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Abstract
In this paper, dual characterizations of the containment of two sets involving convex
set-valued maps are investigated. These results are expressed in terms of the epigraph
of a conjugate function of infima associated with corresponding set-valued maps. As
an application, we establish characterizations of weak and proper efficient solutions
of set-valued optimization problems in the sense of vector criteria.

Keywords Set containment · Convexity of set-valued maps · Set-valued
optimization · Optimality conditions

Mathematics Subject Classification 54C60 · 52A41 · 49J52 · 90C46

1 Introduction

The containment problem, deciding whether a given set A is contained in (or into) a
second one B (which are usually called contained and container, respectively), was
first posed by Mangasarian [1] in 2000 in the framework of machine learning in order
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to include, as a hard constraint, in certain separation models, the condition that a given
polyhedron A is contained into one halfspace B of the two halfspaces determined by
the optimal separating hyperplane. Obviously, the hard constraint was directly derived
from the classical non-homogeneous Farkas lemma. The containment problem was
then extended by the same Mangasarian [2] and many other authors (see, e.g., [3–8],
and the recentworks [9,10]) to different pairs of sets A/B, e.g., polyhedron/polyhedron,
convex set/convex set, convex set/reverse convex set, etc., described by means of
convex (or quasiconvex) real (or extended real-valued) functions. As a matter of fact,
any dual characterization of the containment of the solution set of a given system
into the solution set of a second one can be seen as an extended Farkas lemma. This
family of dual characterization has been underpinned to characterize solutions and
the strong duality of different classes of optimization, including the classical convex
programming problems, DC optimization problems, robust optimization problems,
quasiconvex optimization problems, vector optimization problems and so on, see,
e.g., [11–17] and the references therein. More precisely, observe that one can check
the minimality of a feasible solution x of a given scalar optimization problem P
appealing to some characterization of the containment of the feasible set A of P into
the upper level set B = {x ∈ R

n : f (x) � f (x̄)} of the objective function f ; so
that the characterization of the containment convex set/reverse convex set is crucial
in convex optimization. But, these generalizations mentioned above and applications
have so far been limited particularly to systems without input data uncertainty of given
functions although the input data, in nearly all practical applications of mathematical
optimization problems, are not known exactly due to forecasting errors or lack of
complete information. For this reason, the values of given functions canbemade to vary
in a specified uncertainty sets, and therefore, set-valued maps have been considered
to address these situations.

The purpose of this paper is to establish dual conditions characterizing set contain-
ments for sets described by convex set-valued maps and to show that, like their vector
counterparts in vector optimization problems, these results have concerned applica-
tions in deriving characterizations for weak and proper efficient solutions of set-valued
optimization problems via vector criteria (see, e.g., [18,19]). These are achieved by
employing the classical convex separation theorem and the description of the epi-
graph of a support function which is expressed in terms of infima associated with
corresponding set-valued maps.

It is worth mentioning that the vector solutions, given by a vector criterion, for
set-valued optimization problems have been underpinned to find the solutions of a set
type (see, e.g., [20]), given by a set criterion which seems to be appropriate when the
decision maker’s preference is based on comparing among values of the set-valued
objective map (see, e.g., [21,22]). In addition, they have been used to study charac-
terizations of the robust efficient solutions to vector optimization problem under data
uncertainty (see, e.g., [23]).

The layout of the paper is as follows. In the next section, we collect some defini-
tions, notations and preliminary results that will be used later in the paper. In Sect. 3,
we investigate the epigraphical calculus with conjugate set-valued maps. Section 4
establishes various (asymptotic) dual characterizations of set containments. Then, in
Sect. 5, the results established in Sect. 4 are applied in order to provide characteriza-
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tions for weakly efficient solutions as well as properly efficient solutions for convex
set-valued optimization problems in the sense of vector criteria. Section 6 summaries
the obtained results.

2 Notations and Preliminaries

Let us reproduce some notations, basic definitions and preliminary results which will
be used throughout this paper. We denote by R

n the n-dimensional Euclidean space
with the inner product 〈·, ·〉 and the associated Euclidean norm ‖ · ‖. The nonnegative
orthant of Rn is denoted by R

n+ and is defined by R
n+ := {(x1, . . . , xn) ∈ R

n : xi �
0, i = 1, . . . , n}.

2.1 Sets and Extended Real-Valued Functions

A nonempty subset S of Rn is said to be a cone if t S ⊆ S for all t � 0. A cone S is
said to be pointed if S ∩ (−S) = {0}. The dual (positive polar) cone and the strict
positive dual cone of cone S are, respectively, defined by

S+ : = {v ∈ R
n : 〈v, x〉 � 0 for all x ∈ S} and

S+i : = {v ∈ R
n : 〈v, x〉 > 0 for all x ∈ S\{0}}.

For a set E in Rn , we say E is convex whenever t x1 + (1− t)x2 ∈ E for all t ∈ [0, 1],
x1, x2 ∈ E . By int(E) (resp. cl(E), conv(E)) we will denote the interior (resp.
closure, convex hull) of the set E . We shall denote the cone generated by the set E by
coneE = ∪α�0αE .

For the set E in R
n , the support function σE is defined by σE (u) := supx∈E 〈u, x〉

and the indicator function δE respect to a set E is defined as

δE (x) :=
{
0, if x ∈ E;
+∞, otherwise.

Let f be a function from R
n to R∪ {±∞}, the effective domain and the epigraph are,

respectively, defined by

dom f := {x ∈ R
n : f (x) < +∞} and

epi f := {(x, α) ∈ R
n × R : f (x) � α}.

