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Abstract
In a recent paper, we deduced a new energy functional for pure traction problems
in elasticity, as the variational limit of nonlinear elastic energy functional related to a
material body subject to an equilibrated force field: a kind of Gamma limit with respect
to the weak convergence of strains, when a suitable small parameter tends to zero. This
functional exhibits a gap that makes it different from the classical linear elasticity
functional. Nevertheless, a suitable compatibility condition on the force field ensures
coincidenceof relatedminimaandminimizers.Here,we showsome relevant properties
of the new functional and prove stronger convergence of minimizing sequences for
suitable choices of nonlinear elastic energies.
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1 Introduction

In the article [1], we studied the variational deduction of pure traction problem in
linear elasticity starting from general theory of finite elasticity and provided a rigorous
deduction of the limit energy functional by a kind of Gamma convergence approach.
Quite surprisingly and in contrast with the case of Dirichlet boundary condition, in
the case of pure traction the limit functional deduced in [1] is different from the
classical energy of linear elasticity: however, such new functional achieves the same
minimum and has the same set of minimizing displacements, provided an additional
compatibility condition is fulfilled. In the present article, we show additional structural
properties of this new limit functional in the most general setting, together with more
refined convergence results in the case of Saint Venant–Kirchhoff energy density.

2 Preliminaries

This paper is focused on the properties of the functional

F(v) := min
W∈MN×N

skew

∫
Ω

V0
(
x, IE(v) − 1

2W
2
)
dx − L(v) .

Here and in the sequel,we set: N = 2, 3, MN×N
skew denotes the set of skew-symmetric

N × N real matrices, Ω ⊂ R
N is a Lipschitz open set representing the reference

configuration of an hyperelastic material body undergoing pure traction, V0(x, ·) are
uniformly positive definite quadratic forms on square matrices, the vector field v in
H1(Ω,RN ) denotes a displacement, and IE(v) := 1

2 (∇vT + ∇v) denotes the related
linearized strain, while L(v) represents the work done by the load for displacement
v,

L(v) :=
∫

∂Ω

f · v dHN−1 +
∫

Ω

g · v dx, f ∈ L2(∂Ω;RN ), g ∈ L2(Ω),

here f and g are, respectively, the prescribed boundary and body force fields; moreover,
we assume that the total load is equilibrated, say

L(z) = 0 ∀ z : IE(z) ≡ 0 .

Motivations for studying functionalF and its minimization over v in H1(Ω,RN ) rely
on the variational asymptotic analysis developed in [1], where we proved that for pure
traction problems in elasticity a gap arises between the classical linearized elasticity
functional E ,

E(v) :=
∫

Ω

V0(x, IE(v)) dx − L(v),
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and the rigorous variational limit of nonlinear elastic energy of a material body is
subject to an equilibrated force field. Actually such limit is the functionalF , provided
the load fulfills a suitable compatibility condition: see (8) and Theorem 5.1.

The inequality F(v) ≤ E(v) for every v is straightforward. Nevertheless, the two
functionals cannot coincide: indeed,F(v) = −L(v) < E(v) whenever v(x) = 1

2W
2x

withW �= 0 skew-symmetric matrix.
Notwithstanding this gap, in [1] we showed that the two functionals F and E have
the same minimum and same set of minimizers, when the load is equilibrated and
compatible (see Theorem 5.1).
In the case N = 2, the gap between the two functionals can be better clarified as
follows (see Remark 2.6 in [1] for more details):

F(v) = E(v) − 1

4

(∫
Ω

V0(x, I)dx
)−1

[(∫
Ω

DV0(x, I)·IE(v) dx
)−]2

,

where α− = max(−α, 0), thus

F(v) = E(v) if N = 2 and
∫

Ω

DV0(x, I) · IE(v) dx ≥ 0.

Even more explicitly, in a particular case, when N = 2 and V0(x,B) = 4μ|B|2 +
2λ|TrB|2 with λ, μ > 0 , we get

F(v) = E(v) − 1

4
| Ω |−1

[(∫
Ω

div v dx
)−]2

,

such evaluation approximately means that for every displacement v such that the
associated deformed configuration (I + v)(Ω) of a 2D homogeneous material has
greater area than reference configuration Ω , the global energy F(v) provided by new
functional F evaluated at v is the same as the one provided by classical linearized
elasticity, say E(v).

The rigorous derivation of the variational theory of linear elasticity [2] from the
theory of finite elasticity [3,4] was achieved in [5] through arguments based on De
Giorgi theory of Gamma convergence, thus providing a mathematical justification of
the classical elasticity in small deformations regime, at least for Dirichlet or mixed
boundary value problem.
In a more recent paper [1], we have focused the analysis on the analogous variational
question related to Neumann-type condition, say the pure traction problem in elastic-
ity: the case where the elastic body is subject to a system of equilibrated forces and
no Dirichlet condition is assigned on the boundary.

