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Abstract
In this paper, we aim at applying improvement sets and image space analysis to
investigate scalarizations and optimality conditions of the constrained set-valued opti-
mization problem. Firstly, we use the improvement set to introduce a new class of
generalized convex set-valued maps. Secondly, under suitable assumptions, some
scalarization results of the constrained set-valued optimization problem are obtained
in the sense of (weak) optimal solution characterized by the improvement set. Finally,
by considering two classes of nonlinear separation functions, we present the separa-
tion between two suitable sets in image space and derive some optimality conditions
for the constrained set-valued optimization problem. It shows that the existence of
a nonlinear separation is equivalent to a saddle point condition of the generalized
Lagrangian set-valued functions.
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1 Introduction

Very recently, Chicco et al. [1], in finite-dimensional spaces, have introduced the
approximate solution named as E-optimal solution based on the concept of the
improvement set and investigated the existence of E-optimal solution for vector opti-
mization problems. Later, the notion of E-optimal solution was extended by Gutiérrez
et al. [2] to locally convex spaces. The E-optimal solution unifies some known exact
and approximate solutions in vector optimization problems. So far, some applications
of improvement sets in vector optimization are investigated (see [1–13] and the ref-
erences therein). It is worth noticing that Zhao et al. [5] used the improvement set
to introduce E-optimal solution and weak E-optimal solution of the constrained set-
valued optimization problem (for short, SVOP) and established scalarization theorems
and Lagrange multiplier theorems of weak E-optimal solution under the assumption
of near E-subconvexlikeness.

Historically speaking, the image space analysis (shortly, ISA),which is an important
tool to study vector optimization problems, variational inequalities and other related
problems due to their abundant applications in many disciplines (see, for example,
[14–17]), was born with [18]. Reference [19], as well as several others, belongs to the
gestation. On the other hand, ISA has also become a unified method for investigating
such problems, which can be expressed under the form of the inconsistency of a
parametric system. The inconsistency of this system was reduced to the disjunction of
two suitable sets in the image space.Moreover, the disjunction between the two suitable
sets can be proved by verifying that they lie in two disjoint level sets of a suitable
separation function. Various linear or nonlinear functions were proposed in [12,13,
18,20–25] and then were proved to be weak separation functions or regular weak
separation functions or strong separation functions. Recently, Chinaie and Zafarani
[26] have proposed two kinds of separation functions, which unify the known linear
or nonlinear separation functions. By virtue of ISA, some authors have investigated
regularity, duality and optimality conditions for constrained extremum problems (see
[12,13,18,20–24,26–31] and the references therein). It is noteworthy that the authors in
[12] used the improvement set and the oriented/signed distance function to introduce
a nonlinear vector regular weak separation functions and a nonlinear scalar weak
separation function, and obtained Lagrangian-type optimality conditions in the sense
of vector separation and scalar separation, respectively. In [13], Chen et al. also defined
a vector-valued regular weak separation function and a scalar weak separation function
via the improvement set and obtained some optimality conditions in terms of E-
optimal solution for multiobjective optimization with general constraints. For set-
valued optimization problems with constraints, Chinaie and Zafarani [24,26], Li and
Li [31] obtained some optimality conditions via ISA.Bymeans of the generalized level
set of set-valued maps, Chinaie and Zafarani [32] extended a method of scalarization
of vector-valued optimization proposed in [25] to set-valued optimization. Similar to
the works in [32], Chinaie and Zafarani [33] also presented scalarization results in
the sense of ε-feeble multifunction minimum point, which rely on some level sets of
set-valued functions.

The purpose of this paper is to apply the ISAand improvement sets to investigate set-
valued optimization problem with constraints. We firstly introduce E-quasi-convexity
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of set-valuedmaps and disclose the relations between E-quasi-convexity of set-valued
maps and C-quasi-convexity of set-valued maps defined in [34]. By virtue of the
E-quasi-convexity of set-valued maps and a new assumption, we explore the scalar-
izations of E-optimal solution and weak E-optimal solution of SVOP, respectively.
Then, we construct two kinds of generalized Lagrangian set-valued maps concerning
the nonlinear scalarization functions� and the improvement set E , which are different
from the ones in the literature. Similar to Definition 2.4 in [35], the notions of saddle
point of the two generalized Lagrangian set-valued maps are defined. Finally, we dis-
cuss the saddle point properties, which disclose the relations between the existence of
saddle points and the fact that K(x̄,ȳ) andH admit nonlinear separation, where K(x̄,ȳ)

denotes the image of SVOP and H = E × D.
This paper is organized as follows. In Sect. 2, we recall some definitions and intro-

duce the notion of E-quasi-convexity of set-valued maps. In Sect. 3, under some
suitable conditions, some scalarization results of E-optimal solution and weak E-
optimal solution of SVOP are obtained, respectively. In Sect. 4, we analyze the general
features of the ISA for SVOP and consider two classes of nonlinear weak separation
functions. Moreover, two classes of generalized Lagrangian set-valued maps are con-
structed to discuss saddle point properties.

2 Preliminaries

Throughout this paper, R
m+ represents the nonnegative orthant of the m-dimensional

Euclidean space R
m . Let X be a topological vector space, and let Y and Z be two

normed linear spaces with normed dual spaces Y ∗ and Z∗, respectively. For a set
K ⊆ Y , the closure, the complement, the topological interior and the boundary of K
are denoted by cl K , Kc, int K and ∂K , respectively. Let C ⊆ Y and D ⊆ Z be two
closed, convex and pointed cones with intC �= ∅ and int D �= ∅. Let 0 denote the zero
element for every space. The dual cone and the strict dual cone of K are, respectively,
defined as

K ∗ := {ϕ ∈ Y ∗ : ϕ(y) ≥ 0,∀y ∈ K }, K � := {ϕ ∈ Y ∗ : ϕ(y) > 0,∀y ∈ K\{0}}.

