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Abstract
We present a novel fully adaptive conditional gradient method with the step length
regulation for solving pseudo-convex constrained optimization problems. We propose
some deterministic rules of the step length regulation in a normalized direction. These
rules guarantee to find the step length by utilizing the finite procedures and provide the
strict relaxation of the objective function at each iteration. We prove that the sequence
of the function values for the iterates generated by the algorithm converges globally
to the objective function optimal value with sublinear rate.
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1 Introduction

As is widely known, the development of the first variant of the conditional gradient
method (or, briefly, CGM) was pioneered by Frank andWolfe for the case of quadratic
programming problems. For mathematical programming problems in the other set-
tings, a broad range of different variants of CGM was explored by many researchers
over the years. A helpful systematic survey of the existing literature related to the
various schemes of CGM is contained, for instance, in [1] (see also the references
therein). For an up-to-date survey of the subject, see also [2–4].

Rather than detailing all the different versions of CGM, that researchers have been
developing over the years in the search for the right ideas, we seek to occupy our
attention only in some related work.
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In [5], there is provided Frank–Wolfe (conditional gradients) method with a con-
vergence analysis allowing one to approach a primal-dual solution of the convex
optimization problem with composite objective functions. In [2], a randomized block-
coordinate variant of the classic Frank–Wolfe algorithm (or, briefly, FWA) was
presented for the specific optimization problem. Namely, there was considered the
problem of minimizing the convex quadratic function under block-separable con-
straints. In applications to the dual structural support vector machine (SVM) objective,
this algorithm provides O(1/ϑ) convergence rate. The parameter ϑ is used at each
iteration for monitoring the convergence by evaluating the current duality gap as a cer-
tificate for the current approximation quality. More precisely, the proposed algorithm,
after O(1/ϑ) many iterations, guarantees an ϑ-approximate solution to the structural
SVM dual problem when the duality gap is less or equal to ϑ . Exact minimizers of
the linear subproblems were used for determining the descent directions. Since the
objective function of the structural SVM dual is simply a quadratic function, the step
size for any given candidate search point can be calculated analytically by an explicit
formula with further clipping to [0, 1] or optimized by a line search.

In [3], there is considered a method for lazifying the vanilla Frank–Wolfe algorithm
as well as the conditional gradient methods. For the descent direction search, they used
a weak separation oracle instead of a linear optimization oracle. This allowed them
to reapply feasible solutions from the preceding oracle calls, so that in many events
there might be skipped the oracle call. In [3], for a lazification of the different variants
of CGM, there is required to be fulfilled many supplementary conditions such as: (1)
the objective function is, for instance, smooth convex function with curvature C (or
β-smooth and S-strongly convex function), (2) the step size is selected with the help
of the curvature constant and/or the other hard-to-estimate parameters like β, S, and so
forth, (3) in some versions of CGM, the feasible region is only a polytope (moreover,
it is given in the special form). For the sake of fairness, it should be noted that the
authors also provided a parameter-free variant of the lazy Frank–Wolfe algorithm. But
in this case, the parameters are adaptively adjusted using the exact (computationally
expensive) line search for the step-size selection.

For any convex and compact feasible domain, there was proved in [4] that FWA
gets an approximate stationary point at the rate of O(1/

√
k) on potentially non-convex

objectives with a Lipschitz continuous gradient. The adaptive step size is calculated
bymeans of the finite curvature constantCf . The assumption of the bounded curvature
corresponds closely to a Lipschitz assumption on the gradient of the function. By the
way, we note thatCf is related to the hard-to-estimate parameters. It thus takes at most
O(1/ϑ2) iterations to find an approximate stationary point with the Frank–Wolfe
gap smaller than ϑ . A discussion of the related work in [4] contains the extensive
representation of the main results as concerned with Frank–Wolfe methods for non-
convex settings (see also the references therein). For the general setting, there was
shown in [6] that any limit point of the sequence of iterates for the standard FWA
converges to a stationary point (though without the presentation of convergence rates).
The proof of convergence only requires the objective function to be smooth. For non-
convex objectives, there is studied in [7] a Frank–Wolfe-type algorithm for which the
convergence rate is slower than O(1/

√
k).
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Themain contributions in this paper are as follows.Wepresent a novel fully adaptive
conditional gradient method (or, briefly, ACGM) with the step length regulation for
solving pseudo-convex constrained optimization problems. This relaxation algorithm
allows one to generate the sequence of iterates {xk}, k = 0, 1, . . . such that the sequence
of its function values { f (xk)}, k = 0, 1, . . . converges globally to the objective function
optimal value with the following rate O(1/k) which is usually called the sublinear
one. To the extent of our knowledge, a convergence rate of O(1/k) is now known to
be the best for CGM in a non-convex objectives context.

It should be pointed out that the sublinear convergence rate takes place under the
following assumptions regarding the problem: 1) a feasible region is any convex and
closed set; 2) an objective function is required to be satisfied with the so-called Con-
dition A introduced in [8]. Let us note that this condition will be defined explicitly in
Sect. 2 (see Definition 2.2). Here, we focus attention on the fact that, for the implemen-
tation of ACGM, there is not required any priori information relatively the auxiliary
constant defined in Condition A. With respect to this fact, the presented version of
ACGM compares favorably with the other versions of CGM discussed above. The
fulfillment of Condition A allows us further to adaptively regulate the step length
without using any complicated line search techniques. Namely, there is no need to
utilize, for instance, the limited minimization rule required for the one-dimensional
exact minimization of the objective function on the line segment [0, 1] in the chosen
direction of descent. We propose the two deterministic rules of the step length adjust-
ment. They guarantee to find the step size by making use for this purpose the finite
procedures of diminishing an original value of a specific parameter. The latter is a
user-chosen parameter which is decreased until a moment when the condition applied
for the step length regulation becomes fulfilled. We note that the step length calculat-
ing rules provide the strict relaxation of the objective function at each iteration. Notice
that the concept of the objective function relaxation helps to interpret the relaxation
properties of optimization methods. Due to this interpretation, one can evaluate the
speed of the objective function value decreasing at each iteration. The case of this
value being decreased on the positive magnitude corresponds to the concept of the
strict relaxation which is determined by the relation: f (xk) > f (xk+1), k = 0, 1, . . .

It should be noted that the fully adaptive character of the introduced variant of CGM
is determined namely by the combination of simultaneous controlling the adaptation
of an ε-normalization parameter of the descent direction as well as the iteration step-
size regulation in tandem. We justify rigorously the finiteness of all the procedures for
both the step length regulation and the adaptation of the ε-normalization parameter.

