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Abstract
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computing L1 and L2 center of mass in the context of positive definite symmetric
matrices are presented using two different stepsize rules.
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1 Introduction

We consider the problem of computing the (global) Riemannian center of mass of the
data set on Hadamard manifolds. This notion and its variants have been appeared with
many different names in the literature, e.g., Riemannian mean or average and Fréchet
or Karcher mean, but we prefer (cf. [1]) the former denomination. This concept was
proposed by Grove and Karcher [2], and since then, it has been extensively studied
in pure mathematics as well as applied fields such as computer vision, statistical
analysis of shapes, medical imaging, sensor networks and many other general data
analysis applications. Several works have been devoted to study this problem on the
context of positive definite symmetric matrices, e.g., [3–7]. This manifold plays a
key role in diffusion tensor imaging, as explained in [8,9], and it always admits an
invariant Riemannian metric, so that it becomes a Hadamard manifold (a complete,
simply connected Riemannian manifold of nonpositive sectional curvature); see [10,
Theorem1.2]. For an approach to this problem in amore general setting, namelyFinsler
manifolds, see Kristály et al. [11]. Bačák [12] studied convergence of the proximal
point method for computing center of mass in a geodesic metric space of nonpositive
curvature, which includes Hadamard manifolds. Afsari et al. [13] investigated the
applicability of a gradient descent algorithm, which is the most popular and easiest
version of gradient descent method, for finding a center of mass in the particular case
where the objective function is twice-continuously differentiable (in a small region
at least). As observed by the authors, the main challenge is that the underlying cost
function is usually neither globally differentiable nor globally convex on the general
manifold.

Computing the Riemannian center of mass is just one of the many optimization
problems arising in various applications, which are posed on manifolds and require a
manifold structure (not necessarily with linear structure). Therefore, a large amount
of classical notions and methods have been extended for problems formulated on
Riemannian manifolds as well as on other spaces with nonlinear structures, e.g.,
[12,14–21]. As far as we know, one first propose dealing with the steepest descent
method for continuously differentiable functions in the Riemannian setting was pre-
sented by Luemberger [22] and later by Gabay [23] both in the particular case where
M is the inverse image of regular value. Udriste [24], Smith [25], Rapcsák [26] also
studied that method in the case that the Riemannian manifold is a any complete Rie-
mannian manifold and partial convergence results were obtained. A result of full
convergence, using Armijo’s rule, was obtained by Cruz Neto et al. [27], in the convex
case by assuming that the Riemannian manifold has a nonnegative sectional curva-
ture. The influence of the sign of the sectional curvature in the convergence analysis
presented in [27] combined with the assumption of convexity of the objective function
is directly related to the classic demonstration script adopted in the linear scenario,
namely based on the quasi-Fejér convergence to the minimizers set, and these man-
ifolds have geometric properties which are favorable to the characterization of the
quasi-Fejér convergence of any sequence generated by the method.

Recent research papers have provided an unified framework for the convergence
analysis of classical descent methods when the real-valued objective function is not
necessarily a convex function, but that satisfies the well-known Kurdyka–Łojasiewicz
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inequality; see, for instance,Absil et al. [28], Attouch et al. [29] andLageman [30, The-
orem 2.1.22]. This inequality was first introduced by Lojasiewicz [31], for real analytic
functions, and extended for differentiable definable functions in an o-minimal structure
by Kurdyka [32]. For extensions of Kurdyka–Łojasiewicz inequality to subanalytic
nonsmooth functions (defined in Euclidean spaces), see, for example, Bolte et al. [33],
Attouch and Bolte [34]. A more general extension, again in Euclidean context, was
developed by Bolte et al. [35] for Clarke’s subdifferentiable of a lower semicontinuous
function definable in an o-minimal structure. Lageman [30] extended the Kurdyka–
Łojasiewicz inequality for analytic manifolds and differentiable C-functions in an
analytic–geometric category, and, in particular, a full convergence result is shown for
discrete gradient-like algorithm on a general Riemannian manifold when the differen-
tiable C-functions satisfy a certain descent condition, namely angle andWolfe–Powell
conditions; see [30, Example of Theorem 2.1.22, page 96]). It is important to note that
Kurdyka et al. [36] had already established an extension of the Kurdyka–Łojasiewicz
inequality for analytic manifolds and analytic functions in order to solve R. Thom’s
conjecture. Bento et al. in [37] presented an abstract convergence result for inexact
descent methods in the Riemannian context and, in particular, extended the appli-
cability of the gradient (with Armijo’s rule) method to solving any problem which
may be formulated as of minimizing a definable function (e.g., analytic) restricted, for
example, to Hadamard manifolds; see also [38].