We say that f is proper if f (x) > −∞ for all x ∈ R
n and dom f 
= ∅. If epi f

is closed, we say that f is a lower semicontinuous function. A function f is said to
be convex if f (t x1 + (1 − t)x2) � t f (x1) + (1 − t) f (x2), for all t ∈ [0, 1], for all
x1, x2 ∈ R

n with the conventions:

(+∞) + (−∞) = (−∞) + (+∞) = 0 · (+∞) = +∞, 0 · (−∞) = 0.
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For a proper lower semicontinuous convex function f : Rn → R ∪ {±∞}, the
conjugate function of f , f ∗ : Rn → R ∪ {±∞}, is defined by

f ∗(v) = sup{〈v, x〉 − f (x) : x ∈ R
n} for any v ∈ R

n .

It is worth noting that for each v ∈ R
n , u can be regarded as a function on Rn in such

away that v(x) := 〈v, x〉, for any x ∈ R
n . Thus, for any α ∈ R and any function

f : Rn → R ∪ {±∞}, we have

epi( f + v + α)∗ = epi f ∗ + (v,−α). (1)

It is also worth noting that

(0, 0) ∈ epi f ∗ + ({0} × R+) ⇔ (0, 0) ∈ epi f ∗. (2)

The following lemmas are recalled.

Lemma 1 [24,25] Let f1, f2 : Rn → R∪ {±∞} be proper convex functions such that
dom f1 ∩ dom f2 
= ∅.
(i) If f1 and f2 are lower semicontinuous, then,

epi( f1 + f2)
∗ = cl(epi f ∗

1 + epi f ∗
2 ).

(ii) If f1 or f2 is continuous at some x̄ ∈ dom f1 ∩ dom f2, then,

epi( f1 + f2)
∗ = epi f ∗

1 + epi f ∗
2 .

Lemma 2 [26] Let I be an arbitrary index set, and let fi , i ∈ I , be proper lower
semicontinuous convex functions on R

n. Suppose that there exists x0 ∈ R
n such that

supi∈I fi (x0) < +∞. Then,

epi

(
sup
i∈I

fi

)∗
= cl

(
conv

⋃
i∈I

epi f ∗
i

)
,

where supi∈I fi : Rn → R ∪ {±∞} is defined by (supi∈I fi )(x) = supi∈I fi (x) for
all x ∈ R

n.

2.2 Set-ValuedMaps

Let K ⊆ R
p be a nonempty convex cone. For a set-valued map F : Rn ⇒ R

p, the
domain and graph of F are, respectively, defined by

dom(F) : = {x ∈ R
n : F(x) 
= ∅} and

gph(F) : = {(x, y) ∈ R
n × R

p : x ∈ dom(F), y ∈ F(x)}.
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F is called proper if dom(F) 
= ∅. For a nonempty set E in R
n , we write F(E) :=

∪x∈E F(x). The indicator function δ̃E of E in the set-valued version is defined as

δ̃E (x) :=
{ {0}, if x ∈ E;

∅, otherwise.

Convexity is among the assumptions we need to prove our results. Let C ⊆ R
n be

a nonempty convex set. The set-valued map F is said to be K -convex on C if for any
x1, x2 ∈ C and any t ∈ [0, 1],

t F(x1) + (1 − t)F(x2) ⊆ F(t x1 + (1 − t)x2) + K

with the conventions:

B + ∅ = ∅, and t · ∅ = ∅,

for any subset B of Rp and for any real number t . We also say that F is K -convex
(see, e.g., [27]) if dom(F) is a convex set and F is K -convex on dom(F). In addition,
if F is K -convex, then F(x) + K is convex for any x ∈ R

n (see, e.g., [28, Remark
4]). Moreover, K -convexity of F is connected to convexity of its associated map of
infima for the scalar set-valued map. In what follows, given a proper scalar set-valued
map H : Rn ⇒ R, by ϕH : Rn → R∪ {±∞} we denote its associated map of infima,
i.e.,

ϕH (x) :=
{
inf{t ∈ R : t ∈ H(x)}, if x ∈ dom(H);
+∞, otherwise.

It could be convenient to observe that ϕH is an extended real-valued function and
domϕH = dom(H). Concerning the set-valued map F , F is K -convex if and only if
ϕλ◦F is convex for all λ ∈ K+, where

(λ ◦ F)(x) :=
{ {〈λ, y〉 : y ∈ F(x)}, if x ∈ dom(F);

∅, otherwise.

Clearly, dom(F) = dom(λ ◦ F) for every λ ∈ K+.
In addition, K -convexity of F is related to the upper semicontinuity of ϕλ◦F for

any λ ∈ K+. In this way, let us reproduce the notions of lower K -continuity and upper
K -continuity for set-valued maps.

Definition 1 [18, Definition 7.1] and [29, Definition 2.5.16] Let F : Rn ⇒ R
p be a

proper set-valued map and x ∈ dom(F) be given.

(i) F is said to be lowerK-continuous at x if for any open setV such that F(x)∩V 
= ∅,
there exists a neighborhood U of x , such that

F(u) ∩ (V − K ) 
= ∅, ∀u ∈ U .
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(ii) F is said to be upper K-continuous at x if for any open set V ⊇ F(x), there exits
a neighborhood U of x , such that

F(u) ⊆ V + K , ∀u ∈ U .

(iii) F is said to be lower (upper) K -continuous on dom(F) if it is lower (upper)
K -continuous at all x ∈ dom(F).

(iv) F is said to be K-continuous on dom(F) if it is lower K -continuous and upper
K -continuous on dom(F).

Remark The lower and upper K -continuity (resp. lower and upper (−K )-continuity)
for single-valued maps collapse to the usual lower semicontinuity (resp. upper semi-
continuity) for real-valued functions where p := 1 and K := R+.

With the aid of the following results, we can see that K -convexity of F guarantees
the upper semicontinuity of ϕλ◦F for any λ ∈ K+ provided that F has nonempty
values on R

n .

Lemma 3 [30, Theorem 4.1] If a proper set-valued map F is lower (−K )-continuous
on dom(F), then ϕλ◦F is upper semicontinuous for each λ ∈ K+.