In the present paper, we prove some relevant properties concerning the structure of
the new functional and improve its variational connection for a large class of nonlinear
energies.
In Sect. 4, we prove that F is sequentially lower semicontinuous weak with respect
to the natural but very weak notion of convergence, namely weak L2 convergence of
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linearized strains (see Proposition 4.3); nevertheless, F exhibits a kind of “nonlocal”
behavior (see Remark 4.2).
In the 2D case, we can prove that F is a convex functional for every choice of the
positive definite quadratic form V0 or, equivalently, for the variational limit of every
nonlinear stored energy densityW fulfilling structural assumptions of general kind in
the theory of elasticity: this is shown by making explicit its first variation and showing
that the second variation cannot be negative [see (23) and Proposition 4.1].
On the other hand, in the 3Dcase the functionalF cannot be convex forwhatever choice
of the positive definite quadratic form V0 or, equivalently for every nonlinear stored
energy density W fulfilling the standard structural assumptions: see Proposition 4.2
and the general counterexample to convexity therein.
The dichotomy above relies on the fact that there exist pairs of skew-symmetric matri-
ces W1,W2 ∈ M3×3

skew such that W2
1 + W2

2 is not the square of any skew-symmetric
matrix: e.g., see (18); while in the 2D case the matrixW2 is a nonpositive multiple of
the identity for every skew-symmetric matrix W.
Notice that F is not subadditive: indeed, even in dimension N = 2 formulae (15) and
(19) in Sect. 4 show that functional F cannot be subadditive on disjoint sets.
In Sect. 5, for reader’s convenience we summarize and comment preliminary main
results of [1] about the variational convergence of pure traction problems, namely
functional F deduced as a weak Gamma limit of functionals Fh related to general
nonlinear elastic energies.
Eventually, in Sect. 6 we refine the convergence properties for minimizing sequences
of the sequence of functionals Fh (e.g., F(vh) = inf Fh + o(1)): if W is the
Saint Venant–Kirchhoff energy density (24), then we show by Theorem 6.1 that there
exist subsequences of functionals Fh and of related minimizing sequence vh , such
that (without relabeling) vh −Pvh converges weakly in H1(Ω;RN ) and strongly in
W 1,q(Ω,RN ) (1 ≤ q < 2) to a minimizer of F , provided both (7) and (8) hold
true; here and in the sequel P denotes the orthogonal projection on infinitesimal rigid
displacements.
On the other hand, if the strict inequality in compatibility condition (8) is replaced by
weak inequality, still over the collection of skew-symmetric matrices, then argminF
still contains argmin E and minF = min E holds true, butF may have infinitely many
minimizing critical points which are not minimizers of E .
Therefore, only two cases are allowed: eitherminF = min E or inf F = −∞; actually
the second case arises in the presence of compressive surface load.
We mention several contributions facing issues in elasticity, which are strictly con-
nected with the context of present paper: [6–21].

3 Asymptotic Analysis of Pure Traction Problem

Referring to the open set Ω ⊂ R
N , N = 2, 3, as the reference configuration of an

hyperelastic material body, the stored energy due to a deformation y can be expressed
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as a functional of the deformation gradient ∇y as follows

∫
Ω

W(x,∇y) dx,

whereW : Ω ×MN×N →[0,+∞] is a coercive frame indifferent function,MN×N

is the set of real N × N matrices and W(x,F) < +∞ if and only if det F > 0.
Then due to frame indifference there exists a function V such that

W(x,F) = V(x, 1
2 (F

TF − I)), ∀F ∈ MN×N , a.e. x ∈ Ω.

We set F = I + hB, where h > 0 is an adimensional small parameter and

Vh(x,B) := h−2W(x, I + hB).

We assume that the reference configuration has zero energy and is stress free, i.e.,

W(x, I) = 0, DW(x, I) = 0 for a.e. x ∈ Ω,

and that W is regular enough in the second variable, then Taylor’s formula entails

Vh(x,B) = V0(x, symB) + o(1) as h → 0+

where symB := 1
2 (B

T + B) and

V0(x, symB) := 1

2
symB D2V(x, 0) symB.

If the deformation y is close to the identity up to a small displacement, say y(x) =
x + hv(x) with bounded ∇v , then, by setting IE(v) := 1

2 (∇vT + ∇v), one easily
obtains

lim
h→0

∫
Ω

Vh(x,∇v) dx =
∫

Ω

V0(x, IE(v)) dx. (1)

Right-hand side in (1) represents the classical linear elastic deformation energy, and
such a limit was retained to establish a reasonable justification of linearized elastic-
ity. Moreover, in [5] it is proved by Γ -convergence techniques that, under standard
structural conditions onW , actually the linear elastic problem is achieved in the limit
by exploiting the weak convergence of H1(Ω,RN ), in case of Dirichlet or mixed
boundary condition.

The variational limit is different when no Dirichlet boundary condition is present,
as we outline briefly here.
In [1], we studied the case of Neumann boundary conditions (pure traction problem
in elasticity) assuming that f ∈ L2(∂Ω;RN ), g ∈ L2(Ω;RN ) are, respectively,
the prescribed boundary and body force fields, and the whole system of forces is
equilibrated, namely it fulfills the condition of equilibrated load

L(z) = 0 ∀z : IE(z) ≡ 0, (2)
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which is a standard necessary condition for pure traction in linear elasticity, where

L(v) :=
∫

∂Ω

f · v dHN−1 +
∫

Ω

g · v dx.