Following [12], who studied convergence of the proximal point method for com-
puting center of mass on Hadamard manifolds, in this present paper it is studied the
convergence of the steepest descent method with respect to the same problems on
Hadamard manifolds. Taking into account the results presented in [13], it is worth
mentioning that the main novelty of this work is to study convergence of the steepest
descent method to a specific case of the problem (L1 center of mass), which is also
frequently used and not considered in [13].

The paper is organized as follows. In Sect. 2, we take a brief look at basic facts
and notations regarding Riemannian geometry and Kurdyka–Łojasiewicz property
and we present the steepest descent method. In Sect. 3, we use the steepest descent
method for computing Riemannian center of mass of a set of data points on Hadamard
manifolds. In Sect. 4, the robustness and efficiency of the method are illustrated with
some numerical experiments in the context of positive definite symmetric matrices
using the fixed stepsize and the Armijo’s rule.

2 Preliminaries

In this paper, M is assumed to be finite-dimensional Hadamard manifold. The nota-
tions, results and concepts of Riemannian geometry used throughout the paper can be
found in Udriste [24] and Ferreira and Oliveira [14].

Let f : M → R be a differentiable function. The function f is said to have
the Kurdyka–Łojasiewicz property at a point x̄ ∈ M iff there exists η ∈]0,+∞], a
neighborhood U of x̄ and a continuous concave function ϕ : [0, η[→ R+ (called
desingularizing function) such that:
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(i) ϕ(0) = 0, ϕ ∈ C1(]0, η[) and, for all s ∈]0, η[, ϕ′(s) > 0;
(ii) For all x ∈ U ∩ [ f (x̄) < f < f (x̄) + η], the Kurdyka–Łojasiewicz inequality

holds
ϕ′( f (x) − f (x̄))||grad f (x)|| ≥ 1, (1)

where [ f (x̄) < f < f (x̄) + η] := {x ∈ M : f (x̄) < f (x) < f (x̄) + η}.
If f (x̄) = 0, then (1) can be rewritten as

||∇(ϕ ◦ f )(x)|| ≥ 1.

One can easily check that the Kurdyka–Łojasiewicz property is automatically satisfied
at any noncritical point; see [39, Lemma 3.6]. The most fundamental works on this
subject are of course due to Łojasiewicz [31] and Kurdyka [32].

Remark 2.1 A C2 function is said to be aMorse function if at each critical point x̄ of f
the Hessian of f at x̄ , denoted byHess f (x̄), has all its eigenvalues different from zero.
The class of Morse functions form a dense and open set in the space of C2-functions;
see Hirsh [40, Theorem 1.2]. It is known that a Morse function satisfies the Kurdyka–
Łojasiewicz property at every point with desingularizing function ϕ(t) = c

√
t , for

some c > 0; see [39, Theorem 3.8]. In particular, it follows from [24, Theorem 1.2]
that every C2 strongly convex function satisfies the Kurdyka–Łojasiewicz property
at every point. A very rich class of functions satisfying the Kurdyka–Łojasiewicz
property are the analytic functions defined on analytic manifolds; see [36].

