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Abstract
We use asymptotic analysis and generalized asymptotic functions for studying non-
linear and noncoercive mixed variational inequalities in finite dimensional spaces in
the nonconvex case, that is, when the operator is nonlinear and noncoercive and the
function is nonconvex and noncoercive. We provide general necessary and sufficient
optimality conditions for the set of solutions to be nonempty and compact. As a con-
sequence, a characterization of the nonemptiness and compactness of the solution set,
when the operator is affine and the function is convex, is given. Finally, a comparison
with existence results for equilibrium problems is presented.

Keywords Asymptotic analysis · Asymptotic functions · Noncoercive optimization ·
Variational inequalities · Equilibrium problems
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1 Introduction

The theory ofmixed variational inequalities in finite dimensional spaces has become an
interesting andwell-established area of research, due to its applications in several fields
like economics, engineering sciences, unilateral mechanics and electronics, among
others (see [1–9]).

A useful variational inequality is the mixed variational inequality, also called vari-
ational inequality of the second kind. The problem data for this type of variational
inequalities consists of an operator and a function. Therefore, one can impose stronger
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assumptions on the operator in order to weaken the assumptions on the function, and
vice versa. For the case in which the operator is linear (affine) and/or semicoercive
and the function is proper, lsc and convex, many existence results can be found in the
literature (see [1,3,4,10]). The usual techniques for proving existence results are the
well-known recession (asymptotic) tools, which have been shown to be useful in the
convex case (see [11–16]).

In recent years, finer estimates of asymptotic functions for the case in which the
original function is nonconvex have been introduced (see [17–20]). Some of those gen-
eralized asymptotic functions were defined for the case in which the original function
is quasiconvex, but they proved to be useful for more general classes of nonconvex
functions.

In this paper, we use asymptotic analysis and generalized asymptotic functions for
proving new necessary and sufficient optimality conditions for the mixed variational
inequality. We start by studying the general case, i.e., problem (12) with a nonlinear
and noncoercive operator T and a nonconvex and noncoercive function h. Afterward,
we study the particular case when T is a linear (affine) operator. As a consequence, a
characterization result for the linear mixed variational inequality when the function h
is proper, lsc and convex will be given. This characterization generalizes many well-
known result for the convex case (see [4]). Finally, since a variational inequality can
be seen as an equilibrium problem (see [21] for instance), we provide a comparison
with known existence results for equilibrium problems. The comparison shows that
our results do not follow from them.

The paper is organized as follows. In Sect. 2, we set up notation and preliminaries.
Also, we review some standard facts on asymptotic analysis and generalized convexity.
In Sect. 3, we provide new optimality conditions for the mixed variational inequality
in the general case. As a consequence, a characterization of the nonemptiness and
compactness of the solution set for the linearmixed variational inequality in the convex
case is given. Finally, a comparison with existence results for equilibrium problems
is also provided.

2 Preliminaries and Basic Definitions

By 〈·, ·〉, we denote the inner product of Rn and by ‖·‖ we denote a norm. For a
nonempty set K ⊂ R

n , its closure is denoted by cl K , its boundary by bd K , its
topological interior by int K , its convex hull by conv K , its relative interior by ri K ,
its polar (positive) cone by K ∗ and the orthogonal complement of its affine hull by
K⊥. By B(x, δ), we mean the closed ball with center at x and radius δ > 0. Given
x = (x1, x2, . . . , xn) ∈ R

n , we set ‖x‖1 := Σn
i=1|xi |. We set R+ := [0,+∞[ and

R
n+ := (R+)n .
We define cone K := ⋃

t≥0 t K as the smallest cone containing K . Given a cone
P from R

n , a compact base of the cone P is a convex and compact set B0, such that
0 /∈ B0, for which P = cone B. Given ε > 0, we expand the cone P to Pε by taking
Pε = cone(B0+B(0, ε)). Note that Pε is a cone such that P ⊆ Pε. A cone P having a
compact base is called well-based. In this case, there exists ε > 0 such that Pε �= R

n .
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Given any function h : R
n → R := R ∪ {±∞}, the effective domain of h is

defined by dom h := {x ∈ R
n : h(x) < +∞}. We say that h is a proper function if

h(x) > −∞ for every x ∈ R
n and dom h is nonempty (clearly, h(x) = +∞ for every

x /∈ dom h). We denote by epi h := {(x, t) ∈ R
n × R : h(x) ≤ t} the epigraph of h

and by Sλ(h) := {x ∈ R
n : h(x) ≤ λ} the sublevel set of h at the height λ ∈ R. By

argminRn h we mean the set of all minimizers of h.
A function h with convex domain is said to be:

(a) convex if, given any x, y ∈ dom h, it holds that

h(λx + (1 − λ)y) ≤ λh(x) + (1 − λ)h(y), ∀ λ ∈]0, 1[,

(b) quasiconvex if, given any x, y ∈ dom h, it holds that

h(λx + (1 − λ)y) ≤ max{h(x), h(y)}, ∀ λ ∈ [0, 1],

We mention that every convex function is quasiconvex. The continuous function h :
R → R,withh(x) := min{|x |, 1}, is quasiconvex,without being convex. Furthermore,
recall that

h is convex ⇐⇒ epi h is a convex set.

h is quasiconvex ⇐⇒ Sλ(h) is a convex set, for all λ ∈ R.