Let us note that the ACGM relates to the so-called lazy type of methods due to
its lazification by replacing the exact solution of the linear optimization subproblem
for finding the descent direction to inexact one. This means that the above-mentioned
auxiliary subproblem should be solved with some prescribed by user accuracy. As
a result, this strategy leads to considerable reduction in the computational costs for
solving the descent direction problem. In the case when the set of the feasible solutions
is given by the linear constraints, CGM is essentially popular due to its simplicity of
only requiring to solve a linear programming subproblem for determining the descent
direction. In ACGM, this subprogram solving is still more simplified, since it allows
one to limit oneself to several iterations (using linear optimization methods) toward
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the direction of minimizing a linear function. Besides, the feasible domain can be
potentially unbounded. In this event, despite the solvability of the original problem,
the linear optimization subproblem can have no solutions. Fortunately, the special
setting of the descent direction problem allows one to construct the descent direction
for this case, too.

Thanks to all the mentioned properties of ACGM, it seems that the results of the
paper can be potentially applicable in both theoretical and practical aspects in numer-
ous applied areas [in pseudo-convexprogramming, sets separation, andmanyothers (in
particular, data classification and identification techniques)]. Besides, it is well known
from the optimization literature that Frank–Wolfe-type methods are very useful for
solving the problem of projecting the origin of the Euclidean space onto a convex
polyhedron (see, for instance, [9]). Therefore, it will be especially interesting to study
in the future the application of ACGM to solve the problems of projecting onto the
convex polyhedron and computing the distance between the convex polyhedra learned,
for example, in [10–12].

The rest of this paper is organized as follows. In Sect. 2, we provide some prelim-
inaries for our convergence rate analysis of ACGM. In Sect. 3, we formulate ACGM
and justify its convergence rate. In Sect. 4, we present the finite algorithms for the
refinement of an ε-normalization parameter of the descent direction. Section 5 con-
tains some results of our experimental study of ACGM. In Sect. 6, there are drawn
some conclusions.

2 Definitions and Preliminaries

Our goal is to study the following problem:

min
x∈D f (x), (1)

where f (x) is a continuously differentiable pseudo-convex function satisfying the so-
called Condition A (introduced in [8]) on a convex and closed subset D of Euclidean
space Rn . For solving this problem, we present a new efficient algorithm, which has
the estimates of the rate of its convergence and allows one to adaptively control both
the parameter of an ε-normalization of a descent direction and the step length.

We start with some notations: g(x) is the gradient of the function f (x) at the
point x , x0 stands for the starting point of the iterative consequence constructed by
minimizing the objective function. Let ‖ · ‖ stand for the Euclidean norm of a vector
in R

n , f ∗ := min
x∈D f (x), D∗ := {x ∈ D : f (x) = f ∗}, N = {0, 1, . . .}, and p∗

k

corresponds to a projection of the iterative point xk onto the set D∗, k ∈ N.
To the best of our knowledge, the class of continuously differentiable pseudo-

convex functions was pioneered by Mangasarian in [13]. It is well known that the
above-mentioned class generalizes the family of all smooth convex functions.

Definition 2.1 (pseudo-convexity) A continuously differentiable function f (x) given
on an open and convex set G from R

n is called pseudo-convex, if for all x, y ∈ G
there holds the following implication:
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〈g(x), y − x〉 ≥ 0 ⇒ f (x) ≤ f (y),

or equivalently,

f (y) < f (x) ⇒ 〈g(x), y − x〉 < 0.

For the class of pseudo-convex functions, the necessary and sufficient conditions of
optimality are established in the following theorem:

Theorem 2.1 (Basic first-order conditions for optimality) ([13], p. 282) For the point
x∗ ∈ G to furnish the minimum of f (x) over G, it is necessary and sufficient for all
x ∈ G to hold

〈g(x∗), x − x∗〉 ≥ 0.

Definition 2.2 (Condition A) We say that a continuous function f (x) satisfies Condi-
tion A on the convex set D ⊆ R

n if there exists a nonnegative symmetric function
τ(x, y) and μ > 0 such that

f (αx + (1 − α)y) ≥ α f (x) + (1 − α) f (y) − α(1 − α)μτ(x, y),

∀x, y ∈ D, α ∈ [0, 1].

For x, y ∈ D ⊆ R
n , some function τ(x, y) is called symmetric if τ(x, y) =

τ(y, x), τ(x, x) = 0. Condition A describes a sufficiently broad class of functions
A(μ, τ(x, y)) . It was shown in [8,14,15] that the class A(μ, ‖x − y‖2), in particular,
is wider than C1,1(D)—the well-known class of functions whose gradients satisfy
the Lipschitz condition on the convex set D ⊆ R

n . By the way, we note that Lip-
schitzian properties of gradients for this class of functions have been sought as the
favorable assumptions in the justification of the theoretical estimates of the conver-
gence rate for the variousmodern differentiable optimization algorithms. In [15], there
is given a variety of examples of functions that satisfy Condition A. For functions from
A(μ, τ(x, y)), we also investigated their principle properties and criteria which allow
one to categorize some function as belonging to the treated class or not. In particular, it
was proved in [15] that, for a continuously differentiable function satisfying Condition
A on a convex set D, the following extremely important differential inequality holds:

f (x) − f (y) ≥ 〈g(x), x − y〉 − μτ(x, y). (2)

Theorem 2.2 (Relation between two classes of functions) [8] If D is convex subset of
R
n, f (x) ∈ C1,1(D), then f (x) satisfies Condition A on D with coefficient μ = L/2

and function τ(x, y) = ‖x − y‖2, where L is a Lipschitz constant for the gradient of
f (x).

Proof In optimization theory, it is certainly well known that the function f (x) satisfies
the following differential inequality:
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f (x) − f (y) ≥ 〈g(x), x − y〉 − L

2
‖x − y‖2, ∀x, y ∈ D. (3)

Let xα = αx + (1−α)y, ∀α ∈ [0, 1] ∀x, y ∈ D; from (3), we then have the following
inequalities:

f (xα) − f (x) ≥ 〈g(xα), xα − x〉 − L

2
‖xα − x‖2. (4)

f (xα) − f (y) ≥ 〈g(xα), xα − y〉 − L

2
‖xα − y‖2. (5)

Summing these inequalities, having previously multiplied (4) by α and (5) by (1−α),
taking into account the symmetricity of τ(x, y) = ‖x − y‖2, we get

f (xα) ≥ α f (x) + (1 − α) f (y) + 〈g(xα), xα − (αx + (1 − α)y)〉
−α(1 − α)

L

2
‖x − y‖2 = α f (x) + (1 − α) f (y) − α(1 − α)

L

2
‖x − y‖2.


