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Abstract
In this paper, we propose a linear scalarization proximal point algorithm for solv-
ing lower semicontinuous quasiconvex multiobjective minimization problems. Under
some natural assumptions and, using the condition that the proximal parameters are
bounded, we prove the convergence of the sequence generated by the algorithm and,
when the objective functions are continuous, we prove the convergence to a gener-
alized critical point of the problem. Furthermore, for the continuously differentiable
case we introduce an inexact algorithm, which converges to a Pareto critical point.
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1 Introduction

In this paper, we consider the class of problems known as multiobjective minimization
problems, which involves a minimization of a set of quasiconvex objective functions.
A motivation to study this problem is the consumer demand theory in microeconomy,
where the quasiconvexity of each objective function is a natural condition associated
with diversification of the consumption; see Sect. 3.1 for more details.

Another motivation is the multiobjective quasiconvex minimization model in loca-
tion theory, where we need to find a location for an installation so that this location
minimizes some functions involving some distances between the new location and
each cluster set of demand points; see Sect. 4 of Apolinário et al. [1].

For other motivations, we recommend the excellent book [2], which contains a
heterogeneous collection of contributions on generalized convexity and generalized
monotonicity. In particular, we recommend the lecture of Chapters 2, 3, 5 and 6.

Recently,Apolinário et al. [1] have introduced an exact linear scalarization proximal
point algorithm to solve the above class of problems, when each objective function is
locally Lipschitz and quasiconvex. The authors proved, under some natural assump-
tions, that the sequence generated by the proposed algorithm is well defined and
converges globally to a Pareto–Clarke critical point.

Unfortunately, the proposed algorithm cannot be applied to solve a general class of
proper lower semicontinuous quasiconvex functions, in particular to solve constrained
multiobjective problems orminimization problemswith continuous quasiconvex func-
tions, which are not locally Lipschitz. Moreover, for a future implementation and
application, it is necessary to construct inexact versions of the proposed algorithm.

Thus, we had two motivations to develop the present paper: The first motivation
was to extend the convergence properties of the linear scalarization proximal point
method introduced in [1] to solve more general, probably constrained, quasiconvex
multiobjective problems and the second one was to introduce an inexact algorithm,
when each objective function is continuously differentiable.

Some works related to this paper are as follows:

– Bento et al. [3] introduced a proximal point algorithm for multiobjective opti-
mization using a nonlinear scalarization function. Assuming that the objective
functions are quasiconvex and continuously differentiable, the authors proved that
the sequence generated by the algorithm converges to a Pareto critical point. The
difference between our work and the paper of Bento et al. [3] is that in the present
paper we consider a linear scalarization function instead of a nonlinear ones and
another difference is that our assumptions are slightly weaker than the paper [3],
because we obtain convergence results for nondifferentiable quasiconvex func-
tions.

– Makela et al. [4] developed a multiobjective proximal bundle method for non-
smooth optimization where the objective functions are locally Lipschitz (not
necessarily smooth nor convex). The authors proved that any accumulation point
of the sequence is a weak Pareto efficient solution and under some assumptions,
they obtained that any accumulation point is a substationary point.
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– Chuong et al. [5] developed three algorithms of the so-called hybrid approximate
proximal type tofindPareto optimal points for a general class of convex constrained
problems of vector optimization in finite- and infinite-dimensional spaces, and
proved the convergence of the sequence generated by their algorithms.

This paper proposes a linear scalarization proximal point algorithm for solvingmul-
tiobjective minimization problems. Under the assumption that each objective function
is a proper lower semicontinuous quasiconvex function, we prove the global conver-
gence of the sequence generated by the algorithm to some generalized critical point
of the problem and convergence to a weak Pareto efficient solution when the objective
functions are continuous and the regularized proximal parameters converge to zero.
Additionally, when the objective functions are differentiable, we introduce an inexact
proximal algorithm and prove the convergence of sequence generated by the algorithm
to a Pareto critical point of the multiobjective minimization problem.

The paper is organized as follows: In Sect. 2, we recall some concepts and basic
results on multiobjective optimization, descent direction, scalar representation, qua-
siconvex and convex functions, Fréchet and limiting subdifferential, ε-subdifferential
and Fejér convergence. In Sect. 3, we present the problem and we give an example of
a quasiconvex model in demand theory. In Sect. 4, we introduce an exact algorithm
and analyze its convergence. In Sect. 5, we present an inexact algorithm for the dif-
ferentiable case and analyze its convergence. In Sect. 6, we give a numerical example
of the algorithm, in Sect. 7, we give some perspectives and open problems, and in
Sect. 8, we give our conclusions.

2 Preliminaries

In this section, we present some basic concepts and results that are important for the
development of our work. These facts can be found, for example, in Hadjisavvas [2],
Mordukhovich [6] and Rockafellar and Wets [7].

2.1 Definitions, Notations and Some Basic Results

Along this paperRn denotes an Euclidean space, that is, a real vectorial space with the
canonical inner product 〈x, y〉 =∑n

i=1 xi yi and the norm given by ||x || = √〈x, x〉.
Given a function f : Rn −→ R ∪ {+∞}, the effective domain of f we denote by
dom( f ) = {x ∈ R

n : f (x) < +∞}, . If dom( f ) 	= ∅, f is called proper. And f is
called coercive, if lim‖x‖→+∞ f (x) = +∞ . We denote by argmin { f (x) : x ∈ R

n}
the set of minimizers of f and f̄ , the optimal value of problem: min { f (x) : x ∈ R

n} ,
if it exists. The function f is lower semicontinuous at x̄ if for all sequence

{
xl

}
l∈N

such that lim
l→+∞ xl = x̄ we obtain that f (x̄) ≤ lim inf

l→+∞ f (xl).

We say that f is differentiable at x̄ , if there exists v ∈ R
n such that

f (x) = f (x̄)+ 〈v, x − x̄〉 + o(‖x − x̄‖),
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where

lim
x→x̄

o(‖x − x̄‖)
‖x − x̄‖ = 0.

The next result ensures that the set of minimizers of a function, under some assump-
tions, is nonempty.

Proposition 2.1 (Rockafellar and Wets [7], Theorem 1.9) Suppose that f : Rn −→
R ∪ {+∞} is proper, lower semicontinuous and coercive, then the optimal value f̄ is
finite and the set argmin { f (x) : x ∈ R

n} is nonempty and compact.

Definition 2.1 Let D ⊂ R
n be a convex set and x̄ ∈ D. The normal cone to D at

x̄ ∈ D is given by

ND(x̄) := {
v ∈ R

n : 〈v, x − x̄〉 ≤ 0,∀ x ∈ D
}
.

It follows an important result that involves sequences of nonnegative numbers,
which will be useful in Sect. 5.

Lemma 2.1 (Polyak [8], Lemma 2.2.2.) Let {wk}, {pk} and {qk} be sequences of non-
negative real numbers. If

wk+1 ≤ (1+ pk) wk + qk,
∞∑

k=1
pk < +∞ and

∞∑

k=1
qk < +∞,

then the sequence {wk} is convergent.