Remark 2.1 Let K be a nonempty and convex set from R
n , and let h : K → R be

a function. Given a ∈ K and u ∈ R
n , we define Ia,u := {t ∈ R : a + tu ∈ K }

and the function ha,u : R → R given by ha,u(t) := h(a + tu). Then h is convex
(resp. quasiconvex) iff ha,u is convex (resp. quasiconvex) on Ia,u for all a ∈ K and
all u ∈ R

n (see [22, Page 90]).

We recall next the following class of vector-valued functions.

Definition 2.1 [23, Definition 2.2] Given a closed and convex cone P from R
m , a

vector-valued function F : R
n → R

m is said to be ∗-quasiconvex for P , if x �→
〈q∗, F(x)〉 is quasiconvex for all q∗ ∈ P∗.

Given a matrix A ∈ R
n×n (not necessarily symmetric), we say that

(a) A is positive definite, if 〈Ax, x〉 > 0 for all x �= 0 (when A is symmetric, this is
equivalent to state that all its eingenvalues are positive).

(b) A is positive semidefinite, if 〈Ax, x〉 ≥ 0 for all x ∈ R
n (i.e., all its eingenvalues

are nonnegative, when A is symmetric).
(c) A is K -copositive, if 〈Ax, x〉 ≥ 0 for all x ∈ K .
(d) A is K -copositive+, if 〈Ax, x〉 ≥ 0 for all x ∈ K , and 〈Ax, x〉 = 0 implies that

Ax = 0 for x ∈ K .

Clearly, every positive definite matrix is positive semidefinite, and every positive
semidefinite matrix is K -copositive on any nonempty set K ⊂ R

n . The converse
statements are not true in general.
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As was explained in [11], the notions of asymptotic cone and the associated asymp-
totic function have been employed in optimization theory and variational analysis in
order to handle unbounded and/or nonsmooth situations, in particular when standard
compactness hypotheses are absent.

Given a nonempty set K from R
n , we define the asymptotic cone of K (see [14,

Definition 2.8] or [15, Definition 2.1] for infinite dimensional spaces), as

K∞ :=
{

u ∈ R
n : ∃ tn → +∞, ∃ xn ∈ K : xn

tn
→ u

}

.

In the case when K is closed and convex, it is well known that (see [11,12])

K∞ = {u ∈ R
n : x0 + λu ∈ K , ∀ λ ≥ 0}, (1)

where (1) does not depend on the choice of x0 ∈ K .
We list some basic results on asymptotic cones in the following proposition. Their

proofs can be found in [11, Chapter 2].

Proposition 2.1 Let K be a nonempty set from R
n. Then

(a) If K0 ⊆ K then (K0)
∞ ⊆ K∞.

(b) K∞ = {0} iff K is bounded.
(c) Let {Ki }i∈I be a family of subsets of Rn. Then

⋃
i∈I (Ki )

∞ ⊆ (
⋃

i∈I Ki )
∞, and

equality holds when |I | < +∞.
(d) Let {Ki }i∈I be a family of sets contained in Rn satisfying

⋂
i∈I Ki �= ∅. Then

(
⋂

i∈I
Ki

)∞
⊆

⋂

i∈I
(Ki )

∞, (2)

and equality holds when every Ki is closed and convex.

The asymptotic function h∞ : Rn → R of a proper function h, is defined by

epi h∞ := (epi h)∞.

It follows that (see [14, Definition 2.2, Remark 2.17] or [15, Definition 2.1] for infinite
dimensional spaces)

h∞(u) = inf

{

lim inf
k→+∞

h(tkuk)

tk
: tk → +∞, uk → u

}

. (3)

Moreover, when h is proper, lsc and convex, [11, Proposition 2.5.2] (see also [14–16])
implies that

h∞(u) = sup
t>0

h(x0 + tu) − h(x0)

t
= lim

t→+∞
h(x0 + tu) − h(x0)

t
, (4)
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and all expressions in (4) do not depend on the choice of the point x0 ∈ dom h.
A proper function h is said to be coercive if h(x) → +∞ as ‖x‖ → +∞, or

equivalently, if Sλ(h) is bounded for all λ ∈ R. If h∞(u) > 0 for all u �= 0, then h is
coercive. In addition, if h is proper, lsc and convex, then

h is coercive ⇐⇒ h∞(u) > 0, ∀ u �= 0 ⇐⇒ argmin
Rn

h �= ∅ and compact. (5)

The problem of finding an adequate definition of asymptotic function in the non-
convex case has been studied in the last years, since the standard asymptotic function
is not well suited for the description of the behavior of a nonconvex function at infinity.
Several attempts to deal with nonconvex functions have been made in [17–19,24,25].