Next, we recall the steepest descent method for solving a minimization problem

min
x∈M

f (x), (2)

where f : M → R is continuously differentiable with Lipschitz gradient. The steepest
descent method generates a sequence as follows:
Steepest Descent Method (SDM)

Step 1. Choose x0 ∈ M .
Step 2. Given xk , if xk is a critical point of f , then set xk+p = xk for all p ∈ N.

Otherwise, compute tk > 0 some real stepsize and take as the next iterate
xk+1 ∈ M such that

xk+1 = expxk (−tkgrad f (xk)). (3)

Note that from (3), we have

tk ||grad f (xk)|| = d(xk+1, xk). (4)

Thus, if xk+1 = xk , then one can easily check that xk is a critical point of f taking
into account that tk > 0.

The next convergence results of the steepest descent method, in the context of
Kurdyka–Łojasiewicz inequality in Hadamard manifolds, are proved in [37, Theorem
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7.1]. In particular setting of Łojasiewicz inequality, it can be found in [38, Theorem
2.3]. In [37], they consider two possibilities of the stepsize rule:

– (Armijo’s rule) Let {tk} be a sequence obtained by

tk := max
{
2− j : j ∈ N, f

(
expxk (−2− jgrad f (xk)

)
≤ f (xk)

−α2− j ||grad f (xk)||2
}

,

with α ∈]0, 1[.
– (Fixed stepsize rule) Given δ1, δ2 > 0 such that Lδ1 + δ2 < 1, where L is the
Lipschitz constant associated with the gradient map of f . Take {tk} such that

tk ∈
]
δ1,

2

L
(1 − δ2)

[
, ∀k ≥ 0.

Theorem 2.1 Assume that the sequence {xk} generated by SDM has an accumula-
tion point x∗ ∈ M and f satisfies the Kurdyka–Łojasiewicz inequality at x∗. Then,
limk→+∞ f (xk) = f (x∗) and {xk} converges to x∗ which is a critical point of f .

Remark 2.2 In the previous result, M is supposed to be a Hadamard manifold. How-
ever, it also works on any set where uniqueness of minimizing geodesics holds, for
example in convex balls (without any assumption on the signal of the curvature); see
[37, Remark 7.2]. Therefore, our results presented on the sequel also hold in this
context. We choose to handle with Hadamard manifolds just for the sake of simplicity.

3 Computing Riemannian Lp Center of Mass on HadamardManifolds

Consider the problem of computing (global) Riemannian L p center of mass of the
data set {ai }n

i=1 ⊂ M on a Hadamard manifold with respect to weights 0 ≤ wi ≤ 1,
such that

∑n
i=1 wi = 1. The Riemannian L p center of mass is defined as the solution

set of the following problem:

min
x∈M

f p(x) := 1

p

n∑
i=1

wi d
p(x, ai ), (5)

for 1 ≤ p < ∞. If p = ∞, the center of mass is defined as the minimizers of
maxi d(x, ai ) in M . As a convention, when referring to the center of mass of some
data points, we usually do not refer to explicit weights unless needed. In this paper,
our focus is limited to the cases p = 1 and p = 2, which are the most commonly used
cases.

As mentioned before, the problem of computing the Riemannian center of mass has
been extensively studied in both theory and applications. In [13], the authors investigate
the convergence of constant stepsize gradient descent algorithms for computing L2

center of mass in Riemannian manifolds with curvature bounded from above and
below. In [3,4] is studied incremental gradient methods for computing L2 center of

123



982 Journal of Optimization Theory and Applications (2019) 183:977–992

mass in the context of positive definite symmetric matrices, which is a particular
instance of Hadamard manifolds. Therefore, in some sense, our results generalize the
previously mentioned works. The main novelty of this paper, in relation to [13], is the
extension of the convergence analysis of the steepest descentmethod for computing L1

center of mass. In this case, the main challenge is that the underlying cost function is
not globally differentiable. Recently, Bačák [12] performed the proximal point method
for computing L1 and L2 center of mass in a more general nonlinear setting in which
a Hadamard manifold is a particular instance, namely CAT(0) spaces. We provide an
alternative way to solve this problem by using the steepest descent methodwhich is the
most popular and easiest algorithm for solving a differentiable minimization problem.