We considered the sequence of energy functionals

Fh(v) =
∫

Ω

Vh(x,∇v)dx − L(v), v ∈ H1(Ω,RN ), (3)

and we inquired whether the asymptotic relationshipFh(vh) = inf Fh +o(1) as h ↓ 0
implies, up to subsequences, some kind of weak convergence of vh to a minimizer v0
of a suitable limit functional in H1(Ω;RN ); to this aim, the next example is highly
explicative: assume

W(x,F) =
{ |FTF − I|2, if det F > 0,

+∞, otherwise,
(4)

g ≡ f ≡ 0 ; hence, inf Fh = 0 for every h > 0, then by choosing a fixed nontrivial
N × N skew-symmetric matrixW, a real number 0 < 2α < 1 and setting

zh := h−α Wx, (5)

we get Fh(zh) = inf Fh + o(1), though zh has no subsequence weakly converging in
H1(Ω;RN ).
Therefore, in contrast to [5], one cannot expect weak H1(Ω;RN ) compactness of
minimizing sequences for pure traction problem, not even in the simplest case of
null external forces: we emphasize that in general nonlinear elasticity setting this
difficulty cannot be easily circumvented by standard translations, since Fh(vh) �=
Fh(vh−Pvh). Nevertheless, wewill show inTheorem6.1 that, at least for some special
W , ifFh(vh) = inf Fh+o(1) then up to subsequencesFh(vh−Pvh) = inf Fh+o(1).
For this reason, we exploited a much weaker topology: in order to have in general
some kind of precompactness for sequences vh fulfilling Fh(vh) = inf Fh + o(1),
the key idea in our approach consists in working with a very weak notion, say weak
L2(Ω;RN ) convergence of linear strains IE(vh). Since such convergence does not
imply an analogous convergence of the skew-symmetric part of the gradient of dis-
placements, one may expect that theΓ limit functional is different from the point-wise
limit of Fh , as actually is the case.
Under some natural assumptions on W , a careful application of the Rigidity Lemma
of [28] together with a suitable tuning of asymptotic analysis with Euler–Rodrigues
formula for rotations show that, if IE(vh) are bounded in L2, then up to subsequences√
h ∇vh converges strongly in L2 to a constant skew-symmetric matrix, while the

variational limit of the sequence Fh with respect to the w-L2 convergence of linear
strains turns out to be the functional F , defined by

F(v) := min
W∈MN×N

skew

∫
Ω

V0
(
x, IE(v) − 1

2W
2
)
dx − L(v) . (6)
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In [1], we proved that, if loads are equilibrated

L(z) = 0 ∀ z : IE(z) ≡ 0 , (7)

and fulfill the compatibility condition

∫
∂Ω

f · W2x dHN−1 +
∫

Ω

g · W2x dx < 0 ∀ skew-symmetric matrixW �=0,(8)

then the pure traction problem in linear elasticity is rigorously deduced via Γ -
convergence from the corresponding pure traction problem formulated in nonlinear
elasticity, referring toweak L2 convergence of the linear strains;moreover, minimizers
of F coincide with the ones of linearized elasticity functional E

E(v) :=
∫

Ω

V0(x, IE(v)) dx − L(v), (9)

thus providing a complete variational justification of pure traction problems in linear
elasticity at least if (8) is satisfied. In particular, as it is shown in Remark 2.8 in [1],
this is true when g ≡ 0, f = f n with f > 0 and n is the outer unit normal vector to
∂Ω, that is when we are in the presence of tension-like surface forces.

4 Structural Properties of FunctionalF
In this section, we develop further the analysis of structural properties of functional
F defined by (6), focusing mainly on convexity and semicontinuity issues.
All along the paper we assume that the reference configuration of the elastic body is a

bounded, connected open set Ω ⊂ R
N with Lipschitz boundary, N = 2, 3, (10)

and set these notations: the generic point x ∈ Ω has components x j referring to the
standard basis vectors e j in R

N ; LN and BN denote, respectively, the σ -algebras of
Lebesgue measurable and Borel measurable subsets of RN .

The notation for vectors a, b ∈ R
N and N×N real matrices A, B, F is as follows:

a·b = ∑
j a jb j ;A·B = ∑

i, j Ai, jBi, j ; [AB]i, j = ∑
k Ai,kBk, j ; |F|2 = Tr(FTF) =∑

i, j F
2
i, j denotes the squared Euclidean norm of F in the space MN×N of N ×N

real matrices; I ∈ MN×N denotes the identity matrix; SO(N ) denotes the group of
rotation matrices;MN×N

sym andMN×N
skew denote, respectively, the sets of symmetric and

skew-symmetric matrices. For every B ∈ MN×N , we define symB := 1
2 (B + BT)

and skewB := 1
2 (B − BT).

First we recall that the minimum at right-hand side in definition (6) of F exists for
every v in H1(Ω,RN ), so that F(v) is well defined: precisely the finite dimensional
minimization problem has exactly two solutions, which differs only by the sign, since

123



390 Journal of Optimization Theory and Applications (2019) 182:383–403

strict convexity of the positive definite quadratic form V0(x, ·) entails

lim
|W|→+∞,W∈MN×N

skew

∫
Ω

V0
(
x, IE(v) − 1

2W
2
)
dx = +∞ (11)

and hence the existence of a unique minimizing argument W2.
We also highlight a straightforward consequence of (6), which proves useful in the
sequel:

F(v) = −L(v) for every v(x) = W2x, withW ∈ MN×N
skew . (12)

Proposition 4.1 If N = 2, then functional F is convex for every choice of the positive
definite quadratic form V0.

