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Abstract
This work, with its three parts, reviews the state-of-the-art of studies for the tensor
complementarity problem and some related models. In the first part of this paper,
we have reviewed the theoretical developments of the tensor complementarity prob-
lem and related models. In this second part, we review the developments of solution
methods for the tensor complementarity problem. It has been shown that the tensor
complementarity problem is equivalent to some known optimization problems, or
related problems such as systems of tensor equations, systems of nonlinear equations,
and nonlinear programming problems, under suitable assumptions. By solving these
reformulated problems with the help of structures of the involved tensors, several
numerical methods have been proposed so that a solution of the tensor complemen-
tarity problem can be found. Moreover, based on a polynomial optimization model,
a semidefinite relaxation method is presented so that all solutions of the tensor com-
plementarity problem can be found under the assumption that the solution set of the
problem is finite. Further applications of the tensor complementarity problem will be
given and discussed in the third part of this paper.
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1 Introduction

In the 1st part of this paper [1], we reviewed some theoretical developments of the
tensor complementarity problem (TCP), in which we can see that many theoretical
results for the TCP are extensions of those obtained in the linear complementarity
problem (LCP) and that they are not covered by those achieved in the general nonlinear
complementarity problem (NCP).

Undoubtedly, one of the central tasks is to develop numerical methods to solve
the TCP. On the one hand, it is known that the TCP is an extension of the LCP and
that the solution methods of LCPs depend heavily on the linearity of the involved
function and the special structure of the involved matrix. Since the function involved
in the TCP is nonlinear and the structure of the involved tensor is far more complex
than that of the matrix, the design and analysis of algorithms for TCPs are different
from those for LCPs. On the other hand, since the TCP is a subclass of the NCP,
solution methods for the NCP are applicable to the TCP, if required conditions are
satisfied. However, since the function involved in the TCP is a special class of poly-
nomials defined by a tensor, one may expect to design effective methods for the
TCP by making use of the structure of the involved tensor. Recently, several methods
for the TCP have been proposed. In this 2nd part, we review these methods for the
TCP.

It was proved that the TCP is equivalent to several systems of tensor equations
under appropriate conditions (see [2–6]). By solving these systems of tensor equations,
several numerical methods for solving the TCP were developed, including solution
methods based on systems of tensor equations (see [2–4]), potential reduction meth-
ods [7], and homotopy continuation methods [6]. These numerical methods will be
reviewed in Sect. 3.

It was proved that the TCP is equivalent to several systems of nonlinear equa-
tions in terms of some NCP-function or the modulus-based reformulation (see [8,9]).
By solving these reformulated systems of nonlinear equations, several numerical
methods for solving the TCP were developed, including smoothing Newton method
[8] and modulus-based methods [9]. These numerical methods will be reviewed in
Sect. 4.

It was proved that the TCP could be solved by several nonlinear programming
problems [4,10]. One of them is to solve a finite number of lower-dimensional poly-
nomial optimization problems so that the least solution of the TCP is obtained
[4], and the other is to solve a reformulated mixed integer programming, by
which one can obtain either a solution of the TCP, or a certificate which implies
that the TCP has no solution [10]. These numerical methods will be reviewed in
Sect. 5.

Under the assumption that the TCP has finite number of solutions, a semidefinite
relaxation method was proposed to solve several polynomial optimization problems
with the objectives being random polynomials and the constraints being the solution
set of the TCP and some additional inequality constraints of polynomials, so that all
solutions of the TCP can be found [11]. We will review such an approach in Sect. 6.

Some perspectives and open problems are given in Sect. 7, and conclusions in
Sect. 8.
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2 Preliminaries

We would like to point out that all related notations used in this part are the same as
those in the 1st part of this paper [1]. Moreover, we also use the following notations.
For any two vectors x and y, we use (x, y) to denote (x�, y�)� for simplicity. For
any x ∈ R

n , we use diag(x) to denote the diagonal matrix whose (i, i)th entry is xi
for all i ∈ [n]. For any index set I , we use |I | to denote its cardinality. For any vector
x ∈ R

n , tensor A ∈ R
[m,n], and index set I ⊂ [n], xI denotes the subvector of x

whose components are xi for i ∈ I , and AI denotes the principal subtensor of A of
orderm dimension |I |, which is defined byAI := (ai1i2...im ) for all i1, i2, . . . , im ∈ I .

Suppose that F : S ⊆ R
n → R

n is a locally Lipschitz function, where the set S
is nonempty and open. By Rademacher’s Theorem, it holds that F is differentiable
almost everywhere in the sense of the Lebesgue measure onRn [12,13]. LetDF ⊆ R

n

denote the set of points at which F is differentiable. For any x ∈ DF , we denote the
Jacobi matrix of F at x by F ′(x). The B-subdifferential of F at x is defined by

∂B F(x) :=
{
V ∈ R

[2,n] : ∃{xk} ⊆ DF with xk → x and F ′(xk) → V
}

.

The generalized Jacobian of the function F at x in the sense of Clarke [14] is defined by
∂F(x) = co{∂B F(x)}, where “co” denotes the convex hull. Furthermore, the function
F : S ⊆ R

n → R
n is called to be semismooth at x , iff it is locally Lipschitz at x and

limV∈∂F(x+t d̂),d̂→d,t→0+ V d̂ exists for any d ∈ R
n [15–17].

Recall that the TCP is to find a vector x ∈ R
n such that

x ≥ 0, A xm−1 + q ≥ 0, and x�(A xm−1 + q) = 0, (1)

whereA ∈ R
[m,n] and q ∈ R

n are given. We denote it by the TCP(A , q). Obviously,
it can be equivalently written as: Find a vector (x, y) ∈ R

n × R
n such that

x ≥ 0, y = A xm−1 + q ≥ 0, and x�y = 0 (2)

in the sense that x ∈ R
n solves the TCP(A , q) (1) if and only if there exists y ∈ R

n

such that (x, y) ∈ R
n × R

n solves (2).

3 SolutionMethods for the TCP Based on Reformulated Tensor
Equations

In this section, we describe several methods for solving the TCP with the help of some
approaches for solving systems of tensor equations.