One can check that

M � x �−→ grad f p(x) = −
n∑

i=1

wi d
p−2(x, ai ) exp

−1
x ai , (6)

having in mind that, in the particular case where p < 2, x should be different from
any of the data points.

Next, we recall a useful estimate about the Hessian of the Riemannian distance
function. Assume that x, y ∈ M (y distinct from x) and t �→ γ (t) with γ (0) = x is
a unit speed geodesic making, at x , an angle β with the (minimal) geodesic from y to
x . It can be proved that (see, e.g., [41, pp. 152–154])

sin2 β

d(x, y)
≤ d2

dt2
d(γ (t), y)|t=0. (7)

Recall that the points a1, . . . , an are said to be collinear if they reside on the same
geodesic, i.e., there exist y ∈ M , v ∈ Ty M and ti ∈ R, i = 1, . . . , n, such that
ai = expy tiv, for each i = 1, . . . , n.

Proposition 3.1 Let {ai }n
i=1 ⊂ M be the data set and let γ be a unit speed geodesic

such that γ (0) = x, where x �= ai , for i = 1, . . . , n. Then, there exists a constant
α ≥ 0 such that

α ≤ d2

dt2
( f1 ◦ γ )(t)|t=0.

Furthermore, if the points a1, . . . , an are not collinear, then α > 0.

Proof Let βi be the angle which the unit speed geodesic γ such that γ (0) = x makes
with the geodesic ξi connecting the points x and ai . Applying (7) for y = ai , for each
i = 1, . . . , n and summing up these inequalities, we obtain

n∑
i=1

sin2 βi

d(x, ai )
≤

n∑
i=1

d2

dt2
d(γ (t), ai )|t=0. (8)
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Denote by

α = 1

maxi d(x, ai )

n∑
i=1

sin2 βi ≥ 0.

Thus, from (8), we obtain

α ≤ d2

dt2
( f1 ◦ γ )(t)|t=0.

Now, if the points a1, . . . , an are not collinear, then there exists at least one point,
namely ai0 , with i0 ∈ {1, . . . , n} such that sin2 βi0 > 0 which implies that α > 0. ��

Before analyzing the convergence of an algorithm for computing Riemannian L1

center of mass, we state and prove some preliminary results.

Proposition 3.2 The following statements hold:

(a) The function f1(x) = ∑n
i=1 wi d(x, ai ) is convex;

(b) The problem (5), for p = 1, always has a solution. Furthermore, if the points
a1, . . . , an are not collinear, then the solution is unique;

(c) Let i0 ∈ {1, . . . , n} be an index such that f1(ai0) = mini=1,...,n f1(ai ). Then, ai0
is a minimizer of f1 on M if and only if

∣∣∣∣∣∣

∣∣∣∣∣∣
n∑

i=1,i �=i0

wi

exp−1
ai0

ai

d(ai , ai0)

∣∣∣∣∣∣

∣∣∣∣∣∣
≤ wi0 .

Proof (a) The proof follows from the convexity of the distance function and properties
of convex functions; see for instance [17, Lemma 5.2] and [24, Theorem 3.3].

(b) Since f1 is continuous and coercive function which is bounded from below, f1 has
a minimizer. From the second part of Proposition 3.1, we have that the eigenvalues
of Hess f1(x) are positive which implies that f1 is strictly convex. Thus, f1 has a
unique minimizer.