Proof For every ε > 0 we define ϕε ∈ C2(R) as

ϕε(t) =
⎧⎨
⎩
t2 − εt + ε2

3 , if t ≤ 0,
(3ε)−1(ε − t)3, if 0 ≤ t ≤ ε,

0, otherwise,
(13)

and introduce the C2 functionals Fε by setting

Fε(v)=E(v)−1

4

(∫
Ω

V0(x, I)dx
)−1

ϕε

(∫
Ω

DV0(x, I)·IE(v) dx
)

∀ v ∈ H1(Ω,RN ).

(14)
Then, by (13), (14) and representation

F(v) = E(v) − 1

4

(∫
Ω

V0(x, I)dx
)−1

[(∫
Ω

DV0(x, I)·IE(v) dx
)−]2

, (15)

we get ϕε(t) ≥ (t−)2, and hence,

Fε ≤ F , F = sup
ε>0

Fε .

Moreover, we claim that Fε is convex for every ε > 0 and this property entails the
convexity of F since F is the supremum of a family of convex functions.
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Indeed, Fε is a C2 functional on the whole space H1(Ω,RN ); therefore, its second
variation, for every u, v ∈ H1(Ω,RN ), is

vTδ2Fε(u)v = vTδ2E(u)v

−1

4

(∫
Ω

V0(x, I)dx
)−1

ϕ′′
ε

(∫
Ω

DV0(x, I)·IE(u) dx
) (∫

Ω

DV0(x, I)·IE(v) dx
)2

= 2
∫

Ω

V0(x, IE(v)) dx

−1

4

(∫
Ω

V0(x, I)dx
)−1

ϕ′′
ε

(∫
Ω

DV0(x, I)·IE(u) dx
) (∫

Ω

DV0(x, I)·IE(v) dx
)2

.

(16)
By taking into account that 0 ≤ ϕ′′

ε ≤ 2, we get

vTδ2Fε(u)v≥2
∫

Ω

V0(x, IE(v)) dx−1

2

(∫
Ω

V0(x, I)dx
)−1(∫

Ω

DV0(x, I)·IE(v) dx
)2

.

(17)
Then, since V0 is a positive definite quadratic form, by representation (15) we obtain
that the right-hand side of (17) is equal to 2

(F(v) + L(v)
)
if

∫
Ω

DV0(x, I)·IE(v) dx ≥ 0 ;

else it is equal to F(−v) + L(−v) .
In both cases (6) entails vTδ2Fε(u)v ≥ 0 for every u, v ∈ H1(Ω,RN ).
Therefore, Fε is convex and claim is proved. ��
Proposition 4.2 If N = 3, then functional F is nonconvex for every choice of the
positive definite quadratic form V0.

Proof Set
W1 = e1 ⊗ e2 − e2 ⊗ e1, W2 = e2 ⊗ e3 − e3 ⊗ e2. (18)

Then

1

2
(W2

1 + W2
2) = −1

2
(e1 ⊗ e1 + e3 ⊗ e3) − e2 ⊗ e2 := A

and by choosing v(x) := Ax we get IE(v) = A /∈ {W2 : W ∈ MN×N
skew }.

Hence, F(v) > −L(v) for every possible choice of the positive definite quadratic
form V0, whereas by setting

v1(x) := W2
1x, v2(x) := W2

2x,

due to (12), we get F(v1) = −L(v1), F(v2) = −L(v2) . Hence,

F( 12 (v1+v2)) = F(v) > −L(v) = − 1
2 (L(v1)+L(v2)) = 1

2 (F(v1)+F(v2)) (19)

thus proving that F is not convex in the 3D case for every choice of V0. ��
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Although existence of minimizers of F is already a direct consequence of conver-
gence results in [23], in the next proposition we provide a direct proof of sequential
lower semicontinuity of F with respect to the natural, very weak convergence, for
both cases of dimension 2 and 3.

Proposition 4.3 Assume that the standard structural conditions and (7) holds true.
Then, for every vn, v ∈ H1(Ω;RN ) such that IE(vn)⇀IE(v) in L2(Ω;MN×N ) we
have

lim inf
n→+∞ F(vn) ≥ F(v)

Proof Let vn, v belong to H1(Ω;RN ) and fulfill IE(vn)⇀IE(v) in L2(Ω;MN×N ).
Then IE(vn) is bounded in L2(Ω;MN×N ). If lim infn→+∞ F(vn) = +∞, then the
claim is trivial, sowemay also assumewithout restriction thatF(vn) ≤ C .Assumption
(7) of equilibrated load entails F(vn) = F(vn − Pvn), so may suppose that Pvn ≡ 0.
We choose

Wn ∈ argmin

{∫
Ω

V0

(
x, IE(vn) − 1

2W
2
)
dx : W ∈ MN×N

skew

}
. (20)

Hence, ifCK theKorn–Poincaré inequality inΩ andα > 0 is the uniformcoercivity
constant of V0, say V0(x,M) ≥ α|M|2, we get