Lemma 4 [30,Corollary 4.15(i)]Let F : Rn ⇒ R
p be a set-valuedmapwith nonempty

values, i.e., dom(F) = R
n. If F is K -convex, then it is lower (−K )-continuous on

R
n.

However, when dealing with an extended real-valued convex function, the proper-
ness and the lower semicontinuity are usually needed. The following result provides
a sufficient condition to guarantee the lower semicontinuity of ϕλ◦F for any λ ∈ K+.

Lemma 5 [30, Theorem 4.1] If a proper set-valued map F is upper K -continuous on
dom(F), then ϕλ◦F is lower semicontinuous for each λ ∈ K+.

In the next example, we show that we cannot confirm the lower semicontinuity of
ϕλ◦F for any λ ∈ K+ if F is not upper K -continuous on dom(F).

Example 1 Let F(x) := {(y1, y2) ∈ R
2 : exp(y1) − x � y2} for x ∈ R and K :=

R × R+. We can see that dom(F) = R and F is K -convex. However, F is not upper
K -continuous on dom(F). In fact, considering x0 := 0 and V := {(y1, y2) ∈ R

2 :
y2 > 0}. So, F(x0) ⊆ V and for any ε > 0, 2ε

3 ∈] − ε, ε[ and (ln( ε
3 ),− ε

3 ) ∈ F( 2ε3 )

but (ln( ε
3 ),− ε

3 ) /∈ V + K = V . On the one hand, we can see that for each λ :=
(λ1, λ2) ∈ K+ = {0} × R+,

ϕλ◦F (x) =
{−λ2x, if λ1 = 0, λ2 > 0;
0, if λ1 = 0, λ2 = 0,

for all x ∈ R. So, ϕλ◦F is proper lower semicontinuous for all λ ∈ K+.

For the properness of ϕλ◦F for each λ ∈ K+, it easily follows that if the proper
set-valued map F has compact values on dom(F), it is evident that ϕλ◦F (x) ∈ R for
each x ∈ dom(F) and λ ∈ K+. Consequently, ϕλ◦F is proper for all λ ∈ K+.
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Remark Another way to confirm the properness of ϕλ◦F for each λ ∈ K+ is dealing
with the notion of K -bounded from below. Let us recall that the proper set-valued map
F : Rn ⇒ R

p is said to be K -bounded from below on dom(F) if there exists a ∈ R
p

such that F(x) ⊆ a + K for all x ∈ dom(F).
In the case where F is K -bounded from below on dom(F), ϕλ◦F is proper for

each λ ∈ K+. In fact, the conclusion will follow from [31, Lemma 2.1(i)] if we show
that ϕλ◦F is R+-bounded from below on dom(λ ◦ F) = dom(F). To see this, let
λ ∈ K+ be given. By the K -boundedness from below of F on dom(F), there exists
a ∈ R

p such that F(x) ⊆ a + K for all x ∈ dom(F). It then follows that for any
x ∈ dom(F) and any y ∈ (λ ◦ F)(x), there exists y′ ∈ F(x) such that y = 〈λ, y′〉,
and so, y = 〈λ, a + k〉 = 〈λ, a〉 + 〈λ, k〉 ∈ 〈λ, a〉 + R+ for some k ∈ K , showing
that ϕλ◦F is R+-bounded from below on dom(λ ◦ F).

Remark We also point out that the compactness as well as the K -boundedness may
fail to be true, while ϕλ◦F is lower semicontinuous for all λ ∈ K+ (see, Example 1).

Now, we close this section by recalling the definition of a conjugate function of
a proper scalar set-valued map given by Lee and Tuan [32] and the result needed
in the sequel. Let H : R

n ⇒ R be a given proper set-valued map. The conjugate
function of a given proper scalar set-value map H is the single-valued function H∗,
H∗ : Rn → R ∪ {±∞}, such that, for any v ∈ R

n ,

H∗(v) := sup{〈v, x〉 − y : x ∈ dom(H), y ∈ H(x)}.

Lemma 6 [32, Remark 4.1.]
For any proper set-valued map H : R

n ⇒ R such that ϕH (x) > −∞ for all
x ∈ dom(H), the identity H∗ = (ϕH )∗ holds.

3 Epigraphical Calculus with Conjugate Set-ValuedMaps

Let S be a nonempty closed convex cone of Rm whose interior is possibly empty, and
G : Rn ⇒ R

m be a proper set-valued map. We begin by considering the following
set:

A := {x ∈ R
n : G(x) ∩ −S 
= ∅}.

The set A can be regarded as a feasible set in set-valued optimization problems in the
literature. It can also be seen as an extension of the feasible set in vector optimization
problems as well as scalar optimization problems. Indeed, by making G(x) := {g(x)}
where g : Rn → R

m is a vector-valued function, the set A collapses to {x ∈ R
n :

g(x) ∈ −S} which can be express by scalarization in terms of a system of infinitely
many inequalities {x ∈ R

n : 〈μ, g(x)〉 � 0, ∀μ ∈ S+}. In particular, the set A can be
seen as the feasible set for reliably robust optimization problems (see, e.g., [33] and
the references therein). Indeed, by taking G(x) := {g j (x, v) : v ∈ V} and S := R

m+,
where g j : Rn × V → R, j = 1, 2, . . . ,m, are real-valued functions and V is an

123



Journal of Optimization Theory and Applications (2020) 184:824–841 831

uncertainty set. This means that the constraints g j (x, v) � 0, j = 1, 2, . . . ,m, may
not be fulfilled for every realization of the uncertain parameter v ∈ V .

Concerning the set A described by the set-valued map, unlike various related works
in the literature on vector optimization problems when dealing with scalarization, a
gap may occur between the set A and the set

{x ∈ R
n : ϕμ◦G(x) � 0, ∀μ ∈ S+},

as the following example shows.