(c) Since f1 is convex, we have that ai0 is a minimizer of f1 if and only if 0 ∈ ∂ f1(ai0).
On the other hand, combining (6) with [17, Theorem 5.3], we obtain

∂ f1(ai0) =
n∑

i=1,i �=i0

wi

exp−1
ai0

ai

d(ai , ai0)
+ wi0Bai0

,
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where Bai0
denotes the unit ball with center in ai0 . Thus, ai0 is a minimizer of f1 if

and only if there exists θi0 ∈ Bai0
such that

n∑
i=1,i �=i0

wi

exp−1
ai0

ai

d(ai , ai0)
= −wi0θi0 ,

and the assertion follows taking the norm in both sides of the last equation having in
mind that ||θi0 || ≤ 1. ��
Remark 3.1 We directly conclude from Proposition 3.1 that if in the data set {ai }n

i=1
the points are not collinear, then the Hessian of the function f1(x) = ∑n

i=1 wi d(x, ai )

has all its eigenvalues positive which means that f1 is a Morse function. Thus, from
[39, Theorem 3.8], we have that f1 satisfies the Kurdyka–Łojasiewicz property at
every point.

Proposition 3.3 Let C be a compact set such that ai /∈ C, for each i = 1, . . . , n. Then,
the vector field grad f1 : M → T M is Lipschitz continuous on C.

Proof From the fact thatC is compact, we have themanifold M which has the sectional
curvature bounded from above and below on C denoted byΔ and δ, respectively. Take
any x ∈ C , whence x �= ai for all i = 1, . . . , n, and let γ (t) be a unit speed geodesic,
with γ (0) = x , making at x an angle βi with the minimal geodesic from ai to x . From
Proposition 3.1, there exists a constant α ≥ 0 such that

α ≤ d2

dt2
( f1 ◦ γ )(t)|t=0.

On the other hand, since M is a Hadamard manifold, we have that δ ≤ 0. It follows
from [41, pp. 152–154] that

d2

dt2
( f1 ◦ γ )(t)|t=0 ≤

n∑
i=1

ctδ(d(x, ai )) sin
2 βi , (9)

where ctδ(l) = 1

l
, if δ = 0, and ctδ(l) = √|δ| coth(√|δ|l), if δ < 0. Since ai /∈ C , for

each i = 1, . . . , n, we have that d(x, ai ) is positive and from the fact thatC is compact
we obtain that the right-hand side of (9) has an upper bound. Thus, the Hessian of f1
at every x ∈ C is bounded which means that grad f1 is Lipschitz continuous on C . ��

Now,wepresent a versionof the steepest descentmethod for computingRiemannian
L1 center of mass of the data set {ai }n

i=1 ⊂ M . To this end, we denote the index
q ∈ {1, . . . , n} such that f1(aq) = mini=1,...,n f1(ai ). We also assume that aq is not a
solution (Riemannian L1 center ofmass). Next, we consider {xk} a sequence generated
by Algorithm 1 for computing Riemannian L1 center of mass, i.e., taking f = f1.
Note that for any x0 ∈ M , we have that xk ∈ L f1(x0), for all k ∈ N, and L f1(x0) is a
nonempty and compact set. Then, we consider a direction dq and tq small enough such
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that f1(expaq
tqdq) < f1(aq). Setting x0 := expaq

tqdq , we have that ai /∈ L f1(x0),
for each i = 1, . . . , n.

Theorem 3.1 The sequence {xk} converges to the unique Riemannian L1 center of
mass of the data set {ai }n

i=1 as long as the points ai , for i = 1, . . . , n, are not collinear.

Proof Since xk ∈ L f1(x0), for all k ∈ N and L f1(x0) is a compact set,wehave that {xk}
is bounded. Hence, let x̂ be a cluster point of {xk}. Since the points ai , for i = 1, . . . , n,
are not collinear, from Remark 3.1 we have that f1(x) = ∑n

i=1 wi d(x, ai ) satisfies
the Kurdyka–Łojasiewicz inequality at x̂ . Thus, from Theorem 2.1, we obtain that
{xk} converges to x̂ which is a critical point of f1. From Proposition 3.2 (a), we have
that f1 is convex which means that x̂ is a minimizer of f1. From Proposition 3.2 (c),
such a minimizer is unique. This completes the proof. ��

Before analyzing the convergence of an algorithm for computing Riemannian L2

center of mass, we state and prove some preliminary results.