3.1 Methods Based on Systems of Tensor Equations

Recall that a tensor A = (ai1i2...im ) ∈ R
[m,n] is said to be a Z -tensor, iff all its off-

diagonal entries are non-positive. Luo et al. [2] considered the TCP(A , q) with A
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being a Z -tensor and q being a non-positive vector and showed that it is equivalent to
a system of tensor equations with nonnegative constraints.

Theorem 3.1 [2, Corollary 2] LetA ∈ R
[m,n] be a Z-tensor and −q ∈ R

n+. Then, the
following two statements are equivalent.

(a) x ∈ R
n+, A xm−1 + q ∈ R

n+, and x�(A xm−1 + q) = 0.
(b) x ∈ R

n+ and A xm−1 + q = 0.

Theorem 3.1 demonstrates that, when A is a Z -tensor and −q ∈ R
n+, an arbitrary

method of finding nonnegative solutions ofA xm−1+q = 0 can be employed in order
to obtain a solution to the TCP(A , q) (1). Furthermore, whenA is a strong M-tensor,
i.e., A = τI − B where τ ∈ R, I is the unit tensor, B is a nonnegative tensor,
and τ > ρ(B) with ρ(B) being the spectral radius of B, Ding and Wei [18] proved
that A xm−1 + q = 0 has a unique nonnegative solution if −q ∈ R

n+, and proposed
several approaches to find such a solution. Thus, the methods proposed in [18] can be
employed to obtain a solution to the TCP(A , q) (1) with A being a strong M-tensor
and −q ∈ R

n+.
Recall that a solution x∗ of the TCP(A , q) (1) is strictly complementary, iff

x∗ + y∗ > 0,

where y∗ := A (x∗)m−1 + q. In [3], Xu et al. showed the following result.

Theorem 3.2 [3, Theorem 2.4] Let A ∈ R
[m,n] be a positive semidefinite Z-tensor

and q ∈ R
n. Suppose that there is a solution of the TCP(A , q) which is strictly

complementary. Then, the TCP(A , q) is equivalent to the system of tensor equations:

AI x
m−1
I + qI = 0I and xJ = 0J , (3)

where I := {i ∈ [n] : qi ≤ 0} and J := {i ∈ [n] : qi > 0}.
When all the assumptions of Theorem 3.2 are satisfied, the TCP(A , q) (1) can

be solved by the system of tensor equations (3). Generally, the equivalent system of
equations (3) to the TCP(A , q) (1) is lower dimensional unless q ≤ 0. When A is a
strong M-tensor, the system of equations (3) can be solved by the numerical methods
proposed by Ding and Wei [18].

Recall that a tensor A ∈ R
n is said to be strongly monotone over K ⊆ R

n , iff

A (xm−1 − ym−1) ≥ 0 ⇐⇒ x ≥ y, ∀x, y ∈ K .

If K = R
n , then A is said to be strongly monotone (see [4, Definition 2.5]). Xie et

al. [4] considered the TCP(A , q) with A being a strongly monotone Z -tensor, and
showed that it can be solved by finitely many systems of lower-dimensional tensor
equations. In fact, this method is to find the least solution of the TCP whose definition
is given as follows.
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Definition 3.1 [4, Definition 2.4] Let the feasible set of the TCP (1) be denoted by

F (A , q) :=
{
x ∈ R

n+ : F(x) := A xm−1 + q ≥ 0
}

. (4)

A vector x̄ ∈ F (A , q) is said to be the least element of F (A , q), iff x̄ ≤ x holds
for all x ∈ F (A , q). Furthermore, x̄ is said to be the least solution to the TCP(A , q)

(1), iff it is the least element ofF (A , q) and a solution to the TCP(A , q) (1).

Suppose that index sets I and J are a partition of [n], which means that I
⋂

J = ∅
and I

⋃
J = [n]. Let x ∈ R

n and P(I , J ) denote the following system of equations:

FI (x) := (A xm−1 + q)I = 0 and xJ = 0. (5)

If x̄ ∈ R
n solves P(I , J ) given by (5), and satisfies x̄ I ≥ 0 and FJ (x̄) ≥ 0, then x̄

solves the TCP(A , q) (1). Moreover, it is obvious from Definition 3.1 that if the least
solution to the TCP exists, then it is unique. The specific algorithm is given as follows.

Algorithm 3.1 (A sequential tensor equations method) [4, Algorithm 1]

Step 0 Set the initial index sets I0 := {i ∈ [n] : qi < 0} and J0 := [n] \ I0. Stop if
I0 = ∅ (x = 0 is a solution to (1)). Otherwise, set k := 0.

Step 1 Solve the lower-dimensional tensor equations P(Ik, Jk) to get xk .
Step 2 Stop if FJk (x

k) ≥ 0. Otherwise, let

Ik+1 := Ik
⋃

{i ∈ Jk : Fi (xk) < 0} and Jk+1 := [n] \ Ik+1.

Step 3 Let k := k + 1. Go to Step 1.

The convergence of Algorithm 3.1 is given as follows.

Theorem 3.3 [4, Theorem 2.1] LetA ∈ R
[m,n] be a strongly monotone Z-tensor, and

the sequence {xk} be generated by Algorithm 3.1. Then, {xk} is finite and monotone,
and the last point of the sequence is the least solution to the TCP(A , q) (1).

It should be pointed out that only finitelymany systems of lower-dimensional tensor
equations need to be solved in order to achieve the least solution to the TCP (1).

Remark 3.1 In this subsection, we reviewed three methods to solve the TCP (1) by
solving systems of equations in the form ofA xm−1 + q = 0. In fact, in recent years,
the system of equations A xm−1 + q = 0 has attracted a lot of attention, and a large
number of numerical methods have been proposed [18–27]. It is possible that the
methods in [18–27] provide potential approaches for solving the TCP (1).

3.2 Potential ReductionMethods

Throughout this subsection, we assume that A ∈ R
[m,n] is symmetric.

The potential reduction method is an important kind of interior point methods
(IPMs), which is based on reducing a suitable potential function at each iteration. It has
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been successfully applied to solve linear programming, the LCP, and some nonlinear
optimization (see [5,28]). In this subsection, we describe a potential reduction method
for solving the TCP, which was proposed by Zhang et al. [7].