�
Definition 2.3 (ε-normalized descent direction) For functions from the classA(μ, ‖x−
y‖v), v ≥ 2, a vector s �= 0 is called an ε-normalized descent direction (ε > 0) of the
function f at the point x ∈ D if the following inequality holds:

〈g(x), s〉 + ε‖s‖v ≤ 0.

Lemma 2.1 (ε-normalization) If some descent direction s is not ε-normalized, then the

vector constructed in such a way that s̄ = ts

ε‖s‖v
is ε-normalized under the condition

0 < t ≤ |〈g(x), s〉|.
Proof By construction, we have the following relation:

〈g(x), s̄〉 + ε‖s̄‖v = t

ε‖s‖v
〈g(x), s〉 + tv

εv−1‖s‖v(v−1)

= t

ε‖s‖v

[
〈g(x), s〉 + t

[
t

ε‖s‖v

]v−2
]

≤ 0,

because

[
t

ε‖s‖v

]v−2

≤ 1. 
�

Under the condition v = 2, we fix some point x ∈ R
n ; then, it is not hard to see

that all the points z ∈ R
n , for which the vectors z − x are ε-normalized directions of

descent at the point x , belong to the n-dimensional ball of radius R = ‖g(x)‖/2ε with
center at the point u = x − g(x)/2ε.
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Let

ζ =
{

(ε · μ−1)1/(v−1), if ε < μ,

1, if ε ≥ μ.

For the ε-normalized descent directions, we further present their very useful new
properties providing a strict relaxation of the objective function.

Lemma 2.2 (Basic properties of ε-normalized descent directions) Let s be some ε-
normalized descent direction for the function f at the point x where v ≥ 2, f (x) ∈
A(μ, ‖x − y‖v), then for all β ∈ ]0, 1[ there exists a constant λ̂ = λ̂(β) > 0 (λ̂ =
(1 − β)1/(v−1)ζ ) such that for all λ ∈

]
0, λ̂

]
it holds

f (x) − f (x + λs) ≥ −λβ · 〈g(x), s〉, (6)

f (x) − f (x + λs) ≥ λβ · ε‖s‖v. (7)

Proof Using (2), we get

f (x) − f (x + λs) ≥ −λ · 〈g(x), s〉 − μλv‖s‖v

= λβω − λ
(
〈g(x), s〉 + μλv−1‖s‖v + βω

)
. (8)

Weestimate further the functionα(ω) = 〈g(x), s〉+μλv−1‖s‖v+βω for the twocases:
ω = −〈g(x), s〉 and ω = ε‖s‖v. In the first case, by definition of the ε-normalized
descent direction s, it holds

α(ω) = (1 − β) · 〈g(x), s〉 + μλv−1‖s‖v ≤ −(1 − β)ε‖s‖v + μλv−1‖s‖v

= μ‖s‖v ·
(
(β − 1)ε/μ + λv−1

)
.

In the second event, we have

α(ω) = 〈g(x), s〉 + μλv−1‖s‖v + βε‖s‖v ≤ μ‖s‖v ·
(
(β − 1)ε/μ + λv−1

)
.

Thus, there is fulfilled the following implication:

0 ≤ λ ≤ (1 − β)1/v−1ζ ⇒ α(ω) ≤ 0,where ω = −〈g(x), s〉 or ω = ε‖s‖v.

This implies that the inequalities (6)–(7) then follows from (8). 
�
The inequalities (6)–(7) are needed for justifying the convergence of the adaptive

algorithm which will be presented below. In particular, the above-mentioned expres-
sions imply that

f (x + λs) < f (x) for all 0 < λ ≤ (1 − β)1/v−1ζ, β ∈ (0, 1).
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According to Lemma 2.2, we describe the strategies that can be utilized for calculating
the step size satisfying (6)–(7). Let s be some ε-normalized direction of descent for
f at the point x . Besides, let the following conditions be fulfilled: β ∈ ]0, 1[ , η =
(1−β)1/v−1, î = 1, J (î) = {î, î + 1, î + 2, . . .}. We further determine i∗ as the least
index i ∈ J (î) for which there holds the following condition:

f (x) − f (x + ηi s) ≥ −ηiβ · 〈g(x), s〉, (9)

or the more weak condition:

f (x) − f (x + ηi s) ≥ ηiβ · ε‖s‖v. (10)

Next, we set λ = ηi
∗
. In what follows, we mean that there is used Rule 1 (or Rule 2)

when we follow the first (or the second) of the above described strategies for deter-
mining the value of the step length. The step size calculated in accordance with these
rules satisfies (6) or (7), respectively.

We further investigate the case when s is the ε-normalized descent direction, but it
is notμ-normalized. (This situation is possible only for ε < μ.) Under the assumption
that 0 < ε < μ, for the case of finding λ according to Rule 1 or Rule 2, we prove
that the step size is bounded from below. This obviously implies that the represented
procedures of diminishing the step length are finite.

Lemma 2.3 (Finite lower bound for the step length) If

(b) f (x) ∈ A(μ, ‖x − y‖v), v ≥ 2,
(c) 0 < ε < μ, β ∈ ]0, 1[ ,
(d) s- is an ε-normalized descent direction of the function f at the point x, but it is

not μ-normalized,
(e) i∗ is the smallest index i = 1, 2, . . . , for which there is fulfilled the condition of

Rule 1 or Rule 2, λ = ηi
∗
;

Then, the following estimate holds:

λ >
(
εμ−1 · (1 − β)2

)1/(v−1)
> 0.

Proof If i∗ = 1, then in this event there is nothing to prove since it holds λ =
(1 − β)1/(v−1). Now, let i∗ �= 1. This case corresponds to the fact that the condition
(9) [or (10)] (applied in the rule of calculating the step length) was not fulfilled for
ηi

∗−1. Due to Lemma 2.2, we then obtain

ηi
∗−1 >

(
(1 − β)εμ−1

)1/(v−1)
.

This yields λ = ηi
∗

>
(
(1 − β)2εμ−1

)1/(v−1)
> 0. 
�
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Remark 2.1 (Finite lower bound for the constant μ) From Lemma 2.3, under its con-
ditions, there comes immediately the following estimate:

μ > ε · (1 − β)2λ1−v. (11)

Later, the estimate (11) will be applied in the algorithm for adapting the parameter
for the ε-normalization of the descent direction.