Example 2 Let G(x) := {(z1, z2) ∈ R
2 : exp(z1) − x � z2} for x ∈ R and S :=

R × R+. We see that dom(G) = R and {x ∈ R : G(x) ∩ −S 
= ∅} = ]0,+∞[. On
the other hand, for each μ := (μ1, μ2) ∈ S+ = {0} × R+,

ϕμ◦G(x) =
{−μ2x, if μ1 = 0, μ2 > 0;
0, if μ1 = 0, μ2 = 0,

for all x ∈ R. So, {x ∈ R : ϕμ◦G(x) � 0, ∀μ ∈ S+} = [0,+∞[ 
= A.

In the following, we need some sufficient conditions to confirm that A = {x ∈
R
n : ϕμ◦G(x) � 0, ∀μ ∈ S+}. Afterward, we can make the properties on the set A

by making assumptions on the function ϕμ◦G for all μ ∈ S+. For this propose, in the
rest of this paper, we always say that Assumption (A) holds if one of the following
conditions holds:

(A1) For each x ∈ dom(G), there exists z ∈ G(x) such that ϕμ◦G(x) = 〈μ, z〉 for
every μ ∈ S+.

(A2) For each x ∈ dom(G), G(x) is a compact subset of Rm .

In addition, we say that G is S-proper if ϕμ◦G is proper for all μ ∈ S+. We also say
that F is nonnegatively S-lsc if ϕμ◦G is lower semicontinuous for all μ ∈ S+.

Remark We point out that (A1) and (A2) are independent of each other.

Example 3 Let S := R
2+,G(x) := {(z1, z2) ∈ R

2 : (z1−x)2+(z2−1)2 � 1} for every
x ∈ R. It is evident that G(x) is compact for all x ∈ dom(G) = R. On the one hand,

we get that for each μ := (μ1, μ2) ∈ S+ = R
2+, ϕμ◦G(x) = μ1x + μ2 −

√
μ2
1 + μ2

2
for all x ∈ R. So, for any z := (z1, z2) ∈ G(1),

• If z1 = 0, we must have z2 
= 0, and hence, ϕ(0,1)◦G(1) = 0 
= z2 = 〈(0, 1), z〉;
• If z1 
= 0, ϕ(1,0)◦G(1) = 0 
= z1 = 〈(1, 0), z〉.

This shows that (A1) does not hold.

Example 4 Let S := R × R+ and G(x) := {(x, r) ∈ R
2 : r � max{x, 0}} for every

x ∈ R. It is clear that G(x) is not compact for every x ∈ dom(G) = R, so that (A2)
fails. However, (A1) is fulfilled. In fact, for each μ := (μ1, μ2) ∈ S+ = {0} × R+,

ϕμ◦G(x) =
{

μ2x, if x > 0 with a minimizer (x, x) ∈ G(x);
0, if x � 0 with a minimizer (x, 0) ∈ G(x).
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In order to derive the dual characterizations of set containments, the expression of
the epigraph of the support function is needed. Before doing so, we prove the following
proposition.

Proposition 1 Let G : Rn ⇒ R
m be proper, S-proper, S-convex and nonnegatively

S-lsc. Then, ∪μ∈S+epi(ϕμ◦G)∗ is a convex cone.

Proof By taking μ := 0, one observes that (0, 0) ∈ ∪μ∈S+epi(ϕμ◦G)∗. Now, let
t > 0 and (u, α) ∈ ∪μ∈S+epi(ϕμ◦G)∗. It follows that there exists μ0 ∈ S+ such that
(u, α) ∈ epi(ϕμ0◦G)∗. This together with Lemma 6 in turn gives us the following
inequality

tα � t(μ0 ◦ G)∗(u)

= t sup{〈u, x〉 − r : x ∈ dom(μ0 ◦ G), r ∈ (μ0 ◦ G)(x)}
= t sup{〈u, x〉 − 〈μ0, z〉 : x ∈ dom(G), z ∈ G(x)}
= sup{〈tu, x〉 − 〈tμ0, z〉 : x ∈ dom((tμ0) ◦ G), z ∈ G(x)}
= ((tμ0) ◦ G)∗(tu),

which is nothing else than

t(u, α) ∈ epi((tμ0) ◦ G)∗ = epi(ϕ(tμ0)◦G)∗ ⊆ ∪μ∈S+epi(ϕμ◦G)∗.

Hence, ∪μ∈S+epi(ϕμ◦G)∗ is a cone.
Now, let (u1, α1), (u2, α2) ∈ ∪μ∈S+epi(ϕμ◦G)∗ and t ∈ [0, 1] be arbitrary. This

implies that there existμ1, μ2 ∈ S+ such that (ϕμ1◦G)∗(u1) � α1 and (ϕμ2◦G)∗(u2) �
α2. It follows from the definition of conjugate function that

〈u1, x〉 − (ϕμ1◦G)(x) � α1 and 〈u2, x〉 − (ϕμ2◦G)(x) � α2, (3)

for all x ∈ R
n . Let us note in addition that, for each x ∈ R

n ,

tϕμ1◦G(x) + (1 − t)ϕμ2◦G(x)

= inf{〈tμ1, y〉 : y ∈ G(x)} + inf{〈(1 − t)μ2, y〉 : y ∈ G(x)}
� inf{〈tμ1 + (1 − t)μ2, y〉 : y ∈ G(x)}
= ϕ(tμ1+(1−t)μ2)◦G(x). (4)

Combining now (3) and (4), we get

tα1 + (1 − t)α2 � 〈tu1 + (1 − t)u2, x〉 − ϕ(tμ1+(1−t)μ2)◦G(x).