For any x ∈ R
n , let X := diag(x) and

H(x, y) :=
(
Xy
y − (A xm−1 + q)

)
= 0, x, y ∈ R

n+. (6)

Then, (x, y) ∈ R
n × R

n solves (6) if and only if it solves the TCP(A , q). Thus, one
may solve (6) to obtain a solution of the TCP(A , q). The IPM is an iterative method
which solves (6), where, in each iteration, a Newton-type equation for H(x, y) = 0 is
solved and the iterative point (x, y) satisfies (x, y) ∈ R

n++×R
n++, until some stopping

criteria are met.
Before the detailed description of the algorithm, we point out the following three

issues.

• First, for an IPM, if each iterative point (x, y) satisfies y = A xm−1 + q besides
(x, y) ∈ R

n++ × R
n++, then it is called a feasible IPM; otherwise, it is called an

infeasible IPM. Since A xm−1 is nonlinear, it is generally difficult to keep the
feasibility (i.e., y = A xm−1 + q with (x, y) ∈ R

n++ × R
n++) at each iteration.

Thus,we’ll consider an infeasible IPM for theTCP(A , q)where all iterative points
are desired to lie in the set Ω++ defined by

Ω++ := {(x, y) ∈ R
n++ × R

n++ : ‖y − (A xm−1 + q)‖∞ < ε},
where ε > 0 is a small tolerance.

• Second, it is well known that, for IPMs, one of the basic issues is the invertibility
of the Jacobi matrix of the reformulated function H(·, ·). Let H ′(x, y) denote the
Jacobi matrix of H(x, y) at (x, y) ∈ R

n × R
n . Then

H ′(x, y) =
(
Y X
−(m − 1)A xm−2 I

)
,

where X := diag(x) and Y := diag(y). Recall that a symmetric tensor A ∈
R

[m,n] is called diagonalizable [29], iff A = D ×1 B ×2 B ×3 · · · ×m B where
B ∈ R

[2,m] with det(B) �= 0, D is a diagonal tensor, and ×i denotes the mode-i
product; and that A is called positive definite, iff A xm > 0 for all x ∈ R

n \ {0}.
It was proved in [7, Theorem 3.2] that H ′(x, y) is nonsingular for any (x, y) ∈
R
n++ × R

n++, if A ∈ R
[m,n] is diagonalizable and positive definite.

• Third, the IPM we’ll consider here is a potential reduction method which is based
on the following potential function:

φ(z) := (n + s) ln[x�y + ‖y − A xm−1 − q‖22] −
n∑

i=1

lnxi yi ,

where z := (x, y) and s > 0 is a parameter. Such a function has been used in
several potential reduction methods (see [30–33]).
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Algorithm 3.2 (A potential reduction method) [7, Algorithm 1]

Step 0 (Initialization) Let s > 0, ε > 0, α ∈ (0, 1), β̄ ∈ [0, 1), σ > 0, and ρ ∈ (0, 1)
be given. Choose any z0 := (x0, y0) ∈ Ω++ and β0 ∈ [0, β̄). Set k := 0.

Step 1 (Direction generation) Solve the system of equations

(
Y k Xk

−(m − 1)A (xk)m−2 I

) (
Δxk

Δyk

)
=

(
−Xk yk + β

(xk )�yk

n e
−yk + A (xk)m−1 + q

)

to obtain the search direction dk := (Δxk,Δyk), where e is the vector of all
ones.

Step 2 (Stepsize determination) Let lk be the smallest nonnegative integer l such that
the following two conditions hold:

zk + σρldk ∈ Ω++ and φ(zk + σρldk) − φ(zk) ≤ −ασρl(1 − βk)s.

Set zk+1 = zk + σρlk dk .
Step 3 (Termination verification) If zk+1 satisfies

f (zk+1) = (xk+1)�yk+1 + ‖yk+1 − A (xk+1)m−1 − q‖2 < ε,

then zk+1 is an approximation solution of the TCP(A , q); else if

zk+1 − zk < ε and lnxk+1
j yk+1

j = 0 for some j ∈ [n],

then zk+1 is an approximation solution; otherwise, pick any βk+1 ∈ [0, β̄] and
return to Step 1 with k = k + 1.

It was proved in [7, Theorems 4.1–4.3] that Algorithm 3.2 is well defined. Further-
more, the convergence of Algorithm 3.2 can be found in [7, Theorem 4.6], which is
given as follows.

Theorem 3.4 Suppose that A ∈ R
[m,n] is diagonalizable and positive definite, and

the sequence {zk} is generated by Algorithm 3.2. Then, the sequence {zk} is bounded
and every accumulation point of {zk} is a solution of the TCP(A , q) (2).

Remark 3.2 In this subsection, we reviewed a potential reduction method to solve the
TCP, which possesses the global convergence under suitable assumptions. In fact, a
key issue in the field of IPMs is to investigate the polynomial complexity of algorithms.
Thus, it is an important issue to study the polynomial complexity of IPMs for solving
TCPs. It is known that the IPM is a large class of methods which is very successful
for solving various optimization problems, and it contains affine scaling methods and
path-following methods besides potential reduction methods. In all kinds of IPMs,
the primal-dual path-following IPM is one of the most popular methods. Thus, more
effective IPMs for the TCP need to be further studied.
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3.3 Homotopy ContinuationMethods

Homotopy continuation methods form an important class of methods for solving com-
plementarity problems (see [34–38]), and they have been successfully developed for
solving tensor eigenvalue problems [39] and systems of tensor equations [20]. In the
following, we describe a homotopy continuation method for the TCP proposed by
Han [6], which is based on a Kojima–Megiddo–Mizuno [36]-type homotopy mapping
H : [0, 1] × R

2n → R
2n defined by

H(t, x, y) :=
(
Xy − ta
y − (1 − t)(A xm−1 + q) − tb

)
,

where X := diag(x), and a ∈ R
n+ and b ∈ R

n++ are two known vectors.
Starting with t = 1 and (x0, y0) := (B−1a, b), where B = diag(b), the homotopy

continuation method follows a path from t = 1 to t = 0 by solving the system

H(t, x, y) = 0, ∀(x, y) ≥ 0. (7)