2.2 Multiobjective Optimization

In this subsection, we present some properties and notations on multiobjective opti-
mization; see, for example, the books of Miettinen [9] and Luc [10] for more details.
Considering the cone Rm+ = {y ∈ R

m : yi ≥ 0,∀ i = 1, . . . ,m}, we define in Rm the
following partial order � induced by Rm+: given y, y′ ∈ R

m , then y � y′ if, and only
if, y′ − y ∈ R

m+ , which is equivalent to yi ≤ y′i , for all i = 1, 2, . . . ,m .
Given R

m++ = {y ∈ R
m : yi > 0,∀ i = 1, . . . ,m}, we may define another relation

≺ induced by R
m++ : y ≺ y′, if, and only if, y′ − y ∈ R

m++, which is equivalent to
yi < y′i for all i = 1, 2, . . . ,m.
Let us consider the multiobjective optimization problem (MOP) :

min
{
G(x) : x ∈ R

n} , (1)

where G = (G1,G2, . . . ,Gm) with G(x) = +∞R
m+ (in the sense of the paper of

Bolintinéanu [11]) if x /∈ dom(G) := ⋂m
i=1 dom(Gi ) 	= ∅ and each Gi : Rn −→

R ∪ {+∞} , i = 1, . . . ,m.
Along the paper, we use the notation G : Rn −→ R

m when dom(Gi ) = R
n, for

each i = 1, . . . ,m, and we say that G is continuous (differentiable, continuously
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differentiable) if each Gi is continuous (differentiable, continuously differentiable)
for each i = 1, . . . ,m.

Definition 2.2 (Miettinen [9], Definition 2.2.1) A point x∗ ∈ R
n is a Pareto optimal

point or Pareto efficient solution of the problem (1), if there does not exist x ∈ R
n

such that Gi (x) ≤ Gi (x∗), for all i ∈ {1, . . . ,m}, and G j (x) < G j (x∗), for at least
one index j ∈ {1, . . . ,m} .
Definition 2.3 (Miettinen [9], Definition 2.5.1) A point x∗ ∈ R

n is a weak Pareto
efficient solution of the problem (1), if there does not exist x ∈ R

n such that Gi (x) <

Gi (x∗), for all i ∈ {1, . . . ,m}.
We denote by argmin {G(x) : x ∈ R

n} and by argminw {G(x) : x ∈ R
n} the set of

Pareto efficient solutions andweakPareto efficient solutions to the problem (1), respec-
tively. It is easy to check that

argmin
{
G(x) : x ∈ R

n} ⊂ argmin
w

{
G(x) : x ∈ R

n} .

2.3 Pareto Critical Point and Descent Direction

Let G : Rn −→ R
m be a differentiable function. Given x ∈ R

n , the Jacobian of
G at x , denoted by JG(x), is a matrix of order m × n whose entries are defined by
(JG(x))i, j = ∂Gi

∂x j
(x), where i = 1, . . . ,m and j = 1, . . . , n. We may represent it

by

JG (x) := [∇G1(x)∇G2(x) . . .∇Gm(x)]T , x ∈ R
n .

The image of the Jacobian of G at x is denoted by

Im (JG (x)) := {JG (x) v = (〈∇G1(x), v〉, 〈∇G2(x), v〉, . . . , 〈∇Gm(x), v〉) : v ∈ R
n}.

A necessary, but not sufficient, first-order optimality condition for the problem (1) at
x ∈ R

n , is

Im (JG (x)) ∩ (−Rm++
) = ∅. (2)

Equivalently, ∀ v ∈ R
n , there exists i0 = i0(v) ∈ {1, . . . ,m} such that

〈∇Gi0(x), v〉 ≥ 0.

Definition 2.4 Let G : Rn −→ R
m be a differentiable function. A point x∗ ∈ R

n

satisfying (2) is called a Pareto critical point.

Following from the previous definition, if a point x is not a Pareto critical point, then
there exists a direction v ∈ R

n satisfying

JG (x) v ∈ (−Rm++
)
,
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i.e., 〈∇Gi (x), v〉 < 0, ∀ i ∈ {1, . . . ,m}. As G is continuously differentiable, then

lim
t→0

Gi (x + tv)− Gi (x)

t
= 〈∇Gi (x), v〉 < 0, ∀ i ∈ {1, . . . ,m}.

This implies that v is a descent direction for the function Gi , i.e., there exists ε > 0,
such that

Gi (x + tv) < Gi (x),∀ t ∈ (0, ε],∀ i ∈ {1, . . . ,m}.

Therefore, v is a descent direction for G at x , i.e., there exists ε > 0 such that

G(x + tv) ≺ G(x), ∀ t ∈ (0, ε].

2.4 Scalar Representation

In this subsection, we present an useful technique in multiobjective optimization,
where the original vector optimization problem is replaced by a family of scalar prob-
lems.
Let F = (F1, F2, . . . , Fm) be a map with F(x) = +∞R

m+ (in the sense of the paper
of Bolintinéanu [11]) if x /∈ dom(F) :=⋂m

i=1 dom(Fi ) 	= ∅ where each Fi : Rn −→
R ∪ {+∞}.
Definition 2.5 (Luc [10], Definition 2.1, page 86) A function f : Rn −→ R ∪ {+∞}
is said to be a strict scalar representation of a map F when given x, x̄ ∈ R

n :

F(x) � F(x̄) �⇒ f (x) ≤ f (x̄) and F(x) ≺ F(x̄) �⇒ f (x) < f (x̄).

Furthermore, we say that f is a weak scalar representation of F if

F(x) ≺ F(x̄) �⇒ f (x) < f (x̄).

Proposition 2.2 Let f : Rn −→ R ∪ {+∞} be a proper function. Then, f is a strict
scalar representation of F if, and only if, there exists a strictly increasing function
g : F (Rn) −→ R such that f = g ◦ F .

Proof See Luc [10] Proposition 2.3. ��
Proposition 2.3 Let f : Rn −→ R∪{+∞} be aweak scalar representation of a vector
function F = (F1, F2, . . . , Fm), and argmin { f (x) : x ∈ R

n} the set of minimizer
points of f . Then, we have

argmin
{
f (x) : x ∈ R

n} ⊆ argminw{F(x) : x ∈ R
n}.

Proof Let x̄ ∈ argmin { f (x) : x ∈ R
n} and suppose that x̄ is not aweakPareto efficient

solution of the problem min{F(x) : x ∈ R
n}, then there exists x ∈ R

n such that
Fi (x) < Fi (x̄), for all i = 1, 2, . . . ,m. From Definition 2.5 we have f (x) < f (x̄),
which is a contradiction. Therefore, x̄ is a weak Pareto efficient solution. ��
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2.5 Quasiconvex and Convex Functions

In this subsection, we present some definitions of quasiconvex functions and quasi-
convex multiobjective functions. These definitions and some properties can be also
found in Bazaraa et al. [12], Luc [10], Mangasarian [13] and references therein.

Definition 2.6 Let f : Rn −→ R ∪ {+∞} be a proper function. Then, f is called
quasiconvex, if for all x, y ∈ R

n , and for all t ∈ [0, 1], it holds that

f (t x + (1− t)y) ≤ max { f (x), f (y)} .

Definition 2.7 Let f : Rn −→ R ∪ {+∞} be a proper function. Then, f is called
convex, if for all x, y ∈ R

n , and for all t ∈ [0, 1], it holds that

f (t x + (1− t)y) ≤ t f (x)+ (1− t) f (y).