This entails that (ϕ(tμ1+(1−t)μ2)◦G)∗(tu1+(1−t)u2) � tα1+(1−t)α2, and therefore,

t(u1, α1) + (1 − t)(u2, α2) = (tu1 + (1 − t)u2, tα1 + (1 − t)α2)

∈ epi(ϕ(tμ1+(1−t)μ2)◦G)∗

⊆ ∪μ∈S+epi(ϕμ◦G)∗,
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showing that ∪μ∈S+epi(ϕμ◦G)∗ is a convex set. The proof is complete. ��

Proposition 2 Let G : Rn ⇒ R
m be a proper set-valued mapping satisfying (A), and

let A := {x ∈ R
n : G(x) ∩ −S 
= ∅}. Then,

(i) A = {x ∈ R
n : supμ∈S+ ϕμ◦G(x) � 0}.

(ii) In addition, if G is S-convex and nonnegatively S-lsc, then the following statements
hold:

(a) A 
= ∅ ⇔ (0,−1) /∈ cl(∪μ∈S+epi(ϕμ◦G)∗).
(b) A 
= ∅ ⇒ epiσA = cl(∪μ∈S+epi(ϕμ◦G)∗).

Proof (i) Let x ∈ A be arbitrary. So, there exists z ∈ G(x) such that −z ∈ S.
It then follows that, for each μ ∈ S+, ϕμ◦G(x) � 〈μ, z〉 � 0, and hence,
supμ∈S+ ϕμ◦G(x) � 0.
Conversely, let x ∈ R

n be such that supμ∈S+ ϕμ◦G(x) � 0. Consequently, x must
be an element in dom(G).

• Suppose that x /∈ A. We have that z /∈ −S for every z ∈ G(x). By Assumption
(A1), there exists z0 ∈ G(x) such that

ϕμ◦G(x) = 〈μ, z0〉, ∀μ ∈ S+. (5)

As z0 /∈ −S, there exists μ0 ∈ S+\{0} such that 〈μ0, z0〉 > 0. It follows from
(5) that ϕμ0◦G(x) > 0, a contradiction. Consequently, x ∈ A.

• As G(x) is compact for all x ∈ dom(G) by (A2), the Sion minimax theorem
(see, e.g., [34, Theorem 4.2′]) yields

inf
z∈G(x)

sup
μ∈S+

〈μ, z〉 = sup
μ∈S+

ϕμ◦G(x) � 0,

and so, there exists z0 ∈ G(x) such that supμ∈S+〈μ, z0〉 � 0. This implies that
z0 ∈ −S, and therefore, x ∈ A.

(ii) Suppose thatG is S-convex and nonnegatively S-lsc. Then, ϕμ◦G is a proper lower
semicontinuous convex function for each μ ∈ S+.

(a) By (i), [3, Lemma 3.1(a)], Lemma 2 and Proposition 1, we have

A 
= ∅ ⇔ (0,−1) /∈ cl

(
cone epi

(
sup

μ∈S+
ϕμ◦G

)∗)

= cl(∪μ∈S+epi(ϕμ◦G)∗). (6)

(b) By [3, Lemma 3.1(b)] and Lemma 2, the conclusion easily follows from the
equations in (6). ��
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4 Dual Characterizations of Set Containments

The aim of this section is to show how the dual characterizations of set containments
are related to the closure of a characteristic convex cone.

For a proper set-valued map G : Rn ⇒ R
m and a nonempty closed convex cone S

of Rm , we define the characteristic cone C(G, S) by

C(G, S) := ∪μ∈S+epi(ϕμ◦G)∗,

which expresses the epigraph of the support function of the feasible set by the epigraphs
of the conjugate functions involving the infima associated with the constraints.

We now derive a dual characterization of set containment, which will allow us
to characterize a weak minimality in set-valued optimization problems in the next
section, in terms of C(G, S).

Theorem 1 Let G : Rn ⇒ R
m be a proper, S-convex and nonnegatively S-lsc set-

valued mapping satisfying (A), K ⊆ R
p be a nonempty closed convex cone with

nonempty interior, and F : R
n ⇒ R

p be K -proper, K -convex and nonnegatively
K -lsc such that dom(F) = R

n. Given e ∈ intK, then the following statements are
equivalent:

(i) {x ∈ R
n : G(x) ∩ −S 
= ∅} ⊆ {x ∈ R

n : F(x) ∩ −intK = ∅};
(ii) There exists a vector λ ∈ K+\{0} with 〈λ, e〉 = 1 such that

(0, 0) ∈ epi(ϕλ◦F )∗ + cl(C(G, S)).

Proof [(i)⇒(ii)] Suppose that (i) holds, that is, F(A) ∩ −intK = ∅. It then follows
that

(F(A) + K ) ∩ −intK = ∅.

Otherwise, there exist k ∈ K , x ∈ A and y ∈ F(x) such that −y − k ∈ intK . So,
−y = −y − k + k ∈ intK + K = intK , and therefore, y ∈ F(A) ∩ −intK 
= ∅, a
contradiction.

By the definition, K -convexity of F ensures the convexity of F(A)+ K . Applying
now the proper convex separation theorem [35, Theorem 11.3], we can get a vector
λ̄ ∈ R

p\{0} such that

0 � 〈λ̄, y + k + k̂〉, for all y ∈ F(A), k ∈ K , and k̂ ∈ intK . (7)

Since K is nonempty and convex, K = cl(intK ) [35, Theorem 6.3]. Thus, for every
k ∈ K , there exists {kl} ⊂ intK such that kl → k as l → +∞. So, for every
y ∈ F(A), relation (7) in turn gives us that 〈λ̄, y + kl〉 � 0. Passing to the limit, we
see that 〈λ̄, y + k〉 � 0, thereby showing that

0 � 〈λ̄, y + k〉, for all y ∈ F(A) and k ∈ K . (8)
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As A 
= ∅ and dom(F) = R
n , taking x̄ ∈ A and ȳ ∈ F(x̄).We now show that λ̄ ∈ K+.