3 Adaptive Algorithm and Its Convergence

This section is devoted to the principles of choosing the ε-normalization parameter
for the descent direction. The algorithm convergence for the fixed parameter ε (in the
case of an arbitrary ratio of the parameter ε and the value ofμ in Condition A) follows
from the convergence of the adaptive variant of CGM.We note that generally speaking
the constant μ is unknown beforehand. Consequently, in practice, the choice of the ε

values close to the μ value is decisive for the algorithm convergence. If one selects
the too small parameter ε, then, in accordance with Rule 1 and Rule 2, there can be
obtained significant diminishing of the step length. In the choice of the unjustifiably
large value of ε, the convergence of the adaptive algorithm can be slowed down.
Therefore, it is expedient to estimate the parameter ε in the process of working the
algorithm. The inequalities (9)–(11) allow us to make an adjustment to the value ε,
increasing it if the previous choice was unsuccessful. Now, we describe further details
of a procedure for pointwise adaptation of the parameter ε during the iterative process
of the algorithm.

For the kth iteration of the adaptive algorithm, let εk > 0 be the value of a parameter
for an ε-normalization of descent direction. Let sk be an ε-normalized descent direction
of the function f at xk ; the iterative step size λk is selected according to one of the
Rules 1–2.

If ik is the least index i ∈ J (î), for which there holds the condition of choosing the
iteration step size for x = xk , ε = εk , s = sk . Due to Lemma 2.2, if ik = î , then for
going to the next—(k+1)th—iteration it is expedient to leave the unchanged value of
the normalization parameter, i.e., to put εk+1 = εk . During the process of dropping the
step size, let the checked condition (9) [or condition (10)] be fulfilled for ik > î . Then,
in accordance with (11), there should be increased current value of the parameter for
the ε-normalization of the descent direction, for instance, as follows: εk+1 = εk · ζk .
Regardless of what rule is selected for calculating the step length, here one has

ζk = (1 − β)1−ik . (12)

From the fact that μ < +∞, it follows that after the finite number of increases, the
value of the parameter ε can exceed μ and cease to vary. Let j > 0 be the number
of iterations, on which it holds ε j ≥ μ. We then have εk ≥ ε j ≥ μ, ∀k ≥ j . In this
case, from some iteration j ≥ 0 the adaptive algorithm begins to work with the fixed
constant for the ε-normalization of a descent direction. We underline that beginning
from the j th iteration, the step length becomes constant: λk = η, ∀k ≥ j . At that time,
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for calculating the iterative step size, we need only one calculation of the objective
function value at the point xk +ηsk (for checking the fulfillment of the condition used
for choosing the step size).

Algorithm

Step 0 Initialization. Select x0 ∈ D, β ∈ ]0, 1[ , ε0 > 0, 0 < σ0 ≤ 1, 0 < α ≤ α0.

Set the iteration counter k to 0.
Step 1 Under the conditions 0 < σ ≤ σk ≤ 1, 0 < α ≤ αk , choose a point yk,

k = 0, 1, . . . in such a way that it holds

〈g(xk), yk − xk〉 ≤ max{σk min
x∈D〈g(xk), x − xk〉,−αk}. (13)

If 〈g(xk), yk − xk〉 = 0, then terminate the algorithm implementation [since
xk is a solution of the problem (1)]. Otherwise, set

sk =
⎧⎨
⎩

yk − xk, if〈g(xk), yk − xk〉 + εk‖yk − xk‖v ≤ 0,
tk(yk − xk)

εk‖yk − xk‖v
, else.

Here tk = |〈g(xk), yk − xk〉|.
Step 2 Let ik be the least index i ∈ J (î) for which there holds the condition from

Rule 1 or Rule 2 when x = xk , s = sk , ε = εk . Set λk = ηik .
Step 3 Compute the next iterate xk+1 = xk + λksk .
Step 4 Update εk+1 = ζkεk . Set k = k + 1 and go to Step 1.

Clearly, we apply the same rule for selecting the step length at each iteration point.

Remark 3.1 (Characterization of the descent direction) Let s̄k = ‖yk −xk‖. The vector
sk constructed by the algorithm is ε-normalized. This is evident when sk = s̄k . For the

case where sk = tk s̄k
εk‖s̄k‖v

, Lemma 2.1 justifies that sk is ε-normalized, too.

Moreover, it obviously holds ‖sk‖ ≤ ‖s̄k‖. Indeed,

‖sk‖ =
⎧⎨
⎩

‖s̄k‖, if〈g(xk), s̄k〉 + εk‖s̄k‖v ≤ 0,
tk

εk‖s̄k‖v−1 < ‖s̄k‖, otherwise,

since
tk

εk‖s̄k‖v
= −〈g(xk), s̄k〉

εk‖s̄k‖v
< 1. Therefore, the point xk+1, which is obtained by

moving toward the search direction sk using some step size λk ∈ ]0, 1[, belongs to the
feasible set.

To discuss the rate of convergence for ACGM in the pseudo-convex setting, we
need to determine a measure of optimality for our iterates. The minimum value of the
objective function is usually not known beforehand, so it is important to formulate the
stopping criterion directly in terms of the optimum.
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Theorem 3.1 (Constructive measure of optimality for ACGM) Let f (x) be a contin-
uously differentiable pseudo-convex function on a convex set D ⊆ R

n . Then, for the
function f (x) to attain its minimum value on D at the point xk ∈ D, it is necessary
and sufficient to hold

〈g(xk), yk − xk〉 = 0. (14)

Proof Necessity. Suppose that f (x) achieves its minimum over D at xk . According to
Theorem 2.1, we have 〈g(xk), x − xk〉 ≥ 0, ∀x ∈ D. Therefore, 〈g(xk), yk − xk〉 ≥
0, since yk ∈ D. Then, in (13) there does not take place the following relation:
σk min

x∈D〈g(xk), x − xk〉 ≤ −αk . Consequently, it is fulfilled σk min
x∈D〈g(xk), x − xk〉 >

−αk . Then, for all x ∈ D it holds

0 ≤ 〈g(xk), yk − xk〉 ≤ σk min
x∈D〈g(xk), x − xk〉 ≤ 〈g(xk), x − xk〉.

Therefore, for x = xk we obtain 0 ≤ 〈g(xk), yk − xk〉 ≤ 0. From this, it obviously
follows that 〈g(xk), yk − xk〉 = 0. That is what we want to prove.
Sufficiency.We assume now that (14) holds. By force of choosing the descent direction
by (13), it is not hard to see that, under the condition (14), the situation where
max{σk min

x∈D〈g(xk), x − xk〉,−αk} = −αk can never be, since −αk ≤ −α < 0 and

yk ∈ D. Consequently,

0 = 〈g(xk), yk − xk〉 ≤ σk min
x∈D〈g(xk), x − xk〉 ≤ 〈g(xk), x − xk〉,∀x ∈ D,

i.e., it holds 〈g(xk), x − xk〉 ≥ 0,∀x ∈ D. Due to Theorem 2.1, we then conclude that
f (x) furnishes its minimum at the point xk . 
�
Let {xk} be the sequence constructed by the algorithm. Furthermore, let xk /∈ D∗,

∀k = 0, 1, . . . For the purpose of exploring the convergence of numerical methods
in the case of pseudo-convex functions, there is usually defined in the literature on
optimization an auxiliary numeric sequence {θk} in the following way:

θk > 0, 0 < θk · ( f (xk) − f (x∗)) ≤ 〈g(xk), xk − x∗〉, x∗ ∈ D∗, k ∈ N. (15)

From the definition of pseudo-convexity, it follows that for pseudo-convex functions
such values θk must exist. In particular, if f (x) is a smooth convex function, then
θk = 1, k = 0, 1, . . .Theproperties of elements of the sequence {θk}were investigated,
for instance, in [8,15].