We recall that the q-asymptotic function of a proper function h is defined as

h∞
q (u) := sup

x∈ dom h
sup
t>0

h(x + tu) − h(x)

t
. (6)

Clearly, h∞
q ≥ h∞, and equality holds when h is proper, lsc and convex. The fact

that h∞
q (u) > 0 for all u �= 0 does not imply the coercivity of h (see [17, Example

5.6]). Furthermore, for any proper function the q-asymptotic function is convex and
positively homogeneous of degree one (see [19, Proposition 3.8]).

Given a proper, lsc and quasiconvex function h, [17, Theorem 4.7] implies that

h∞
q (u) > 0, ∀ u �= 0 ⇐⇒ argmin

Rn
h �= ∅ and compact. (7)

A bifunction f : K × K → R is said to be:

(a) monotone on K , if for every x, y ∈ K ;

f (x, y) + f (y, x) ≤ 0, (8)

(b) pseudomonotone on K , if for every x, y ∈ K ;

f (x, y) ≥ 0 �⇒ f (y, x) ≤ 0, (9)

(c) quasimonotone on K , if for every x, y ∈ K ;

f (x, y) > 0 �⇒ f (y, x) ≤ 0. (10)

Every monotone bifunction is pseudomonotone, and every pseudomonotone bifunc-
tion is quasimonotone. The converse statements are not true in general.

Finally, an operator T : Rn → R
n is said to be monotone on K if

〈T (x) − T (y), x − y〉 ≥ 0, ∀ x, y ∈ K . (11)

If the inequality in (11) is strict whenever x �= y, then T is called strictly monotone.
For a further study on generalized convexity, generalized monotonicity and asymp-

totic analysis we refer to [17,18,26–29].
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3 Mixed Variational Inequalities

In this section, we develop existence results and necessary and sufficient optimality
conditions for the nonemptiness and compactness of the solution set of the mixed
variational inequality in the nonconvex case.

Let K ⊂ R
n be a nonempty, closed and convex set, h : K → R a (finite-valued)

function and T : K → R
n an operator. Then the mixed variational inequality is

defined as:

find x ∈ K : 〈T (x), y − x〉 + h(y) − h(x) ≥ 0, ∀ y ∈ K . (12)

Its solution set will be denoted by S(T ; h; K ).
An interesting particular case occurs when the operator is linear (affine). Take

A ∈ R
n×n and a ∈ R

n . Set T (x) := Ax + a in problem (12). Then the corresponding
mixed variational inequality is given by

find x ∈ K : 〈Ax + a, y − x〉 + h(y) − h(x) ≥ 0, ∀ y ∈ K . (13)

Its solution set will be denoted by S(A; h; K ).
We mention that for classical variational inequalities (i.e., with h = 0), continuity

of T , together with compactness and convexity of K , ensure existence of solutions
(see, e.g., [5, Theorem 3.1]). It is well known that these assumptions, and additionally
continuity of h, are not enough in the case of mixed variational inequalities. Assume
for instance that T is strictly monotone with T (0) = 0, K = −K , and h is such that
h(x) = h(−x) for all x ∈ K and there exists y ∈ K with h(y) < h(0). In such a case,
the mixed variational inequality lacks solutions, as we show next. Using y = −x in
(12), and noting that −x belongs to K , we get

−2〈T (x), x〉 = −2〈T (x), x〉 + h(−x) − h(x) ≥ 0,

implying that 〈T (x), x〉 ≤ 0. Since T (0) = 0 and T is strictly monotone, we have that
〈T (x), x〉 > 0 for all x ∈ K , x �= 0. Hence, x = 0. Putting now x = 0 in (12) leads
to h(y) − h(0) ≥ 0 for all y ∈ K , contradicting the assumption on h. We observe that
these conditions on T , h and K , leading to lack of solutions, hold, e.g., for T = I ,
h(x) = −‖x‖2 and K = B(0, 1). Therefore, some further assumption on h, beyond
continuity, is needed for existence of solutions, even for convex and compact K .