Lemma 2.1 [36] If K ⊆ Y be a convex cone with int K �= ∅, then

int K = {y ∈ Y : ϕ(y) > 0,∀ϕ ∈ K ∗\{0}}.

Definition 2.1 [2] Let E be a nonempty subset of Y . E is said to be an improvement set
with respect toC , iff 0 /∈ E and E+C = E . We denote the family of the improvement
sets in Y by TY .

Remark 2.1 The following properties concerning improvement sets can be found in
[4].

(i) C\{0} ∈ TY , intC ∈ TY ;
(ii) If ε ∈ C\{0}, then ε + C ∈ TY and ε + intC ∈ TY ;
(iii) If E ⊆ C and E ∈ TY , then E + E ⊆ E and int E + E ⊆ E ;
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(iv) If E ∈ TY , then int E = E + intC .

Remark 2.2 Remark 2.1 in [6] pointed out that int E �= ∅ if E �= ∅.
Remark 2.3 Let ∅ �= E ∈ TY be a closed convex subset of Y . Then, there exists a
subset of E (denoted by M) such that the conic extension of M with respect to C is
equal to E . Put M := int E ⊆ E . Since E is a closed convex subset of Y , it follows
fromTheorem1.1.2(iv) in [37] that clM = cl E = E . Hence, clM+C = E+C = E .

Definition 2.2 [34] Let A be a convex subset of X . A set-valued map F : A ⇒ Y is
called C-quasi-convex, iff

(F(x1) + C) ∩ (F(x2) + C) ⊆ F(t x1 + (1 − t)x2) + C, ∀x1, x2 ∈ A,∀t ∈ [0, 1].

From now on, we suppose that ∅ �= E ∈ TY . We next introduce a new notion of
E-quasi-convex set-valued map.

Definition 2.3 Let A be a convex subset of X . A set-valued map F : A ⇒ Y is called
E-quasi-convex on A, iff

(F(x1) + E) ∩ (F(x2) + E) ⊆ F(t x1 + (1 − t)x2) + E, ∀x1, x2 ∈ A,∀t ∈ [0, 1].

Remark 2.4 The following examples show that there are no implication relations
between Definitions 2.2 and 2.3.

Example 2.1 Let X := R, Y := R
2, A := [−1, 1], E := {(x1, x2) ∈ R

2 : x1+x2 ≥ 1}
and C := R

2+. The set-valued map F : A ⇒ Y is defined as follows:

F(x) :=
⎧
⎨

⎩

{0} × [1,+∞[, if x = −1,
[1, x2 + 2] × [1, x + 2], if x ∈] − 1, 1[,
[1,+∞[×{0}, if x = 1.

Clearly, E ∈ TY . Moreover, it is easy to see that F is C-quasi-convex on A. Let
x̄1 := 1, x̄2 := −1 and t̄ := 1

3 . Then, (1, 1) ∈ (F(x̄1) + E) ∩ (F(x̄2) + E). However,
(1, 1) /∈ F(t̄ x̄1 + (1 − t̄)x̄2) + E . Hence, F is not E-quasi-convex on A.

Example 2.2 Let X := R, Y := R
2, A := [−1, 1], E := {(x1, x2) ∈ R

2 : x1 ∈
R, x2 ≥ 1} and C := R

2+. The set-valued map F : A ⇒ Y is defined as follows:

F(x) :=
{ {min{0, x}} × [0, |x |], if x ∈ [−1, 1]\{0},

[1, 2] × [0, 1], if x = 0.

It is easy to check that E ∈ TY and F is E-quasi-convex on A. If we take x̄1 := −1,
x̄2 := 1 and t̄ := 1

2 , then (0, 0) ∈ (F(x̄1) + C) ∩ (F(x̄2) + C). However, (0, 0) /∈
F(t̄ x̄1 + (1 − t̄)x̄2) + C . Therefore, F is not C-quasi-convex on A.

The following proposition gives a characterization of E-quasi-convex set-valued
map in terms of its generalized level sets with respect to E .
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Proposition 2.1 Let A be a convex subset of X and F : A ⇒ Y be a set-valued map.
F is an E-quasi-convex on A, iff for each y ∈ Y , the generalized level set

F−1(y − E) := {x ∈ A : y ∈ F(x) + E}

is a convex set.

Proof This conclusion is easily derived from Definition 2.3. ��
In this paper, we consider the following constrained set-valued optimization prob-

lem:

SVOP min F(x), s.t. x ∈ S := {x ∈ A : G(x) ∩ (−D) �= ∅},

where A ⊆ X , and F : A ⇒ Y and G : A ⇒ Z are two set-valued maps with
nonempty values. We assume that the feasible set S is nonempty. The graph of F is
defined by

gr(F) := {(x, y) ∈ X × Y : x ∈ A, y ∈ F(x)}.

For ϕ ∈ Y ∗, we denote the support functional of Q ⊆ Y at y by σQ(ϕ). Let

σQ(ϕ) := sup
y∈Q

ϕ(y), F(A) :=
⋃

x∈A

F(x), ϕ(F(x)) := {ϕ(y) : y ∈ F(x)}.

Remark 2.5 Remark 1.2 in [32] showed that, if G is D-quasi-convex on a convex
subset A of X , then S is a convex set.

The concepts of E-optimal solution and weak E-optimal solution for vector opti-
mization with vector-valued maps have been introduced in [2] and have been further
extended for SVOP by Zhao et al. [5].