Observe that if f is a quasiconvex function, then dom( f ) is a convex set. On the other
hand, while a convex function can be characterized by the convexity of its epigraph,
a quasiconvex function can be characterized by the convexity of the lower level sets:

Definition 2.8 Let Fi : Rn −→ R∪{+∞}, i = 1, 2, . . . ,m, and F = (F1, . . . , Fm),

then F is Rm+-quasiconvex (convex), if each component Fi is quasiconvex (convex).

2.6 Fréchet and Limiting Subdifferentials

Definition 2.9 Let f : Rn −→ R ∪ {+∞} be a proper function.
(a) For each x ∈ dom( f ), the set of regular subgradients (also called Fréchet subdif-

ferential) of f at x , denoted by ∂̂ f (x), is the set of vectors v ∈ R
n such that

f (y) ≥ f (x)+ 〈v, y − x〉 + o(‖y − x‖), where lim
y→x

o(‖y − x‖)
‖y − x‖ = 0.

Or equivalently, ∂̂ f (x) :=
{

v ∈ R
n : lim inf

y 	=x, y→x

f (y)− f (x)− 〈v, y − x〉
‖y − x‖ ≥ 0

}

.

If x /∈ dom( f ), then ∂̂ f (x) = ∅.
(b) The set of general subgradients (also called limiting subdifferential) f at x ∈ R

n ,
denoted by ∂ f (x), is defined as follows:

∂ f (x) :=
{
v ∈ R

n : ∃ xl → x, f (xl)→ f (x), vl ∈ ∂̂ f (xl) and vl → v
}

.

Proposition 2.4 (Fermat’s rule generalized) If a proper function f : Rn −→ R ∪
{+∞} has a local minimum at x̄ ∈ dom( f ), then 0 ∈ ∂̂ f (x̄).

Proof See Rockafellar and Wets [7] Theorem 10.1. ��
Proposition 2.5 Let f : Rn −→ R∪ {+∞} be a proper function. Then, the following
properties are true
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(i) ∂̂ f (x) ⊂ ∂ f (x), for all x ∈ R
n.

(ii) If f is differentiable at x̄ , then ∂̂ f (x̄) = {∇ f (x̄)}, so ∇ f (x̄) ∈ ∂ f (x̄).
(iii) If f is continuously differentiable in a neighborhood of x, then

∂̂ f (x) = ∂ f (x) = {∇ f (x)}.
(iv) If g = f + h with f finite at x̄ and h is continuously differentiable in a neigh-

borhood of x̄ , then ∂̂g(x̄) = ∂̂ f (x̄)+ ∇h(x̄) and ∂g(x̄) = ∂ f (x̄)+∇h(x̄).

Proof See Rockafellar and Wets [7] Exercise 8.8, page 304. ��

2.7 "-Subdifferential

We present some important concepts and results on ε-subdifferential. The theory of
these facts can be found, for example, in Jofre et al. [14] and Rockafellar and Wets
[7].

Definition 2.10 Let f : Rn −→ R∪{+∞}be a proper lower semicontinuous function,
and let ε be an arbitrary nonnegative real number. The Fréchet ε-subdifferential of f
at x ∈ dom( f ) is defined by

∂̂ε f (x) :=
{

x∗ ∈ R
n : lim inf‖h‖→0

f (x + h)− f (x)− 〈x∗, h〉
‖h‖ ≥ −ε

}

. (3)

Remark 2.1 When ε = 0, (3) reduces to thewell-known Fréchet subdifferential, which
is denoted by ∂̂ f (x), according to Definition 2.9. More precisely,

x∗ ∈ ∂̂ f (x), if and only if, for each η > 0 there exists δ > 0 such that

〈x∗, y − x〉 ≤ f (y)− f (x)+ η‖y − x‖, for all y ∈ x + δB,

where B is the closed unit ball in Rn centered at zero. Therefore,

∂̂ f (x) = ∂̂0 f (x) ⊂ ∂̂ε f (x).

From Definition 5.1 of Treiman, [15],

x∗ ∈ ∂̂ε f (x)⇔ x∗ ∈ ∂̂( f (.)+ ε‖.− x‖)(x).

Equivalently, x∗ ∈ ∂̂ε f (x), if and only if, for each η > 0, there exists δ > 0 such that

〈x∗, y − x〉 ≤ f (y)− f (x)+ (ε + η)‖y − x‖, for all y ∈ x + δB.

We now define a new kind of approximate subdifferential.

Definition 2.11 The limiting Fréchet ε-subdifferential of f at x ∈ dom( f ) is defined
by

∂ε f (x) := lim sup

y
f→x

∂̂ε f (y) (4)
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where

lim sup

y
f→x

∂̂ε f (y) := {x∗ ∈ R
n : ∃ xl → x, f (xl)→ f (x), x∗l → x∗

with x∗l ∈ ∂̂ε f (xl) }.
In the casewhere f is continuously differentiable, the limitingFréchet ε-subdifferential
takes a very simple form, according to the following proposition

Proposition 2.6 Let f : Rn −→ R be a continuously differentiable function at x with
derivative ∇ f (x). Then,

∂ε f (x) = ∇ f (x)+ εB.

Proof See Jofré et al. [14] Proposition 2.8. ��

2.8 Fejér Convergence

Definition 2.12 A sequence {yk} ⊂ R
n is said to be Fejér convergent to a setU ⊆ R

n

if, ‖yk+1 − u‖ ≤ ‖yk − u‖ ,∀ k ∈ N, ∀ u ∈ U .

The following result on Fejér convergence is well known.

Lemma 2.2 If {yk} ⊂ R
n is Fejér convergent to some set U 	= ∅, then:

(i) The sequence {yk} is bounded.
(ii) If an accumulation point y of {yk} belongs to U, then lim

k→+∞ yk = y.

Proof See Schott [16] Theorem 2.7. ��

3 The Problem

We are interested in solving the multiobjective optimization problem (MOP):

min{F(x) : x ∈ R
n}, (5)

where F = (F1, F2, . . . , Fm) and each Fi : Rn −→ R∪{+∞} is an extended function
satisfying the following assumptions:

(C1.1) Each Fi : Rn −→ R∪{+∞}, i = 1, . . . ,m, is a proper lower semicontinuous
function and

dom(F) :=
m⋂

i=1
dom(Fi ) 	= ∅.

(C1.2) 0 � F(x),∀x ∈ R
n, that is, Fi (x) ≥ 0, for each i = 1, 2, . . . ,m.

(C2) F is Rm+-quasiconvex, that is, each Fi is quasiconvex.
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3.1 A QuasiconvexModel in Demand Theory

Let n be a finite number of consumer goods. A consumer is an agent who must
choose how much to consume each good. An ordered set of numbers representing
the amounts consumed of each good set is called vector of consumption, and denoted
by x = (x1, x2, . . . , xn) where xi with i = 1, 2, . . . , n, is the quantity consumed of
good i . Denote by X the feasible set of these vectors, which will be called the set of
consumption, usually in economic applications we have X ⊂ R

n+.
In the classical approach of demand theory, the analysis of consumer behavior starts

specifying a preference relation over the set X , denoted by �. The notation “x � y”
means that “x is at least as good as y” or “y is not preferred to x .” This preference
relation � is assumed rational, i.e., is complete because the consumer is able to order
all possible combinations of goods, and transitive because consumer preferences are
consistent, which means if the consumer prefers x̄ to ȳ and ȳ to z̄, then he prefers x̄ to
z̄ (see Definition 3.B.1 of Mas-Colell et al. [17]). We say that� is a convex preference
relation on a convex set X if for all x, y, z ∈ X and λ ∈ [0, 1] satisfying z � x and
z � y we obtain z � λx + (1− λ)y.