Before considering the theorem on the convergence of the sequence {xk} generated
by the algorithm to a solution of problem (1), we remind the following familiar fact
related to convergence of some numeric sequence.

Lemma 3.1 (Sublinear rate of convergence for numeric sequences) ([16], p. 102) If
a numeric sequence {ak} is such that

ak ≥ 0, ak − ak+1 ≥ q · a2k , k = 1, 2, . . . ,
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where q is some positive constant, then the following estimate holds:

ak ∼ O(1/k),

i.e., there will be found a constant

q1 > 0 such that 0 ≤ ak ≤ q1 · k−1, k = 1, 2, . . .

For the proof of the convergence theorem, there is a need to consider the following
auxiliary lemma.

Lemma 3.2 (Boundedness of adapted values of the normalization parameter) If

(b1) f (x) ∈ A(μ, ‖x − y‖v), v ≥ 2,
(c1) sk is the εk-normalized descent direction,
(d1) ik is the least index i ∈ J (î) for which there holds one of the conditions (9) or

(10) under the assumptions that s = sk, x = xk, ε = εk, λk = ηik ,

(e1) {xk} is some iterative sequence constructed by the rule:

xk+1 = xk + λksk, , k ∈ N,

(f1) ε0 > 0, εk+1 = εk · (1 − β)1−ik , k ∈ N.

Then, it is fulfilled εk ≤ ε̄, ∀k ∈ N, where ε̄ = max

{
ε0,

μ

1 − β

}
> 0.

Proof Part 1. First let us consider the case when among k ∈ N there exist such indices
that it holds εk ≥ μ. Let the index m be the smallest of them. According to Lemma
2.2, the condition (9) or (10) is then fulfilled for im = î . Due to the condition (e1) of
the lemma, εm+1 = εm . Consequently, im+1 = î . This means that for all k ≥ m one
has εk = εm ≥ μ, ik = î . If m = 0, then εk = ε0, ∀k ∈ N. Otherwise, by assumption
relatively the index m: εm−1 < μ. From Lemma 2.3, it immediately follows that

λm−1 = ηim−1 >
(
εm−1μ

−1(1 − β)2
)1/(v−1)

⇒ (1 − β)im−1/(v−1) >
(
εm−1μ

−1(1 − β)2
)1/(v−1)

⇒ (1 − β)im−1 > εm−1μ
−1(1 − β)2.

From this, taking into account the condition (f1) of the lemma, we obtain

εm = εm−1(1 − β)1−im−1 <
μ

1 − β
.

Part 2. If for all k ∈ L we have εk < μ, then there takes place the inequality

εk <
μ

1 − β
, ∀k ∈ N since β ∈ ]0, 1[. 
�
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In the following theorem, there is evaluated the expected decrease in the objective
function value in the εk-normalized descent direction per step size selected according
to Rule 1.

Theorem 3.2 (Estimate of the magnitude of decreasing the objective function value
when the step length is chosen according to Rule 1) If

(b2) the conditions (b1), (c1), (e1) and (f1) of Lemma 3.2 are fulfilled,
(c2) ik is the smallest index i ∈ J (î) for which there is fulfilled the condition (9) with

x = xk , s = sk , ε = εk , λk = ηik , η = (1 − β)1/(v−1), β ∈ ]0, 1[.

Then, there will be found a constant C̄ > 0 such that for all k ∈ N the following
relation holds:

f (xk) − f (xk+1) ≥ −C̄ · 〈g(xk), sk〉 ≥ −C̄ · (〈g(xk), sk〉 + εk‖sk‖v). (16)

Proof For the values εk , k ∈ N and coefficient μ from Condition A, there can be
fulfilled the following estimates:

I. 0 < εk < μ, ∀k ∈ N.
II. Among k ∈ N, there will be found the indices such that εk ≥ μ (let m ∈ N be one

of them).

Next, we will successively analyze these enumerated cases.
I. Let k ∈ N be such that sk are μ-normalized descent directions. According to
Lemma 2.2, for all k ∈ N, we then have

f (xk) − f (xk+1) ≥ −β(1 − β)1/(v−1) · 〈g(xk), sk〉. (17)

For all k ∈ N such that sk are notμ-normalized descent directions, taking into account
the assertion of Lemma 2.3, one obtains

f (xk) − f (xk+1) ≥ −βλk〈g(xk), sk〉 > −C2〈g(xk), sk〉, (18)

where C2 = (
(1 − β)2ε0/μ

)1/(v−1)
β, since it holds εk ≥ ε0, ∀k ∈ N.

II. In the case where sk are μ-normalized descent directions for all k < m, m �= 0,
it takes place (17). When the vector sk is not μ-normalized for k < m, m �= 0,
the inequality (18) is true (see the proof of case I). For all k ≥ m, m �= 0, sk are μ-
normalized descent directions.Consequently, for those k there is fulfilled the inequality
(17). Let C1 = β(1 − β)1/(v−1)).

Now, we obtain that for either of the two relations between εk and μ (k ∈ N),
there will be found a constant C̄ = min {C1,C2} > 0 such that for all k ∈ N there is
fulfilled the inequality (16). 
�
Theorem 3.3 (Estimate of the magnitude of decreasing the objective function value
when the step length is chosen according to Rule 2) Let

(b3) the conditions (b1), (c1), (e1) and (f1) of Lemma 3.2 be fulfilled,
(c3) the values of the iterative step size λk , ∀k ∈ N be determined using (10). Then,

the assertion of Theorem 3.2 is true.
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Proof In complete analogy with the proof of Theorem 3.2, we explore separately the
same possible ratios of parameter values εk , k ∈ N and coefficientμ fromConditionA.
I. Let k ∈ N be such that sk is the μ-normalized descent direction. Due to Lemma 2.2,
for this k ∈ N one has (17). In the case when for all k ∈ N, sk are not μ-normalized,
the formulas (2) and (10) yield

f (xk) − f (xk+1) ≥ −λk · 〈g(xk), sk〉 − μλv
k‖sk‖v

≥ −λk · 〈g(xk), sk〉 − με−1
k λv−1

k β−1 ( f (xk) − f (xk+1)) .