In order to ensure the boundedness of the homotopy trajectory of the continuation
method for solving the NCP, several conditions were proposed in [34–38], which
were summarized to Conditions 1–3 in [6]. However, it was illustrated in [6] that these
conditions are not satisfied when A ∈ R

[m,n] is strictly semi-positive.
Furthermore, in order to ensure that the homotopy system (7) yields a specific

trajectory, it is sufficient if the Jacobi matrix of H(t, x, y) with respect to (x, y) is
invertible. This can be guaranteed when A ∈ R

[m,n] is strong strictly semi-positive
(i.e., maxi∈[n](xi − yi )[(A xm−1)i − (A ym−1)i ] > 0 for any distinct x, y ∈ R

n+).
Note that the partial derivatives of the homotopy mapping H(t, x, y) can be given by

Dt H(t, x, y) =
(−a
A xm−1 + q − b

)
;

D(x,y)H(t, x, y) =
(
Y X
−(1 − t)(m − 1) ˆA xm−2 In

)
,

where ˆA = 1
p

∑p
k=1Ai1i

(k)
2 ...i (k)m

, where the sum is over all the p different permutations

i (k)2 , . . . , i (k)m of i2, . . . , im . The following results hold true.

Theorem 3.5 [6, Theorem 2.3] Let a ∈ R
n++. Suppose that A ∈ R

[m,n] is a strong
strictly semi-positive tensor and q ∈ R

n. Then, for almost every b ∈ R
n++, solving the

system (7) yields a smooth and bounded trajectory

T = {(t, x(t), y(t)) : 0 < t ≤ 1} ⊂ (0, 1] × R
n+ × R

n+.

Moreover, tracing this trajectory, the solution of the initial value problem:

DzH(t, z)
dz

dt
= −Dt H(t, z), z(1) = (x0, y0), where z := (x, y),
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converges to the unique solution (x∗, y∗) of the TCP(A , q) (2) as t → 0.

A specific algorithm was proposed as follows.

Algorithm 3.3 (An Euler–Newton predictor–corrector method) [6, Algorithm 3.1]

Step 0 Choose a, b ∈ R
n++. Choose initial step size Δt0 > 0, tolerance ε1 > 0 and

ε2 > 0. Let t0 = 1, x0 = B−1a, y0 = b. Let z = (x, y) and z0 = (x0, y0).
Set k := 0.

Step 1 Set tk+1 = tk − Δtk . If tk > 0 and tk+1 ≤ 0 for some k, then set N = k and
reset t N+1 = 0 and Δt N = t N .

Step 2 Compute the tangent vector g to H(t, z) = 0 at tk by solving the linear system
DzH(tk, zk)g = −Dt H(tk, zk) for g. Then compute the approximation z̃ to
zk+1 by z̃ = zk + Δtkg.

Step 3 Initialize w0 = z̃. For i = 1, 2, . . ., compute

wi+1 = wi − [DzH(tk+1, wi )]†H(tk+1, wi )

until ‖H(tk+1, w J )‖ ≤ ε1 if k < N , or ‖H(tk+1, w J )‖ ≤ ε2 if k = N ,
where † denotes the pseudo-inverse. Then let zk+1 = w J . If k = N , set
(x∗, y∗) = zN+1 as the computed solution of problem (6) and stop.

Step 4 If more than three steps of Newton iterations were required to converge within
the desired accuracy, then Δtk+1 = 0.5Δtk . If Δtk+1 ≤ 10−6, set Δtk+1 =
10−6. If two consecutive steps were not cut, then Δtk+1 = 2Δtk . If Δtk+1 ≥
0.5, set Δtk+1 = 0.5. Otherwise, Δtk+1 = Δtk . Set k := k + 1. Go to Step 1.

Remark 3.3 In this subsection, we reviewed a homotopy continuation method for the
TCP based on a Kojima–Megiddo–Mizuno type homotopy mapping. It is known that
various homotopy methods have been successfully designed to solve the complemen-
tarity and related problems. Thus, by making use of structures of the involved tensors,
it is possible that more effective homotopy methods for the TCP can be proposed.

4 SolutionMethods for the TCP Based on Reformulated Nonlinear
Equations

In this section, we describe several methods for solving the TCP with the help of some
approaches for solving some reformulated systems of nonlinear equations.

4.1 Methods for the TCP Based on Smoothing Reformulations

It is well known that an NCP can be equivalently reformulated as a system of non-
smooth equations by using some NCP-function [40,41]. In order to overcome the
difficulty caused by the non-smoothness of the NCP-function, replacing the NCP-
function by its smooth approximation function, the NCP can be reformulated as a
system of parameterized smooth equations. Thus, the NCP can be solved by applying
the reformulated smooth equations by the Newton method iteratively, and making the
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smooth approximation function tend to the original one, which is called the smoothing
Newton method [42–48].

We use the following function:

φ
μ
FB(a, b) = a + b −

√
a2 + b2 + μ2, ∀a, b ∈ R

which is the smooth approximation of the Fischer–Burmeister function [49]. Let

H(μ, x, y) :=

⎛
⎜⎜⎜⎜⎜⎝

μ

y − (A xm−1 + q)

φ
μ
FB(x1, y1)

...

φ
μ
FB(xn, yn)

⎞
⎟⎟⎟⎟⎟⎠

.

It is easy to see that the function H(μ, x, y) is continuously differentiable at any
(μ, x, y) ∈ R++ × R

n × R
n , and H(μ, x, y) = 0 if and only if μ = 0 and (x, y)

solves the TCP(A , q) (2). Thus, we may apply some Newton-type method to solve
the smoothing equations H(μ, x, y) = 0 at each iteration and make H(μ, x, y) → 0
so that a solution of the TCP(A , q) (2) can be found.

Algorithm 4.1 (A smoothing Newton method) [8, Algorithm 5.1]

Step 0 Choose δ, σ ∈ (0, 1), μ0 > 0, and (x0, y0) ∈ R
2m . Set z0 := (μ0, x0, y0).