The quasiconcave model for a convex preference relation � is

max{μ(x) : x ∈ X},

where μ is the utility function representing the preference; see Papa Quiroz et al.
[18] for more details. Now consider a multiple criteria, that is, consider m convex
preference relations denoted by�i , i = 1, 2, . . . ,m. Suppose that for each preference
�i , there exists an utility function, μi , respectively, then the problem of maximizing
the consumer preference on X is equivalent to solve the quasiconcave multiobjective
optimization problem

max{(μ1(x), μ2(x), . . . , μm(x)) ∈ R
m : x ∈ X}.

Since there is not a single point, which maximize all the functions simultaneously, the
concept of optimality is established in terms of Pareto optimality or efficiency. Tak-
ing F = (−μ1(x),−μ2(x), . . . ,−μm(x)), we obtain a minimization problem with
quasiconvex multiobjective function, since each component function is quasiconvex
one.

4 Exact Algorithm

In this section, to solve the problem (5), we propose a linear scalarization proximal
point algorithmwith quadratic regularizationusing theFréchet subdifferential, denoted
by SPP algorithm.
We consider two sequences: the proximal parameters {αk} , with αk > 0 for each k,
and a sequence {zk} = {(z1k , z2k , . . . , zmk )} ⊂ R

m+\ {0} with ‖zk‖ = 1.
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SPP Algorithm

Initialization: Choose an arbitrary starting point

x0 ∈ R
n (6)

Main Steps: Given xk, find xk+1 ∈ Ωk =
{
x ∈ R

n : F(x) � F(xk)
}
such that

0 ∈ ∂̂
(
〈F(.), zk〉 + αk

2
‖ . − xk‖2 + δΩk (.)

)
(xk+1), (7)

where δΩk is the indicator function of Ωk .

Stop criterion: If xk+1 = xk , then stop. Otherwise, do k ← k + 1 and return to
Main Steps.

4.1 Existence of the Iterates

Theorem 4.1 Assume that assumptions (C1.1) and (C1.2) are satisfied, then the
sequence

{
xk

}
, generated by the SPP algorithm, is well defined.

Proof Let x0 ∈ R
n be an arbitrary point given in the initialization step.Given xk , define

ϕk(x) = 〈F(x), zk〉 + αk
2

∥
∥x − xk

∥
∥2 + δΩk (x), where δΩk (.) is the indicator function

of Ωk . Then, we have that min{ϕk(x) : x ∈ R
n} is equivalent to min{〈F(x), zk〉 +

αk
2

∥
∥x − xk

∥
∥2 : x ∈ Ωk}. As ϕk is lower semicontinuous and coercive, then using

Proposition 2.1, we obtain that there exists xk+1 ∈ R
n , which is a global minimizer

of ϕk . From Proposition 2.4, xk+1 satisfies:

0 ∈ ∂̂
(
〈F(.), zk〉 + αk

2
‖ . − xk‖2 + δΩk (.)

)
(xk+1).

��
Remark 4.1 We are interested in the asymptotic convergence of the SPP algorithm,
so we assume that xk 	= xk+1 for all k. If xk = xk+1 for some k, then from the SPP
algorithm we have that

0 ∈ ∂̂
(〈F(.), zk〉 + δΩk (.)

)
(xk+1),

that is, xk+1 is a critical point of the optimization problem min{〈F(.), zk〉 : x ∈ Ωk}.
Observe that the function 〈F(.), zk〉 is a strict scalar representation of the map F, so if,
furthermore, xk+1 is a minimizer of that optimization problem, then from Proposition
2.3 , xk+1 is a weak Pareto optimal point of the original problem (5).

4.2 Fejér Convergence Property

To obtain some desirable properties it is necessary to assume the following assumption
on the function F and the initial point x0:
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(C3) The set
(
F(x0)− R

m+
)∩F(Rn) isRm+-complete,meaning that for each sequence

{ak} ⊂ R
n , with a0 = x0, such that F(ak+1) � F(ak), there exists a ∈ R

n such
that F(a) � F(ak), ∀ k ∈ N.

Remark 4.2 The assumption (C3) is cited in severalworks involving the proximal point
method for convex functions, Bonnel et al. [19], Ceng and Yao [20], and Villacorta
and Oliveira [21].

Proposition 4.1 Assume that assumptions (C1.1) and (C2) are satisfied. If x ∈
dom(F)∩Ω and g ∈ ∂̂ (〈F(.), z〉 + δΩ(.)) (x), with z ∈ R

m+\ {0}, and F(y) � F(x),
with y ∈ Ω , and Ω ⊂ R

n a closed and convex set, then 〈g, y − x〉 ≤ 0.

Proof Let t ∈]0, 1], then from the Rm+-quasiconvexity of F and the assumption that
F(y) � F(x), we have: Fi (t y + (1 − t)x) ≤ max {Fi (x), Fi (y)} = Fi (x), ∀ i ∈
{1, . . .m}. It follows that for each z ∈ R

m+\ {0}, we have

〈F(t y + (1− t)x), z〉 ≤ 〈F(x), z〉 . (8)

As g ∈ ∂̂ (〈F(.), z〉 + δΩ(.)) (x), we obtain

〈F(t y + (1− t)x), z〉 + δΩ(t y + (1− t)x) ≥ 〈F(x), z〉 + δΩ(x)+ t 〈g, y − x〉
+o(t ‖y − x‖). (9)

From (8) and (9), we conclude

t 〈g, y − x〉 + o(t ‖y − x‖) ≤ 0. (10)

On the other hand, we have lim
t→0

o(t‖y−x‖)
t‖y−x‖ = 0. Thus,

lim
t→0

o(t ‖y − x‖)
t

= lim
t→0

o(t ‖y − x‖)
t ‖y − x‖ ‖y − x‖ = 0.

Thus, dividing (10) by t and taking t → 0, we obtain the desired result. ��

Under assumptions (C1,1), (C1,2) and (C3), we obtain that the set

E =
{
x ∈ R

n : F (x) � F
(
xk

)
, ∀ k ∈ N

}

is nonempty. Furthermore, if the assumption (C2) is satisfied, then E is a nonempty
and convex set.