In this direction, we mention that if h is proper, lsc and convex, T is an upper
semicontinuous point-to-set operator with compact and convex values, K is a compact
and convex set, then problem (12) has a solution by Wang [8, Proposition 3.2].

For classes of nonconvex functions, we may apply existence results from the equi-
librium problems theory. For instance, by taking

ϕ(x, y) := 〈T (x), y − x〉 + h(y) − h(x),
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problem (12) is equivalent to

find x ∈ K : ϕ(x, y) ≥ 0, ∀ y ∈ K .

If ϕ is usc in its first argument, and quasiconvex in its second argument, then problem
(12) has a solution on a compact and convex set K by Oettli [30, Theorem 2].

This situation has led to the introduction of the following property, in order to
encompass all pairs of functions and operators for which problem (12) has a solution
on a compact and convex set K .

Definition 3.1 [8, Definition 3.1] A pair (T , h) is said to have the mixed variational
inequality property on K (MVIP on K from now on), if for every nonempty, compact
and convex subset D of K , S(T ; h; D) is nonempty.

We present next a class of nonconvex functions for which the MVIP holds on a
nonempty, closed and convex set K .

Example 3.1 Let P be a nonempty, closed, convex and pointed cone fromR
n , K ⊂ R

n

a nonempty, closed and convex set, h : K → R a proper and lsc function, and T :
K → P∗ a continuous operator. Hence, if the function y �→ (I , h)(y) := (y, h(y))
is ∗-quasiconvex for P × R+, then the pair (T , h) has the MVIP on K . Indeed, we
define the function

ϕT
h (x, y) := 〈T (x), y − x〉 + h(y) − h(x). (14)

Here ϕT
h is usc (resp. lsc) in its first (resp. second) argument. Since T (x) ∈ P∗,

(T (x), 1) ∈ P∗ × R+ ⊆ (P × R+)∗, we have

y �→ 〈(T (x), 1), (y, h(y))〉 = 〈T (x), y〉 + h(y),

is quasiconvex for all x ∈ K . So ϕT
h is quasiconvex in its second argument and the set

{z ∈ K : ϕT
h (x, z) < 0} is convex.

Consider a nonempty, compact and convex set D ⊆ K . Then the equilibrium
problem

find x ∈ D : ϕT
h (x, y) ≥ 0, ∀ y ∈ D, (15)

has a solution by Oettli [30, Theorem 2], i.e., the pair (T , h) has the MVIP on K .

3.1 The General Case

In order to provide an existence results for the mixed variational inequalities defined
above, we consider the following assumptions:

(T 0) T is K -copositive operator, i.e., 〈T (x), x〉 ≥ 0 for all x ∈ K .
(T 1) T is continuous and positively homogeneous of degree one.
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(Th) The pair (T , h) has the MVIP on K .

A general existence result is given below.

Theorem 3.1 Let h : Rn → R be a proper and lsc function, K a nonempty, closed
and convex set from R

n, and T : Rn → R
n an operator. Suppose that assumptions

(T 0), (T 1) and (Th) hold. If there exists x0 ∈ K such that

h∞(u) − 〈T (u), x0〉 > 0, ∀ u ∈ K∞\{0}, (16)

then S(T ; h; K ) is nonempty and compact.

Proof Assume by contradiction that S(T ; h; K ) = ∅. Then, for every n ∈ N, we
define the problem V In as: find x ∈ Kn := K ∩ B(0, n) such that

〈T (x), y − x〉 + h(y) − h(x) ≥ 0, ∀ y ∈ Kn . (17)

By assumption (Th), problem V In has a solution, say xn .
We claim that the sequence xn is bounded. Indeed, assume by contradiction that

supn∈N‖xn‖ = +∞. Then there exists a vector u ∈ K∞ and a subsequence (still
denoted by xn) such that xn‖xn‖ → u �= 0. Thus, given any y ∈ K , there exists n0 ∈ N

with n0 > ‖y‖ such that

〈T (xn), y − xn〉 + h(y) − h(xn) ≥ 0, ∀ n ≥ n0
⇐⇒ h(xn) ≤ 〈T (xn), y − xn〉 + h(y), ∀ n ≥ n0 (18)

�⇒ h(xn) ≤ 〈T (xn), y〉 + h(y), ∀ n ≥ n0. (19)

We divide Eq. (19) by ‖xn‖, obtaining
h(xn)

‖xn‖ ≤
〈

T

(
xn

‖xn‖
)

, y

〉

+ h(y)

‖xn‖ , ∀ n ≥ n0.

Since (A0) holds and T is continuous, by taking the lim infn→+∞, we get

lim inf
n→+∞

h(xn)

‖xn‖ ≤ 〈T (u), y〉.