Choose β > 1 such that ‖H(z0)‖ ≤ βμ0. Set e0 := (1, 0, . . . , 0) ∈ R
1+2m

and k := 0.
Step 1 If ‖H(zk)‖ = 0, stop.
Step 2 Compute Δzk := (Δμk,Δxk,Δsk) ∈ R × R

m × R
m by

H(zk) + H ′(zk)Δzk = (1/β)‖H(zk)‖e0.

Step 3 Let λk be the maximum of the values 1, δ, δ2, . . . such that

‖H(zk + λkΔzk)‖ ≤ [1 − σ(1 − 1/β)λk]‖H(zk)‖.

Step 4 Set zk+1 := zk + λkΔzk and k := k + 1. Go to Step 1.

The related algorithmic framework was proposed in [50]. It follows that Algo-
rithm4.1 is globally convergent if (x−y)�(A xm−1−A ym−1) ≥ 0 for any x, y ∈ R

n .

Remark 4.1 The smoothing Newton method is a powerful tool for solving comple-
mentarity and related problems, and a large number of smoothing Newton methods
have been proposed in the literature. In order to use smoothing Newton methods to
solve the TCP effectively, the structures of the tensors involved need to be thoroughly
dissected. It is worthy of investigating various smoothing Newton methods by making
use of special structures of the tensors involved.

Moreover, by using a reformulation based on the Fischer–Burmeister function, a
gradient dynamic approach for solving the TCP was proposed in [51].
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4.2 Methods for the TCP Based on theModulus-Based Reformulation

Recently, Liu et al. [9] proposed an approach to solve the TCP based on a modulus-
based reformulation.

Theorem 4.1 [9, Theorem 4.3] |x |+ x ∈ R
n is a solution of the TCP(A , q) (1) if and

only if x ∈ R
n is a solution of the system of equations: x = |x |−A (|x |+ x)m−1 −q,

where |x | = (|x1|, |x2|, . . . , |xn|)� ∈ R
n.

Thus, the TCP(A , q) (1) can be solved in terms of some effective approaches for
solving the system of equations x = |x | − A (|x | + x)m−1 − q. In the following, we
describe a non-smooth Newton method given in [9].

Suppose thatA ∈ R
[m,n] is semi-symmetric, i.e., it is symmetric on the last m − 1

indices. Since ∂|x | = diag{∂|x1|, ∂|x2|, . . . , ∂|xn|} where

∂|xi |
⎧⎨
⎩

= −1, if xi < 0,
∈ [−1, 1], if xi = 0,
= 1, if xi > 0,

∀i ∈ [n],

if we denote H(x) := x−|x |+A (|x |+x)m−1+q for all x ∈ R
n , then the generalized

Jacobi matrix of H(x) is given by ∂H(x) = (I + �(x)) + (�(x) − I )∂|x |, where I
is the identity matrix and �(x) := (m − 1)A (|x | + x)m−2 and

(A zm−2)i j =
n∑

i3,...,im=1

ai ji3...im zi3 . . . zim , ∀i, j ∈ [n],∀z ∈ R
n .

The following non-smooth Newton method is a slight modification of Algorithm 4.5
proposed in [9].

Algorithm 4.2 (A modulus-based non-smooth Newton method)

Step 0 Given A ∈ R
[m,n], q ∈ R

n , and an initial vector x0. Set k := 0.
Step 1 If ‖H(xk)‖ = 0, output x = |xk | + xk , stop.
Step 2 Take V k ∈ ∂H(xk); and solve V k � xk = −H(xk) to obtain �xk .
Step 3 Let xk+1 := xk + �xk .
Step 4 Let k := k + 1. Go to Step 1.

Using methods given in [9, Corollary 4.11], we can obtain the convergence of
Algorithm 4.2.

Theorem 4.2 Let A ∈ R
[m,n] be a strongly semi-positive tensor and the sequence

{xk} be generated by Algorithm 4.2. If for every xk , A (|xk | + xk)m−2 is a P-matrix,
then Algorithm 4.2 is well defined and convergent to the unique solution x∗ in a
neighborhood of x∗ quadratically.

Remark 4.2 The LCP has been well studied by using its modulus-based reformulation
[52–55], and these studies provide important resources for further research on the TCP.
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5 SolutionMethods for the TCP Based on Reformulated
Programming Problems

In this section, we describe two methods for solving the TCP with the help of some
approaches for solving the reformulated mathematical programming problems.

5.1 Methods for the TCP Based on Reformulated Polynomial Optimization

For any x ∈ R
n , let ‖x‖0 denote the number of nonzero components of x . Then, the

problem of finding the sparsest solution to the TCP(A , q) can be modeled as

min ‖x‖0 s.t. x ∈ SOL(A , q). (8)

By Definition 3.1, it follows that the least solution of the TCP(A , q) must be an
optimal solution of (8). Thus, in order to find the sparsest solution of the TCP(A , q),
one may find the least solution of the TCP(A , q). However, since ‖ · ‖0 is nonconvex
and non-smooth, it is a difficult task to solve (8) directly.

In the field of sparse optimization, in order to overcome the difficulties caused by
the function ‖ · ‖0, one replaces ‖x‖0 by ‖x‖1 to obtain a relaxed problem and solves
the relaxed problem instead of the original one. In this regard, problem (8) can be
relaxed as

min e�x s.t. x ∈ SOL(A , q) (9)

where e is the vector of all ones. But (9) is still a difficult problem since it contains
a complementarity constraint. Fortunately, by Theorem 3.1, such a constraint can be
removed when A is a Z -tensor and −q ∈ R

n+. That is, when A is a Z -tensor and
−q ∈ R

n+, (9) is equivalent to

min e�x s.t. x ≥ 0,A xm−1 + q = 0. (10)

Furthermore, Luo et al. [2] showed that ifF (A , q) �= ∅whereF (A , q) is the feasible
set of the TCP(A , q) defined by (4), then F (A , q) has a unique least element x∗,
which is also the least solution of the TCP(A , q) and the unique solution to problem
(10). In particular, when A is a strong M-tensor and −q ∈ R

n+, problem (8) is
equivalent to problem (10). Since problem (10) is a polynomial optimization with the
linear objective function and homogeneous polynomial equality constraints together
with nonnegative constraints, some polynomial optimization methods can be used to
solve problem (10), by which one may obtain the least solution of the TCP(A , q),
which is also a sparsest solution of the TCP(A , q).