Definition 2.4 [5] A point x̄ ∈ S is called an E-optimal solution of SVOP, iff there
exists ȳ ∈ F(x̄) such that

F(S) ∩ (ȳ − E) = ∅.

The point pair (x̄, ȳ) is called an E-optimal point of SVOP. Denote by V E (F) the set
of all E-optimal solutions of SVOP.

Definition 2.5 [5] A point x̄ ∈ S is called a weak E-optimal solution of SVOP, iff
there exists ȳ ∈ F(x̄) such that

F(S) ∩ (ȳ − int E) = ∅. (1)

The point pair (x̄, ȳ) is called a weak E-optimal point of SVOP. Denote by V E
w (F)

the set of all weak E-optimal solutions of SVOP.
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Remark 2.6 Obviously, it follows from Definitions 2.4 and 2.5 that V E (F) ⊆ V E
w (F).

However, Example 2.1 in [5] shows that the inclusion relation V E
w (F) ⊆ V E (F) does

not hold.

Remark 2.7 It follows from Remark 2.1(iv) that (1) is equivalent to (F(S)+ E)∩ (ȳ−
intC) = ∅.
Remark 2.8 Obviously, if E = C\{0}, then Definition 2.4 reduces to Definition 2.3 in
[24]. If E = intC , then Definition 2.4 reduces to Definition 6.4 in [38]. Moreover, if
ε ∈ C , E = ε + intC , then Definition 2.4 reduces to Definition 1.1 in [39].

Definition 2.6 Let � be a nonempty set of X and ā ∈ �. We say that � is E-bounded
from above by ā, iff � − ā ⊆ −cl E .

3 Scalarization

In this section, we give scalarizations of E-optimal solution and weak E-optimal
solution of SVOP by virtue of the improvement set E , respectively. The method of
scalarization was applied by Giannessi and Pellegrini [25] for single-valued functions,
and then extended by Chinaie and Zafarani [32,33] to set-valued functions.

We introduce the following scalar optimization problem associated with SVOP:

ϕ-SVOP min ϕ(F(x)), s.t. x ∈ S ∩ F−1(y − E),

which depends on the parameter y ∈ Y , where ϕ ∈ C∗\{0} is fixed.
Definition 3.1 Let x̄ ∈ S ∩ F−1(y − E). x̄ is called an optimal solution of ϕ-SVOP
with respect to E , iff there exists ȳ ∈ F(x̄) such that

ϕ(ζ ) − ϕ(ȳ) ≥ σ−E (ϕ), ∀x ∈ S ∩ F−1(y − E),∀ζ ∈ F(x). (2)

The point pair (x̄, ȳ) is called an optimal point of ϕ-SVOP with respect to E .

Remark 3.1 For ε ∈ C\{0}, let Fε(x) := F(x) + ε. If E = ε + C and ϕ ∈ C�, then
E ∈ TY and (2) reduces to

ϕ(ȳ) ≤ ϕ(ζ ) + ϕ(ε), ∀x ∈ S ∩ F−1
ε (y − C),∀ζ ∈ F(x),

which was investigated in [33].

Definition 3.2 Let x̄ ∈ S ∩ F−1(y − E).

(i) x̄ is called a local optimal solution of ϕ-SVOP with respect to E , iff there exist
ȳ ∈ F(x̄) and a neighborhood U of x̄ such that

ϕ(ζ ) − ϕ(ȳ) ≥ σ−E (ϕ), ∀x ∈ S ∩U ∩ F−1(y − E),∀ζ ∈ F(x). (3)

The point pair (x̄, ȳ) is called a local optimal point of ϕ-SVOP with respect to E .
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(ii) x̄ is called a strict local optimal solution of ϕ-SVOP with respect to E , iff there
exist ȳ ∈ F(x̄) and a neighborhood U of x̄ such that

ϕ(ζ ) − ϕ(ȳ) > σ−E (ϕ), ∀x ∈ S ∩U ∩ F−1(y − E),∀ζ ∈ F(x).

The point pair (x̄, ȳ) is called a strict local optimal point of ϕ-SVOP with respect
to E .

Now, we give a sufficient condition of weak E-optimal solution of SVOP, which
plays an important role in the establishment of scalarization.

Theorem 3.1 Let ϕ ∈ C∗\{0} be given and (x̄, ȳ) ∈ gr(F). If the following system in
the unknown x is impossible:

∃x ∈ S ∩ F−1(ȳ − int E), ∃y ∈ F(x) such that ϕ(y) − ϕ(ȳ) < σ−E (ϕ), (4)

then (x̄, ȳ) is a weak E-optimal point of SVOP.

Proof Suppose that (x̄, ȳ) is not a weak E-optimal point of SVOP. Then, fromRemark
2.7, we have

(F(S) + E) ∩ (ȳ − intC) �= ∅,

which implies that there exist x̂ ∈ S, ŷ ∈ F(x̂) and ê ∈ E such that ŷ− ȳ+ê ∈ −intC .
Hence, by Lemma 2.1, we get ϕ(ŷ − ȳ + ê) < 0, that is,

ϕ(ŷ) − ϕ(ȳ) < ϕ(−ê) ≤ sup
e∈E

ϕ(−e) = sup
e∈−E

ϕ(e) = σ−E (ϕ). (5)

Clearly,

x̂ ∈ S ∩ F−1(ȳ − int E). (6)

It follows from (5) and (6) that the system (4) is possible. This is a contradiction. ��
Let us recall the following assumption related to F , which was introduced by

Chinaie and Zafarani [33] to study the feeble minimizer of SVOP.