Set un := xn‖xn‖ and tn := ‖xn‖, so that xn = tnun . Thus,

h∞(u) − 〈T (u), y〉 ≤ lim inf
n→+∞

h(tnun)

tn
+ 〈−T (u), y〉 ≤ 0, ∀ y ∈ K ,

a contradiction. Hence, the sequence xn is bounded.
It follows that there exists a subsequence x1n such that x1n → x . Note that for all

y ∈ K , there exists N0 ∈ N such that

〈T (x1n), y − x1n 〉 + h(y) − h(x1n) ≥ 0, ∀ n ≥ N0.
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By the lower semicontinuity of h and the continuity of T , we have

h(x) ≤ lim inf
n→+∞ h(x1n) ≤ lim inf

n→+∞
(
〈T (x1n), y − x1n 〉 + h(y)

)

= 〈T (x), y − x〉 + h(y), ∀ y ∈ K .

Hence, x ∈ S(T ; h; K ).
For the boundedness of S(T ; h; K ), assume by contradiction that there exists a

sequence xn ∈ S(T ; h; K ) with ‖xn‖ → +∞, thus xn‖xn‖ → u ∈ K∞, u �= 0. Then
we proceed as above to get the contradiction.

Finally, set xn ∈ S(T ; h; K ) such that xn → x . Since h is lsc, the function x �→
〈T (x), y − x〉 + h(y) − h(x) is usc. So

0 ≤ lim sup
n→+∞

(〈T (xn), y − xn〉 + h(y) − h(xn))

≤ 〈T (x), y − x〉 + h(y) − h(x), ∀ y ∈ K .

Therefore, S(T ; h; K ) is compact and the proof is complete. ��
If T (x) = Ax + a, then we have the following corollary:

Corollary 3.1 Let A be a K -copositive matrix, a ∈ R
n and T (x) := Ax + a. If there

exists x0 ∈ K such that

h∞(u) + 〈a − A�x0, u〉 > 0, ∀ u ∈ K∞\{0}, (20)

then S(A; h; K ) is nonempty and compact.

Proof Since assumption (Th) holds immediately for T (x) = Ax + a, we repeat the
proof of Theorem 3.1 until Eq. (18). So, for every y ∈ K , there exists n0 ∈ N such
that

h(xn) ≤ 〈Axn + a, y − xn〉 + h(y), ∀ n ≥ n0 (21)

≤ 〈Axn, y〉 + 〈a, y − xn〉 + h(y), ∀ n ≥ n0, (22)

where (22) follows from the K -copositiveness of A. We claim that the sequence xn
is bounded. Indeed, assume by contradiction that supn∈N‖xn‖ = ∞. Then, we divide
Eq. (22) by ‖xn‖, obtaining

h(xn)

‖xn‖ ≤
〈

A
xn

‖xn‖ , y

〉

+
〈

a,
y

‖xn‖ − xn
‖xn‖

〉

+ h(y)

‖xn‖ , ∀ n ≥ n0.

So,

h∞(u) ≤ 〈Au, y〉 + 〈a,−u〉, ∀ y ∈ K ⇐⇒ h∞(u) + 〈a − A�y, u〉 ≤ 0, ∀ y ∈ K ,

sequence is bounded and S(A; h; K ) is nonempty.
The compactness of the solution set follows as in the proof of Theorem 3.1. ��
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As far as we know, Theorem 3.1 applies to a class of problems for which no other
existence result does. We illustrate this remark with the following example.

Example 3.2 Let T : Rn → R
n be given by T (x) := (T1(x), . . . , Tn(x))with Ti (x) =

max{0, xi } for all i ∈ {1, . . . , n}. Let h : Rn → R be given by,

h(x) =
{ ‖x‖21, if xi < 0 for all i,
min{1, ‖x‖21}, elsewhere.

Let K be a nonempty, closed, convex and pointed cone in R
n for which ei /∈ K

for all i ∈ {1, 2, . . . , n} (no canonical vectors belongs to K ) and such that is not
contained in the positive orthant Rn+ and its intersection with the negative orthant is
the null vector K ∩ R

n− = {0}.
Note that the operator T is neither affine nor semicoercive (see Remark 3.1(i)

below), and that h is a lsc function which is neither convex nor coercive. So, the
existence results in [1–4,6–10] and references therein can not be applied.

On the other hand, T is continuous, positively homogeneous of degree one and
R
n-copositive. Furthermore, T (u) ∈ R

n− iff ui ≤ 0 for all i ∈ {1, 2, . . . , n}. Given
u ∈ R

n , an easy calculation shows that

h∞(u) =
{+∞, if ui < 0 for all i,

0, elsewhere.

