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Abstract
The classic Voronoi cells can be generalized to a higher order version by considering
the cells of points for which a given k-element subset of the set of sites consists of the
k closest sites. We study the structure of the k-order Voronoi cells and illustrate our
theoretical findings with a case study of two-dimensional higher order Voronoi cells
for four points.

Keywords Higher order Voronoi cells · Structure of Voronoi cells

1 Introduction

The classic Voronoi cells partition the Euclidean space into polyhedral regions that
consist of points nearest to one of the sites from a given finite set. We consider higher
order (or multipoint) Voronoi cells that correspond to the subsets of points nearest to
k several sites (see an illustration in Fig. 1).

To our best knowledge, the earliest mention of k-point Voronoi cells appears in [1],
where a tessellation of the plane by such cells was called the Voronoi diagram of order
k; that paper also provides bounds on the number of nonempty cells in a plane and
complexity estimates for the construction of such diagrams; in [2], the complexity of
constructing the higher order diagrams for line segments was studied.
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Fig. 1 Classic and order two Voronoi diagrams on six sites (shown in dashed lines and shaded regions,
respectively). Notice that some two-point combinations generate empty cells

Themultipoint or k-order Voronoi diagrams discussed in this paper are one possible
way to generalize the classic construction. Some notable generalizations are the cells
of more general sets [2,3] , the use of non-Euclidean metrics [4–6] and the abstract
cells that are defined via manifold partitions of the space rather than distance relations
[7].

Muchof the recentworkmentioned above is focussed on the algorithmic complexity
of constructing planar Voronoi diagrams of various types. In this paper, we rather
focus on the structure of multipoint Voronoi cells and in particular obtain constructive
characterizations of cells with nonempty interior, also of bounded and empty cells. We
use these results for a case study of multipoint cells defined on at most four sites. We
prove that—perhaps counterintuitively—some convex polygons, including triangles
and cyclic quadrilaterals, cannot be such cells, and provide explicit algorithms for the
construction of sites for a given cell in other cases.

Finally, we would like to mention a wealth of emerging application of higher order
Voronoi cells, predominantly driven by the recent advancements in big data andmobile
sensor technology. For instance, in [8] such cells are utilized in a numerical technique
for smoothing point clouds from experimental data; in [9], k-order cells are used
for detecting and rectifying coverage problems in wireless sensor networks; in [10],
the k-order diagrams are used to analyze coalitions in the US supreme court voting
decisions. A well-known application of the higher order Voronoi cells is in a k-nearest
neighbor problem in spatial networks [11]; however, the practical implementations
are limited due to the complexity of higher order diagrams and the lack of readily
available software.

Our work is organized as follows. In Sect. 2, we study the structure of higher order
Voronoi cells and in particular prove the conditions for the cell to be bounded and
nonempty. In Sect. 3, we study the special case of higher order cells on no more than
four sites. We will refer to the higher order cells as multipoint cells, to highlight the
discrete nature of our construction.
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2 High-Order Voronoi Cells inR
n

Let T ⊂ R
n be finite and nonempty. For a nonempty proper subset S ⊂ T , we define

the multipoint Voronoi cell as the set of points that are not farther from each point of
S than from each point of T \S,

VT (S) :=
{
x ∈ R

n : max
s∈S dist(s, x) ≤ min

t∈T \S dist(t, x)
}

,

where dist(x, y) is theEuclidean distance function.When S is a singleton, i.e., S = {s},
the set VT (S) is a classic Voronoi cell. We abuse the notation slightly and write
VT (s) := VT ({s}). It is evident that

VT (S) =
⋂
s∈S

V{s}∪(T \S)(s). (1)

It is not difficult to observe that eachmultipoint Voronoi cell is a convex polyhedron,
i.e., the intersection of finitely many closed half-spaces, since each cell is defined by
finitely many linear inequalities. Explicitly, we have the following representation.

Proposition 2.1 Let T be a finite subset of Rn, and let S be a nonempty and proper
subset of T . Then, VT (S) is the intersection of |S|(|T | − |S|) closed half-spaces:

VT (S) =
⋂
s∈S

t∈T \S

{
x ∈ R

n : 〈t − s, x〉 ≤ 1

2

(
‖t‖2 − ‖s‖2

)}
. (2)

Proof Observe that, from the definition,

VT (S) =
{
x ∈ R

n : max
s∈S dist(x, s) ≤ min

t∈T \S dist(x, t)
}

=
⋂
s∈S

{
x ∈ R

n : dist(x, s) ≤ min
t∈T \S dist(x, t)

}

=
⋂
s∈S

⋂
t∈T \S

{
x ∈ R

n : dist(x, s) ≤ dist(x, t)
}
.

Explicitly for the Euclidean distance function, we have

dist(x, s) ≤ dist(x, t) ⇔ ‖x‖2 − 2〈s, x〉 + ‖s‖2 ≤ ‖x‖2 − 2〈t, x〉 + ‖t‖2, (3)

from where the desired representation follows. 
�
As a consequence of a well-known necessary and sufficient condition for the incon-

sistency of an arbitrary system of linear inequalities [12, Theorem 4.4(i)], from (2) we
obtain the following characterization of empty Voronoi cells.
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Theorem 2.1 Let T be a finite subset ofRn, and let S be a nonempty and proper subset
of T . Then,

VT (S) = ∅
iff

(
0n
−1

)
∈ cone

{(
t − s

‖t‖2 − ‖s‖2
)

, s ∈ S, t ∈ T \S
}

. (4)

We use the characterization in Theorem 2.1 to obtain two well-known statements
about the classic Voronoi cells.

Corollary 2.1 Let T be a finite subset of Rn with |T | ≥ 2. Then,

VT (T \{t}) �= ∅
iff t is an extreme point (vertex) of conv T .

Proof Suppose that there exists s ∈ T such that VT (s) = ∅. Then, (4) holds for
S = {s}, and therefore there exist λt ≥ 0 for t ∈ T \{s} such that

∑
t∈T \{s}

λt (t − s) = 0n and
∑

t∈T \{s}
λt

(
‖t‖2 − ‖s‖2

)
= −1,

whereby

λ0 :=
∑

t∈T \{s}
λt > 0 and s =

∑
t∈T \{s}

λt

λ0
t .