Assume by contradiction that there exists k0 ∈ K such that 〈λ̄, k0〉 < 0. Then, we can
find n0 ∈ N such that −〈λ̄, n0k0〉 > 〈λ̄, ȳ〉. This contradicts (8) due to n0k0 ∈ K .
Consequently, λ̄ ∈ K+. As λ̄ 
= 0 and e ∈ intK , one has 〈λ̄, e〉 > 0. Put λ := 1

〈λ̄,e〉 λ̄.
It is clear that 〈λ, e〉 = 1 and λ ∈ K+. In particular, taking k := 0 in (8), it leads
to 〈λ, y〉 � 0 for every y ∈ F(x) and x ∈ A, which in turn allows to the assertion
ϕλ◦F (x) � 0 for all x ∈ A, or equivalently, ϕλ◦F (x)+ δA(x) � 0 for all x ∈ R

n . This
together with the definition of epi(ϕλ◦F + δA)∗ yields (0, 0) ∈ epi(ϕλ◦F + δA)∗. Since
F is K -proper, ϕλ◦F (x) ∈ R for all x ∈ R

n . Also, by the K -convexity of F , we have
that ϕλ◦F is a convex function, and consequently, it is a continuous function. As δA is
a proper lower semicontinuous convex function, and epiδ∗

A = epiσA, the conclusion
will easily follow from Lemma 1 together with Proposition 2(ii).

[(ii)⇒(i)] The proof is done by contradiction. Assume the assertion (ii) holds true
and there exist x ∈ A and y ∈ F(x) such that −y ∈ intK . Since A 
= ∅, it follows
from Proposition 2(ii) that

(0, 0) ∈ epi(ϕλ◦F )∗ + cl(∪μ∈S+epi(ϕμ◦G)∗) = epi(ϕλ◦F )∗ + epiσA.

Then, there exists (u, α) ∈ epiσA such that −(u, α) ∈ epi(ϕλ◦F )∗. This implies that
〈u, x〉 � σA(u) � α and

〈−u, x〉 − 〈λ, y〉 � sup{〈−u, x〉 − 〈λ, y〉 : x ∈ R
n, y ∈ F(x)}

= (λ ◦ F)∗(−u) � −α.

So, 〈λ, y〉 � 0, which contradicts to the fact that 〈λ, y〉 < 0 due to −y ∈ intK .
Consequently, (i) must be true. ��

Let us denote by � the set of all triplets (K , e, F) such that K ⊆ R
p is a nonempty

closed convex cone with nonempty interior, e ∈ intK , and F is K -proper, K -convex
and nonnegatively K -lsc such that dom(F) = R

n .

Corollary 1 Let G : Rn ⇒ R
m be a proper, S-convex and nonnegatively S-lsc set-

valued mapping satisfying (A). Then, the following statements are equivalent:

(i) For each (K , e, F) ∈ �,

[∀x ∈ R
n, G(x) ∩ −S 
= ∅ ⇒ F(x) ∩ −intK = ∅]

⇔ [∃λ ∈ K+\{0}, 〈λ, e〉 = 1, (0, 0) ∈ epi(ϕλ◦F )∗ + C(G, S)];

(ii) The convex cone C(G, S) is closed.

Proof [(ii) ⇒ (i)] The desired results can be obtained immediately by Theorem 1 and
the closedness of C(G, S).

[(i)⇒ (ii)] Let (u, α) ∈ cl(C(G, S)). Applying Theorem 1 with p := 1, K := R+,
e := 1, and F(x) := {〈−u, x〉 + α} for all x ∈ R, we get that

∀x ∈ R
n, G(x) ∩ −S 
= ∅ ⇒ F(x) ∩ −intK = ∅,
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due to λ := 1 and epi(ϕλ◦F )∗ = epi(〈−u, ·〉 + α)∗ = (−u,−α) + ({0} × R+). We
can see that (K , e, F) ∈ �. So, by (i), we have

(0, 0) ∈ (−u,−α) + ({0} × R+) + C(G, S) ⊆ (−u,−α) + C(G, S),

and the proof is complete. ��
Corollary 2 [Characterization of the Slater condition] Let K ⊆ R

p be a nonempty
closed convex cone with nonempty interior, and F : R

n ⇒ R
p be K -proper, K -

convex and nonnegatively K -lsc such that dom(F) = R
n. Given e ∈ intK, then the

following statements are equivalent:

(i) ∃x ∈ R
n, F(x) ∩ −intK 
= ∅;

(ii) ∀λ ∈ K+\{0} s.t. 〈λ, e〉 = 1, (0, 0) /∈ epi(ϕλ◦F )∗.

Proof By taking G(x) := {0} for all x ∈ R
n in Theorem 1, we have for each μ ∈ S+,

ϕμ◦G(x) = 0 for all x ∈ R
n . Thus,

(ϕμ◦G)∗(v) :=
{
0, if v = 0;
+∞, otherwise,

and so, C(G, S) = {0} × R+ which is closed. The desired result is a straightforward
consequence of Theorem 1 together with relation (2). ��
Example 5 Let K := R

2+, F(x) := {(y1, y2) ∈ R
2 : (y1 − x)2 + (y2 − 1)2 � 1}

for every x ∈ R. We get that for each λ := (λ1, λ2) ∈ K+ = R
2+, ϕλ◦F (x) =

λ1x + λ2 −
√

λ21 + λ22 for all x ∈ R. So,

(ϕλ◦F )∗(v) :=
{√

λ21 + λ22 − λ2, if v = λ1;
+∞, otherwise.

Hence, epi(ϕλ◦F )∗ = {λ1} × [
√

λ21 + λ22 − λ2,+∞[ for every λ ∈ K+. By taking

e := (1, 1), λ̄ := (0, 1), we have (0, 0) ∈ epi(ϕλ̄◦F )∗. Thus, by Corollary 2, we
conclude that there is no x ∈ R such that F(x) ∩ −intK 
= ∅.

The next set containment characterization is motivated by the notion of proper
minimality in set-valued optimization problems via vector approach.