Assumption A Let F : A ⇒ Y be a set-valued map and (x̄, ȳ) ∈ gr(F). We say that
F satisfies Assumption A at (x̄, ȳ) with respect to cone C if, when ȳ ∈ F(x̂) +C for
some x̂ ∈ A and y ∈ F(x̄) + C , then y ∈ F(x̂) + C .

Remark 3.2 For Assumption A, if A = R
n and Y = R

l , then F is a vector-valued
map and the set F−1(y − C) becomes the level set of F . Therefore, we observe that
Assumption A coincides with Proposition 5 in [25].

In order to obtain some scalarization results of (weak) E-optimal point of SVOP,
we propose the following assumption (called Assumption B).
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Assumption B Let F : A ⇒ Y be a set-valued map and (x̄, ȳ) ∈ gr(F). We say that
F satisfies Assumption B at (x̄, ȳ) with respect to E if, when ȳ ∈ F(x̂) + E for some
x̂ ∈ A and y ∈ F(x̄) + E , then y ∈ F(x̂) + E .

Remark 3.3 If E ⊆ C , then it is easy to verify that all single-valued maps satisfy
Assumption B at each point of its graph. In fact, let f : A → Y be a single-valued
map, x̄ ∈ A and ȳ = f (x̄), if ȳ ∈ f (x̂) + E for some x̂ ∈ A and y ∈ f (x̄) + E , then
y ∈ f (x̂) + E + E ⊆ f (x̂) + E .

Remark 3.4 When E ⊆ C , Assumption B implies Assumption A. However, if E � C ,
then Assumption B does not imply Assumption A. The following example illustrates
this case.

Example 3.1 Let X = Y = A := R
2, E := {(x1, x2) ∈ R

2 : x1 + x2 ≥ 1, x2 ≥ 1
2 }

and C = R
2+, and let

F(x) :=
{ [0, |x1|] × [1, |x2| + 1], if x2 < 0,

{( 1
2 ,

1
2

)}
, if x2 ≥ 0.

Clearly, E ∈ TY and E � C . Set x̄ := (1,−1), ȳ := (1, 1) ∈ F(x̄), x̂ := (1, 1) and
y := ( 13 , 3). It is easy to check that F satisfies Assumption B at (x̄, ȳ). However, F
does not satisfy Assumption A at (x̄, ȳ).

Theorem 3.2 Let F : A ⇒ Y and G : A ⇒ Z be set-valued maps, and let ϕ ∈ C∗\{0}
and (x̄, ȳ) ∈ gr(F). Suppose that the following conditions are satisfied:

(i) x̄ ∈ S ∩ F−1(y − E) for some arbitrary y ∈ Y ;
(ii) F satisfies Assumption B at (x̄, ȳ) with respect to E;
(iii) (x̄, ȳ) is an optimal point of ϕ-SVOP.

Then, (x̄, ȳ) is a weak E-optimal point of SVOP.

Proof Suppose that (x̄, ȳ) is an optimal point of ϕ-SVOP. Then (2) holds. We next
show that the system (4) in the unknown x is impossible. Assume that the system (4)
is possible. Then, there exist x ′ ∈ S ∩ F−1(ȳ − int E) and y′ ∈ F(x ′) such that

ϕ(y′) − ϕ(ȳ) < σ−E (ϕ). (7)

Clearly,

S ∩ F−1(ȳ − int E) ⊆ S ∩ F−1(ȳ − E).

Therefore, x ′ ∈ S ∩ F−1(ȳ − E), which means that

ȳ ∈ F(x ′) + E . (8)

From (8), Conditions (i) and (ii), we have y ∈ F(x ′) + E , i.e.,

x ′ ∈ S ∩ F−1(y − E). (9)
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The combination of (8) and (9) contradicts (2). Hence, the system (4) in the unknown
x is impossible. From Theorem 3.1, we immediately obtain (x̄, ȳ) which is a weak
E-optimal point of SVOP. ��
Theorem 3.3 Let A be a convex subset of X, and let F : A ⇒ Y and G : A ⇒ Z
be set-valued maps. Let ϕ ∈ C∗\{0} and (x̄, ȳ) ∈ gr(F). Suppose that the following
conditions are satisfied:

(i) F and G are E-quasi-convex and D-quasi-convex on A, respectively;
(ii) x̄ ∈ S ∩ F−1(y − E) for an arbitrary y ∈ Y ;
(iii) F satisfies Assumption B at (x̄, ȳ) with respect to E;
(iv) (x̄, ȳ) is a strict local optimal point of ϕ-SVOP.

Then, (x̄, ȳ) is an E-optimal point of SVOP.

Proof Assume that (x̄, ȳ) is not an E-optimal point of SVOP. Then, there exist x ′ ∈
S and y′ ∈ F(x ′) such that ȳ − y′ ∈ E , that is, ȳ ∈ F(x ′) + E . From the E-
prequasiinvexity of F and Condition (ii), we have

ȳ ∈ (F(x ′) + E) ∩ (F(x̄) + E) ⊆ F(x̄ + t(x ′ − x̄)) + E

⊆ F(x̄ + t(x ′ − x̄)) + E + C, ∀t ∈ [0, 1]. (10)

Let xt := x̄ + t(x ′ − x̄),∀t ∈ [0, 1]. It follows from (10) that there exist yt ∈ F(xt )
and ê ∈ E such that ȳ − yt − ê ∈ C . Since ϕ ∈ C∗\{0}, we get ϕ(ȳ − yt − ê) ≥ 0,
i.e.,

ϕ(yt − ȳ) ≤ ϕ(−ê) ≤ sup
e∈E

ϕ(−e) = σ−E (ϕ). (11)