Since the square of the Euclidean norm ‖.‖2 is a strictly convex function, we have

∑
t∈T \{s}

λt ‖t‖2 + 1 =
∑

r∈T \{s}
λr ‖s‖2 = λ0 ‖s‖2 < λ0

∑
t∈T \{s}

λt

λ0
‖t‖2

=
∑

t∈T \{s}
λt ‖t‖2 ,

which is a contradiction. Now, suppose that VT (T \{t}) = ∅. Denote S := T \{t}.
From Theorem 2.1, there exist λs ≥ 0 for s ∈ S such that

∑
s∈S

λs (t − s) = 0n and
∑
s∈S

λs

(
‖t‖2 − ‖s‖2

)
= −1,

whereby

∑
s∈S

λs > 0 and t =
∑
s∈S

λs∑
r∈S λr

s.
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Hence, t is not an extreme point. If t is not an extreme point, then there exist λs ≥ 0,
s ∈ S with

∑
s∈S λs = 1 and t = ∑

s∈S λss. Since ‖.‖2 is a strictly convex function,

‖t‖2 <
∑
s∈S

λs‖s‖2;

therefore, setting μs := λs∑
r∈S λr‖r‖2−‖t‖2 for s ∈ S, we have μs ≥ 0,

∑
s∈S

μs (t − s) = 0n and
∑
s∈S

μs

(
‖t‖2 − ‖s‖2

)
= −1,

showing that (4) holds, which, in view of Theorem 2.1, proves the corollary. 
�
The following result generalizes the “ if” statement in the last part of Corollary 2.1.

Corollary 2.2 Let T be a finite subset ofRn, and let S be a nonempty and proper subset
of T . If (conv S) ∩ (T \S) �= ∅, then VT (S) = ∅.
Proof Taking t ∈ (conv S) ∩ (T \S), since t is not an extreme point of conv S, by
Corollary 2.1 we have VT (S) ⊆ VS∪{t}(S) = ∅. 
�

In fact, we can prove amore general geometric statementwhich yields the preceding
corollary.

Theorem 2.2 Let T be a finite subset ofRn, and let S be a nonempty and proper subset
of T . Then,

VT (S) �= ∅

iff there exists a closed Euclidean ball B ⊃ S such that

int B ∩ (T \S) = ∅.

Proof First, assume that VT (S) �= ∅. Then, there exists c ∈ VT (S). Let

R := max
s∈S dist(c, s),

and let B be the closed Euclidean ball of radius R centered at c, clearly S ⊂ B.
Evidently, int B ∩ (T \S) = ∅, otherwise we would have dist(c, t) < dist(c, s) for
some t ∈ T \S and s ∈ S, hence, c /∈ VT (S), which contradicts our choice of c.
Now assume that there exists some closed Euclidean ball B such that S ⊂ B and
int B∩ (T \S) = ∅. The center of the ball B is contained in VT (S), hence, VT (S) �= ∅.


�
We give an explicit example of an empty cell with |S| = 2 and |T | = 3.
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Fig. 2 Minimal configuration for an empty cell

Example 2.1 Let s1 = (−1, 0), s2 = (1, 0), t = (0, 0). It is not difficult to observe
that (2) becomes

VT (S) =
{
(x1, x2) : x1 ≤ −1

2
, x1 ≥ 1

2

}
= ∅.

This configuration is shown in Fig. 2.

Notice that we can likewise construct an empty cell with |T | > |S| ≥ 2 by making
sure that (T \S) ∩ conv S �= ∅ (using Corollary 2.2).

Theorem 2.3 Let T be a finite subset ofRn, and let S be a nonempty and proper subset
of T . Then, VT (S) is bounded iff

cone {t − s, s ∈ S, t ∈ T \S} = R
n .

Proof It suffices to observe that from the linear representation (2) we obtain that the
first moment cone of VT (S) is cone {t − s, s ∈ S, t ∈ T \S}. 
�
Remark 2.1 It follows from Theorem 2.3 that if n ≥ 2 and |T | ≤ 3 all nonempty cells
are unbounded.

We can strengthen the result in the preceding remark as follows.

Theorem 2.4 Let T be a finite subset of Rn. If

|T | < 2
√
n + 1, (5)

then for any S ⊂ T the cell VT (S) is either empty or unbounded.

Proof Assume that VT (S) = ∅. The proof is based on the observation that a nonempty
bounded polyhedron inRn must be defined by at least n+1 inequalities. Let p := |T |,
k := |S|. Then, the number of inequalities that feature in the representation (2) is
φ(k) = k(p − k). Observe that φ attains its maximum at p

2 for even p and at p−1
2 for

odd p. Hence, for even p

k(p − k) ≤ p

2

(
p − p

2

)
= p2

4
=

⌊
p2

4

⌋
,
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and for odd p

k(p − k) ≤ p − 1

2

(
p − p − 1

2

)
= p2 − 1

4
=

⌊
p2

4

⌋
,

hence, ensuring (5) yields at most n inequalities that define each cell, and so all
nonempty cells are unbounded. 
�
Proposition 2.2 Let S ⊂ T ⊂ R

n, with |S| = 3 and |T | = 4. Then, VT (S) is either
empty or unbounded.

Proof Put T \S = {t} . In case t ∈ conv S, then Corollary 2.1 gives that VT (S) = ∅.
If t /∈ conv S, then t can be separated from S, and by Theorem 2.3 the cell has to be
unbounded. 
�

The following statement will be useful later for a discussion on planar quadrilateral
cells.

Proposition 2.3 Let S ⊂ T ⊂ R
2, with S = {s1, s2} and T \S = {t1, t2}. Then

VT (S) is bounded iff (s1, s2) ∩ (t1, t2) is a singleton.

Proof The configuration of the points of T in Fig. 3 means that if we take the line
through s1 and s2, then t1 and t2 belong to the two opposite open half-spaces defined
by this line. The same holds true if we interchange s1 and s2 with t1 and t2. From the
linear representation (2), we obtain that the first moment cone M of VT (S) is equal to
cone

{
ti − s j , i, j = 1, 2

}
. Let us consider that the configuration of the points of T

is like in Fig. 3. Then, we are going to prove that M = R
2, which, by Theorem 2.3,

implies that VT {S} is bounded. What we are actually going to prove is the equivalent
assertion that the polar cone M◦ reduces to {02} . To this aim, let p ∈ M◦ and assume,
w.l.o.g., that (s1, s2)∩ (t1, t2) = {02} . Then, there exist λ,μ > 0 such that s2 = −λs1
and t2 = −μt1. Since 〈p, t1 − s1〉 ≤ 0 and 〈p, t1 + λs1〉 = 〈p, t1 − s2〉 ≤ 0, we
have 〈p, t1〉 ≤ 0. This inequality combined with 〈p,−μt1 − s1〉 = 〈p, t2 − s1〉 ≤ 0
yields 〈p, s1〉 ≥ 0; hence, in view of 〈p,−μt1 + λs1〉 = 〈p, t2 − s2〉 ≤ 0, it turns
out that 〈p, t1〉 = 0 = 〈p, s1〉 . Since s1 and t1 are linearly independent because of the
assumption (s1, s2) ∩ (t1, t2) = {02}, we conclude that p = 0, as was to be proved.
Second, let the Voronoi cell VT {s1, s2} be bounded. Then, by Theorem 2.3, the first
moment cone cone

