19), the adjustable robust counterpart needs to be
provided. Let Q(x, &) = inf f(x, ¢, &) be the objective function of the second-stage
OP, and

G(x, &) ={t eR’:Fi(x,;,6§)<0,i=1,....m}

denote the set of variables ¢ for given x and &. Thus, the adjustable robust counterpart
is defined by

min sup Q(x, &) st. G(x, &) #0, VEe€ U, xe X. (20)
EelU

LetXg :={x e X:VEeU, 3¢ eRP st. Fi(x,£,8) <0, i=1,...,m}bethe
adjustable robust feasible set. A feasible solution x € X¢ is called adjustable robust,
if it is optimal to problem (20). To obtain an equivalent characterization of adjustable
robust solutions, we consider the corrected image of problem (20) and introduce some
notations. Assume that supg.;; Q(x,§) < ooforall x € X'. Forany given§p € U, we

take £ *+50) € R?, where the choice of ¢ -5 is connected with variable x and the fixed
. If x € Xg, there exists £ %) € R? such that Fj (x, £ &) < 0,i =1,...,m,
then we choose £ %) e G(x, &)); otherwise, take £ 50 ¢ G(x, &). Set ¥ € X,
define the map

AZX x U - R A%(x.§) = (Q(f, £) — sup 0(x, &), F6<x,s>>,
€

where F6(x, &) = (Fl (x, g“(x’f), S), s F (x, g“(x’f), é)), and consider the fol-
lowing sets

K = {(u, ) € R (u,v) = AS(x,6), x € X, & € U},
HS = H.
Theorem 3.6 A feasible solution X € X¢ is an adjustable robust solution to problem

(1) if and only if
KEnHE = 0.

@ Springer



490 Journal of Optimization Theory and Applications (2020) 184:466-493

Proof Analogous to the proof of Theorem 3.1, the verification of this conclusion can
be easily reached by a tiny of changes, then we omit it here. O

Remark 3.9 1t is worthwhile to notice the three following points: (i) For given x and
&, ;“("f) can be determined, but C(xf) may be variable with the changes of x and
&. When the parameter & is realized, £ *-¥) only depends on x. Particularly, we have
Fi(x,c®® &) <0,i =1,...,mforall x € X¢ and all £ € U; (ii) Compared
with Fi(x), i=1,...,5, F6(x, &) is related to both x and &, while the constraints
part in the image set is usually independent of other parameters but x, for the sake
of ensuring the equivalence relation, which is attributed to the specific constraints
(i.e., a family of sets are nonempty) in problem (20); (iii) If we replace F 6(x, £) by
Fo(x) = (supgey Fi(x, o, .§)’,V. ooy Supzeyy Fin(x, o, §)), where §o € RP is given,
then the set Xg := {x € X:Fox) e D'} is just a proper subset of X, and the
conclusion of Theorem 3.6 is not true.

Remark 3.10 In most cases, the adjustable robust counterpart is computationally
intractable (NP-hard), and this difficulty is addressed by restricting the adjustable
variables to be affine functions of the uncertain data; see [40]. In this subsection, the
difficulty is to construct impossibility of a parametric system, when the constraints
comprise a series of sets that should be nonempty. As far as we know, it is the first
time to deal with OPs with this constraint by using ISA. By this means, it may be
convenient to handle some practical problems.

4 Perspectives and Open Problems

As one knows, some equivalent characterizations of various robustness concepts for
uncertain OPs have been established in Sect. 3, by introducing appropriate subsets
in the image space. In what follows, we make some interpretations for ISA approach
used in this paper and provide some further problems worth considering.

There is a commonality of the assumption for different robustness, i.e., the values of
the supremum or infimum of functions are finite. It was used to introduce the definition
of the robust regularization in [41], and one can also refer to [42, Sect. 4.1] and [29].
Two reasons are given to explain the validity of the assumption for each robustness
concept: For one thing, it is weak and can be satisfied in most of the applications;
for another, it ensures that the definitions of A;,i =1,2,3,5,6,w,r and A?S o
are reasonable, i.e., their corresponding functions would not take the values + 00 in
their components. Furthermore, strict robustness and optimistic robustness reflect the
preferences of a decision maker, from the risk point of view; the former is risk aversion,
while the latter is risk appetite. Both of corrected images may be a part of the original
image, or a combination of partial initial image and some newly added parts. They
contain variable x and parameter £ simultaneously. Two less conservative robustness
concepts (reliable robustness and light robustness) have been analyzed, and their image
sets were defined by different forms. Particularly, the image of light robustness was
obtained with the help of an additional variable §. It is just the image of its counterpart
problem. Analogous to light robustness, &; is any chosen beforehand in e-constraint
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robustness. For the adjustable robustness, it is vital to introduce the notation {(x’é )
that eliminates the parameter ¢ for every &, by this means, the corrected image can be
constructed successfully.

ISA, as anew tool to tackle with uncertain problems, plays a significant role in uni-
fying multifarious robustness concepts. It explains clearly the implications of various
robust solutions from the geometrical point of view and provides a new method to
solve OPs with uncertainties. Even if a unified framework by virtue of ISA has been
developed, there are still some problems worth discussing.

1. Referring to Remark 3.8, when U contains infinite elements (i.e., U is an infinite
countable set, or is infinite but not countable), the equivalent characterization of e-
constraint robust solutions is invalid; so how to define suitable subsets is the key to
overcoming the difficulties. Furthermore, if U is a subset of infinite dimensional
space, the conclusions of this paper may not hold. In this case, it is necessary
to develop new theories, according to some researches on infinite-dimensional
images; see [26].

2. By means of some known linear and nonlinear (regular) weak separation functions,
robust optimality conditions for various robustness concepts, especially saddle
point sufficient optimality conditions, can be easily derived. Specifically, one can
refer to [29]. However, on the basis of ISA, there have been few works on necessary
optimality conditions, and robust duality for scalar robust OPs recently. Thus, it
is of value to construct strong separation functions, and use the tools of noncon-
vex optimization and nonsmooth analysis, to obtain (Lagrangian-type) necessary
robust optimality and robust duality results.

3. As we know, unified characterizations of various concepts of robustness and
stochastic programming, from vector optimization, set-valued optimization and
scalarization points of view, are shown in [7,8]. Based on ISA, this paper pro-
vided another approach to characterizing different kinds of robustness. Then, it
would be of interest to explore the relationships between ISA approach and the
ones addressed in [8], such as vector optimization, set-valued optimization and
scalarization techniques.

5 Conclusions

By using ISA, this paper developed a unifying approach to tackling with scalar
robust OPs. Compared with the approaches based on tools from vector optimiza-
tion, set-valued optimization and scalarization techniques [8], ISA mainly focuses on
constructing two subsets in the image space such that they are disjoint, and analyzing
the problem from the geometrical point of view. Then, it should have some connec-
tions to the existing ones. One possible way is to make use of some notations of ISA
presented in Sect. 3, and introduce the corresponding vector OPs and set-valued OPs,
and then explore their relations to robustness concepts. To the best of our knowledge,
recently very few related papers concentrate on considering robust OPs on the frame
of ISA, except for [29,33-35]; it thus provides a good chance to study this kind of
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problem both in theoretical and practical aspects. What is noteworthy is that this paper
gives a full answer to the open question (ii) posed in [29].
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