α

∫
Ω

|IE(vn) − 1
2W

2
n|2 dx ≤ C + L(vn) = C + L(vn − Pvn)

≤ C + CK (‖f‖L2(∂Ω) + ‖g‖L2(Ω))‖IE(v)‖L2(Ω;MN×N ),

(21)
Therefore, |W2

n| is bounded, and since Wn is real skew-symmetric, we obtain that
|Wn| is bounded too. So we may suppose that, up to subsequences, Wn → W in
MN×N

skew . By taking into account that Pvn ≡ 0, we get vn⇀v in H1(Ω,RN ); hence,
by recalling that V0(x, ·) is a convex quadratic form

lim inf
n→+∞ F(vn) = lim infn→+∞

∫
Ω
V0

(
x, IE(vn) − 1

2W
2
n

)
dx − L(vn)

≥
∫

Ω

V0

(
x, IE(v) − 1

2W
2
)
dx − L(v) ≥ F(v),

(22)

which proves the claimed lower semicontinuity inequality. ��

Remark 4.1 The first variation of F can be explicitly evaluated in the 2D case, thanks
to representation (15), as follows
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δF(v)[ϕ] =
∫

Ω

DV0
(
x, IE(v)

)· IE(ϕ) dx − L(ϕ)

+1

2

(∫
Ω

V0(I)dx
)−1(∫

Ω

DV0(x, I)·IE(v) dx
)−∫

Ω

DV0(x, I)·IE(ϕ) dx

= δE(v)[ϕ] + 1

2

(∫
Ω

V0(I)dx
)−1

(∫
Ω

DV0(x, I)·IE(v) dx
)−∫

Ω

DV0(x, I)·IE(ϕ) dx

(23)

for every v, ϕ ∈ H1(Ω;RN ).

Remark 4.2 Functional F exhibits a nonlocal behavior: precisely in 2D, due to the
representations (15) and (23), respectively, of the functional and its first variation,
F(v) is the sum of a contribution E(v) due to local functional E related to linear
elasticity plus a possibly vanishing correction with global dependence on v explicitly
evaluated by

−1

4

(∫
Ω

V0(x, I)dx
)−1

[(∫
Ω

DV0(x, I)·IE(v) ; dx
)−]2

.

In the case of Saint Venant–Kirchhoff energy density

W(x,F) =
{

μ|FTF − I|2 + λ
2 | Tr (FTF − I)|2, if det F > 0,

+∞, otherwise,
(24)

corresponding to the limit quadratic formV0(x,B) = 4μ|B|2+2λ|TrB|2 with λ, μ >

0 , the correction simplifies as follows:

− 1

4 |Ω|
(∫

Ω

div v dx
)−

.

Moreover, the nonlocal coefficient
(∫

Ω
DV0(x, I)·IE(v) dx

)− appears in Euler equa-
tions too.

5 Variational Convergence Results

In this section, we recall the main results of [1] about the variational convergence
of pure traction problems. To this aim, basic notation and assumptions for general
nonlinear energies are introduced first.

Still we assume that the reference configuration of the elastic body is a

bounded, connected open set Ω ⊂ R
N with Lipschitz boundary, N = 2, 3, (25)
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and set these notations: the generic point x ∈ Ω has components x j referring to the
standard basis vectors e j in R

N ; LN and BN denote, respectively, the σ -algebras of
Lebesgue measurable and Borel measurable subsets of RN .
For every U : Ω × MN×N → R, with U(x, ·) ∈ C2 a.e. x ∈ Ω , we denote the
gradient and the hessian of g with respect to the second variable by DU(x, ·) and
D2U(x, ·), respectively.
For every displacements field v ∈ H1(Ω;RN ), IE(v) := sym∇v denotes the infinites-
imal strain tensor field, R := {v ∈ H1(Ω;RN ) : IE(v) = 0} the set of infinitesimal
rigid displacements and Pv is the orthogonal projection of v onto R.

We consider a body made of an hyperelastic material, say there exists a LN×
BN2

measurableW : Ω×MN×N → [0,+∞] such that, for a.e. x ∈ Ω ,W(x,∇y(x))
represents the stored energy density, when y(x) is the deformation and ∇y(x) is the
deformation gradient.
Moreover, we assume that for a.e. x ∈ Ω

W(x,F) = +∞ if det F ≤ 0 (orientation preserving condition), (26)

W(x,RF) = W(x,F) ∀R∈ SO(N ) ∀F ∈ MN×N (frame indifference),

(27)

∃ a neighborhood A of SO(N ) s.t. W(x, ·) ∈ C2(A), (28)

∃C>0 independent of x : W(x,F) ≥ C dist2
(
F, SO(N )

)
(29)

∀F∈MN×N (coerciveness),

W(x, I) = 0, DW(x, I) = 0, for a.e. x ∈ Ω, (30)

that is the reference configuration has zero energy and is stress free, so by (27) we get
also

W(x,R)=0, DW(x,R)=0 ∀R ∈ SO(N ).