{
ti − s j , i, j = 1, 2

}
is the whole of R2. This implies that t1 and

t2 are not on a common closed halfplane out of the two determined by the straight line
through s1 and s2, as otherwise that cone would be contained in the translate of that
half-space with the boundary line passing through the origin, and the same assertion
holds true when we interchange t1 and t2 with s1 and s2. This rules out the possibility
that conv {s1, s2, t1, t2} be a segment, a triangle, or a quadrilateral having s1 and s2
as adjacent vertices. Therefore, s1 and s2 are opposite vertices of the quadrilateral
conv {s1, s2, t1, t2} , which clearly implies that (s1, s2) ∩ (t1, t2) is a singleton. The
proof is completed. 
�
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Fig. 3 Configuration for a
bounded cell

Fig. 4 A singleton cell (the
intersection of the two shaded
regions)

Theorem 2.5 Let T be a finite subset ofRn, and let S be a nonempty and proper subset
of T . Then,

int VT (S) �= ∅

iff

0n+1 /∈ conv

{(
t − s

‖t‖2 − ‖s‖2
)

, s ∈ S, t ∈ T \S
}

.

Proof The proof comes from the well-known characterization of the Slater condition
for a linear system of inequalities [13, Theorem 3.1]. 
�

Example 2.2 Consider a system T of four points in the plane,

T = {(0, 0) , (1, 1) , (1, 0) , (0, 1)}, S = {(0, 0) , (1, 1)}.

This is illustrated in Fig. 4. Using Theorems 2.1, 2.3 and 2.5, it is easy to check that
VT (S) is nonempty and bounded, but int VT (S) = ∅. Indeed, VT (S) = {( 1

2 ,
1
2

)}
.

The next statement is a specific characterization for a three-point system, which we
will use in what follows.
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Proposition 2.4 Let T , T ′ ⊂ R
n be such that |T | = |T ′| = 3 and T and T ′ differ by

exactly one point (i.e., |T ∩ T ′| = 2). Let s ∈ T \T ′ and s′ ∈ T ′\T . If

VT (s) ⊆ VT ′(s′),

then all points in the set T ′ ∪ T belong to the same straight line.

Proof For notational convenience, we will prove the result for T = {t1, t2, 0} and
T ′ = {t1, t2, s}, where the points t1, t2, s are all nonzero and pairwise distinct. Let

F := VT (0) =
{
x ∈ R

n : 〈t j , x〉 ≤ 1

2

∥∥t j∥∥2 , j = 1, 2

}
,

F ′ := VT ′(s) =
{
x ∈ R

n : 〈t j − s, x〉 ≤ 1

2

(∥∥t j∥∥2 − ‖s‖2
)

, j = 1, 2

}
.

The two inequalities defining F ′ are consequence relations of the inequalities defining
F . Therefore, there exist λi j ≥ 0, i, j = 1, 2 such that

ti − s =
2∑
j=1

λi j t j , i = 1, 2 and

‖ti‖2 − ‖s‖2 ≥
2∑
j=1

λi j
∥∥t j∥∥2 , i = 1, 2. (6)

Hence,

s = (1 − λi i ) ti − λi(3−i)t3−i , i = 1, 2 and (7)

‖s‖2 ≤ (1 − λi i ) ‖ti‖2 − λi(3−i) ‖t3−i‖2 , i = 1, 2. (8)

We can subtract the two representations (7) of s to obtain

(1 − λ11 + λ21) t1 + (−1 − λ12 + λ22) t2 = 0n .

If t j , j = 1, 2 are linearly independent, we have

1 = λ11 − λ21 and 1 = λ22 − λ12.

Together with (8), this yields

0 ≤ ‖s‖2 ≤ (1 − λ11) ‖t1‖2 − λ12 ‖t2‖2 = −λ21 ‖t1‖2 − λ12 ‖t2‖2 ≤ 0,

which contradicts the condition s �= 0. Therefore, t j , j = 1, 2 are linearly dependent.
Together with (6), this finishes the proof. 
�
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Remark 2.2 This proposition means that it is impossible to enlarge a Voronoi cell of a
single point in a three-point affinely independent system by moving this point.

Proposition 2.5 Let T be a finite subset of Rn, and let S be a nonempty proper subset
of T . If |S| ≥ 2, then

VT (S) =
⋃
s∈S

[
VT \{s}(S\{s}) ∩ VS(s)

]
. (9)

Proof Denote

As := VT \{s}(S\{s}) ∩ VS(s).

Observe that for any s̄ ∈ S we have

As̄ = {x ∈ R
n : dist(x, s̄) ≤ dist(x, s) ≤ dist(x, t) ∀s ∈ S, t ∈ T \S}.

Evidently, As ⊆ VT (S) for every s ∈ S, hence,
⋃
s∈S

As ⊆ VT (S). To prove the reverse

inclusion, assume that x ∈ VT (S). Let s̄ be a closest point to x in S. It is evident that
x ∈ VS(s̄). At the same time, it is not difficult to observe that VT (S) ⊆ VT \{s̄}(S\{s̄}).
Hence

x ∈ VT \{s̄}(S\{s̄}) ∩ VS(s̄) = As̄,

and therefore VT (S) ⊆ ⋃
s∈S

As . 
�

Proposition 2.6 Let T be a finite subset of Rn, and let S be a nonempty and proper
subset of T . If there exist s1, s2 ∈ S and t1, t2 ∈ T \S such that the inequalities

‖s1 − x‖ ≤ ‖t1 − x‖ and ‖s2 − x‖ ≤ ‖t2 − x‖ (10)

define the same half-space, then these inequalities are nonessential for VT (S), i.e.,
they can be dropped from the system (2).