Theorem 2 Let G : Rn ⇒ R
m be a proper, S-convex and nonnegatively S-lsc set-

valued mapping satisfying (A), K ⊆ R
p be a nonempty closed convex cone, and F :

R
n ⇒ R

p be K -proper, K -convex and nonnegatively K -lsc such that dom(F) = R
n.

Given e ∈ K\{0}, then the following statements are equivalent:

(i) There exists a convex cone K̂ ⊆ R
p with K\{0} ⊆ intK̂ such that

{x ∈ R
n : G(x) ∩ −S 
= ∅} ⊆ {x ∈ R

n : F(x) ∩ −K̂ = {0}};
(ii) There exists a vector λ ∈ K+i with 〈λ, e〉 = 1 such that

(0, 0) ∈ epi(ϕλ◦F )∗ + cl(C(G, S)).
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Proof [(i)⇒(ii)] Suppose that there exists a convex cone K̂ ⊆ R
p with K\{0} ⊆ intK̂

such that A ⊆ {x ∈ R
n : F(x) ∩ −K̂ = {0}}, and consequently, F(A) ∩ −K̂ = {0}.

Since intK̂ = {x ∈ R
n : 〈u, x〉 > 0, ∀u ∈ K̂+\{0}} (see, e.g., [19, Lemma 1.26, p.

19]), we have 0 /∈ intK̂ . We claim that

(F(A) + K ) ∩ −K̂ = {0}. (9)

It is clear that 0 ∈ (F(A) + K ) ∩ −K̂ due to F(A) ∩ −K̂ = {0}. Let z ∈ (F(A) +
K ) ∩ −K̂ be arbitrary. Then, there exist yA ∈ F(A) and kA ∈ K such that z =
yA + kA. If kA 
= 0, this together with the relation K\{0} ⊆ intK̂ gives us that
yA = z − kA ∈ −K̂ − intK̂ = −intK̂ ⊆ −K̂ . Thus, yA ∈ F(A) ∩ −K̂ , and
consequently, yA = 0, a contradiction. Thus, we actually have kA = 0, which implies
that z ∈ F(A)∩−K̂ = {0}. This shows that (F(A)+ K )∩−K̂ ⊆ {0}, and therefore,
(9) holds.

Moreover, as (F(A) + K ) ∩ −K̂ = {0}, we also have (F(A) + K ) ∩ −intK̂ = ∅.
By the separation theorem, there is λ̄ ∈ R

p\{0} such that

0 � 〈λ̄, y + k + k̂〉, for all y ∈ F(A), k ∈ K , and k̂ ∈ intK̂ . (10)

Since A 
= ∅ and dom(F) = R
n , we can take x̄ ∈ A and ȳ ∈ F(x̄). Let us prove

that λ̄ ∈ K̂+. On the contrary, suppose that there exists k̂0 ∈ K̂ such that 〈λ̄, k̂0〉 < 0.
So, we can find n0 ∈ N such that −〈λ̄, n0k̂0〉 > 〈λ̄, ȳ〉. On the one hand, due to
n0k̂0 ∈ K̂ = cl(intK̂ ), there exists {̂kl} ⊂ intK̂ such that k̂l → n0k̂0. From (10),
for each l ∈ N, we conclude that 0 � 〈λ̄, ȳ + k̂l〉. Passing to the limit, we have
0 � 〈λ̄, ȳ + n0k̂0〉, a contradiction. Consequently, λ̄ ∈ K̂+ and it then follows from
the fact that K+\{0} ⊆ intK̂ , λ̄ ∈ K+i . In addition, we get that 〈λ, e〉 = 1 when
λ := 1

〈λ̄,e〉 λ̄ ∈ K+i , and hence, we deduce from (10) that 〈λ, y〉 � 0 for every

y ∈ F(A). As we have seen in the proof of Theorem 1 (the implication (i)⇒(ii)), the
previous inequality allows us to prove that (0, 0) ∈ epi(ϕλ◦F )∗ + cl(C(G, S)), and
the assertion follows.

[(ii)⇒(i)] Assume by contradiction that statement (iii) holds true and for every
convex cone K̂ ⊆ R

p fulfilling K\{0} ⊆ intK̂ , its holds

∃x ∈ A, F(x) ∩ −K̂ 
= {0}. (11)

Since (0, 0) ∈ epi(ϕλ◦F )∗ + cl(C(G, S)) = epi(ϕλ◦F )∗ + epiσA, we have that
ϕλ◦F (x) + δA(x) � 0 for every x ∈ R

n , or equivalently, 〈λ, y〉 � 0 for every
y ∈ F(A). We see that K\{0} ⊆ {y ∈ R

p : 〈λ, y〉 > 0}. Let

K̂0 := {y ∈ R
p : 〈λ, y〉 > 0} ∪ {0}.

So, K̂0 is a convex cone fulfilling K\{0} ⊆ intK̂0. In view of (11), there exists x0 ∈ A
such that F(x0) ∩ −K̂0 
= {0}, which gives us 0 
= −y0 ∈ K̂0 for some y0 ∈ F(x0).
So, 0 > 〈λ, y0〉 � 0, a contradiction. Therefore, (i) holds. ��
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Before closing this section, we point out that in the study of dual characterizations
of set containments, Jeyakumar gave ([3, Theorem 4.1]) a characterization of the set
containment of a nonempty closed convex set, defined by infinitely many convex
constraints, in a reverse convex set, i.e., {x ∈ R

n : f j (x) � 0, j = 1, 2, . . . , p} =
{x ∈ R

n : f (x) ∈ R
p
+} where f j are real-valued convex function on R

n and f (x) :=
( f1(x), f2(x), . . . , f p(x)). Further study has been done for cone-convex inequalities
(see, e.g., [15, Theorem 2.1] and [5, Theorem 3.1]). The set-valued counterpart of the
mentioned reverse convex set is the set of the form {x ∈ R

n : F(x) ⊆ K }, which is
the container in the following the dual characterization of the containment between
sets defined through set-valued functions.