From this, according to Lemma 2.3, we obtain:

f (xk) − f (xk+1) ≥ −λk ·
(
1 + με−1

k λv−1
k β−1

)−1 · 〈g(xk), sk〉
> −C2〈g(xk), sk〉, (19)

where C2 = (
ε0μ

−1(1 − β)2
)1/(v−1) (

1 + ε0μ
−1(1 − β)β−1

)−1
, since for all k ∈ N

one has εk = ε0.
II. For all k < m (m �= 0), such that sk are μ-normalized descent directions, the
inequality (17) is true. When the descent directions sk are notμ-normalized for k < m
(m �= 0), there comes in play (19) (see the proof of case I). In the case of k ≥ m, the
vectors sk are μ-normalized. In consequence, the inequality (17) for those k is true.

LetC1 = β(1−β)1/(v−1)). Then, the estimates (17) and (19) give that the assertion
of the theorem is true. Namely, for all the indices k ∈ N and the positive constant
C̄ = min {C1,C2}, the inequality (16) holds. 
�

Theorem 3.4 (Sublinear rate of convergence of ACGM) If

(b4) f (x) is a continuously differentiable pseudo-convex function on the convex and
closed set D ⊆ R

n satisfying Condition A with a function τ(x, y) = ‖x − y‖v,

v ≥ 2, and some constant μ,
(c4) a numeric sequence {θk}, which is defined by (15), satisfies the condition: ∃θ > 0

such that θk ≥ θ , ∀k,
(d4) there exists a constant γ > 0 such that ‖g(x)‖ ≤ γ < ∞, ∀x ∈ D,

(e4) the Lebesgue set of the function f (x) at the point x0 ∈ D, which is denoted by
MD( f , x0) := {x ∈ D : f (x) ≤ f (x0)}, is bounded,

(f4) {αk}, {σk} are such that ∃η̄ > 0 : ‖xk − yk‖ ≤ η̄,∀k,
(g4) a step size λk, k ∈ N is chosen according to one of the rules (Rule 1 or Rule 2).

Then, the sequence {xk}, k ∈ N is weakly convergent, i.e.,

f (xk) − f ∗ ∼ O(1/k),

or equivalently, there exists a constant C > 0 such that it holds

f (xk) − f ∗ ≤ C · k−1.
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Proof Obviously, f (p∗
k ) = f ∗, f (xk) > f (p∗

k ), ∀k ∈ N. By definition of pseudo-
convex functions, it holds 〈g(xk), p∗

k − xk〉 < 0. By virtue of the assertions of
Theorems 3.2–3.3, regardless of the choice of any rule for calculating the step length,
there will be found a constant C̄ > 0 such that there is fulfilled the inequality (16) for
all k ∈ N. Select the subset of indices N1 ⊂ N such that sk = yk − xk, k ∈ N1. We

then have sk = tk(yk − xk)

εk‖yk − xk‖v
for all k ∈ N2 = N\N1. For all k ∈ N1, we obtain the

estimate:

f (xk) − f (xk+1) ≥ −C̄ · 〈g(xk), yk − xk〉
≥ C̄

γ η̄
〈g(xk), xk − yk〉‖g(xk)‖‖xk − yk‖ ≥ C̄

γ η̄
〈g(xk), xk − yk〉2.

From Lemma 3.2, due to (16), for all k ∈ N2, one obtains the relation

f (xk) − f (xk+1) ≥ −C̄tk
εk‖yk − xk‖v

〈g(xk), yk − xk〉 ≥ C̄

ε̄η̄v
〈g(xk), xk − yk〉2.

Thus, for all k ∈ N, we have arrived at the inequality

f (xk) − f (xk+1) ≥ C̃ · 〈g(xk), xk − yk〉2, (20)

where C̃ = C̄

η̄
min

{
1

γ
,

1

ε̄η̄v−1

}
. If there takes place the following relation

σk min
x∈D〈g(xk), x − xk〉 ≤ −αk, then we observe

〈g(xk), xk − yk〉 ≥ αk ≥ αk

γ ξ
〈g(xk), xk − p∗

k 〉 ≥ α

γ ξ
〈g(xk), xk − p∗

k 〉,

where ξ = sup{‖x − y‖, x, y ∈ MD( f , x0)} < ∞. When there is true the inequality
σk min

x∈D〈g(xk), x − xk〉 > −αk , we obtain

〈g(xk), xk − yk〉 ≥ −σk min
x∈D〈g(xk), x − xk〉

≥ σk〈g(xk), xk − p∗
k 〉 ≥ σ 〈g(xk), xk − p∗

k 〉.

Thus, there holds the estimate 〈g(xk), xk − yk〉 ≥ C1〈g(xk), xk − p∗
k 〉, where C1 =

min{σ,
α

γ ξ
}. Taking into account the latter, using (20), one can quite easily obtain

f (xk) − f (xk+1) ≥ C2 · 〈g(xk), xk − p∗
k 〉2,C2 = C̃C2

1 .

Set C3 = θ2C2 and evaluate for all k ∈ N

f (xk) − f (xk+1) ≥ C3 · ( f (xk) − f (p∗
k ))

2.

123



1092 Journal of Optimization Theory and Applications (2019) 183:1077–1098

Due to Lemma 3.1, the latter implies that the sequence {xk}, k ∈ N is weakly conver-
gent to a solution of (1), since there holds the following estimate for the convergence
rate:

f (xk) − f ∗ ≤ C−1
3 k−1.


�
Notice that in the case of convexity of the function f (x) being minimized, to estimate
the convergence rate, the condition (e4) of Theorem3.4 can be changed to the claim on
boundedness of D∗. Without evaluating the rate of convergence, there can be proved
that the sequence {xk}, k ∈ N converges to a solution of problem (1) under the more
weak conditions. Indeed, the following theorem is true.

Theorem 3.5 (Convergence to the set of optimal solutions) Let the conditions (b4),
(e4), and (g4) of Theorem 3.4 be fulfilled, then for the sequence {xk}, k ∈ N generated
by the algorithm it holds:

(b5) lim
k→∞〈g(xk), yk − xk〉 = 0,

(c5) Any limit point of {xk}, k ∈ N belongs to D∗, i.e., lim
k→∞ ‖xk − p∗

k‖ = 0.