Now, we show that for sufficiently small t > 0,

xt ∈ S ∩U ∩ F−1(y − E), (12)

where U is a neighborhood of x̄ . Clearly, xt ∈ U for sufficiently small t > 0 and it
follows from Remark 2.5 that xt ∈ S. According to y ∈ F(x̄)+ E , ȳ ∈ F(xt )+ E and
Condition (iii), we deduce that y ∈ F(xt ) + E , that is, xt ∈ F−1(y − E). Therefore,
(12) holds for sufficiently small t > 0. The combination of (11) and (12) contradicts
the fact that (x̄, ȳ) is a strict local optimal point of ϕ-SVOP. ��

4 Optimality Conditions

Let us recall the main features of the ISA for SVOP. Let x̄ ∈ S and (x̄, ȳ) ∈ gr(F).
We define the map A(x̄,ȳ) : A ⇒ Y × Z as

A(x̄,ȳ)(x) := (ȳ − F(x),−G(x)).
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Let

K(x̄,ȳ) := {(u, v) ∈ Y × Z : u ∈ ȳ − F(x), v ∈ −G(x), x ∈ A},
H := {(u, v) ∈ Y × Z : u ∈ E, v ∈ D}

and

Hie := {(u, v) ∈ Y × Z : u ∈ int E, v ∈ D}.

The setK(x̄,ȳ) is called the image of SVOP, while Y × Z is the image space associated
with SVOP. From Definition 2.4 and the definitions ofH and K(x̄,ȳ), we deduce that

x̄ ∈ V E (F) ⇔ K(x̄,ȳ) ∩ H = ∅. (13)

Similarly, we have

x̄ ∈ V E
w (F) ⇔ K(x̄,ȳ) ∩ Hie = ∅. (14)

Proposition 4.1 Let E(x̄,ȳ) := K(x̄,ȳ) −C × D be the conic extension of the image set
K(x̄,ȳ). Then,

(i) K(x̄,ȳ) ∩ H = ∅ ⇔ E(x̄,ȳ) ∩ H = ∅;
(ii) K(x̄,ȳ) ∩ Hie = ∅ ⇔ E(x̄,ȳ) ∩ Hie = ∅.
Proof The proofs are similar to Proposition 2.4 in [13]. ��
Remark 4.1 If E = C\{0}, Proposition 4.1(i) reduces to Lemma 3.1 in [24]. If E =
intC , then Proposition 4.1(i) reduces to Proposition 2 in [31].

Corollary 4.1 Let x̄ ∈ S. Then, (x̄, ȳ) ∈ gr(F) is an E-optimal point of SVOP iff

E(x̄,ȳ) ∩ H = ∅.

Remark 4.2 When E = C\{0}, Corollary 4.1 reduces to Corollary 2.1 in [26].

Corollary 4.2 Let x̄ ∈ S. Then, (x̄, ȳ) ∈ gr(F) is a weak E-optimal point of SVOP iff

E(x̄,ȳ) ∩ Hie = ∅.

We next give some properties of other kinds of extension of the image set. Let
(x̄, ȳ) ∈ gr(F). We write

Kg-levȳ
(x̄,ȳ) := A(x̄,ȳ)(F

−1(ȳ − E))

= {(ȳ − y,−z) : x ∈ F−1(ȳ − E), y ∈ F(x), z ∈ G(x)}.
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Proposition 4.2 Let Eg-levȳ
(x̄,ȳ) := Kg-levȳ

(x̄,ȳ) − C × D be the conic extension of the image

set Kg-levȳ
(x̄,ȳ) . Then,

Kg-levȳ
(x̄,ȳ) ∩ H = ∅ ⇔ Eg-levȳ

(x̄,ȳ) ∩ H = ∅.

Proof It is similar to the proof of Proposition 2.4 in [13]. ��
Theorem 4.1 Let x̄ ∈ S. Then, (x̄, ȳ) ∈ gr(F) is an E-optimal point of SVOP iff

Kg-levȳ
(x̄,ȳ) ∩ H = ∅.

Proof Necessity. Let (x̄, ȳ) be an E-optimal point of SVOP. It follows from (13) that

K(x̄,ȳ) ∩ H = ∅. (15)

From (15) and the definition of F−1(ȳ − E), we have Kg-levȳ
(x̄,ȳ) ∩ H = ∅.

Sufficiency. If (x̄, ȳ) is not an E-optimal point of SVOP, then there exist x ′ ∈ S,
y′ ∈ F(x ′) and z′ ∈ G(x ′)∩(−D) such that (ȳ−y′,−z′) ∈ H = E×D. Consequently,

ȳ ∈ F(x ′) + E , that is, x ′ ∈ F−1(ȳ − E). Thus, we deduce that Kg-levȳ
(x̄,ȳ) ∩ H �= ∅,

which is a contradiction. ��
Theorem 4.2 Let x̄ ∈ S. Then, (x̄, ȳ) ∈ gr(F) is a weak E-optimal point of SVOP iff

Kg-levȳ
(x̄,ȳ) ∩ Hie = ∅.

Proof It is similar to the proof of Theorem 4.1. ��
The following theorem shows that ȳ in the generalized level set of Theorem 4.1

can be replaced by an arbitrary y when Assumption B is satisfied.