Proposition 4.2 Under assumptions (C1.1), (C1.2), (C2) and (C3), the sequence
{
xk

}
,

generated by the SPP algorithm, (6) and (7), is Fejér convergent to E.
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Proof Observe that ∀ x ∈ R
n :

∥
∥
∥xk − x

∥
∥
∥
2 =

∥
∥
∥xk − xk+1

∥
∥
∥
2 +

∥
∥
∥xk+1 − x

∥
∥
∥
2 + 2

〈
xk − xk+1, xk+1 − x

〉
. (11)

From Theorem 4.1, (7) and from Proposition 2.5, (iv), we have that there exists
gk ∈ ∂̂

(〈F(.), zk〉 + δΩk (.)
)
(xk+1) such that:

xk − xk+1 = 1

αk
gk . (12)

Now take x∗ ∈ E , then x∗ ∈ Ωk for all k ∈ N. Combining (11) with x = x∗ and (12),
we obtain:

∥
∥
∥xk − x∗

∥
∥
∥
2 =

∥
∥
∥xk − xk+1

∥
∥
∥
2 +

∥
∥
∥xk+1 − x∗

∥
∥
∥
2 + 2

αk

〈
gk, xk+1 − x∗

〉

≥
∥
∥
∥xk − xk+1

∥
∥
∥
2 +

∥
∥
∥xk+1 − x∗

∥
∥
∥
2
, (13)

where the last inequality follows from Proposition 4.1. Relation (13) implies that

0 ≤
∥
∥
∥xk+1 − xk

∥
∥
∥
2 ≤

∥
∥
∥xk − x∗

∥
∥
∥
2 −

∥
∥
∥xk+1 − x∗

∥
∥
∥
2
. (14)

Thus,

∥
∥
∥xk+1 − x∗

∥
∥
∥ ≤

∥
∥
∥xk − x∗

∥
∥
∥ . (15)

��
Proposition 4.3 Under assumptions (C1.1), (C1.2), (C2) and (C3), the sequence

{
xk

}

generated by the SPP algorithm, (6) and (7), satisfies

lim
k→+∞

∥
∥
∥xk+1 − xk

∥
∥
∥ = 0.

Proof It follows from (15) that ∀ x∗ ∈ E ,
{∥
∥xk − x∗

∥
∥
}
is a nonnegative and nonin-

creasing sequence and hence is convergent. Thus, the right-hand side of (14) converges
to 0, when k →+∞, and the result is obtained. ��

4.3 Convergence of the Iterates

In this subsection, we prove the convergence of the proposed algorithm, when F is a
non differentiable vector function.

Proposition 4.4 Under assumptions (C1.1), (C1.2), (C2) and (C3), the sequence
{
xk

}

generated by the SPP algorithm converges to some point of E.
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Proof FromProposition 4.2 andLemma2.2, (i),
{
xk

}
is bounded, and then, there exists

a subsequence
{
xk j

}
such that lim j→+∞ xk j = x̂ . Since 〈F(.), z〉 is lower semicon-

tinuous function for all z ∈ R
m+\ {0}, then 〈F (̂x), z〉 ≤ lim inf j→+∞

〈
F(xk j ), z

〉
. On

the other hand, xk+1 ∈ Ωk so
〈
F(xk+1), z

〉 ≤ 〈
F(xk), z

〉
. Furthermore, from assump-

tion (C1.2) the function 〈F(.), z〉 is bounded below for each z ∈ R
m+\ {0} , and then,

the sequence
{〈
F(xk), z

〉}
is nonincreasing and bounded below, hence convergent.

Therefore,

〈F (̂x), z〉 ≤ lim inf
j→+∞

〈
F(xk j ), z

〉
= lim

j→+∞

〈
F(xk j ), z

〉

= in fk∈N
{〈
F(xk), z

〉}
≤

〈
F(xk), z

〉
.

It follows that
〈
F(xk)− F (̂x), z

〉 ≥ 0,∀ k ∈ N,∀ z ∈ R
m+\ {0}. We conclude that

F(xk)− F (̂x) ∈ R
m+, i.e., F (̂x) � F(xk),∀ k ∈ N. Therefore, x̂ ∈ E and by Lemma

2.2, (i i), we get the result. ��

4.4 Convergence to aWeak Pareto Efficient Solution

In this subsection, assuming that F is also continuous and the sequence {αk} converges
to zero, then we obtain the convergence of the sequence {xk} to a weak Pareto efficient
solution.

Theorem 4.2 Let F : Rn −→ R
m be a continuous vector function satisfying assump-

tions (C1.2), (C2) and (C3). If lim
k→+∞αk = 0 and the iterations are given in the

form

xk+1 ∈ arg min

{

〈F(x), zk〉 + αk

2

∥
∥
∥x − xk

∥
∥
∥
2 : x ∈ Ωk

}

, (16)

then the sequence {xk} converges to a weak Pareto efficient solution of the problem
(5).

Proof Let xk+1 ∈ arg min
{
〈F(x), zk〉 + αk

2

∥
∥x − xk

∥
∥2 : x ∈ Ωk

}
, this implies that

〈
F(xk+1), zk

〉
+ αk

2

∥
∥
∥xk+1 − xk

∥
∥
∥
2 ≤ 〈F(x), zk 〉 + αk

2

∥
∥
∥x − xk

∥
∥
∥
2
, (17)

∀ x ∈ Ωk . Since the sequence
{
xk

}
converges to some point of E , then there exists

x∗ ∈ E such that limk→+∞ xk = x∗. Since that {zk} is bounded because ‖zk‖ = 1,
there exists a subsequence

{
zkl

}
l∈N such that lim

l→+∞ zkl = z̄, with z̄ ∈ R
m+\ {0} (as

||zkl || = 1 and from the continuity of the norm ||.|| we have that ||z̄|| = 1 and so
z̄ 	= 0). Taking k = kl in (17), we have

〈
F(xkl+1), zkl

〉
+ αkl

2

∥
∥
∥xkl+1 − xkl

∥
∥
∥
2 ≤ 〈

F(x), zkl
〉+ αkl

2

∥
∥
∥x − xkl

∥
∥
∥
2
. (18)
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∀ x ∈ E . As

αkl

2

∥
∥
∥xkl+1 − xkl

∥
∥
∥
2 → 0 and

αkl

2

∥
∥
∥x − xkl

∥
∥
∥
2 → 0 when l →+∞

and from the continuity of F , taking l →+∞ in (18), we obtain

〈
F(x∗), z

〉 ≤ 〈F(x), z〉 ,∀ x ∈ E . (19)

Thus, x∗ ∈ arg min {〈F(x), z〉 : x ∈ E}. Now, 〈F(.), z〉, with z̄ ∈ R
m+\ {0} is a strict

scalar representation of F , so a weak scalar representation, then by Proposition 2.3
we have that x∗ ∈ arg minw {F(x) : x ∈ E}.
We shall prove that x∗ ∈ arg minw {F(x) : x ∈ R

n}. Suppose by contradiction that
x∗ /∈ arg minw {F(x) : x ∈ R

n}, then there exists x̃ ∈ R
n such that

F (̃x) ≺ F(x∗). (20)

So for z̄ ∈ R
m+\ {0}, it follows that

〈F (̃x), z̄〉 < 〈
F(x∗), z̄

〉
. (21)

Since x∗ ∈ E , from (20) we conclude that x̃ ∈ E . Therefore, from (19) and (21) we
obtain a contradiction. ��

4.5 Convergence to a Generalized Critical Point

In this subsection, we prove the convergence of the sequence {gk} to 0, where

gk ∈ ∂̂
(〈F(.), zk〉 + δΩk (.)

)
(xk+1).

We call the above result as convergence to a generalized critical point.

Theorem 4.3 Let F : Rn −→ R
m be a continuous vector function satisfying assump-

tions (C1.2), (C2) and (C3). If 0 < αk < α̃, then the sequence {xk} generated by the
SPP algorithm, (6) and (7), satisfies

lim
k→+∞ gk = 0,

where gk ∈ ∂̂
(〈F(.), zk〉 + δΩk (.)

)
(xk+1).