Proof By construction, f (xk) ≥ f (xk), ∀k ∈ N. Since the set MD( f , x0) is bounded
and xk ∈ MD( f , x0), ∀k ∈ N, the sequence {xk} is bounded as well. Then,
{ f (xk)}, k ∈ N converges and there holds the equality

lim
k→∞ f (xk) − f (xk+1) = 0.

From Theorems 3.2–3.3, it follows that, regardless of the choice of any rule for cal-
culating the step length, there will be found a constant C̄ > 0 such that for all k ∈ N

there holds the inequality (16). From the latter, we obtain the following estimate:

C̄−1( f (x0) − f ∗) ≥ C̄−1( f (xk) − f (xk+1) ≥ −〈g(xk), yk − xk〉 > 0.

This means that the sequence {|〈g(xk), yk − xk〉|} is bounded. Consequently, we can
select some of its convergent subsequence. Furthermore,

0 ≥ lim
k→∞ |〈g(xk), yk − xk〉| ≥ lim

k→∞
|〈g(xk), yk − xk〉| ≥ 0,

i.e., we have
lim
k→∞ |〈g(xk), yk − xk〉| = 0. (21)

Since the sequence {xk} is bounded, then it has at least one limit point. Let x∗ be
an arbitrary limit point of {xk}. Suppose that {xkm } → x∗, km → +∞. Taking into
account the setting of the descent direction finding problem, we can easily obtain that
for all x ∈ D, k = 0, 1, 2, . . . it holds

〈g(xk), yk − xk〉 ≤ max{σk min
x∈D 〈g(xk), x − xk〉,−αk} ≤

≤ max{σ̄ 〈g(xk), x − xk〉,−α}.
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Here, for the purpose of estimating from above, we just formally put

σ̄ =
{

σ, if min
x∈D 〈g(xk), x − xk〉 < 0,

1, otherwise.

Since −α < 0, the equality (21) implies

lim
km→+∞max{σ̄ 〈g(xk), x − xk〉,−α} = σ̄ lim

km→+∞〈g(xk), x − xk〉.

According to (21), for k = km → +∞, we then have 〈g(x∗), x − x∗〉 ≥ 0, ∀x ∈ D.

In this case, Theorem 2.1 asserts that any limit point of the sequence {xk} belongs to
D∗, i.e., lim

k→∞ ‖xk − p∗
k‖ = 0. 
�

4 Algorithms for Refinement of "-Normalization Parameter

In dealing with the adaptation of ε-normalization parameter, several algorithms for
refinement of the parameter values can be useful. By definition of the ε-normalized
descent direction, the fulfillment of the ratio ε � μ implies that the convergence of the
adaptive conditional gradient algorithm can be slowed down. Consequently, if at the
kth iteration of the algorithm, an increase in the value of the ε-normalization parameter
occurs, then it is expedient to attempt to refine the value of εk+1 which was computed
for the next iteration by the formula εk+1 = εk · ζk , k = 0, 1, 2 . . .. Let us remind
that as the rule for the calculation of ζk there can be utilized, for instance, (12). The
construction scheme of ACGM allows one to smartly use the adaptive restart strategy
when the ε-parameter refinement occurs. One can ask what happens when at some
iteration the ε-normalization parameter takes the refined value. In this case, a user
simply should implement the next iteration with the refined value of ε for normalizing
the descent direction, so nothing more would really happen. In general, there is no any
need in changing the scheme of ACGM.

The First Algorithm for Refinement of the ε Parameter
Let k ≥ 0, a = 0, b = εk , β ∈ ]0, 1[, η = (1 − β)1/(v−1), ρ > 0.

Standard Step. Determine c = (a + b)/2, t = |〈g(xk), sk〉|, s̄ = tsk
c‖sk‖2 . Check the

fulfillment of the following inequality:

f (xk) − f (xk + ηs̄) ≥ −βη〈g(xk), s̄〉. (22)

If (22) holds, then set ī = 1. Otherwise, we take to be ī = −1.

Step 0. Implement the Standard Step
Step 1.

If ī =
{
1, then set b = c,
−1, then set a = c.
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Step 2. If b−a > ρ, then go to Step 0. Otherwise, exit from a procedure of refinement
with the value εk = (a + b)/2.

The Second Algorithm for Refinement of the ε Parameter
Let k ≥ 0, a = 0, b = εk , β ∈ ]0, 1[, η = (1 − β)1/(v−1), ρ > 0.

Step 0. Implement the Standard Step.
Step 1. If ī = 1, then go to Step 2. If ī = −1, then go to Step 4.
Step 2. If b−a ≤ ρ, then set εk = (a+b)/2 and terminate the procedure. Otherwise,

set b = c and implement the Standard Step.
Step 3. If ī = 1, then go to Step 2. Otherwise, set εk = b and stop.
Step 4. If b−a ≤ ρ, then set εk = (a+b)/2 and terminate the procedure. Otherwise,

set a = c and implement the Standard Step.
Step 5. If ī = −1, then go to Step 4. Otherwise, set εk = c and stop.

Let Δ0 = b − a = εk+1 be the length of segment of uncertainty at the beginning
of the procedure for refinement of the ε parameter. Analogously,

Δ1 = Δ0

2
, Δ2 = Δ1

2
= Δ0

22
, . . . , Δr = Δ0

2r
.

Obviously, Δr → 0 when r → ∞. For the given constant ρ > 0, we determine
further the number r (the number of dividing the line segment [a, b] in half) which is
necessary to guarantee the fulfillment of the inequality Δr ≤ ρ. Thus, there should be
fulfilled the relation

Δr = Δ0

2r
= εk+1

2r
≤ ρ.

Consequently,

2r ≥ εk+1

ρ
⇔ r ≥ log2

εk+1

ρ
.

The latter means that the procedures for refinement of the normalization parameter
are finite for any fixed accuracy ρ.

The exit from the first procedure is carried out when the length of the uncertainty
interval is insignificantly different from zero, i.e., when the given accuracy during
the process of refining the ε-normalization parameter is reached. While the second
algorithm, in addition to this stopping criterion, makes it possible to complete the
refinement as soon as after the standard step, the variable ī changes its value from 1
to − 1 or vice versa. Due to Lemma 2.2, these conditions for the termination of the
procedure logically follow from (22).

5 Some Numerical Experiments

We performed some computational tests on different problems of nonlinear program-
ming. The computational results are presented in tables. In the first and second columns
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Table 1 Results of the
experiments for Example 5.1

εstart εend x∗ f (x∗) kit

5.21 5.21 (0.33338; 1.00000) −3.5185188 6

5.2 10.4 (0.33360; 1.50000) −3.5185186 13

Table 2 Results of the
experiments for Example 5.2

εstart εend x∗ f (x∗) kit

30 60 (0.866736; 1.031273) −22.461803 14

30.5 30.5 (0.866447; 1.031226) −22.461807 11

of these tables, the notations εstart and εend correspond to the initial and last values of
the ε- parameter, respectively. In the last column of tables can be found the number
of iterations. In this section, the notations f (x∗) and x∗ stand for the experimentally
obtained minimal value of the objective function and the point at which this value is
furnished. For each table, the best value of the objective function is italicized.