Theorem 4.3 Suppose that x̄ ∈ S ∩ F−1(y − E) for some arbitrary y and F satisfies
Assumption B at (x̄, ȳ) ∈ gr(F) with respect to E. Then, (x̄, ȳ) is an E-optimal point
of SVOP iff

Kg-levy
(x̄,ȳ) ∩ H = ∅. (16)

Proof Necessity. Let (x̄, ȳ) be an E-optimal point of SVOP. From (13), we have

K(x̄,ȳ) ∩H = ∅. This, together with the definition of F−1(y−E), yields thatKg-levy
(x̄,ȳ) ∩

H = ∅.
Sufficiency. Suppose that (x̄, ȳ) is not an E-optimal point of SVOP. Then, there

exist x ′ ∈ S, y′ ∈ F(x ′) and z′ ∈ G(x ′) ∩ (−D) such that

(ȳ − y′,−z′) ∈ H = E × D. (17)

Therefore,

ȳ ∈ F(x ′) + E . (18)
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Since x̄ ∈ S ∩ F−1(y − E) for some arbitrary y, we have

y ∈ F(x̄) + E . (19)

Since F satisfies Assumption B at (x̄, ȳ) with respect to E , the combination of (18)
and (19) implies that y ∈ F(x ′) + E , i.e.,

x ′ ∈ S ∩ F−1(y − E). (20)

According to (17) and (20), we have Kg-levy
(x̄,ȳ) ∩ H �= ∅, which contradicts (16). ��

Theorem 4.4 Suppose that x̄ ∈ S ∩ F−1(y − E) for some arbitrary y and F satisfies
Assumption B at (x̄, ȳ) ∈ gr(F)with respect to int E. Then, (x̄, ȳ) is a weak E-optimal
point of SVOP iff

Kg-levy
(x̄,ȳ) ∩ Hie = ∅.

Proof It is similar to the proof of Theorem 4.3. ��
Consider a function w : Y × Z × 
 → R, where 
 is a set of parameters to be

specified case by case. For each π ∈ 
, the sets

lev≥0w(·;π) := {z ∈ Y × Z : w(z;π) ≥ 0}

and

lev>0w(·;π) := {z ∈ Y × Z : w(z;π) > 0}

are called nonnegative and positive level sets of the function w, respectively.

Definition 4.1 The class of all the functions w : Y × Z × 
 → R, such that

(i) H ⊆ lev≥0w(·;π),∀π ∈ 
,
(ii)

⋂
π∈
 lev>0w(·;π) ⊆ H,

is called the class of weak separation functions.

Definition 4.2 [40] Let � be a subset in Y . The function �� : Y → R ∪ {±∞} is
defined as

��(y) := d�(y) − d�c (y),

where d�(y) := infθ∈� ‖y − θ‖, d∅(y) := +∞ and ‖y‖ denotes the norm of y in Y .

Proposition 4.3 [41] Let � ⊆ Z be nonempty and � �= Z. Then, the following hold:

(i) �� is real-valued and Lipschitz continuous;
(ii) ��(θ) < 0 for all θ ∈ int�;
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(iii) ��(θ) = 0 for all θ ∈ ∂ �;
(iv) ��(θ) > 0 for all θ ∈ int�c.

In [26], the authors introduced two classes of separation functions, which unify the
known linear or nonlinear separation functions in the literature. Now, by the oriented
distance function � and the improvement set E , we consider the following nonlinear
separation functions, which are different from the ones in the literature:

w1(u, v;φ) := −�cl E (u) + φ(v),

where (u, v) ∈ Y × Z and φ ∈ 
1 := D∗;

w2(u, v;ϕ, λ) := ϕ(u) − λ�D(v),

where (u, v) ∈ Y × Z and (ϕ, λ) ∈ 
2 := (E∗ × R+)\{(0, 0)}.
Remark 4.3 If either E = C\{0} or E = intC , then w1 becomes w(u, v;φ) :=
−�clC (u) + φ(v), which was studied in [22]. We observe that, in the case where
Y = R, Z = R

m and E = R+\{0}, w2 reduces to another version, which was
discussed in [21].

Theorem 4.5 The nonlinear functions w1 and w2 are weak separation functions.

Proof The proofs that w1 and w2 are weak separation functions are similar to Propo-
sition 3.1(i) in [22] and Proposition 3.1(i) in [21], respectively. ��
Definition 4.3 The setsK(x̄,ȳ) andH (orHie) admit a nonlinear separationwith respect
to w1, iff there exists φ̄ ∈ D∗ such that

− �cl E (u) + φ̄(v) ≤ 0, ∀(u, v) ∈ K(x̄,ȳ). (21)

Theorem 4.6 Let x̄ ∈ S and (x̄, ȳ) ∈ gr(F). If there exists φ̄ ∈ D∗ such that K(x̄,ȳ)

and Hie admit a nonlinear separation with respect to w1, then x̄ ∈ V E
w (F).

Proof Since there exists φ̄ ∈ D∗ such thatK(x̄,ȳ) andHie admit a nonlinear separation
with respect to w1, then (21) holds. On the other hand, for each (u, v) ∈ Hie, from
Proposition 4.3(ii), (iii), we have −�cl E (u) + φ̄(v) > 0. Thus, K(x̄,ȳ) ∩Hie = ∅. By
(14), we have x̄ ∈ V E

w (F). ��
Definition 4.4 The setsK(x̄,ȳ) andH admit a nonlinear separation with respect to w2,
iff there exists (ϕ̄, λ̄) ∈ E∗ × R+ with (ϕ̄, λ̄) �= (0, 0) such that

ϕ̄(u) − λ̄�D(−v) ≤ 0, ∀(u, v) ∈ K(x̄,ȳ). (22)

If (ϕ̄, λ̄) ∈ E� × R+ in (22), then the separation is said to be regular.