Proof It is evident from equivalence (3) that these inequalities can be written as

〈t1 − s1, x〉 ≤ 1

2

(
‖t1‖2 − ‖s1‖2

)
, 〈t2 − s2, x〉 ≤ 1

2

(
‖t2‖2 − ‖s2‖2

)
. (11)

If both inequalities in (10) define the same half-space, then it follows from (11) that
there exists α > 0 such that

t2 − s2 = α(t1 − s1) and
1

2

(
‖t2‖2 − ‖s2‖2

)
= α

1

2

(
‖t1‖2 − ‖s1‖2

)
. (12)
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Every point x ∈ VT (S) also satisfies the system

〈t1 − s2, x〉 ≤ 1

2

(
‖t1‖2 − ‖s2‖2

)
, 〈t2 − s1, x〉 ≤ 1

2

(
‖t2‖2 − ‖s1‖2

)
. (13)

Adding these inequalities together, we obtain

〈t1 − s2 + t2 − s1, x〉 ≤ 1

2

(
‖t1‖2 − ‖s2‖2 + ‖t2‖2 − ‖s1‖2

)
,

and using (12), we have a consequence of (13),

(1 + α)〈t1 − s1, x〉 ≤ (1 + α)
1

2

(
‖t1‖2 − ‖s1‖2

)
,

which defines the same half-space as (11). 
�
Theorem 2.6 Let T ⊂ R

n be a finite set, let S := {s1, s2} ⊂ T be a two-point set, and
let

H := {x ∈ R
n : ‖x − s1‖ = ‖x − s2‖}

= {x ∈ R
n : 〈s1 − s2, x〉 = 1

2
(‖s1‖2 − ‖s2‖2)}.

If int VT (S) �= ∅, then H ∩ ri F = ∅ for every facet F of VT (S).

Proof Let F be the facet of VT (S) defined by the linear equation corresponding to
some point t0 ∈ T and, say, s1, that is, 〈t0 − s1, x〉 = 1

2

(‖t0‖2 − ‖s1‖2
)
, and assume,

toward a contradiction, that H ∩ ri F �= ∅. Take x ∈ H ∩ ri F . We then have

〈t0 − s1, x〉 = 1

2
(‖t0‖2 − ‖s1‖2).

Adding the equality

〈s1 − s2, x〉 = 1

2
(‖s1‖2 − ‖s2‖2),

which follows from the fact that x ∈ H , to the preceding one, we get

〈t0 − s2, x〉 = 1

2
(‖t0‖2 − ‖s2‖2).

Since int VT (S) �= ∅ and x ∈ ri F , there is exactly one half-space among those defined
by the inequalities (2) such that x belongs to its boundary hyperplane (and hence to
the interior of the remaining half-spaces). Hence, the linear equalities

〈t0 − s1, x〉 = 1

2
(‖t0‖2 − ‖s1‖2) (14)
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and

〈t0 − s2, x〉 = 1

2
(‖t0‖2 − ‖s2‖2) (15)

define the same hyperplane, which implies the existence of a real number λ such that
t0 − s2 = λ (t0 − s1) , so that the points t0, s1, s2 are colinear. Substituting x := t0+s1

2 ,

which is a solution of (14), into (15)we have, after elementary algebraicmanipulation,

〈t0 − s2, s1 − s2〉 = 0,

meaning that s1 − s2 must be orthogonal to t0 − s2. This, together with the colinearity
of t0, s1 and s2 and the fact that these three points are distinct, yields a contradiction.


�

3 Case Study

In this section, we study the special case of higher order cells on no more than four
sites. With the exception of Sects. 3.5–3.7, our study will be developed for sets in
R
2. For every set F ⊂ R

2 defined by four linear inequalities, we will determine
whether or not there exist sets S ⊂ T ⊂ R

2, with |S| = 2 and |T | = 4, such that
VT (S) = F . In the cases when the answer will be affirmative, we will construct the
(possibly non-necessarily unique) sets S and T explicitly.

3.1 Singletons

A singleton (zero-dimensional) cell {c} can be obtained by placing the pairs of points
(s1, s2) and (t1, t2) in the opposite corners of a square centered at c. This was already
discussed in Example 2.2. Note that this is a minimal representation, since we need at
least three inequalities to obtain a bounded cell (cf. Theorem 2.4), and hence |T | ≥ 4.
In fact, the square can be replaced by a rectangle or a general cyclic quadrilateral. (We
recall that a quadrilateral is said to be cyclic if all of its vertices are on a single circle,
which is equivalent to the fact that the sum of opposite angles equals π .)

Proposition 3.1 Let S ⊂ T ⊂ R
2,with |S| = 2 and |T | = 4. The following statements

are equivalent:

(a) VT (S) is nonempty and at most one-dimensional.
(b) The points of T are the vertices of a cyclic quadrilateral, with the two sites of S

located opposite to each other (across a diagonal).
(c) VT (S) is a singleton.

Proof Throughout the proof, we use the explicit notation S := {s1, s2} and T :=
{s1, s2, t1, t2}. a) ⇒ b). Without loss of generality, assume that 0 ∈ VT (S) while
int VT (S) = ∅. By Theorem 2.5, we have
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0 =
∑

i, j∈{1,2}
λi j (t j − si ), 0 =

∑
i, j∈{1,2}

λi j (‖t j‖2 − ‖si‖2), (16)

where λi j are convex combination coefficients. Since 0 ∈ VT (S), we have from (2)
that

‖t j‖ ≥ ‖si‖ ∀i, j ∈ {1, 2}.

Without loss of generality, assume that

‖s2‖ ≤ ‖s1‖ ≤ ‖t1‖ ≤ ‖t2‖.

If ‖s1‖ < ‖t1‖, then ‖si‖ < ‖t j‖ for all i, j ∈ {1, 2} , which implies that the second
equality in (16) is impossible. Hence, ‖s1‖ = ‖t1‖. If ‖s1‖ > ‖s2‖, then ‖ti‖ > ‖s2‖
for all i ∈ {1, 2} ; therefore, from (16), we get λ21 = λ22 = 0 and

s1 = λ11t1 + λ12t2,

so s1 ∈ [t1, t2] and ‖s1‖2 = λ11‖t1‖2 + λ12‖t2‖2, which holds only when t1 = t2 =
s1 by the strict convexity of the squared norm. This is impossible. Likewise, when
‖t1‖ < ‖t2‖ we have λ12 = λ22 = 0, then t1 ∈ [s1, s2], which by Corollary 2.2 yields
VT (S) = ∅, again a contradiction. We have proved that ‖s2‖ = ‖s1‖ = ‖t1‖ = ‖t2‖,
and hence our sites are the vertices of a cyclic quadrilateral. It is now easy to observe
that s1, s2 are located opposite to each other because, by the first equality in (16), we
have [s1, s2] ∩ [t1, t2] �= ∅. b) ⇒ c) Since the points of T lie on some circle, without
loss of generality we may assume that the center of this circle is the origin, and then
‖t1‖ = ‖t2‖ = ‖s1‖ = ‖s2‖. In this case, the right-hand side of system (2) is zero,
and we have, for every point x ∈ VT (S),

〈t j − si , x〉 ≤ 0 ∀i, j ∈ {1, 2}. (17)

It is evident that x = 0 is a solution of this system; hence, VT (S) �= ∅. On the other
hand, from (17) it follows that VT (S) is a cone. From these facts, using Proposition 2.3
we immediately deduce that VT (S) = {0} . The implication c) ⇒ a) is obvious. 
�

Note that for the case |S| = 2 and |T | = 3, it is impossible to have a nonempty
bounded cell due to Remark 2.1. This means that we do not need to consider this
configuration when discussing the subsequent cases of bounded polygons.