In the above method, −q ∈ R
n+ is required. Such a requirement was removed by

Xie et al. [4] based on the following result.

Theorem 5.1 [2, Corollary 1] Let A ∈ R
[m,n] be a Z-tensor and q ∈ R

n. Suppose
that the TCP(A , q) is feasible, i.e.,F (A , q) �= ∅. Then,F (A , q) has a unique least
element x∗, which is also a solution to the TCP(A , q) (1).
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Suppose that A ∈ R
[m,n] is a Z -tensor, q ∈ R

n , and F (A , q) �= ∅. Then, it
follows from Theorem 5.1 that the least solution of the TCP(A , q) (1) is the unique
solution of the following polynomial optimization problem:

min p�x s.t. x ≥ 0,A xm−1 + q ≥ 0, (11)

where p ∈ R
n is an arbitrary positive vector. Thus, we may solve (11) to obtain the

least solution of the TCP(A , q) (1). In fact, we may solve a sequence of polynomial
optimization problems in the form of (11).

Let I ⊂ [n] and SI := {xI ∈ R
|I | : xI ≥ 0,AI x

m−1
I + qI ≥ 0}, and consider the

following polynomial optimization problem denoted by MP(I ):

min p�
I xI s.t. xI ≥ 0,AI x

m−1
I + qI = 0. (12)

The following theorem provides a theoretical basis for designing algorithm.

Theorem 5.2 [4, Theorem 3.1] Let I and J be a partition of [n], and let x̄ I be the
unique solution to theMP(I ) (12) that is the least element of SI . Denote x̄ := (x̄ I , 0J ),

I ′ := {i ∈ J : (A x̄m−1 + q)i < 0}, Î := I
⋃

I ′, and Ĵ := [n] \ Î .

(a) If I ′ = ∅, then x̄ is the least solution to the TCP(A , q) (1).
(b) When I ′ �= ∅, we let x̂ Î be the unique solution to the MP( Î ) and let x̂ := (x̂ Î , 0 Ĵ ).

Then, x̂ Î is the least element of SÎ , and x̄ ≤ x̂ .

Based on Theorem 5.2, an algorithm can be described as follows.

Algorithm 5.1 (A sequential polynomial optimization method) [4, Algorithm 2]

Step 0 Determine an initial partition I0 and J0 of [n] such that the solution x0I0 to the
MP(I0) is the least solution to the TCP(AI0 , qI0) (1). Set k := 0.

Step 1 Let xk := (xkIk , 0Jk ). If x
k is the solution to the TCP(A , q), stop. Otherwise,

let

Ik+1 := Ik
⋃

{i ∈ Jk : (A (xk)m−1 + q)i < 0} and Jk+1 := [n] \ Ik+1.

Step 2 Let k := k + 1 and calculate MP(Ik) to obtain xkIk . Go to Step 1.

Let the sequences {Ik} and {xk} be generated by Algorithm 5.1. Then, it is easy to
see that the sequence of index sets {Ik} is monotonically increasing, and the sequence
{xk} monotonically converges to the least solution to the TCP(A , q) (1).

Remark 5.1 Suppose that the feasible set of the TCP (1) is nonempty and the involved
tensor is a Z -tensor. Then, the least solution of (1) can be found by Algorithm 5.1.
Obviously, a main subproblem to be solved in Algorithm 5.1 is a polynomial optimiza-
tion problem with a linear objective function and polynomial inequality constraints
together with a nonnegative constraint. Thus, the successful solution of such a sub-
problem is the key to the effectiveness of Algorithm 5.1. It is worthwhile to develop
effective methods to solve polynomial optimization problems in this form.
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5.2 Methods for the TCP Based on Reformulated Integer Programming

The LCP can be solved via linear integer programming [56,57]. As a natural extension
of the LCP, the TCP can also be solved by polynomial integer programming, which
was investigated by Du and Zhang [10].

Consider the mixed integer programming (MIP):

max
t,y,z

tm−1

s.t. 0 ≤ A ym−1 + tm−1q ≤ e − z, 0 ≤ y ≤ z, 0 ≤ t, z ∈ {0, 1}n . (13)

The relation between problem (13) and the TCP is described as follows.

Theorem 5.3 [10, Theorem 2] Let (t∗, y∗, z∗) be an arbitrary optimal solution of the
MIP (13). Then, x∗ := y∗

t∗ solves the TCP(A , q) (1) if t∗ > 0, and the TCP(A , q)

(1) has no solution if t∗ = 0.

Theorem 5.3 shows that any approach to solve the MIP (13) can be employed
to investigate the solvability of the TCP. Moreover, some famous software, such as
LINGO, can be used to solve (13), by which we can obtain either a solution to the
TCP, or a certificate to show that the TCP has no solution.

Remark 5.2 It is well known that the MIP is a class of difficult problems to be solved
effectively. However, problem (13) is a special class of MIPs with favorite structures.
It is worthy of designing effective methods to solve problem (13) by making use of
structures of tensors and the particularity of the problem.

6 SolutionMethods for the TCP Based on Semidefinite Relaxation
Methods

Semidefinite relaxation methods have been successfully applied to solve polynomial
optimization problems [58–60]. Recently, Zhao and Fan [11] extended a semidefinite
relaxation approach proposed by Nie [61] to solve the TCP to find its all real solutions,
if it has only finite number of solutions. We review it in this section.

Some basic notations need to be introduced before the description of the method.
Let N denote the set of nonnegative integers and N

n denote the set of n-element
sequences (vectors) of nonnegative integers; R[x] denote the ring of polynomials in
x ∈ R

n over the real field andR[x]k denote the set of polynomials inR[x]with degree
at most k. For any x = (x1, . . . , xn) ∈ R

n and α = (α1, . . . , αn) ∈ N
n , denote the

monomial xα := xα1
1 · · · xαn

n and |α| := ∑n
i=1 αi ; and for any positive integer d,

[x]d := (1, x1, . . . , xn, x
2
1 , x1x2, . . . , x

d
1 , . . . , xdn )�.