Proposition 3.4 The following statements hold:

(a) The function f2(x) = 1
2

∑n
i=1 wi d2(x, ai ) is strictly convex and continuously

differentiable with its gradient Lipschitz on compact sets;
(b) The problem of computing Riemannian L2 center of mass always has a unique

solution.

Proof (a) The strictly convexity and continuously differentiability of f2 can be found
for instance in [24, page 111]. Let C ⊂ M be a compact set. Then, M has the
sectional curvature bounded from above and below on C denoted by Δ and δ,
respectively. Take any x ∈ C and let γ (t) be a unit speed geodesic, with γ (0) = x ,
making at x an angle βi with the minimal geodesic from ai to x . One can verify
from [41, pp. 152–154] that

d2

dt2
( f2 ◦ γ )(t)|t=0 ≤

n∑
i=1

cδ(d(x, ai )) sin
2 βi , (10)

where cδ(l) = 1, if δ = 0, and cδ(l) = √|δ| coth(√|δ|l), if δ < 0. Therefore, an
upper bound to (10) follows from the fact that C is compact. From [42, Corollary
3.1], we have that d2(·, z) is a strongly convex function, and hence

0 ≤ d2

dt2
( f2 ◦ γ )(t)|t=0.

Thus, the Hessian of f2 at every x ∈ C is bounded which means that grad f2 is
Lipschitz continuous on C .

(b) Since f2 is continuous and coercive, f2 has a minimizer. The uniqueness follows
from the strictly convexity of f2. ��

Remark 3.2 As already mentioned in Introduction, in [11] the authors dealt with Prob-
lem 5. It is worth mentioning that, among other things, the authors in particular studied
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the existence of solutions to the L1 case, investigated in Proposition 3.2 item b), and
L2, dealt with in Proposition 3.4 item b). We chose to keep a proof for each of these
items just for the sake of completeness.

It follows from [42, Corollary 3.1] that d2(·, z) is a strongly convex function. Since
the finite sum of strongly convex functions is still strongly convex, from Remark 2.1
one has the following result:

Proposition 3.5 The function f2(x) = 1
2

∑n
i=1 wi d2(x, ai ) satisfies the Kurdyka–

Łojasiewicz inequality at every point of M.

Next, we consider {xk} the sequence generated by SDM for computing the Rie-
mannian L2 center of mass, i.e., taking f = f2. Similar to the case p = 1,
we have that for any x0 ∈ M , xk ∈ L f2(x0), for all k ∈ N, and L f2(x0) is a
nonempty and compact set. Then, we consider a direction dq and tq small enough
such that f2(expaq

tqdq) < f2(aq), where q denotes the index in {1, . . . , n} such that
f2(aq) = mini=1,...,n f2(ai ). Setting x0 := expaq

tqdq , we have that ai /∈ L f2(x0),
for each i = 1, . . . , n.

Theorem 3.2 The sequence {xk} converges to the unique Riemannian L2 center of
mass of the data set {ai }n

i=1.

Proof Since xk ∈ L f2(x0), for all k ∈ N and L f2(x0) is a compact set, we have that
{xk} is bounded. Hence, let x̂ be a cluster point of {xk}. From Proposition 3.5, we have
that f2(x) = 1

2

∑n
i=1 wi d2(x, ai ) satisfies the Kurdyka–Łojasiewicz inequality at x̂ .

Thus, from Theorem 2.1, we obtain that {xk} converges to x̂ which is a critical point
of f2. Proposition 3.4 (a) implies that f2 is strictly convex which means that x̂ is the
unique minimizer of f and the proof is completed. ��

4 Numerical Experiments

This section is devoted to some numerical experiments. We coded our simulations in
MATLAB on a machine AMD Athlon(tm) X2 with a Dual Core Processor and 1.20
GHz CPU.