Furthermore, in the case |S| = 3 and |T | = 4, it is impossible to have a bounded
cell, as is shown in Proposition 2.2.

Since we have determined that we cannot have a nonempty bounded cell for |T | =
|S| + 1, the only possibility to have a singleton cell is for |S| = 2 and |T | = 4.
Furthermore, we can focus on the latter case when studying other bounded cells.
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3.2 One-Dimensional Cells

It follows from the preceding discussion that it is impossible to obtain line segments
as multipoint Voronoi cells in our setting.

Corollary 3.1 Let S ⊂ T ⊂ R
2, with |S| = 2 and |T | = 4. Then, VT (S) is not

one-dimensional.

Proof It follows directly from Proposition 3.1. 
�

It follows from Corollary 3.1 that it is impossible to have a one-dimensional cell
for |T | = 4, |S| = 2, so both rays and lines are impossible in this configuration.

Now consider the case |T | = |S|+1. If VT (S) �= ∅, by Corollary 2.2 wemust have
for {t} = T \S that t /∈ conv S. By the separation theorem, this yields the existence of
some d, ‖d‖ = 1 such that

〈t − s, d〉 < 0 ∀s ∈ S,

which yields the existence of a sufficiently small ball Bε(d) centered at d such that

〈t − s, y〉 < 0 ∀s ∈ S, ∀y ∈ Bε(d).

Then, for any x0 ∈ VT (S) and any y ∈ Bε(d) we have

〈t − s, x0 + y〉 = 〈t − s, x0〉 + 〈t − s, y〉 < 〈t − s, x0〉.

It is hence clear from the representation in Proposition 2.1 that x0 + Bε(y) ⊂ VT (S),
which gives that VT (S) is one-dimensional.

Thus, we have proved the following statement.

Proposition 3.2 Let S ⊂ T ⊂ R
n, with |T | = |S| + 1. Then, VT (S) is not one-

dimensional.

3.3 Triangles

A somewhat surprising result is that a second-order Voronoi cell cannot be a triangle.
As discussed previously, we only need to prove this for the case |S| = 2 and |T | = 4.

Proposition 3.3 Let S ⊂ T ⊂ R
2, with |S| = 2 and |T | = 4. Then VT (S) is not a

triangle.

Proof Suppose that VT (S) is a triangle. Denote T = {s1, s2, t1, t2}, S = {s1, s2}. The
cell VT (S) is the solution set of the linear system of inequalities

〈
ci j , x

〉 ≤ αi j (i, j = 1, 2) , (18)
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with ci j := ti − s j and αi j := 1
2

(
‖ti‖2 − ∥∥s j∥∥2

)
. Notice that

(
c22
α22

)
= −

(
c11
α11

)
+

(
c12
α12

)
+

(
c21
α21

)
. (19)

Without loss of generality, we will assume that 0 ∈ int VT (S), that is, αi j > 0
(i, j = 1, 2) . Since (18) defines a triangle, one of its inequalities, say the one
corresponding to i = 2 = j , is redundant, so that the triangle is actually the
solution set of the system consisting of the other three. We claim that the vectors(
c11
α11

)
,

(
c12
α12

)
and

(
c21
α21

)
are linearly independent. Indeed, assume the existence

of (β11, β12, β21) ∈ R
3\ {(0, 0, 0)} such that

β11

(
c11
α11

)
+ β12

(
c12
α12

)
+ β21

(
c21
α21

)
=

(
02
0

)
, (20)

and let x be the vertex of VT (S) defined by

〈c12, x〉 = α12 and 〈c21, x〉 = α21. (21)

Then, from (20) and (21) we easily deduce that β11 (〈c11, x〉 − α11) = 0. Since
〈c11, x〉 < α11, as the three sides of VT (S) do not have a common point, it fol-
lows that β11 = 0. By using the same argument with the other two vertices of VT (S),

we deduce that β12 = 0 = β21, thus proving our claim that

(
c11
α11

)
,

(
c12
α12

)
and(

c21
α21

)
are linearly independent. Since the inequality corresponding to i = 2 = j is

redundant, by Farkas’ lemma there exist λi j ≥ 0 (i, j = 1, 2) such that

c22 = λ11c11 + λ12c12 + λ21c21 and α22 ≥ λ11α11 + λ12α12 + λ21α21. (22)

Considering again the vertex x, from (19) we obtain that

α22 = −α11 + α12 + α21 ≤ −〈c11, x〉 + 〈c12, x〉 + 〈c21, x〉 = 〈−c11 + c12 + c21, x〉
= 〈c22, x〉 ≤ α22;

hence, by (22), we deduce that

〈c22, x〉 = α22 ≥ λ11α11 + λ12α12 + λ21α21

≥ λ11 〈c11, x〉 + λ12 〈c12, x〉 + λ21 〈c21, x〉 = 〈λ11c11 + λ12c12 + λ21c21, x〉
= 〈c22, x〉 .

Therefore, λ11α11 + λ12α12 + λ21α21 = α22, that is,

(
c22
α22

)
= λ11

(
c11
α11

)
+ λ12

(
c12
α12

)
+ λ12

(
c21
α21

)
.

123



Journal of Optimization Theory and Applications (2019) 183:24–49 39

Comparing this equality with (19) and taking into account that the vectors

(
c11
α11

)
,(

c12
α12

)
and

(
c21
α21

)
are linearly independent, we deduce that λ11 = −1, a contradic-

tion. 
�

3.4 Bounded Quadrilaterals

We next show that any non-cyclic bounded convex quadrilateral is a second-order
Voronoi cell with |T | = 4. We also prove that it is impossible for a cyclic quadrilateral
to be a Voronoi cell of two points (when |T | = 4).