By frame indifference there exists a LN ×BN -measurable function
V : Ω × MN×N → [0,+∞] such that for every F ∈ MN×N

W(x,F) = V(x, 1
2 (F

TF − I)) (31)

and by (28)

∃ a neighborhood O of 0 such that V(x, ·) ∈ C2(O), a.e. x ∈ Ω. (32)

In addition we assume that there exists γ > 0 independent of x such that

∣∣∣BT D2V(x,D)B
∣∣∣ ≤ 2 γ |B|2 ∀D∈O, ∀B∈MN×N . (33)
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By (30) and Taylor expansion with Lagrange reminder, we get, for a.e. x ∈ Ω and
suitable t ∈ (0, 1) depending on x and on B:

V(x,B) = 1

2
BTD2V(x, tB)B. (34)

Hence, by (33)

V(x,B) ≤ γ |B|2 ∀ B ∈ MN×N ∩ O. (35)

According to (31) for a.e. x∈Ω, h>0 and every B ∈ MN×N , we set

Vh(x,B) := 1

h2
W(x, I + hB) = 1

h2
V(x, h symB + 1

2h
2BTB) . (36)

Taylor’s formula with (30), (36) entails

Vh(x,B) = 1

2
( symB) D2V(x, 0) ( symB) + o(1),

so
Vh(x,B) → V0(x, sym B) as h → 0+, (37)

where the point-wise limit of integrands is the quadratic form V0 defined by

V0(x,B) := 1

2
BTD2V(x, 0)B a.e. x ∈ Ω, B ∈ MN×N . (38)

The symmetric fourth order tensor D2V(x, 0) in (38) plays the role of the classical
elasticity tensor.
By (29) we get

Vh(x,B) = 1

h2
W(x, I + hB) ≥ C | 2 symB + h BTB |2 (39)

so that (38) and (39) imply the ellipticity of V0 :

V0(x, symB) ≥ 4C | symB|2 a.e. x ∈ Ω, B ∈ MN×N . (40)

For a suitable choice of the adimensional parameter h > 0, the functional representing
the total energy is labeled by Fh : H1(Ω;RN ) → R ∪ {+∞} and defined as follows

Fh(v) :=
∫

Ω

Vh(x,∇v) dx − L(v), (41)

where L is defined by (2).
In order to describe the asymptotic behavior as h ↓ 0 of functionals Fh , we refer to
the limit energy functional F : H1(Ω;RN ) → R defined by (6).
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In this section, we assume (25) together with the standard structural conditions (26)–
(30), (33) as usual in scientific literature concerning elasticity theory and we refer to
the notations (31), (36), (38), (41).

Definition 5.1 Given an infinitesimal sequence h j of positive real numbers, we say
that v j ∈ H1(Ω;RN ) is a minimizing sequence of the sequence of functionals Fh j

if

(Fh j (v j ) − inf Fh j ) → 0 as h j ↓ 0.

We proved that for every given infinitesimal sequence h j actually the minimizing
sequences of the sequence of functionalsFh j exist. For reader’s convenience, we recall
here the main results of [1]: see Lemma 3.1, Theorem 2.2, Remark 2.5, Theorem 4.1
and Corollary 4.2 therein.

Lemma 5.1 Assume the standard structural conditions together with (7) and (8).
Then, there is a constant K , dependent only on Ω and the coercivity constant of the
stored energy density appearing in (29), such that

inf
h>0

inf
v∈H1

Fh(v) ≥ − K
(‖f‖2L2 + ‖g‖2L2

)
. (42)

Theorem 5.1 Assume that the standard structural conditions and (7), (8) hold true.
Then:

min
v∈H1(Ω;RN )

F(v) = min
w∈H1(Ω;RN )

E(w) ; (43)

argminv∈H1(Ω;RN ) F = argminv∈H1(Ω;RN ) E ; (44)

for every sequence of strictly positive real numbers h j ↓ 0, there are minimizing
sequences of the sequence of functionals Fh j ;
for every minimizing sequence v j ∈ H1(Ω;RN ) of Fh j , there exist a subsequence
and a displacement v0 ∈ H1(Ω;RN ) such that, without relabeling,

IE(v j ) ⇀ IE(v0) weakly in L2(Ω;MN×N ), (45)√
h j ∇v j → 0 strongly in L2(Ω;MN×N ), (46)

lim
j→+∞Fh j (v j ) = min

v∈H1(Ω;RN )
F(v) = F(v0) = E(v0). (47)

If strong inequality in the compatibility condition (8) is replaced by a weak inequality,
then the uniform estimate (42) still hold true and also minimizing sequences of the
sequence of functionals Fh j exist for every infinitesimal sequence h j , but the mini-
mizers coincidence (44) forF and E cannot hold anymore. Nevertheless, the following
general result holds true.

Proposition 5.1 If the structural assumptions together with (7) are fulfilled, but (8) is
replaced by

L(W2x) ≤ 0 ∀W ∈ MN×N
skew , (48)
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then argminF is still nonempty and

minF = min E, (49)

but the coincidence of minimizers sets is replaced by the inclusion

argmin E ⊂ argminF . (50)

If (48) holds true and there exists U ∈ MN×N
skew , U �= 0 such that L(U2x) = 0, then

F admits infinitely many minimizers which are not minimizers of E , precisely

argmin E ⊂
�=

argmin E +
{
U2x : U ∈ MN×N

skew , L(U2x) = 0
}

⊂ argminF , (51)

where the last inclusion is an equality in 2D:

argmin E ⊂
�=

argmin E + { − t x : t ≥ 0} = argminF , if N = 2. (52)

Remark 5.1 The compatibility condition (8) cannot be dropped in Theorem 5.1 even
if the (necessary) condition (7) holds true. Moreover, plain substitution of strong
inequality in (8) with weak inequality leads to a lack of compactness for minimizing
sequences.