Theorem 4.7 Let x̄ ∈ S and (x̄, ȳ) ∈ gr(F). IfK(x̄,ȳ) andH admit a nonlinear regular
separation with respect to w2, then x̄ ∈ V E (F).
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Proof Since K(x̄,ȳ) and H admit a nonlinear regular separation with respect to w2,
then there exists (ϕ̄, λ̄) ∈ E� × R+ such that (22) holds. For any (u, v) ∈ H, by
Proposition 4.3(ii), (iii), we obtain ϕ̄(u) − λ̄�D(−v) > 0. Thus, K(x̄,ȳ) ∩ H = ∅,
which implies that x̄ ∈ V E (F). ��

We define the generalized Lagrangian set-valued map L1 : A × D∗ ⇒ R as

L1(x, φ) := �cl E (ȳ − F(x)) − σ−G(x)(φ), ∀(x, φ) ∈ A × D∗,

where �cl E (ȳ − F(x)) := ⋃
y∈F(x) �cl E (ȳ − y) and G is compact valued.

It is worth noticing that the generalized Lagrangian set-valued function L1 is dif-
ferent from the ones in the literature. Similar to Definition 4.2 in [35], we introduce
the following definition.

Definition 4.5 (x̄, φ̄) is a saddle point ofL1(x, φ) on A×D∗, iff there exists y′ ∈ F(x̄)
such that

�cl E (ȳ − y′) − σ−G(x̄)(φ)

≤ �cl E (ȳ − y′) − σ−G(x̄)(φ̄)

≤ �cl E (ȳ − y) − σ−G(x)(φ̄), ∀x ∈ A,∀y ∈ F(x),∀φ ∈ D∗. (23)

The following theorem gives a necessary condition for the nonlinear separation
between K(x̄,ȳ) and H .

Theorem 4.8 Let x̄ ∈ S and (x̄, ȳ) ∈ gr(F). Assume that F(x̄) is E-bounded from
above by ȳ and G is compact valued. If K(x̄,ȳ) and H admit a nonlinear separation
with respect to w1, then there exists φ̄ ∈ D∗ such that (x̄, φ̄) is a saddle point of
L1(x, φ) on A × D∗.

Proof Suppose that K(x̄,ȳ) and H admit a nonlinear separation with respect to w1.
Then, there exists φ̄ ∈ D∗ such that (21) holds, i.e., for any x ∈ A, y ∈ F(x) and
z ∈ G(x),

−�cl E (ȳ − y) + φ̄(−z) ≤ 0.

or, equivalently,

− �cl E (ȳ − y) + σ−G(x)(φ̄) ≤ 0, ∀x ∈ A,∀y ∈ F(x). (24)

Taking x = x̄ and y = ȳ in (24), we have

−�cl E (0) + σ−G(x̄)(φ̄) ≤ 0.

Since F(x̄) is E-bounded from above by ȳ, we obtain F(x̄) − ȳ ⊆ −cl E . Hence,
there exists y′ ∈ F(x̄) such that ȳ − y′ ∈ cl E . According to Proposition 4.3(ii), (iii),
we observe that

�cl E (ȳ − y′) ≤ 0. (25)
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Clearly, �cl E (0) ≤ 0. Therefore, one has σ−G(x̄)(φ̄) ≤ 0. On the other hand, x̄ ∈
S allows x̄ ∈ A and G(x̄) ∩ (−D) �= ∅. It follows that inf z∈G(x̄) φ̄(z) ≤ 0 and
inf z∈G(x̄) φ(z) ≤ 0, which imply that σ−G(x̄)(φ̄) ≥ 0 and σ−G(x̄)(φ) ≥ 0, respectively.
Consequently,

σ−G(x̄)(φ̄) = 0. (26)

It follows from (24)–(26) that

�cl E (ȳ − y′) − σ−G(x̄)(φ̄) ≤ 0 ≤ �cl E (ȳ − y) − σ−G(x)(φ̄), ∀x ∈ A,∀y ∈ F(x),

which is the second inequality of (23). Moreover, from σ−G(x̄)(φ) ≥ 0 and
σ−G(x̄)(φ̄) = 0, we have

�cl E (ȳ − y′) − σ−G(x̄)(φ) ≤ �cl E (ȳ − y′) − σ−G(x̄)(φ̄), ∀φ ∈ D∗,

which is the first inequality of (23). Therefore, (x̄, φ̄) is a saddle point of L(x, φ) on
A × D∗. ��

To obtain the sufficient condition for the nonlinear separation between K(x̄,ȳ) and
H, it is necessary to strengthen the conditions of Theorem 4.8.

Theorem 4.9 Let (x̄, ȳ) ∈ gr(F) and x̄ ∈ S. Assume that F(x̄)− ȳ ⊆ −∂(cl E) and G
is compact valued. If there exists φ̄ ∈ D∗ such that (x̄, φ̄) is a saddle point ofL1(x, φ)

on A × D∗, then K(x̄,ȳ) and H admit a nonlinear separation with respect to w1.

Proof By the first inequality of (23), we obtain

σ−G(x̄)(φ) ≥ σ−G(x̄)(φ̄), ∀φ ∈ D∗. (27)

Taking φ = 0 in (27), we get σ−G(x̄)(φ̄) ≤ 0. Due to x̄ ∈ S, we have σ−G(x̄)(φ̄) ≥ 0.
So,

σ−G(x̄)(φ̄) = 0. (28)

Since F(x̄) − ȳ ⊆ ∂(cl E), it follows from Proposition 4.3(iii) that for y′ ∈ F(x̄),

�cl E (y′ − ȳ) = 0. (29)

From (28), (29) and the second inequality of (23), we have

− �cl E (ȳ − y) + σ−G(x)(φ̄) ≤ 0, ∀x ∈ A,∀z ∈ G(x), (30)

or, equivalently,

−�cl E (ȳ − y) + φ̄(−z) ≤ 0,∀x ∈ A, ∀y ∈ F(x),∀z ∈ G(x).