Proposition 3.4 Let F ⊂ R
2 be a non-cyclic bounded convex quadrilateral. Then,

there exist S ⊂ T ⊂ R
2, with |S| = 2 and |T | = 4, such that VT (S) = F.

Proof First, looking at Fig. 5, where F is depicted as the quadrilateral ACBD, we
would like to mention that �CAD = α > 0 and �CBD = β > 0 and, w.l.o.g.,
π > α + β. We draw the lines through A (B) that make an angle equal to α (resp.,
β) with the segment AB. In this way, we get the points t1 and t2 as the two other
vertices of the quadrilateral having those lines as their sides. We take s1 and s2 as the
symmetric points of t1 with respect to the lines CA and CB, respectively, and we set
S := {s1, s2} and T := {s1, s2, t1, t2}. The only thing that we have to prove is that
t2s1⊥AD and t2s2⊥BD. The point B is the center of the circle passing through the
points t1, t2 and s2. Therefore, �t1s2t2 = π − β, which, looking at the quadrilateral
C2s2D2B, implies that t2s2⊥BD. The point A is the center of the circle passing
through the points t1, t2 and s1. Therefore, �t1s1t2 = π − α, which, looking at the
quadrilateral C1s1D1A, implies t2s1⊥AD. 
�

Observe that the algorithm does not work if π ≤ α + β. However, it is not difficult
to observe that, for a non-cyclic convex quadrilateral, it is always possible to choose
the corners to ensure α + β < π . We have the following negative result.

Proposition 3.5 Let S ⊂ T ⊂ R
2, with |S| = 2 and |T | = 4. Then, VT (S) is not a

cyclic quadrilateral.

Proof Assume that the Voronoi cell VT (S) of some set S := {s1, s2}, with T :=
{s1, s2, t1, t2}, is a cyclic quadrilateral. Then, each side of this quadrilateral is defined
by the bisector between si and t j for i, j ∈ {1, 2}. First, we will show that any two
sides defined by the bisectors of disjoint pairs, say, {s1, t1} and {s2, t2}, cannot be
adjoint. Assume the contrary: Then, without loss of generality, the intersection u of
the two bisectors is a vertex of VT (S). We have, by using the representation (2),

〈t1 − s2, u〉 ≤ 1

2
(‖t1‖2 − ‖s2‖2), 〈t2 − s1, u〉 ≤ 1

2
(‖t2‖2 − ‖s1‖2), (23)

and since u is the intersection of the two bisectors,

〈t1 − s1, u〉 = 1

2
(‖t1‖2 − ‖s1‖2), 〈t2 − s2, u〉 = 1

2
(‖t2‖2 − ‖s2‖2). (24)
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Fig. 5 Bounded quadrilateral

Adding the two equalities in (24) and rearranging, we obtain

〈t1 − s2, u〉 + 〈t2 − s1, u〉 = 1

2
(‖t1‖2 − ‖s2‖2) + 1

2
(‖t2‖2 − ‖s1‖2).

Together with (23), this yields equalities in (23), and hence the four lines that define the
sides of the quadrilateral must intersect at u. This is impossible; hence, the assumption
is wrong. Now, let us consider the quadrilateral with vertices s1, s2, t1 and t2. Looking
at Fig. 6, it is easy to see that the angles at t1 and C are equal, and so they are the
angles at t2 and A. This means that this quadrilateral is cyclic too, that is, s1, s2, t1
and t2 lie on a circle. It follows from Proposition 3.1 that the Voronoi cell VT (S) is a
singleton, which contradicts our assumption. 
�

3.5 Half-spaces

A half-space cell can be obtained by putting the two points of S on a line perpendicular
to the boundary line of the half-space making sure that S is in the interior of the half-
space. An additional point t is placed on the same line on the opposite side of the
hyperplane at the same distance from the hyperplane as the distance to the hyperplane
from the farthest point in S (see Fig. 7). We hence conclude that a half-space can be
constructed using |S| = 2 and |T | = 3. Observe that it is also possible to do the
same construction for |S| ∈ {2, 3} and |T | = 4. We prove this explicitly in the next
statement.
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Fig. 6 An illustration to the proof of Proposition 3.5

Fig. 7 The intersection of the two half-spaces is VT (s1, s2)

Proposition 3.6 Let F ⊂ R
n be a half-space. Then, for any two integers τ > σ ≥ 1

there exist S ⊂ T ⊂ R
n, with |S| = σ and |T | = τ , such that VT (S) = F.

Proof Note that any half-space F can be represented as F = {x ∈ R
n | 〈d, x〉 ≤ γ }

for some d, ‖d‖ = 1, and γ ∈ R. Choose any x0 such that 〈d, x0〉 = γ , and let
S := {s0, . . . , sm} and T := {t0, . . . , tp} ∪ S, where m = σ − 1, p = τ − σ − 1,

s0 := x0 − d, t0 := x0 + d,

si = x0 − αi d, 0 < αi < 1 ∀i ∈ {1, . . . ,m}, t j
:= x0 + β j d, β j > 1 ∀ j ∈ {1, . . . , p}, (25)

and the constants αi and β j are all different (to ensure that the sites do not coincide).
We will next show that

VT (S) = {x ∈ R
2 | 〈d, x〉 ≤ γ }.

We have, from the representation in Proposition 2.1,

VT (S) =
⋂

i∈{0,1,...,m}
j∈{0,1,...,p}

{
x : 〈t j − si , x〉 ≤ 1

2

(
‖t j‖2 − ‖si‖2

)}
.
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By (25), the inequalities in the latter expression can be rewritten as

(β j + αi )〈d, x〉 ≤ 1

2

(
(β j − αi )(β j + αi ) + (β j + αi )〈d, x0〉

)
,

∀i ∈ {0, . . . ,m},
∀ j ∈ {0, . . . , p},

where α0 = β0 = 1. Dividing by the factor β j + αi > 0, we have

〈d, x〉 − 〈d, x0〉 ≤ β j − αi

2
;

hence,

VT (S) =
{
x : 〈d, x〉 − γ ≤ 1

2
· min

i, j
(β j − αi )

}
= {x : 〈d, x〉 ≤ γ }.

The latter set is precisely the half-space that we were aiming for. 
�

3.6 Intersections of Parallel Half-spaces

We consider a set F ⊂ R
n represented by the inequalities α ≤ 〈d, x〉 ≤ β, with

‖d‖ = 1 and α < β. One can easily check that F = VT (S) for T := {s1, s2, t1, t2}
and S := {s1, s2} with, for instance, s1 := 3α+β

4 d, s2 := α+β
2 d, t1 := 3α−β

2 d and

t2 := 7β−3α
4 d. We have shown the following result.