Observe that, with this construction, ϕ : K × K → R given by

ϕ(x, y) := 〈T (x), y − x〉 + h(y) − h(x),

= 〈T (x), y〉 + h(y) − (h(x) + 〈T (x), x〉), (23)

is quasiconvex on K in its second argument. Indeed, given y0 ∈ K and u ∈ R
n ,

the functions t �→ hy0,u(t) = h(y0 + tu) and t �→ ψy0,u(t) = 〈T (x), y0 + tu〉 are
nondecreasing on Iy0,u := {t ∈ R : y0+ tu ∈ K }, so its sum is nondecreasing too, i.e.,
quasiconvex on Iy0,u by Hadjisavvas [31, Proposition 4.9]. Hence, ϕ is quasiconvex
on K by Remark 2.1. Therefore, it follows from [30, Theorem 2] that (T , h) has the
MVIP on K .

Finally, there exists x0 ∈ K (actually, for all x0 ∈ K\{0}) such that

h∞(u) + 〈T (u), x0〉 > 0, ∀ u ∈ K∞\{0}. (24)

Hence, the solution set S(T ; h; K ) is nonempty and compact by Theorem 3.1.

Remark 3.1 (i) In [2,7,10], the linear operator T : Rn → R
n is assumed to be semi-

coercive, meaning that there exists c0 > 0 such that

〈T (x), x〉 ≥ c0‖x‖2, ∀ x ∈ R
n . (25)

Clearly, every semicoercive operator T is K -copositive.
(i i) If h is proper, lsc and convex, then Corollary 3.1 coincide with [4, Theorem 8].
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3.2 Affine Operators

In this subsection, we study problem (13). As a first result, we have the following
necessary condition.

Proposition 3.1 If S(A; h; K ) �= ∅, then supy∈K 〈Ay + a, u〉 + h∞
q (u) ≥ 0 for all

u ∈ K∞. In addition, if A is symmetric, then

S(A; h; K ) �= ∅ and compact �⇒ h∞
q (u) + 〈a, u〉 > 0,

∀ u ∈ (K∞ ∩ Ker A)\{0}. (26)

Proof Assume by contradiction that there exists u0 ∈ K∞, u0 �= 0, such that
supy∈K 〈Ay + a, u0〉 + h∞

q (u0) < 0, that is,

〈Ax + a, u0〉 + h(x + tu0) − h(x)

t
< 0, ∀ x ∈ K , ∀ t > 0

⇐⇒ 〈Ax + a, (x + tu0) − x〉 + h(x + tu0) − h(x) < 0, ∀ x ∈ K , ∀ t > 0.

The contradiction follows by taking x = x ∈ S(A; h; K ).
For (26): Assume by contradiction that there exists u0 ∈ K∞∩ Ker A, with u0 �= 0,

such that

〈a, u0〉 + h∞
q (u0) ≤ 0 ⇐⇒ t〈a, u0〉 + h(x + tu0) − h(x) ≤ 0, ∀ x ∈ K , ∀ t > 0

⇐⇒ −t〈A(x + tu0) + a, u0〉 + h(x) − h(x + tu0) ≥ 0, ∀ x ∈ K , ∀ t > 0,
(27)

because 〈A(x + tu0), u0〉 = 〈(x + tu0), Au0〉 = 0.
By adding the term ±〈Ax + a, y − x〉 ± h(y) to Eq. (27), it follows that

0 ≤ (〈A(x + tu0) + a, y − (x + tu0)〉 + h(y) − h(x + tu0))

−(〈Ax + a, y − x〉 + h(y) − h(x)), ∀ x, y ∈ K , ∀ t > 0. (28)

Take x = x ∈ S(A; h; K ) in (28). Then

0 ≤ 〈A(x + tu0) + a, y − (x + tu0)〉 + h(y) − h(x + tu0), ∀ y ∈ K , ∀ t > 0,

i.e., x + tu0 ∈ S(A; h; K ) for all t > 0, contradicting the fact that S(A; h; K ) is
compact. ��
Remark 3.2 Assumption (16), which is a kind of weak coercivity condition, is con-
nected with the necessary condition NC for existence of solutions given in [32,
Proposition 2.6] in an infinite dimensional setting.

The following result may be found in [4, Proposition 3.2].

Proposition 3.2 If x1, x2 ∈ S(A; h; K ), then 〈A(x1 − x2), x1 − x2〉 ≤ 0. In addition,
if A is symmetric and positive semidefinite, then x1 − x2 ∈ Ker A.
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The positive semidefinite assumption on the matrix A cannot be replaced by a
K -copositive or K -copositive+ assumption, since x1, x2 ∈ K does not imply (neces-
sarily) that x1 − x2 ∈ K .