Indeed, if n denotes the outer unit normal vector to ∂Ω and we choose f = f n
with f < 0, g ≡ 0, then

∫
∂Ω

f · W2 x dHN−1 = 2 f (TrW2)|Ω| > 0 (53)

and the strict inequality in (8) is reversed in a strong sense by anyW∈MN×N
skew \ {0};

fix a sequence of positive real numbers such that h j ↓ 0, W∈MN×N
skew , W �≡ 0, and

set v j = h j
−1( 12W

2 +
√
3
2 W) x ; then I + ( 1

2W
2 +

√
3
2 W

) ∈ SO(N ) and

Fh j (v j ) = − f

2h j

∫
∂Ω

W2x · n dHn−1 = − f

2h j
(TrW2)|Ω| → −∞. (54)

On the other hand, assume (25), W as in (4) and f = g≡ 0, so that the compatibility
inequality is substituted by the weak inequality; if v j are defined as above then, hence
by frame indifference,

Fh j (v j ) = 0 = inf Fh j (55)

but IE(v j ) has no weakly convergent subsequences in L2(Ω;MN×N ).

Remark 5.2 It is worth noticing that the compatibility condition (8) holds true when
g ≡ 0, f = f n with f > 0 and n the outer unit normal vector to ∂Ω .
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Indeed, letW ∈ MN×N
skew ,W �≡ 0: hence, by (7) and the Divergence Theorem we get

∫
∂Ω

f · W2 x dHN−1 = 2 f (TrW2)|Ω| < 0, (56)

thus proving (8) in this case. This means that in the presence of tension-like surface
forces and of null body forces the compatibility condition holds true.

It is quite natural to ask whether condition (8), which was essential in the proof
of Theorem 5.1, may be dropped in order to obtain at least existence of minF : the
answer is negative.

Indeed, the next remark shows that, when compatibility inequality in (8) is reversed
for at least one choice of the skew-symmetric matrix W, then F is unbounded from
below.

Remark 5.3 If

∃W∗ ∈ MN×N
skew : L(zW∗) > 0, where zW∗ = 1

2
W2∗x, (57)

then

inf
v∈H1(Ω;RN )

F(v) = −∞. (58)

Indeed, we get

inf
H1(Ω;RN )

F = min
H1(Ω;RN )

E − sup
W∈MN×N

skew

L(zW) where zW = 1

2
W2x. (59)

Hence,

inf
H1(Ω;RN )

F ≤ min
H1(Ω;RN )

E − τL( zW∗) ∀ τ > 0,

which entails (58).
The next example shows that, in case of uniform compression on the whole boundary,
the functional F is unbounded from below, regardless of convexity or nonconvexity
of Ω and F .

Example 5.1 Assume Ω ⊂ R
N is a Lipschitz, connected open set, N = 2, 3, g ≡

0, f = −n, where n denotes the outer unit normal vector to ∂Ω . (Examples of 2D
domains under equilibrated, but not compatible, compressive load are shown in Fig.1.)
Then (57) holds true; hence, by Remark 5.3, infv∈H1(Ω;RN ) F(v) = −∞.

Indeed, for every W ∈ MN×N
skew such that |W|2 = 2 we obtain

∫
∂Ω

f · W2x dHN−1 = −
∫

∂Ω

n · W2x dHN−1 = −
∫

Ω

div(W2x) dx

= − |Ω|TrW2 = 2 |Ω| > 0.
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Fig. 1 Equilibrated but not compatible compressive load (Example 5.1)

Summarizing, only two cases are allowed: either minF = min E or inf F = −∞:
the second case actually arises in the presence of compressive surface load.
The new functional F somehow preserves memory of instabilities which are typical
of finite elasticity, while they disappear in the linearized model described by E . In
the light of Theorem 5.1, as far as pure traction problems are considered, it seems
reasonable that the range of validity of linear elasticity should be restricted to a certain
class of external loads, explicitly those verifying (8): a remarkable example in such
class is a uniform normal tension load at the boundary as in Remark 5.2, while in
the other cases equilibria of a linearly elastic body could be better described through
critical points of F , whose existence in general seems to be an interesting and open
problem.