Theorem 3 Let G : Rn ⇒ R
m be a proper, S-convex and nonnegatively S-lsc set-

valued mapping satisfying (A), K ⊆ R
p be a nonempty closed convex cone, and F :

R
n ⇒ R

p be K -proper, K -convex and nonnegatively K -lsc such that dom(F) = R
n.

Then, the following statements are equivalent:

(i) {x ∈ R
n : G(x) ∩ −S 
= ∅} ⊆ {x ∈ R

n : F(x) ⊆ K };
(ii) ∀λ ∈ K+, (0, 0) ∈ epi(ϕλ◦F )∗ + cl(C(G, S)).

Proof [(i)⇒(ii)] Assume that (i) holds. Let λ ∈ K+ be arbitrary. By (i), we actually
have 〈λ, y〉 � 0 for every y ∈ F(x) and every x ∈ A. As seen before, (i) entails
(0, 0) ∈ epi(ϕλ◦F )∗ + cl(C(G, S)). So, (ii) has been proved.

[(ii)⇒(i)] Suppose that (ii) holds. Assume by contradiction that there exist x ∈ A
and y ∈ F(x) such that y /∈ K . So, there is λ ∈ K+ such that 〈λ, y〉 < 0. By (ii),
(0, 0) ∈ epi(ϕλ◦F )∗ + cl(C(G, S)) = epi(ϕλ◦F )∗ + epiσA. In a similar manner to the
first argument in the proof of Theorem 1, we would have 〈λ, y〉 � 0, a contradiction.
Consequently, (i) must be true. ��

5 Application to Set-Valued Optimization via Vector Criteria

In this section, with the aid of Theorem 1 and Theorem 2, we will establish charac-
terizations of a weak minimal solution and a proper minimal solution for a set-valued
optimization problem in the sense of vector criteria. Inwhat follows, K and B represent
a nonempty closed convex pointed cone and a nonempty subset of Rp, respectively.
Then, the point y ∈ B is said to be a:

(i) (Pareto) minimal point (y ∈ Min(B, K )) if (B − y) ∩ −K = {0};
(ii) Weakminimal point (y ∈ WMin(B, K )) if intK 
= ∅ and (B− y)∩−intK = ∅;
(iii) Properly minimal point (y ∈ PMin(B, K )) if there exists a convex cone K̂ such

that K\{0} ⊆ intK̂ and y ∈ Min(B, K̂ ).

Let F : Rn ⇒ R
p and G : Rn ⇒ R

m be proper set-valued maps. Let us consider
the following set-valued optimization problem:

MinK F(x) s.t. x ∈ A := {x ∈ R
n : G(x) ∩ −S 
= ∅}, (12)

where S is a nonempty closed convex cone of Rm .
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Definition 2 [18,19] An element x̄ ∈ A is called a weak efficient solution (resp.
proper efficient solution) of (12) if

F(x̄) ∩ WMin(F(A), K ) 
= ∅

(resp. F(x̄) ∩ PMin(F(A), K ) 
= ∅), or equivalently, there exists ȳ ∈ F(x̄) such that
ȳ ∈ WMin(F(A), K ) (resp. ȳ ∈ PMin(F(A), K )).

In the following result, we will give the characterization of a weak efficient solution
of (12).

Theorem 4 [Characterization ofweak efficient solution]Assume all conditions of The-
orem 1 hold. Let x̄ ∈ A and e ∈ intK be given. Then, the following statements are
equivalent:

(i) x̄ is a weakly efficient solution of (12);
(ii) There exist ȳ ∈ F(x̄) and λ ∈ K+\{0} with 〈λ, e〉 = 1 such that

(0,−〈λ, ȳ〉) ∈ epi(ϕλ◦F )∗ + cl(C(G, S)). (13)

Proof [(i)⇒(ii)] Suppose that (i) holds, that is, there exists ȳ ∈ F(x̄) such that (F(A)−
ȳ) ∩ −intK = ∅. Applying now Theorem 1 with x �→ F(x) − ȳ, which is K -convex,
there exists λ ∈ K+\{0} with 〈λ, e〉 = 1 such that (0, 0) ∈ epi(ϕλ◦(F(·)−ȳ))

∗ +
cl(C(G, S)). Note that

ϕλ◦(F(·)−ȳ)(x) = inf{〈λ, y − ȳ〉 : y ∈ F(x)}
= inf{〈λ, y〉 : y ∈ F(x)} − 〈λ, ȳ〉
= ϕλ◦F (x) − 〈λ, ȳ〉.

This together with (1) in turn implies that (13) holds.
The statement (ii)⇒(i) follows from the reversible character of the proof that

(i)⇒(ii). ��
Similarly, with the aid of Theorem 2, we can get the necessary and sufficient con-

ditions for a feasible point to be a proper efficient solution of (12), and the proof is
omitted for brevity.

Theorem 5 [Characterization of proper efficient solution] Assume all conditions of
Theorem 2 hold. Let x̄ ∈ A and e ∈ K\{0} be given. Then, the following statements
are equivalent:

(i) x̄ is a properly efficient solution of (12);
(ii) There exist ȳ ∈ F(x̄) and λ ∈ K+i with 〈λ, e〉 = 1 such that (13) holds.

6 Conclusions

In this paper, we have employed the classical convex separation theorem and the
description of the epigraph of a support function to provide necessary and sufficient
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conditions for set containments involving convex set-valued maps. These conditions
are expressed in terms of the epigraphs of the conjugate functions involving the
infima associated with corresponding set-valued maps. Moreover, as an application,
the obtained results are then applied to provide characterizations for weakly efficient
solutions as well as properly efficient solutions for convex set-valued optimization
problems in the sense of vector criteria.
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