Since K is a closed and convex set, K∞ is a closed and convex cone. Given ε > 0,
we expand K∞ to K∞

ε as defined in Sect. 2. Consider the following assumptions:

(A0) K∞ is well-based, and A is symmetric and K∞
ε -copositive+.

(h0) h is proper, lsc and 0 ≤ lim inf‖x‖→+∞ h(x)
‖x‖2 .

Another existence result is given below. Note that in comparisonwith Corollary 3.1,
we impose stronger conditions on h in order to weaken the assumptions on T (x) =
Ax + a.

Theorem 3.2 Let h : Rn → R be a function, and K a nonempty, closed and convex
set from R

n. Suppose that assumptions (A0) and (h0) hold. Then

h∞(u) + 〈a, u〉 > 0, ∀ u ∈ (K∞ ∩ Ker A)\{0}
�⇒ S(A; h; K ) �= ∅ and compact. (29)

Proof We repeat the proof given in Corollary 3.1 until Eq. (21). So, for every y ∈ K ,
there exists n0 ∈ N such that

h(xn) ≤ 〈Axn, y − xn〉 + 〈a, y − xn〉 + h(y), ∀ n ≥ n0. (30)

We claim that the sequence xn is bounded. Indeed, assume by contradiction that
supn∈N‖xn‖ = +∞, then xn‖xn‖ → u ∈ K∞ with u �= 0.

Dividing by ‖xn‖2, we have
h(xn)

‖xn‖2 ≤
〈

A
xn

‖xn‖ + a

‖xn‖ ,
y

‖xn‖ − xn
‖xn‖

〉

+ h(y)

‖xn‖2 , ∀ n ≥ n0.

Since (h0) and (A0) holds, we have

0 ≤ lim inf
n→+∞

h(xn)

‖xn‖2 ≤ 〈Au,−u〉 �⇒ 〈Au, u〉 ≤ 0 �⇒ u ∈ Ker A.

Now, we divide Eq. (30) by ‖xn‖, then
h(xn)

‖xn‖ ≤
〈

A
xn

‖xn‖ , y − xn

〉

+
〈

a,
y − xn
‖xn‖

〉

+ h(y)

‖xn‖ , ∀ n ≥ n0

=
〈

A
xn

‖xn‖ , y

〉

− ‖xn‖
〈

A
xn

‖xn‖ ,
xn

‖xn‖
〉

+
〈

a,
y − xn
‖xn‖

〉

+ h(y)

‖xn‖ , ∀ n ≥ n0.

Since (A0) holds, there exists n1 ∈ N (with n1 ≥ n0) such that for all n ≥ n1
〈

A
xn

‖xn‖ ,
xn

‖xn‖
〉

≥ 0 ⇐⇒ − ‖xn‖
〈

A
xn

‖xn‖ ,
xn

‖xn‖
〉

≤ 0. (31)
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Hence,

h(xn)

‖xn‖ ≤
〈

A
xn

‖xn‖ , y

〉

+
〈

a,
y − xn
‖xn‖

〉

+ h(y)

‖xn‖ , ∀ n ≥ n1.

Taking lim infn→+∞ and using the fact that u ∈ Ker A, we obtain

lim inf
n→+∞

h(xn)

‖xn‖ ≤ 〈a,−u〉.

Thus, h∞(u) + 〈a, u〉 ≤ 0, a contradiction. Hence, the sequence xn is bounded and
S(A; h; K ) is nonempty. The compactness of S(A; h; K ) follows as always. ��

The breadth of our previous existence result is analyzed next.

Remark 3.3 (i) The fact that A is K∞
ε -copositive+ (or K∞-copositive+) does not

imply that A is Kε-copositive+ (or K -copositive+) in the general case. Indeed, con-
sider the closed and convex set K := {(x1, x2) ∈ R

2 : x1 ≥ 1
2 (x2)

2}, and the
symmetric matrix

A =
(
1 0
0 −1

)

.

Since K∞ = R+ × {0}, for u = (1, 0) ∈ K∞ we have 〈Au, u〉 = 1, i.e., A is
K∞

ε -copositive+ for some small enough ε > 0, but A is not K -copositive+ (take
(x, y) = ( 12 ,−1) ∈ K ).
(i i) Every proper, lsc and convex function h satisfies (h0). Indeed, since h is convex,
there exists an affine function l(x) := 〈b, x〉 + β, with b ∈ R

n and β ∈ R, such that
h(x) ≥ 〈b, x〉 + β for all x ∈ R

n . Then

lim inf‖x‖→+∞
h(x)

‖x‖2 ≥ lim inf‖x‖→+∞
〈b, x〉 + β

‖x‖2 = 0.