Proof From Theorem 4.1, (7) and from Proposition 2.5, (iv), there exists a vector
gk ∈ ∂̂

(〈F(.), zk〉 + δΩk (.)
)
(xk+1) such that gk = αk(xk−xk+1). Since 0 < αk < α̃,

then

0 ≤ ‖gk‖ ≤ α̃

∥
∥
∥xk − xk+1

∥
∥
∥ . (22)
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FromProposition 4.3, lim
k→+∞

∥
∥xk+1 − xk

∥
∥ = 0, and from (22) we have lim

k→+∞ gk = 0.

��
Remark 4.3 If F is continuously differentiable, the SSP algorithm coincides with the
algorithm proposed in [1] and so we obtain the global convergence of the sequence.

5 An Inexact Proximal Algorithm

In this section, we present an inexact version of the SPP algorithm, which we denote
by ISPP algorithm, when F satisfies the following assumption:

(C4) F : Rn −→ R
m is a continuously differentiable vector function on Rn .

5.1 ISPP Algorithm

Let F : Rn → R
m be a vector function satisfying the assumptions (C2) and (C4), and

consider two sequences: the proximal parameters {αk} , with αk > 0 for each k, and
a sequence {zk} = {(z1k , z2k , . . . , zmk )} ⊂ R

m+\ {0} with ‖zk‖ = 1.

Initialization: Choose an arbitrary starting point

x0 ∈ R
n . (23)

Main Steps: Given xk, define the function Ψk : Rn → R such that Ψk(x) =
〈F(x), zk〉 and consider Ωk =

{
x ∈ R

n : F(x) � F(xk)
}
. Find xk+1 ∈ Ωk satis-

fying

0 ∈ ∂̂εkΨk(x
k+1)+ αk

(
xk+1 − xk

)
+ νk, (24)

∞∑

k=1
δk < +∞, (25)

where νk ∈ NΩk (x
k+1), δk = max

{
εk

αk
,
‖νk‖
αk

}

, εk ≥ 0, and ∂̂εk is the Fréchet

εk-subdifferential.
Stop criterion: If xk+1 = xk, then stop. Otherwise, do k ← k + 1 and return to
Main Steps.

5.2 Existence of the Iterates

Proposition 5.1 Let F : Rn −→ R
m be a vector function satisfying the assumptions

(C1.2), (C2) and (C4). Then, the sequence
{
xk

}
generated by the ISPP algorithm is

well defined.
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Proof Let x0 ∈ R
n given by (23) and considering xk fixed, analogous to the proof of

Theorem 4.1, there exists xk+1 satisfying

0 ∈ ∂̂
(
Ψk(.)+ αk

2
‖ . − xk‖2 + δΩk (.)

)
(xk+1).

From Proposition 2.5, (i i i) and (iv), we obtain

0 ∈ ∂̂Ψk(x
k+1)+ αk

(
xk+1 − xk

)
+NΩk (x

k+1).

From Remark 2.1, xk+1 satisfies (24) with εk = 0. ��
Remark 5.1 As in the exact algorithm, we are interested in the asymptotic convergence
of the ISPP algorithm, so we assume that xk 	= xk+1 for all k. If xk = xk+1 for some
k, then from the algorithm we have that

0 ∈ ∇Ψk(x
k+1)+NΩk (x

k+1)+ εk B(0, 1).

From Proposition 2.5, (iv), it is equivalent to

0 ∈ ∂̂
(〈F(.), zk〉 + δΩk (.)

)
(xk+1)+ εk B(0, 1),

that is, xk+1 is a approximate critical point of the optimizationproblemmin{〈F(.), zk〉 :
x ∈ Ωk}. Observe that the function 〈F(.), zk〉 is a strict scalar representation of the
map F, so if, furthermore, xk+1 is a minimizer of that optimization problem, then
from Proposition 2.3, xk+1 is a weak Pareto optimal point of the original problem (5).

The next proposition gives a necessary condition for quasiconvex differentiable vector
functions.

Proposition 5.2 Let F : Rn −→ R
m be a differentiable quasiconvex vector function

and x, z ∈ R
n . If F (x) � F (z), then 〈∇Fi (z), x − z〉 ≤ 0, ∀ i ∈ {1, . . . ,m}.

Proof Since F is Rm+-quasiconvex, each Fi , i = 1, . . . ,m, is quasiconvex. Then, the
result follows from the classical characterization of the scalar differentiable quasicon-
vex functions; see Mangasarian [13], p.134. ��
Proposition 5.3 Let

{
xk

}
be a sequence generated by the ISPP algorithm. If the

assumptions (C1.2), (C2), (C3), (C4) and (25) are satisfied, then for each x̂ ∈ E,

{∥∥x̂ − xk
∥
∥2} converges and {xk} is bounded.

Proof From (24), there exist gk ∈ ∂̂εkΨk(xk+1) and νk ∈ NΩk (x
k+1) such that

0 = gk + αk

(
xk+1 − xk

)
+ νk .

It follows that for any x ∈ R
n , we obtain

〈−gk, x − xk+1〉 + αk〈xk − xk+1, x − xk+1〉 = 〈νk, x − xk+1〉 ≤ ‖νk‖‖x − xk+1‖.
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Therefore,

〈xk − xk+1, x − xk+1〉 ≤ 1

αk

(
〈gk, x − xk+1〉 + ‖νk‖‖x − xk+1‖

)
. (26)

Note that ∀ x ∈ R
n, see equation (17) of [1]:

∥
∥
∥x − xk+1

∥
∥
∥
2 −

∥
∥
∥x − xk

∥
∥
∥
2 ≤ 2

〈
xk − xk+1, x − xk+1

〉
. (27)

From (26) and (27), we obtain

∥
∥
∥x − xk+1

∥
∥
∥
2 −

∥
∥
∥x − xk

∥
∥
∥
2 ≤ 2

αk

(
〈gk, x − xk+1〉 + ‖νk‖‖x − xk+1‖

)
. (28)

On the other hand, let Ψk(x) = 〈F(x), zk〉, where F : Rn → R
m is continuously

differentiable vector function, then Ψk : Rn → R is continuously differentiable with
gradient denoted by ∇Ψk . From Proposition 2.6, we have

∂εkΨk(x) = ∇Ψk(x)+ εk B, (29)

where B is the closed unit ball in R
n centered at zero. Furthermore, ∂̂εkΨk(x) ⊂

∂εkΨk(x), (see (2.12) in Jofré et al. [14]). As gk ∈ ∂̂εkΨk(xk+1), we have that gk ∈
∂εkΨk(xk+1), then

gk = ∇Ψk(x
k+1)+ εkhk,

with ‖hk‖ ≤ 1. Now take x̂ ∈ E, then

〈gk, x̂ − xk+1〉 =
〈
∇Ψk(x

k+1)+ εkhk , x̂ − xk+1
〉

=
m∑

i=1

〈
∇Fi (xk+1) , x̂ − xk+1

〉
(zk)i + εk

〈
hk , x̂ − xk+1

〉
. (30)

From Proposition 5.2, we conclude that (30) becomes

〈gk, x̂ − xk+1〉 ≤ εk

〈
hk , x̂ − xk+1

〉
≤ εk‖x̂ − xk+1‖. (31)

Using in the inequality ‖x̂ − xk+1‖2 + 1
4 ≥ ‖x̂ − xk+1‖, it follows

‖x̂ − xk+1‖ ≤
(

‖x̂ − xk+1‖2 + 1

4

)

. (32)
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Consider x = x̂ in (28), using (31), (32) and the condition (25) we obtain

∥
∥
∥x̂ − xk+1

∥
∥
∥
2 −

∥
∥
∥x̂ − xk

∥
∥
∥
2 ≤ 2

αk
(εk + ‖νk‖) ‖x̂ − xk+1‖

≤ 4δk
∥
∥
∥x̂ − xk+1

∥
∥
∥
2 + δk .