Proposition 3.7 Let F ⊂ R
n be an intersection of two parallel half-spaces with oppo-

site normals, such that F has a nonempty interior. Then, there exist S ⊂ T ⊂ R
n,

with |S| = 2 and |T | = 4, such that VT (S) = F.

Note that it is impossible to produce a strip with |T | − |S| = 1: Indeed, it is clear
from the fact that all constraints are defined by parallel lines that all vectors s−t , s ∈ S,
t ∈ T should be colinear, lying on some line orthogonal to the inequalities. Now, if
for the unique t ∈ T \S we have t ∈ conv S, then the cell is empty by Corollary 2.2.
However, if t /∈ conv S, then the cell has to be a half-space. Hence, the only possibility
is |T | = 4, |S| = 2.

3.7 Wedges

Now, let us have a wedge F := {x ∈ R
n : 〈ci , x〉 ≤ αi , i = 1, 2} , with c1 and c2

being linearly independent. Let us take an arbitrary point from t ∈ int F− :=
{x ∈ R

n : 〈ci , x〉 ≥ αi , i = 1, 2} and construct the two symmetric points s1 and s2
with respect to both hyperplanes defining F . If T := {s1, s2, t} and S := {s1, s2} ,

then VT (S) = FT (t) = F .

It is possible to add any number ofmore sites s to S in such away that the half-spaces
‖s − x‖ ≤ ‖t − x‖ include the original wedge.
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Fig. 8 Construction of the set of sites for a wedge

Proposition 3.8 Let

F := {
x ∈ R

n | 〈vi , x〉 ≤ bi , i = 1, 2
}
,

with v1,v2 ∈ R
n linearly independent unit vectors and b1, b2 ∈ R. Then, there exist

S ⊂ T ⊂ R
n, with |S| = 2 and |T | = 4, such that VT (S) = F.

Proof Without loss of generality, we assume that bi = 0 (i = 1, 2) . Setβ := 〈v1, v2〉 ,

i ′ := 3 − i for i = 1, 2, and define

si := −vi − 2vi ′ (i = 1, 2) .

Let ti be the point symmetric to si with respect to the hyperplane defined by 〈x, vi ′ 〉 =
0, that is,

ti := −vi + 2 (1 + β) vi ′ (i = 1, 2) ,

and define S := {s1, s2} and T := {
s1, s2, t1,t2

}
. We have |T | = 4, since β > −1.

Given that

‖ti‖2 = 5 + 4β = ‖si‖2 (i = 1, 2) ,

one has

VT (S) = {
x ∈ R

n | 〈ti − si , x〉 ≤ 0, 〈ti − si ′ , x〉 ≤ 0, i = 1, 2
}
. (26)

Hence, to prove that VT (S) = F, it will suffice to show that, for i = 1, 2, the inequality
〈x, ti − si 〉 ≤ 0 is equivalent to 〈x, vi ′ 〉 ≤ 0 and that the remaining two inequalities
in (26) are redundant. The first assertion is obvious, since ti − si = 2 (2 + β) vi ′ and
β > −1. Let us now prove that the inequalities 〈ti − si ′ , x〉 ≤ 0 are redundant, that
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Fig. 9 Unbounded polygon with three sides

is, that they are consequences of the system 〈vi , x〉 ≤ 0 (i = 1, 2) . But this is also
immediate, since ti − si ′ = vi + (3 + 2β) vi ′ and β > −1. 
�

3.8 Unbounded Polygons with Three Sides

Our next construction is for an unbounded polygon like the shadowed one in Fig. 9,
with three sides, which is unbounded and has non-parallel sides.

Proposition 3.9 Let F be an unbounded convex polygon with non-parallel sides and
two vertices. Then, there exist S ⊂ T ⊂ R

2, with |S| = 2 and |T | = 4, such that
VT (S) = F.

Proof In the notation of Fig. 9, where F is depicted as the shaded region, we would
like to mention that 0 < α < π , 0 < β < π , α + β > π and β ≥ α. If we consider
the triangle ABC, the angle at C is α +β −π. Now, we draw a line through the point
A, which makes an angle α + β − π with the line BA. On this line, we consider an
arbitrary point t1, sufficiently close to A. Let us take the symmetric points s1 and s2
of t1 with respect to AB and AC, respectively. We shall prove that the line through
the points s1, s2 is perpendicular to BC . For this purpose, we would like to mention
that the point A is the center of the circle passing through the points s1, s2 and t1.
This means that �s1s2t1 = α + β − π. If we consider the quadrilateral formed by the
lines BC, AC, s1s2 and t1s2, we get the desired fact. At the end we construct the site
t2 as the symmetric point of s1 with respect to the line BC and set S := {s1, s2} and
T := {s1, s2, t1, t2}. 
�
Proposition 3.10 Let S ⊂ T ⊂ R

2, with |S| = 2 and |T | = 4. Then, VT (S) is not an
unbounded polygon with parallel sides and just two vertices.

Proof Similarly to the proof of Proposition 3.3, suppose that VT (S) is an unbounded
convex polygon with parallel sides and just two vertices, denote S = {s1, s2} and
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T = {s1, s2, t1, t2}, and suppose further, w.l.o.g., that the redundant inequality in the
linear system

〈
ti − s j , x

〉 ≤ 1

2

(
‖ti‖2 − ∥∥s j∥∥2

)
(i, j = 1, 2) (27)

(which has VT (S) as its solution set) is the one corresponding to i = 2 = j . Then, by
Farkas’ Lemma, there exist γ11, γ12, γ21 ≥ 0 such that

t2 − s2 = γ11 (t1 − s1) + γ12 (t1 − s2) + γ21 (t2 − s1) (28)

and

α22 ≥ γ11α11 + γ12α12 + γ21α21, (29)

where αi j := 1
2

(
‖ti‖2 − ∥∥s j∥∥2

)
. From (28) we obtain that t2 − s2 belongs to

K1 := cone {t1 − s1, t1 − s2, t2 − s1} .