Let Sm be the set of the symmetric matrices, Sm+ be the cone of the symmetric
positive semi-definite matrices and Sm++ be the cone of the symmetric positive definite
matrices both m × m. For X , Y ∈ S

m+, Y � X (or X � Y ) means that Y − X ∈ S
m+

and Y � X (or X ≺ Y ) means that Y − X ∈ S
m++. Let M := (Sm++, 〈 , 〉) be the

Riemannian manifold endowed with the Riemannian metric induced by the Euclidean
Hessian of Ψ (X) = − ln det X ,

〈U , V 〉 = tr (V Ψ ′′(X)U ) = tr (V X−1U X−1), X ∈ M, U , V ∈ TX M, (11)

where tr (A) denotes the trace of matrix A ∈ S
m and TX M ≈ S

m , with the corre-
sponding norm denoted by ‖ . ‖; see Rothaus [43]. In this case, for any X , Y ∈ M the
unique geodesic joining those two points is given by:
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γ (t) = X1/2
(

X−1/2Y X−1/2
)t

X1/2, t ∈ [0, 1];

see, for instance, [44]. More precisely, M is a Hadamard manifold; see, for example,
[10, Theorem 1.2., page 325]. One can compute the curvature of M and verify that M
has nonconstant curvature; see [45, page 428]. From the above equality, it is immediate
that

γ ′(0) = X1/2 ln
(

X−1/2Y X−1/2
)

X1/2.

Thus, for each X ∈ M , expX : TX M → M and exp−1
X : M → TX M are given,

respectively, by

expX V = X1/2e
(
X−1/2Y X−1/2

)
X1/2, exp−1

X Y = X1/2 ln
(

X−1/2Y X−1/2
)

X1/2.

(12)
Now, since the Riemannian distance d is given by d(X , Y ) = || exp−1

X Y ||, from (11)
along with second expression in (12), we conclude

d2(X , Y ) = tr
(
ln2 X−1/2Y X−1/2

)
=

n∑
i=1

ln2 λi

(
X− 1

2 Y X− 1
2

)
, (13)

where λi (X− 1
2 Y X− 1

2 ) denotes the i th eigenvalue of the matrix X− 1
2 Y X− 1

2 .
The numerical experiment aims to verify the efficiency of the gradient method in

locating L1 and L2 center of mass on Hadamard manifolds. In our simulations, we
consider different scenes taking into account three parameters: the number of matrices
n in the data set {Qi }n

i=1, the sizem×m of thematrices and the stopping rule ε > 0. The
random matrices we use for our test are generated with an uniform (well-conditioned)
and non-uniform (ill-conditioned) distribution of the eigenvalues of each matrix of

the data set. Hence, the non-uniform distribution satisfies
λmax

λmin
> 102, where λmax

and λmin denote the largest and the smallest eigenvalues of each matrix of the data
set, respectively. Table 1 reports the number of iterations, CPU time in seconds and
gradient norm of the sequence generated by Algorithm 1 for finding L2 center of mass
of the data set {Qi }n

i=1 with m × m matrices. The constant stepsize {tk} satisfying the
fixed stepsize rule and weights {wi }n

i=1 were taken as tk = wi = 1
n , for all k ∈ N and

i = 1, . . . , n with δ1 = 1
2n and δ2 = 1

4 . In these simulations, we use the stopping rule
d(xk+1, xk) < 10−8 (Figs. 1, 2).