Therefore, K(x̄,ȳ) and H admit a nonlinear separation with respect to w1. ��
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We now define the generalized Lagrangian set-valued function L2 : A × (E∗ ×
R+)\{(0, 0)} ⇒ R as

L2(x, ϕ, λ) := inf
y∈F(x)

ϕ(y) + λ�D(−G(x)), ∀x ∈ A,∀(ϕ, λ) ∈ (E∗ × R+)\{(0, 0)},

where F is compact valued and �D(−G(x)) := ⋃
v∈−G(x) �D(v).

Definition 4.6 Let ϕ̄ ∈ E∗. (x̄, λ̄) is a saddle point of L2(x, ϕ̄, λ) on A×R+, iff there
exists z̄ ∈ G(x̄) such that

inf
y∈F(x̄)

ϕ̄(y) + λ�D(−z̄) ≤ inf
y∈F(x̄)

ϕ̄(y) + λ̄�D(−z̄)

≤ inf
y∈F(x)

ϕ̄(y)+λ�D(−z), ∀x ∈ A,∀z∈G(x),∀λ ∈ R+.

(31)

Theorem 4.10 Let (x̄, ȳ) ∈ gr(F), G(x̄) ⊆ −∂D and inf y∈F(x̄) ϕ̄(y) = ϕ̄(ȳ) for a
fixed ϕ̄ ∈ E∗. Then, the following statements are equivalent:

(i) x̄ ∈ S, and K(x̄,ȳ) and H admit a nonlinear separation with respect to w2;
(ii) (x̄, λ̄) is a saddle point of L2(x, ϕ̄, λ) on A × R+.

Proof (i)⇒(ii). Suppose that K(x̄,ȳ) and H admit a nonlinear separation with respect
to w2. Then, for each x ∈ A, y ∈ F(x) and z ∈ G(x), we have

ϕ̄(ȳ − y) − λ̄�D(−z) ≤ 0,

which implies that

sup
y∈F(x)

ϕ̄(−y) − λ̄�D(−z) ≤ ϕ̄(−ȳ), ∀x ∈ A,∀z ∈ G(x). (32)

From G(x̄) ⊆ −∂D and Proposition 4.3(iii), we obtain �D(−z̄) = 0 for z̄ ∈ G(x̄).
As a consequence,

ϕ̄(−ȳ) = sup
y∈F(x̄)

ϕ̄(−y) − λ̄�D(−z̄). (33)

By (32) and (33), we deduce that

inf
y∈F(x̄)

ϕ̄(y) + λ̄�D(−z̄) ≤ inf
y∈F(x)

ϕ̄(y) + λ̄�D(−z), ∀x ∈ A,∀z ∈ G(x),

which is the second inequality of (31). It follows from �D(−z̄) = 0 that

inf
y∈F(x̄)

ϕ̄(y) + λ�D(−z̄) ≤ inf
y∈F(x̄)

ϕ̄(y) + λ̄�D(−z̄), ∀λ ∈ R+,

which is the first inequality of (31).
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(ii)⇒(i). Assume that (x̄, λ̄) is a saddle point forL(x, ϕ̄, λ) on A×R+. Then, there
exists z̄ ∈ G(x̄) such that

sup
y∈F(x̄)

ϕ̄(−y) − λ�D(−z̄)

≥ sup
y∈F(x̄)

ϕ̄(−y) − λ̄�D(−z̄)

≥ sup
y∈F(x)

ϕ̄(−y) − λ̄�D(−z), ∀x ∈ A,∀z ∈ G(x),∀λ ∈ R+. (34)

We claim that x̄ ∈ S. Suppose that x̄ /∈ S. Then, G(x̄) ∩ (−D) = ∅. It follows from
Proposition 4.3(iv) that �D(−z̄) > 0. Let λ → +∞, we have λ�D(−z̄) → +∞,
which contradicts the first inequality of (31). SinceG(x̄) ⊆ −∂D, we get�D(−z̄) = 0
for z̄ ∈ G(x̄). From the second inequality of (34), one has

sup
y∈F(x)

ϕ̄(−y) − λ̄�D(−z) + ϕ̄(ȳ) ≤ 0,

which implies that for any x ∈ A, y ∈ F(x) and z ∈ G(x),

ϕ̄(−y) − λ̄�D(−z) + ϕ̄(ȳ) ≤ 0,

i.e.,
ϕ̄(ȳ − y) − λ̄�D(−z) ≤ 0, ∀x ∈ A,∀y ∈ F(x),∀z ∈ G(x).

Therefore, K(x̄,ȳ) and H admit a nonlinear separation with respect to w2. ��

5 Conclusions

In this paper, the concept of E-quasi-convexity of set-valued maps is proposed. Some
examples are given to illustrate the relations between E-quasi-convexity of set-valued
maps and C-quasi-convexity of set-valued maps. By considering the generalized level
set of set-valued maps, Assumption B and E-quasi-convexity, the scalarization results
in the sense of E-optimal solution and weak E-optimal solution of SVOP are estab-
lished, respectively. By virtue of two kinds of nonlinear weak separation functions
characterized by the nonlinear scalarization function � and the improvement set E ,
we introduce two classes of generalized Lagrangian set-valued functions and establish
some optimality conditions. We have shown that the existence of a nonlinear separa-
tion is equivalent to a saddle point of the generalized Lagrangian set-valued functions.
In the future work, we will consider the generalized Lagrangian set-valued functions
and their relations with the scalarization techniques analyzed in Sect. 3.
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