On the other hand, two of the three vectors t1 − s1, t1 − s2 and t2 − s1 are exterior
normals to the parallel sides, and hence they make an angle of π. Those two vectors
cannot be t1 − s1 and t1 − s2, because with such a configuration VT (S) would be
empty. We will consider the two remaining cases. We start with the case when the two
vectors are t1 − s1 and t2 − s1, say t1 − s1 = −μ (t2 − s1) , with μ > 0. Since in this
case s2 does not belong to the straight line determined by s1, t1 and t2 (because the
side of VT (S) contained in the line 〈t1 − s2, x〉 = 1

2

(‖t1‖2 − ‖s2‖2
)
is not parallel to

the other two sides), there is a circle containing s2, t1 and t2, and we may assume,
w.l.o.g., that the center of this circle is 02. Then, α11 = α21 > 0 and α12 = α22 = 0,
thus, in view of ( 29), we have γ11 = 0 = γ12 and then, by (28),

γ12 (t1 − s2) = t2 − s2 = − (t1 − s1) + t1 − s2 + t2 − s1
= t1 − s2 + (1 + μ) (t2 − s1) ,

which yields

t2 − s1 = γ12 − 1

1 + μ
(t1 − s2) .

This is impossible because the vectors t1 − s1, t1 − s2 and t2 − s1 are not all colinear.
It only remains to consider the case when t1 − s2 and t2 − s1 are the vectors that make
an angle of π. Since t1 − s1 is not colinear with these two vectors, we have that the
cones K1 and

K2 := cone {− (t1 − s1) , t1 − s2, t2 − s1}
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Fig. 10 Unbounded polygon with parallel sides

are opposite halfplanes defined by the line containing the vectors t1 − s2 and t2 − s1.
The fact that t2 − s2 ∈ K1 ∩ int K2 provides a contradiction. 
�

We note here that it is possible to have an unbounded polygon with three sides for
the case |S| = 3 and |T | = 4 if and only if the unbounded sides are non-parallel.
Indeed, in this case we can first build a wedge that defines the two unbounded sides
(see Sect. 3.7) and then add an extra site to define the extra inequality. For the case of
unbounded parallel sides, it is clear that the point t should at the same time lie outside
of each of these parallel sides, which is impossible.

3.9 Unbounded Polygons with Four Sides

In the next proposition, we shall consider the case of an unbounded quadrilateral in
R
2 with two parallel sides, shown in Fig. 10.

Proposition 3.11 Let F ⊂ R
2 be an unbounded convex quadrilateral with two parallel

sides. Then, there exist S ⊂ T ⊂ R
2, with |S| = 2 and |T | = 4, such that VT (S) = F.

Proof In the notation of Fig. 10, where F is depicted as the unbounded convex polygon
with vertices A, B and C, we have l1 ‖ l2 and 0 < α < π, and the point A belongs
to the interior of the parallel band. First, we move, parallel to the line l1, the point A
to an arbitrary point M . Through M , we draw a line perpendicular to l1. Take a point
S1 on the same line, with the same distance to l2 as M is to l1. Now, we consider the
symmetric point T1 and T2 of S1 with respect to l2 and l1, respectively. In this way,
M is the midpoint of the segment T1T2. Next, we translate the line through the points
T1 and T2 in such a way that, defining t1, t2, m and s1 as the orthogonal projections of
T1, T2, M and S1 onto the resulting translated line, one has � t1At2 = 2π −2α and �
mAt2 = π −α. For the last site, we take s2 as the symmetric point of t2 with respect to
the line through the points A and B. We shall prove that the line through the points t1,
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Fig. 11 Configuration for a general unbounded quadrilateral

s2 is perpendicular to AC . For this purpose, we observe that the point A is the center
of the circle passing through the points t1, t2 and s2. This means that�t2s2t1 = π −α.

If we consider the quadrilateral formed by the lines BA, AC, t1s2 and t2s2, we get
the desired fact. At the end, after having found the desired sets S := {s1, s2} and
T := {s1, s2, t1, t2}, we would like to mention that this construction is impossible if
α = π. 
�

We next consider the case of an arbitrary unbounded convex quadrilateral with
non-parallel sides, presented in Fig. 11 .

Proposition 3.12 Let F be an unbounded convex quadrilateral with no sides parallel.
Then, there exist S ⊂ T ⊂ R

2, with |S| = 2 and |T | = 4, such that VT (S) = F.

Proof First, looking at Fig. 11, where F is depicted as the shaded region, we obtain
the point B as the intersection of the unbounded sides of the convex quadrilateral
with vertices CAD. We denote �CAD = α and �CBD = β and observe that
π > α > β > 0. We next draw the lines that make angles π − α with AB at the point
A and those that make angles β with the same segment at B. We then get the points t1
and t2 as the two other vertices of the quadrilateral determined by these four lines. We
take s1 and s2 as the symmetric points of t1 with respect to CA and CB, respectively.
To see that VT (S) = F for S := {s1, s2} and T := {s1, s2, t1, t2} , the only thing that
we have to prove is that t2s1⊥AD and t2s2⊥BD. The pòint B is the center of the circle
passing through the points t1, t2 and s2. Therefore, �t1s2t2 = π − β, which, looking
at the quadrilateral C2s2D2B, implies that t2s2⊥BD. The point A is the center of the
circle passing through the points t1, t2 and s1. Therefore, �t1s1t2 = π − α, which,
looking at the quadrilateral C1s1D1A, implies t2s1⊥AD. 
�
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4 Conclusions

We have obtained constructive characterizations of properties pertaining to higher
order Voronoi cells and applied these characterizations to a case study of cells of order
at least two in the system of four sites.

In particular, the results obtained in the preceding subsections show that for S ⊂
T ⊂ R

2, with |S| = 2 and |T | = 4, the resulting cell VT (S) can be any of the following
sets: the empty set, a singleton, a non-cyclic bounded convex quadrilateral, a halfplane,
an intersection of parallel halfplanes with opposite normals and a nonempty interior,
an angle, an unbounded polygon with non-parallel sides and just two vertices, or an
unbounded convex quadrilateral. All the remaining possibilities for sets in R2 defined
by four linear inequalities, namely, a singleton, a one-dimensional set, a triangle, a
cyclic quadrilateral and an unbounded quadrilateral with parallel sides and just two
vertices are unfeasible.

The restrictions on the possible shapes of higher order cells discovered in our
case study are consistent with the challenges encountered in the design of numerical
methods for constructing higher order cells (cf. [14]), where the key assumption of
general position ensures the absence of cyclic quadrilateral configurations). Thus, a
natural direction for the future study is to obtain general structural results on the shapes
of higher order cells, which will in turn inform the design of algorithms. For instance,
we would like to know whether the convex hull of affinely independent points can be
represented as a higher order Voronoi cell (generalizing our result on the impossibility
of a triangular cell), what higher-dimensional configurations produce cells with empty
interiors, and what are the possible dimensions of higher order Voronoi cells in Rn .
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