We report to the substantial reduction in the number of iterations obtained from
non-uniform to uniform distribution of the eigenvalues.
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Table 1 Computing L2 center of mass

Scene Distribution of eigenvalues

Non-uniform Uniform

m n Iterations Time (s) Gradient norm Iterations Time (s) Gradient norm

5 25 25 3.3750 8.749664E−09 4 0.5010 1.595908E−09

5 50 24 5.6740 5.934015E−09 4 0.9740 1.060440E−10

5 75 21 7.4900 5.727201E−09 4 1.4600 1.631894E−10

5 100 22 10.4980 5.910573E−09 4 1.9100 1.906906E−10

10 25 20 8.1450 5.070213E−09 4 1.5840 1.440047E−09

10 50 19 14.7270 6.388001E−09 4 3.2520 8.882587E−10

10 75 17 19.6690 6.927831E−09 4 4.6280 6.153625E−10

10 100 18 27.2100 3.801648E−09 4 6.1710 5.657227E−10

20 25 17 26.3320 9.863386E−09 4 6.4640 2.814672E−09

20 50 16 48.2870 5.947555E−09 4 12.3150 1.669254E−09

20 75 15 67.5530 4.778214E−09 4 17.8580 1.793198E−09

20 100 15 90.3390 5.772144E−09 4 24.1080 2.184789E−09

40 25 16 105.4830 4.922728E−09 4 27.0140 4.602772E−09

40 50 14 180.8780 9.535475E−09 4 53.6340 3.741021E−09

40 75 14 269.8180 6.516032E−09 4 79.8530 3.070095E−09

40 100 14 360.3390 3.418268E−09 4 106.3220 2.906204E−09

Fig. 1 Non-uniform distribution

Fig. 2 Uniform distribution

123



Journal of Optimization Theory and Applications (2019) 183:977–992 989

Table 2 Computing L1 center of mass

Scene Distribution of eigenvalues

Non-uniform Uniform

m n Iterations Time (s) Gradient norm Iterations Time (s) Gradient norm

5 25 14 5.4600 1.615722E−07 8 2.5270 6.431948E−07

5 50 17 13.5570 4.462231E−08 8 4.9760 2.722158E−07

10 25 61 61.5860 8.960679E−01 35 23.0250 7.577621E−07

10 50 37 74.6150 3.736156E−07 27 35.4900 6.410049E−07

20 25 15 58.5940 3.808496E−07 7 17.8150 3.572900E−07

20 50 14 108.6230 3.813695E−01 7 35.0690 3.833297E−07

40 25 13 216.6850 1.659700E−07 10 107.8430 6.909771E−01

40 50 19 626.5430 9.074286E−09 9 195.2500 5.180544E−07

Fig. 3 Non-uniform distribution

Next, we perform Algorithm 1 for computing L1 center of mass. The main chal-
lenge is that often the underlying function is not globally differentiable and despite
this one would like to have guaranteed effectiveness of the method. Therefore, before
starting the method, we determine a direction dq and tq small enough such that
f (expaq

tqdq) < f (aq), where q ∈ {1, . . . , n} satisfies f (aq) = mini=1,...,n f (ai ),

and hence set x0 = expaq
tqdq . Thus, we avoid the non-differentiability of the function

under consideration. Table 2 reports the number of iterations, CPU time in seconds
and gradient norm of the sequence generated by Algorithm 1 for finding L1 center of
mass of the data set {Qi }n

i=1 with m × m matrices and using the stepsize given by the
Armijo’s rule. We use the stopping rule d(xk+1, xk) < 10−6.

We can note by comparing Tables 1 and 2 that, even with a uniform distribution of
the eigenvalues, computing L1 center of mass demands more efforts in both number of
iterations and CPU time than to compute L2 center of mass. Next figures plot side by
side the number of iterations and CPU time necessary for computing L1 and L2 center
of mass of a data set. In this simulation, we consider the eight scenarios presented in
Table 2 for values of n and m (Figs. 3, 4).
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Fig. 4 Uniform distribution

5 Conclusions

In this paper, we have considered the steepest descent method for computing Rie-
mannian center of mass on Hadamard manifolds. As mentioned in Remark2.2, we
choose to handle with Hadamard manifolds just for the sake of simplicity because
our results also work on any set where the uniqueness of minimizing geodesics holds,
for example in convex balls (without any assumption on the signal of the curvature).
Some numerical experiments computing L1 and L2 center of mass in the context of
positive definite symmetric matrices are presented using two different stepsize rules.
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