Example 5.1 [18]

min
x∈D f (x) = ξ31 + ξ62 + 4ξ21 ξ21 − 3ξ1 − 4ξ2,

D = {x ∈ R
2 : 0 ≤ ξ1 ≤ 7; 1 ≤ ξ2 ≤ 4}.

Here, there is chosen the following initial iterationpoint: x0 = (7.1)with f (x0) = 515.
In [18], the best objective function approximation− 3.518 is reached at x∗ = (0.33; 1).
For the step-size selection in ACGM, we utilize Rule 1 with β = 0.5. Table 1 contains
the results of the numerical experiments for Example 5.1. In this case, we do not apply
the procedure for refining the ε-normalization parameter.

Example 5.2 [18]

min
x∈D f (x) = 5ξ41 + ξ62 − 13ξ1 − 7ξ2 − 8,

D = {x ∈ R
2 : −1 ≤ ξ1 ≤ 3; 1 ≤ ξ2 ≤ 5}.

As a point of the first approximation, we choose x0 = (1.1) for which it holds
f (x0) = −22.When the method presented in [18] is applied for this problem solving,
it requires 2–3 iterations. However, let us note that depending on the mesh of nodes for
the method parameter, at each iteration, 11 to 101 subproblems of one-dimensional
exact minimization are solved by dividing a line segment in half (for details, see [18]).
The results of solving Example 5.2 (using Rule 1 with β = 0.5) are presented in
Table 2.

Example 5.3 [18]

min
x∈D f (x) = ξ41 + ξ32 + 2ξ21 ξ21 + ξ1 − ξ2,
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Table 3 Results of the experiments from [18] for Example 5.3

Method from [18] Newton’s Method FWA

x0 (5; 3) (5; 3) (5; 3)

Number of iterations 8 8 19

x0 (0;3) (0;3) (0;3)

Number of iterations 2 4 22

Table 4 Results of the implementation of ACGM for Example 5.3

εstart εend x∗ f (x∗) kit t (s)

0.001 1.773 (0.0000000; 0.5744414) −0.38488528 15 0

1.78 3.56 (0.0000000; 0.5789270) −0.38489586 9 0

0.001 2.048 (0.0000000; 0.5779053) −0.38489965 5 0

0.001 1.97 (0.0016876; 0.5792689) −0.38320434 120 1

1.97 1.97 (0.00168865; 0.5792696) −0.38320541 164 1

1.78 1.78 (0.0012225; 0.5802417) −0.38366213 116 1

D = {x ∈ R
2 : 0 ≤ ξ1 ≤ 5; 0.1 ≤ ξ2 ≤ 3}.

This test problem was used to illustrate how the algorithm described in [18] works in
comparison with FWA and Newton’s method. Computations were implemented with
the different starting points x0 ∈ D. But unfortunately, what problem solutions were
obtained at that time is not represented in [18]. Table 3 contains only the information
from [18] related to the number of iterations for the above-mentioned methods.

Table 4 includes the results of our experiments for Example 5.3. The last table
column indicates the program execution time in seconds. In the first three cases, we
use x0 = (0; 3), while in the others x0 = (5; 3). For the second and third experiments,
the step size is selected by means of Rule 1 with β = 0.5. For the others, there is
utilized the same step-size choosing rule with β = 0.9. As one can easily see, the
runtime of ACGM is very short, so there is no any need in the use of the refinement
procedure for the ε-normalization parameter.

Example 5.4 (A multistage compressor optimization) [17]

min
x∈D f (x) = ξ

1/4
1 + (ξ1/ξ2)

1/4 + (64/ξ2)
1/4.

D = {x ∈ R
2 : 1 ≤ ξ1; ξ1 ≤ ξ2; ξ2 ≤ 14}.

The specificity of this test problem consists in that the objective function attains its
minimum on the boundary of the feasible domain D. Beginning from the initial point
x0 = (14; 14) with f (x0) = 4.306557, there was obtained the following solution:
x∗ = (3.7417; 14)with f (x∗) = 4.2438291 at the next iteration of FWA.We refer the
interested reader to [17], formore details andgraphical interpretation. The best solution
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for Example 5.4 was obtained in the case of applying ACGM with Rule 1 when
β = 0.5 (without refining the ε-normalization parameter). After eight iterations, there
was reached the objective function minimal value f (x∗) = 4.243829 at the following
point: x∗ = (3.742954; 14.000000). For this experiment, εstart = εend = 0.00497.

The numerical implementation ofACGMconfirms the expediency of using the step-
by-step adaptation procedure for the ε-normalization parameter (see also [15]). Indeed,
our experiments showed that the parameter of normalizing the descent direction is
stabilized, beginning from a certain iteration. Note that from the same iteration the
value of the step becomes constant. From that moment, for finding the step size, only
one calculation of the objective function value is performed (to verify the fulfillment
of the step selection condition). Experiments have also indicated that most of the best
objective function values correspond to Rule 1 with β = 0.5 (or β = 0.9) and the
first refinement algorithm (in the case when the parameter refinement procedure was
used). For all test problems, there were found the points at which the value of the
objective function was less than or equal to known values. A carried out experimental
study has demonstrated the efficiency of the adaptive variant of CGM and ability to
lead to the minimum neighborhood fairly quickly and at low computational costs.

6 Conclusions

Finally, we note that the presented fully adaptive conditional gradient algorithm as
compared with the classical Frank–Wolfe algorithm has the advantage consisting in
a possibility of inexact solving of the direction finding subproblem and handling the
accuracy of its solution. Moreover, the adaptive method does not require any exact line
search for computing the length of the iteration step size.Weproposed somenovel rules
for the calculation of the step length inwhich the iteration step is regulated additionally
by an adaptation of the ε-normalization parameter for the descent direction. There was
justified the finiteness of the procedures of adaptive controlling both the parameter
of an ε-normalization of a descent direction and the step length. For the problem of
minimizing a continuously differentiable pseudo-convex function on a convex and
closed subset of Euclidean space, we justified the sublinear rate of the convergence
for the adaptive variant of the conditional gradient algorithm.

One of the motivating ideas was that of using in the future the adaptive method
to solve the problems of sets separation (in particular, the programs of projecting the
point onto the convex polyhedron) as well as some related problems of data mining.
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