Thus,

∥
∥
∥x̂ − xk+1

∥
∥
∥
2 ≤

(
1

1− 4δk

) ∥
∥
∥x̂ − xk

∥
∥
∥
2 + δk

1− 4δk
. (33)

The condition (25) guarantees that

δk <
1

4
, ∀k > k0,

where k0 is a natural number sufficiently large, and so,

1 ≤ 1

1− 4δk
≤ 1+ 2δk < 2, for k ≥ k0,

combining with (33), results in

∥
∥
∥x̂ − xk+1

∥
∥
∥
2 ≤ (1+ 2δk)

∥
∥
∥x̂ − xk

∥
∥
∥
2 + 2δk . (34)

Since
∑∞

i=1 δk < ∞, applying Lemma 2.1 in the inequality (34), we obtain the

convergence of {‖x̂− xk‖2}, for each x̂ ∈ E,which implies that there exists M ∈ R+,
such that

∥
∥x̂ − xk

∥
∥ ≤ M, ∀ k ∈ N. Now, since that ‖xk‖ ≤ ‖xk − x̂‖ + ‖x̂‖, we

conclude that {xk} is bounded, and so, we guarantee that the set of accumulation points
of this sequence is nonempty. ��

5.3 Convergence of the ISPP Algorithm

Proposition 5.4 (Convergence to some Point of E) If the assumptions (C1.2), (C2),
(C3) and (C4) are satisfied, then the sequence

{
xk

}
generated by the ISPP algorithm

converges to some point of the set E.

Proof As
{
xk

}
is bounded, then there exists a subsequence

{
xk j

}
such that

lim j→+∞ xk j = x̂ . Since F is continuous in R
n , then the function 〈F(.), z〉 is

also continuous in R
n for all z ∈ R

m , in particular, for all z ∈ R
m+\ {0}, and

〈F (̂x), z〉 = lim j→+∞
〈
F(xk j ), z

〉
. On the other hand,we have that F(xk+1) � F(xk),

and so,
〈
F(xk+1), z

〉 ≤ 〈
F(xk), z

〉
for all z ∈ R

m+\ {0}. Furthermore, the function
〈F(.), z〉 is bounded below, for each z ∈ R

m+\ {0}, then the sequence
{〈
F(xk), z

〉}
is
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nonincreasing and bounded below, thus convergent. So,

〈F (̂x), z〉 = lim
j→+∞

〈
F(xk j ), z

〉
= lim

k→+∞

〈
F(xk), z

〉
= in fk∈N

{〈
F(xk), z

〉}

≤
〈
F(xk), z

〉
,∀k ∈ N.

It follows that F(xk)− F (̂x) ∈ R
m+, i.e., F (̂x) � F(xk),∀ k ∈ N. Therefore, x̂ ∈ E .

Now, from Proposition 5.3, we have that the sequence {∥∥x̂ − xk
∥
∥} is convergent,

and since lim
k→+∞

∥
∥xk j − x̂

∥
∥ = 0 (because {xk j } converges to x̂), we conclude that

lim
k→+∞

∥
∥xk − x̂

∥
∥ = 0, i.e., limk→+∞ xk = x̂ . ��

Theorem 5.1 Suppose that the assumptions (C1.2), (C2), (C3) and (C4) are satisfied.
If 0 < αk < α̃, then the sequence {xk} generated by the ISPP algorithm, (23), (24)
and (25), converges to a Pareto critical point of the problem (5).

Proof From Proposition 5.4 there exists x̂ ∈ E such that lim
j→+∞ xk = x̂ . Furthermore,

as the sequence
{
zk

}
is bounded, there exists

{
zk j

}
j∈N such that lim j→+∞ zk j = z̄,

with z̄ ∈ R
m+\ {0}. From (24) there exists gk j ∈ ∂̂εk j

Ψk j (x
k j+1), with gk j =

∇Ψk j (x
k j+1)+ εk j hk j with ‖hk j ‖ ≤ 1, and νk j ∈ NΩk j

(xk j+1), such that

0 =
m∑

i=1
∇Fi (xk j+1)(zk j )i + εk j hk j + αk j

(
xk j+1 − xk j

)
+ νk j . (35)

Since νk j ∈ NΩk j
(xk j+1), then

〈
νk j , x − xk j+1

〉
≤ 0, ∀ x ∈ Ωk j . (36)

Take x̄ ∈ E . By definition of E , x̄ ∈ Ωk , for all k ∈ N, so x̄ ∈ Ωk j . Combining (36)
with x = x̄ and (35), we have

0 ≤
〈

m∑

i=1
∇Fi (xk j+1)(zk j )i , x̄ − xk j+1

〉

+ εk j

〈
hk j , x̄ − xk j+1

〉

+αk j

〈
xk j+1 − xk j , x̄ − xk j+1

〉

≤
〈

m∑

i=1
∇Fi (xk j+1)(zk j )i , x̄ − xk j+1

〉

+ εk j M

+ α̃|〈xk j+1 − xk j , x̄ − xk j+1〉|, (37)

where M is a constant such that
〈
hk j , x̄ − xk j+1

〉 ≤ M .
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Observe that, ∀ x ∈ R
n :

∥
∥
∥xk+1 − xk

∥
∥
∥
2 =

∥
∥
∥x − xk

∥
∥
∥
2 −

∥
∥
∥x − xk+1

∥
∥
∥
2 + 2

〈
xk − xk+1, x − xk+1

〉
. (38)

Now, from (26) with x = x̄ ∈ E , and (31), we obtain

〈
xk − xk+1, x̄ − xk+1

〉
≤

∥
∥
∥x̄ − xk+1

∥
∥
∥

(
εk

αk
+ ‖νk‖

αk

)

≤ 2Mδk .

Thus, from (38), with x = x̄ , we have

0 ≤
∥
∥
∥xk+1 − xk

∥
∥
∥
2 ≤

∥
∥
∥x̄ − xk

∥
∥
∥
2 −

∥
∥
∥x̄ − xk+1

∥
∥
∥
2 + 4Mδk . (39)

Since that the sequence
{∥
∥x̄ − xk

∥
∥
}
is convergent and

∑∞
i=1 δk <∞, from (39) we

conclude that limk→+∞
∥
∥
∥xk+1 − xk

∥
∥
∥ = 0. Furthermore, as

0 ≤
∥
∥
∥xk j+1 − x̄

∥
∥
∥ ≤ ‖xk j+1 − xk j ‖ + ‖xk j − x̄‖, (40)

we obtain that the sequence {∥∥x̄ − xk j+1
∥
∥} is bounded.