6 Strong Convergence of Minimizing Sequences ofFh

In this section, we prove that for the special class of Saint Venant–Kirchhoff energy
density it is possible to choose a subsequence of functionals Fh defined by (41) and
a corresponding minimizing sequence, according to Definition 5.1, which is weakly
converging in H1(Ω;RN ) to a minimizer of functional F defined by (6). Moreover,
thanks to a result of [5], this convergence entails strong convergence inW 1,q(Ω;RN )

for 1 ≤ q < 2.
Before stating the main result of this section we notice that, by frame indifference (27)
and equilibrated load condition (7), without loss of generality we can assume

∫
Ω

xi dx = 0 ∀ i = 1 . . . N ,

∫
Ω

xi x j dx = 0 ∀ i, j = 1 . . . N , i �= j . (60)

Therefore, if Ik denotes the moment of inertia of Ω with respect to the k-th axis, by
(60) we get

Pu(x) = a × x, ak = I−1
k

∫
Ω

(x × v)k dx (61)

so
(∇ Pu(x))k = a × ek . (62)
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Theorem 6.1 Let μ > 0, λ > 0 be the Lamé constants and

W(x,F) = W(F) :=
{

μ|FTF − I|2 + λ
2 | Tr (FTF − I)|2, if det F > 0,

+∞, else,
(63)

the stored energy density, assume (7), (8) and let h j be a sequence of strictly positive
real numbers with h j → 0.
Then, there exists a (not relabeled) subsequence of functionals Fh j and a mini-
mizing sequence w j weakly converging in H1(Ω;RN ) and strongly converging in
W 1,q(Ω,RN ) to w0 in argmin E , for 1 ≤ q < 2.

Proof First of all, we notice that (63) entails (29); hence, Theorem 5.1 applies to the
present situation.By recallingProposition5.3 of [5], itwill be enough to show that there
exists a minimizing sequencew j for functionalsFh j (sayFh j (w j ) = inf Fh j +o(1))
weakly converging in H1(Ω;RN ) to w0 ∈ argminF and

lim
h j→0

Fh j (v j ) =
∫

Ω

V0
(
IE(v0)

)
dx − L(v0) = E(v0). (64)

It is worth noticing that according to (63)

V0(x,B) ≡ V0(B) = 4μ|B|2 + 2λ| Tr B|2. (65)

To this aim, let v j be a minimizing sequence for functionals Fh j : by Theorem 5.1
there exist a (not relabeled) subsequence h j and v j , v0 ∈ H1(Ω;RN ) such that

IE(v j ) ⇀ IE(v0) in L2(Ω;MN×N ), (66)

F(v0) = min
v∈H1(Ω;RN )

F(v) = lim
h j→0

Fh j (v j ) = E(v0) = min
v∈H1(Ω;RN )

E(v), (67)

√
h j ∇v j → 0 in L2(Ω;MN×N ) (68)

and by (67), (68) and convexity of V0

E(v0) = F(v0) = lim
h j→0

Fh j (v j )

= lim
h j→0

∫
Ω

V0
(
IE(v j ) + 1

2h j∇vTj ∇v j
)
dx − L(v j )

≥
∫

Ω

V0
(
IE(v0)

)
dx − L(v0) = E(v0). (69)

Thanks to (60), (61) and (62), we get

∫
Ω

(x × vh j ) dx =
∫

Ω

x × (vh j − |Ω|−1
∫

Ω

vh j dx) dx
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which, thanks to (68), implies

√
h j ∇(Pv j ) → 0 (70)

so that

B j := h

2

{
∇(Pv j )

T∇(Pv j ) + ∇vTj ∇(Pv j ) − ∇(Pv j )
T∇v j

}
→ 0 (71)

strongly in L2(Ω;MN×N ).
Since v j is a minimizing sequence, (63) and Poincaré–Korn inequality yield

∫
Ω

|IE(v j ) + 1
2h j∇vTj ∇v j |2 dx ≤ C + L(v j )

= C + L(v j − Pv j ) ≤ C + C ′
(∫

Ω

|IE(v j )|2 dx
) 1

2

,

(72)

and hence, D j := IE(v j ) + 1
2h j∇vTj ∇v j are equibounded in L2(Ω;MN×N ) and by

setting w j := v j − Pv j , by recalling that B → V0(B) is convex we have

Fh j (v j ) − Fh j (w j ) ≥
∫

Ω

Bh j · V ′
0(D j + B j ) dx. (73)

Since |V ′
0(B)| ≤ C |B| for some C > 0, by (71) and (72), we get

∣∣∣∣
∫

Ω

B j · V ′
0(D j + B j ) dx

∣∣∣∣ ≤ C
∫

Ω

(
|B j |2 + ∣∣Bh j

∣∣ ∣∣D j
∣∣) dx → 0 (74)

that is
Fh j (v j ) ≥ Fh j (w j ) + o(1) (75)

which proves that w j is a minimizing sequence too. It is now readily seen that w j are
equibounded in H1(Ω;RN ) and (64) follows from (69) so the claim is proven. ��
Remark 6.1 By inspection of the proof, Theorem 6.1 holds true also for more general
energies: e.g., if W is a convex function of FTF − I with quadratic growth and if W
is finite if and only if det F > 0.

7 Conclusions

The validation analysis of linearized elasticity performed in [1] concerning pure trac-
tion problems through Γ -convergence quite surprisingly highlighted a new kind of
limit energy functional F .
Properties of this new functional and its relationship with the classical energy of linear
elasticity have been investigated in the present paper, delivering fine differences among
the dimensions N = 2 and N = 3.
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The appearance, under suitable condition on the load, of infinitely manyminimizers of
the functional F , which are not minimizers of the classical elasticity energy, requires
further analysis and suggests that F could be more appropriate approximate energy,
keeping memory of large instabilities affecting the nonlinear theory.
Indeed, due to our analysis, the classical linearized model of elasticity proves inade-
quate for a body uniformly compressed along its whole boundary in the direction of
inward normal.
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