For any polynomial f ∈ R[x], its degree is denoted by deg( f ); and it is said to be
SOS if it is the sum of squares of several real polynomials in x . Let

∑[x] denote the
set of all SOS polynomials in x , and

∑[x]k := ∑[x] ⋂
R[x]k . For any γ ∈ R, �γ �

denotes the smallest integer not smaller than γ . Given tuples h = (h1, . . . , ht ) and
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g = (g1, . . . , gs) where hi , g j ∈ R[x] with i ∈ [t] and j ∈ [s], the kth truncation of
the ideal generated by h and kth truncation of the quadratic module of g are denoted
by

Ik(h) := h1 · R[x]k− deg(h1) + · · · + ht · R[x]k− deg(ht ) (14)

and

Qk(g) :=
∑

[x]2k + g1 ·
∑

[x]2k− deg(g1) + · · · + gs ·
∑

[x]2k− deg(gs ), (15)

respectively. Let Nn
d := {α ∈ N

n : |α| ≤ d} and R
N
n
d be the space of real vectors

indexed by α ∈ N
n
d . For any y ∈ R

N
n
d , define

〈p, y〉 =
∑
α∈Nn

d

pα yα for all p(x) =
∑
α∈Nn

d

pαx
α,

where (pα) denotes the coefficient vector indexed by α ∈ N
n
d , and y is said to admit

a representing measure supported in a set T , iff there exists a Borel measure μ such
that its support is contained in T and yα = ∫

T xαdμ for any α ∈ N
n
d . Define the

symmetric matrices A(k)
α such that p(x)[x]d [x]�d = ∑

α∈Nn
2k

A(k)
α xα , where p ∈ R[x]2k

andd = k−� deg(p)/2�. The kth-order localizingmatrix of p, generated by y ∈ R
N
n
2k ,

is the symmetric matrix L(k)
p satisfying

L(k)
p (y) =

∑
α∈Nn

2k

A(k)
α yα. (16)

When p = 1, we call it a moment matrix, which is denoted by Mk(y). For a t-tuple
h = (h1, . . . , ht ), we use diag(L(k)

h1
(y), . . . , L(k)

ht
(y)) to denote the diagonal matrix

with its (i, i)th block being L(k)
hi

(y) for any i ∈ [t] and denote

L(k)
h (y) := diag(L(k)

h1
(y), . . . , L(k)

ht
(y)). (17)

For any given f ∈ R[x], and the tuples h = (h1, . . . , ht ) and g = (g1, . . . , gs)
where hi , g j ∈ R[x] with i ∈ [t] and j ∈ [s], we consider the following problem:

f ∗ := min f (x) s.t. h(x) = 0, g(x) ≥ 0. (18)

This polynomial optimization problem can be solved by the semidefinite relaxation
method, denoted by theSRM1, which is described as follows. The kth-order Lasserre’s
hierarchy of semidefinite relaxation [58] for solving (18) is

σ1,k := min 〈 f , y〉
s.t. 〈1, y〉 = 1, L(k)

h (y) = 0, L(k)
g (y) � 0, Mk(y) � 0, y ∈ R

N
d
2k

(19)
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for k = k0, k0 + 1, . . ., where k0 = max{� deg( f )/2�, � deg(h)/2�, � deg(g)/2�},
and L(k)

h (y), L(k)
g (y), Mk(y) are defined as in (16) and (17). The dual problem of (19)

is

ω1,k := max γ s.t. f − γ ∈ I2k(h) + Qk(g),

where I2k(h) and Qk(g) are defined as in (14) and (15). Then, ω1,k ≤ σ1,k ≤ f ∗
for all k, and both sequences {σ1,k} and {ω1,k} are monotonically nondecreasing as k
increases. Suppose that y1,k is an optimal solution of (19). If there exists r ∈ [k0, k]
such that

rank Mr−k0(ŷ) = rank Mr (ŷ) where ŷ = y1,k |2r , (20)

then σ1,k = f ∗, and there are rank Mr (ŷ) real optimal solutions of problem (18).
Now,we describe a semidefinite relaxation approach for the TCP,which is proposed

in [11]. The basic idea can be described as follows. For any x ∈ R
n , we denote the

tuples h(x) = (h1(x), . . . , hn(x)) and g(x) = (g1(x), . . . , g2n(x)), where

hi (x) = xi (A xm−1 + q)i , ∀i ∈ [n];
g j (x) =

{
x j , if j ∈ [n],
(A xm−1 + q) j−n, if j ∈ [2n] \ [n].

Then, SOL(A , q) = {x ∈ R
n : h(x) = 0, g(x) ≥ 0}. Let f ∈ R[x] be a random

polynomial. Consider the following optimization problem:

min f (x) s.t. h(x) = 0, g(x) ≥ 0. (21)

Clearly, x ∈ SOL(A , q) if and only if x is a feasible solution of (21). When f is
generically chosen, it achieves different values fi at different points in SOL(A , q).
Under the assumption that the TCP(A , q) is finite, it holds that there are finite values
fi . Without loss of generality, we can assume that they satisfy f1 < f2 < · · · < fN .
Let

Si := SOL(A , q)
⋂

{x ∈ R
n : f (x) = fi }, ∀i ∈ [N ]. (22)

Then, SOL(A , q) = S1
⋃

S2
⋃ · · · ⋃SN . So, the remaining task is to compute

Si sequentially.
We first consider the polynomial optimization problem

min f (x) s.t. h(x) = 0, g(x) ≥ 0 (23)

with f1 being its optimal value andS1 being the set of its optimal solutions. In order
to obtainS1, we use the SRM1 to solve (23). Suppose that y1,k is an optimal solution
of the kth-order Lasserre’s hierarchy of semidefinite relaxation of (23). If there exists
r ∈ [k0, k] such that the rank condition (20) holds, then there are rankMr (ŷ) real
optimal solutions of problem (23), which constitute the setS1.
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Suppose that Si defined as in (22) is known. We want to determine whether fi+1
exists or not; and if it exists, we compute all the elements in Si+1. Let ε > 0 be a
small number. Consider the polynomial optimization problem

min f (x) s.t. h(x) = 0, g(x) ≥ 0, f (x) ≥ fi + ε. (24)

Suppose that fi+1 exists and ε satisfies 0 < ε < fi+1− fi . In order to obtainSi+1, we
use the SRM1 to solve (24). Suppose that yi+1,k is an optimal solution of the kth-order
Lasserre’s hierarchy of semidefinite relaxation of (24). If there exists r ∈ [k0, k] such
that the rank condition (20) holds, then there are rankMr (ŷ) real optimal solutions of
problem (24), which constitute the set Si+1.