Thus, returning to (37), since limk→+∞ εk = 0, lim j→+∞ xk = x̂ and lim j→+∞ zk j =
z̄, taking j →+∞, we obtain

m∑

i=1
z̄i 〈∇Fi (̂x) , x̄ − x̂〉 ≥ 0. (41)

From the quasiconvexity of each component function Fi , for each i ∈ {1, . . . ,m}, we
have that
〈∇Fi (̂x) , x̄ − x̂〉 ≤ 0 and because z̄ ∈ R

m+\ {0}, from (41), we obtain

m∑

i=1
z̄i 〈∇Fi (̂x) , x̄ − x̂〉 = 0. (42)

Without loss of generality, consider the set J = {i ∈ I : z̄i > 0}, where
I = {1, . . . ,m}. Thus, from (42), for all x̄ ∈ E we have

〈∇Fi (̂x) , x̄ − x̂〉 = 0, ∀ i ∈ J . (43)

Now we will show that x̂ is a Pareto critical point.
Suppose by contradiction that x̂ is not aPareto critical point, then there exists a direction
v ∈ R

n such that J F (̂x)v ∈ −Rm++, i.e.,

〈∇Fi (̂x), v〉 < 0,∀ i ∈ {1, . . . ,m} . (44)
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Therefore, v is a descent direction for the multiobjective function F in x̂ , so, ∃ ε > 0
such that

F (̂x + λv) ≺ F (̂x), ∀ λ ∈ (0, ε]. (45)

Since x̂ ∈ E , then from (45) we conclude that x̂ + λv ∈ E . Thus, from (43) with
x̄ = x̂ + λv, we obtain:

〈∇Fi (̂x) , x̂ + λv − x̂〉 = 〈∇Fi (̂x) , λv〉 = λ 〈∇Fi (̂x) , v〉 = 0.

It follows that 〈∇Fi (̂x) , v〉 = 0 for all i ∈ J , contradicting (44). Therefore, x̂ is
Pareto critical point of the problem (5). ��

6 A Numerical Result

In this subsection, we give a simple numerical example of the SPP algorithm showing
the functionality of the proposed method. For that, we use a Intel Core i5 computer
2.30 GHz, 3GB of RAM, Windows 7 as operational system with SP1 64 bits and we
implement our code using MATLAB software 7.10 (R2010a).

Example 6.1 Consider the following multiobjective minimization problem

min
{
(F1(x1, x2), F2(x1, x2)) : (x1, x2) ∈ R

2
}

where F1(x1, x2) = −e−x21−x22 + 1 and F2(x1, x2) = (x1 − 1)2 + (x2 − 2)2. This
problem satisfies the assumptions (C1.2), (C2) and (C4). We can easily verify that the
points x̄ = (0, 0) and x̂ = (1, 2) are Pareto efficient solutions of the problem.

We take x0 = (−1, 3) as an initial point and given xk ∈ R
2, the main step of the SPP

algorithm is to find a critical point ( local minimum, local maximum or a saddle point)
of the following problem

min g(x1, x2) = (−e−x21−x22 + 1)zk1 +
(
(x1 − 1)2 + (x2 − 2)2

)
zk2

+ αk

2

(
(x1 − xk1 )

2 + (x2 − xk2 )
2
)

s.t :
x21 + x22 ≤ (xk1 )

2 + (xk2 )
2

(x1 − 1)2 + (x2 − 2)2 ≤ (xk1 − 1)2 + (xk2 − 2)2.

In this example, we consider zk =
(
zk1, z

k
2

) =
(

1√
2
, 1√

2

)
and αk = 1, for each k. We

take z0 = (2, 3) as the initial point to solve all the subproblems using the MATLAB
function fmincon (with interior point algorithm), and we consider the stop criterion
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k N [xk ] xk = (xk1 , xk2 ) ||xk − xk−1|| ∑
Fi (x

k )zki F1(x
k
1 , xk2 ) F2(x

k
1 , xk2 )

1 10 (0.17128, 2.41010) 1.31144 1.30959 0.99709 0.85496
2 10 (0.65440, 2.16217) 0.54302 0.80586 0.99392 0.14574
3 9 (0.85337, 2.05877 ) 0.22423 0.71983 0.99303 0.02496
4 7 (0.93534, 2.01588 ) 0.09251 0.70518 0.99284 0.00443
5 7 (0.96912, 1.99814) 0.03816 0.70268 0.99279 0.00096
6 7 (0.98305, 1.99080) 0.01574 0.70226 0.99277 0.00037
7 7 (0.98879, 1.98776) 0.00649 0.70219 0.99277 0.00028
8 7 (0.99115,1.98651) 0.00268 0.70217 0.99276 0.00026
9 7 (0.99213, 1.98599) 0.00110 0.70217 0.99276 0.00026
10 7 (0.99253, 1.98578) 0.00046 0.70217 0.99276 0.00026
11 7 (0.99270, 1.98569) 0.00019 0.70217 0.99276 0.00026
12 7 (0.99277,1.98565) 0.00008 0.70217 0.99276 0.00026

||xk+1 − xk || < 0.0001 to finish the algorithm. The numerical results are given in the
following table:
The above table shows that we need k = 12 iterations to solve the problem; N [xk]
denotes the inner iterations of each subproblem to obtain the point xk, for example
to obtain the point x3 = (0.85337, 2.05877) we need N [x3] = 9 inner iterations.
Observe also that in each iteration, we obtain F(xk) � F(xk+1) and the function
〈F(xk), zk〉 is nonincreasing.

7 Perspectives and Open Problems

To reduce considerably the computational cost in each iteration of the SPP algorithm,
it is necessary to consider the unconstrained iteration

0 ∈ ∂̂
(
〈F(.), zk〉 + αk

2
‖ . − xk‖2

)
(xk+1), (46)

which is more practical than (7). One natural condition to obtain (46) is that xk+1 ∈
intΩk (interior of Ωk), because in this case (7) becomes (46). So, we believe that a
variant of the SPP algorithmmay be an interior proximal point method. Thus, a future
work may be the introduction of an interior variable metric proximal point method to
solve the problem (5).

On the other hand, the SPP algorithm may be applied to solve a class of linear
multiobjective problems. In fact, if the objective functions Fi , i = 1, 2, . . . ,m, are
defined as Fi (x) = ci T x, if x satisfies Ax = b, x ∈ R

n+ and Fi (x) = +∞ otherwise,
where ci ∈ R

n+, b ∈ R
m are given vectors and A ∈ R

m×n is a m × n matrix,
then Theorem 4.2 assures that the sequence {xk} converges to a weak Pareto efficient
solution of the problem

min{F(x) = (cT1 x, c
T
2 x, . . . , c

T
mx) : Ax = b, x ∈ R

n+}.

The extension of the above theorem when {λk} does not converge to zero is an open
question.
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Other future works may be the extension of the proposed algorithm to solve more
general constrained vector minimization problems using the class of proximal dis-
tances and also to obtain conditions for the finite convergence of the SPP algorithm
for the quasiconvex case.

8 Conclusions

This paper introduces an exact linear scalarization proximal point algorithm, denoted
by SPP algorithm, to solve arbitrary extended multiobjective quasiconvex minimiza-
tion problems and in the differentiable case, it is presented an inexact version of the
proposed algorithm.

Our paper may be considered as a first attempt to develop a proximal point method
to solve constrained multiobjective problems with quasiconvex objective functions.
Future works should improve the result obtained in Theorem 4.3 targeting real appli-
cations, for example, in demand theory.
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