We refer to [4, Chapter 4] for the convex case.
(i i i) Every proper, lsc and coercive function h satisfies assumption (h0). Indeed, sup-
pose to the contrary that lim inf‖x‖→+∞ h(x)

‖x‖2 < 0. Then, we have lim inf‖x‖→+∞ h(x)
< 0, a contradiction.

The uniqueness of the solution follows easily when A is positive definite.

Corollary 3.2 Let A be a symmetric matrix. Suppose that assumption (h0) holds. Then:

(i) If A is positive semidefinite, then problem (13) has a solution. Moreover, if
x1, x2 ∈ S(A; h; K ), then x1 − x2 ∈ Ker A and 〈a, x1 − x2〉 = h(x2) − h(x1).

(i i) If A is positive definite, then problem (13) has a unique solution.

Proof Since T (x) = Ax+a is continuous, (i) follows in a way similar to [4, Corollary
8(c)] and for (i i), we simply apply Proposition 3.2. ��

By using Remark 3.3(ii), we obtain another corollary:
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Corollary 3.3 Suppose that assumption (A0) holds. If h is proper, lsc and convex, then

h∞(u) + 〈a, u〉 > 0, ∀ u ∈ (K∞ ∩ Ker A)\{0}
⇐⇒ S(A; h; K ) �= ∅ and compact. (32)

Proof (⇒) Immediately from Theorem 3.2.
(⇐)We just apply (26), noting that h∞

q = h∞ whenever h is proper, lsc and convex.
��

The previous corollary provides more information about the solution set than well-
known results (see [4, Chapter 4] for the convex case). Note that the usual assumption
0 ∈ K was not needed (see [1,2,7]).

3.3 A Comparison with Equilibrium Problems

Aswas noted in [21], equilibriumproblems encompass several problems found in fixed
point theory, optimization and nonlinear analysis, e.g., minimization problems, linear
complementary problems, minimax problems and variational inequalities among oth-
ers. Hence, a comparison between our previous existence results for mixed variational
inequalities with existence results for equilibrium problem should be made.

Let K be a nonempty, closed and convex set from R
n , and f : K × K → R be a

function. The equilibrium problem (see [21]) is defined as

find x ∈ K : f (x, y) ≥ 0, ∀ y ∈ K . (33)

Define f Ah : K × K → R as

f Ah (x, y) := 〈Ax + a, y − x〉 + h(y) − h(x). (34)

In order to apply the existence results for equilibrium problems given in [20,33–35]
and references therein, the function f Ah should be pseudomonotone or quasimonotone
(see Sect. 2). That is the case when A is positive semidefinite.

Proposition 3.3 If A is positive semidefinite, then f Ah is monotone.

Proof Indeed, observe that for all x, y ∈ K , we have

f Ah (x, y) + f Ah (y, x) = 〈Ax + a, y − x〉 + 〈Ay + a, x − y〉
= 〈Ax − Ay, y − x〉 = −〈A(x − y), x − y〉.

Since A is positive semidefinite, f Ah (x, y) + f Ah (y, x) ≤ 0 for all x, y ∈ K , i.e., f Ah
is monotone. ��

If A is not positive semidefinite, then f Ah is not necessarily pseudomonotone, as
the following example shows.
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Example 3.3 We consider a = 0 and the symmetric matrix A given by

A =
(
1 0
0 −1

)

.

Take the closed and convex set K := {(x1, x2) ∈ R
2 : x1 ≥ 1

2 (x2)
2}. ByRemark3.3(i),

we known that A is K∞
ε -copositive+ for ε > 0 small enough.

Consider the quasiconvex function h(x1, x2) := −(x1)3. Take x, y ∈ K given by
x = (1, 0) and y = ( 12 , 1). Then

f Ah (x, y) = 〈Ax, y − x〉 + h(y) − h(x) =
〈

(1, 0),

(

−1

2
, 1

)〉

− 1

8
+1= 3

8
>0,

f Ah (y, x) = 〈Ay, x − y〉 + h(x) − h(y)=
〈(

1

2
,−1

)

,

(
1

2
,−1

)〉

−1+ 1

8
= 3

8
>0.

Therefore, f Ah is not pseudomonotone.
As a consequence, Theorem 3.2 applies for classes of variational inequality prob-

lems for which the existence results presented in [20,33–35] cannot be applied.

4 Conclusions

We established new existence results for noncoercive mixed variational inequalities in
the nonconvex case. By using the structure of the problem, finer optimality conditions
underweaker assumptions on the operator and the function are provided. If the function
is convex, a full characterization of the nonemptiness and compactness of the solution
set is given, when the operator is affine. In a subsequent work, we hope to deal with
the case when the function is quasiconvex. However, since the sum of quasiconvex
functions is not necessarily quasiconvex even when one of them is a linear (affine)
function, this problem is expected to be harder.
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