In practice, however, the existence of fi+1 is usually not known in advance. Fortu-
nately, this difficulty can be overcome by solving the following optimization problem:

max f (x) s.t. h(x) = 0, g(x) ≥ 0, f (x) ≤ fi + ε. (25)

A practical method can be described as follows.

Algorithm 6.1 (A semidefinite relaxation method) [11, Algorithm 3.2]

Step 0 Choose a random polynomial f (x). Let j := 0 and k := k0.
Step 1 If the kth semidefinite relaxation of (23) is infeasible, then SOL(A , q) = ∅

and stop. Otherwise, solve the kth semidefinite relaxation of (23) to get an
optimal solution y1,k and the optimal value σ1,k .

Step 2 If (20) is satisfied for some r ∈ [k0, k], then letS := S1, whereS1 is the set
of optimal solution of (23). Let F = {σ1,k}, k := k0, j := j + 1, and go to
Step 3. If such r does not exist, let k := k + 1 and go to Step 1.

Step 3 Let ε = 0.05. Compute the optimal value f̄ j+1 of (25). If f̄i+1 > f j , let
ε = ε/2 and compute (25) again.Repeat this procedure untilwe get f̄ j+1 = f j .

Step 4 Solve the kth semidefinite relaxation of (24). If it is infeasible, then there are
no more real solutions; let SOL(A , q) = S and stop. Otherwise, compute an
optimal solution y j+1,k and the optimal value σ j+1,k .

Step 5 If (20) is satisfied for some t ∈ [k0, k], then update S := S
⋃

S j+1, where
S j+1 is the set of minimizers of (24). Let F := F

⋃{σ j+1,k}, k := k0,
j := j + 1, and go to Step 3. If such t does not exist, let k := k + 1 and go to
Step 4.

Remark 6.1 Suppose that {x ∈ R
n : h(x) = 0} is finite and SOL(A , q) �= ∅. It was

proved in [11] that Algorithm 6.1 can find all solutions of the TCP(A , q), whatever
its scale is. In practice, however, with the increasing of the relaxation order k, the scale
of the semidefinite relaxation problem will be too large to implement as the computer
may be out of memory. So, only small-scale TCPs could be solved effectively so far.
Therefore, it is important to develop effective methods for solving large-scale polyno-
mial optimization problems by combining the abovemethodwith some dimensionality
reduction techniques.

It should be noted that the design and analysis of the semidefinite relaxationmethod
in this section are mainly based on polynomial optimization techniques. Since the
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function involved in the TCP is a special class of polynomials defined by a tensor, it
is possible that this method can be improved by combining polynomial optimization
techniques with the structural analysis of the involved tensor.

7 Perspectives and Open Problems

We have reviewed the developments of solution methods for TCPs. During the evalu-
ation of this paper, we find two new algorithms for TCPs were proposed: Hu et al. [62]
proposed an inexact augmented Lagrangian multiplier method for solving quadratic
complementary problems, and Chen and Zhang [63] proposed a semismooth New-
ton method to find a Nash equilibrium for the multi-person noncooperative game via
solving the corresponding TCP.

By taking full advantage of the special structures of the involved tensors and thereby
the nice properties of the resulting polynomial functions, one can develop various
numerical methods for the TCP based on different reformulated problems, including
tensor equation system, NCP-function-based nonlinear equation system, nonlinear
programming, polynomial optimization problem and so on. More effective algorithms
need to be further studied by making use of structures of tensors. In what follows,
several further problems are addressed.

Problem 1 Since the number of entries of a tensor increases exponentially with the
dimensions, leading to the so-called curse of dimensionality, one of the essential tasks
in tensor related problems is to develop highly efficient and robust algorithms that are
capable of handling large-scale instances, such as high-order high-dimensional TCPs.

Problem 2 Relying on different reformulation models for the TCP, several classical
methods, such as the potential reduction method, the homotopy continuation method,
the smoothing/non-smooth Newton method, and the semidefinite relaxation method,
are employed and developed for solving the TCP. As it was remarked after each
method reviewed, it is quite promising to adopt state-of-the-art algorithms for those
reformulation problems and tailor them for the TCP by exploiting the involved tensor
structures.

Problem 3 Several related models of TCPs have been proposed, such as polynomial
complementarity problems, quadratic complementarity problems, stochastic tensor
complementarity problems, and so on (see [1]). Some theoretical results for these
related models have also been achieved. Up to now, however, all numerical methods
proposed in this field focus on solving the TCP. Thus, it is worthy of investigating
numerical methods for solving these related models.

Problem 4 In the numerical method given in Sect. 6, an important assumption is that
the solution set of theTCP is finite.What conditions can guarantee such an assumption?
Furthermore, it is worthy of investigating the number of solutions to the TCP when it
is finite. In fact, such an issue for the LCP has been studied extensively.
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8 Conclusions

Several existing methods for solving the TCP have been summarized in this second
part, based on different equivalent reformulation problems including a tensor equa-
tion system, an NCP-function-based smooth equation, a modulus-based non-smooth
equation system, and special-structured nonlinear programming problems. The multi-
linear structure resulting from the involved tensors has been exploited and applied
among most of these methods, which might in turn open up new possibilities in the
development of theory and methods for those related classical problems such as the
nonlinear equation system and nonlinear programming.

It is noteworthy that the scale of the TCP, especially those practical problems
arising from sciences and engineering, would possibly be huge, since even tensors of
a modest order will lead to large-scale. How to break the “curse of dimensionality”
and develop efficient and stable numerical algorithms for TCPs turns out to be vital
in the community of TCPs and all other tensor-based computation in the big data era.
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