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Abstract
In this paper, we consider a stochastic portfolio optimization model for investment
on a risky asset with stochastic yields and stochastic volatility. The problem is
formulated as a stochastic control problem, and the goal is to choose the optimal
investment and consumption controls to maximize the investor’s expected total dis-
counted utility. The Hamilton–Jacobi–Bellman equation is derived by virtue of the
dynamic programming principle, which is a second-order nonlinear equation. Using
the subsolution–supersolution method, we establish the existence result of the classi-
cal solution of the equation. Finally, we verify that the solution is equal to the value
function and derive and verify the optimal investment and consumption controls.

Keywords Portfolio optimization · Stochastic volatility · Stochastic yield · HJB
equation · Subsolution · Supersolution
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1 Introduction

In the classical Merton portfolio optimization problem, an investor allocates her/his
investment between a risky asset (e.g., stock) and a riskless asset (e.g., bond). The goal
is to choose the optimal investment (allocation) strategy and the consumption strategy
to maximize the total discounted expected utility. Thousands of papers on this and
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related topics have been published since the seminal paper by Merton [1]. This kind
of portfolio optimization problem can usually be formulated as a stochastic control
problem, where the controls are the investment and the consumption. For example, at
any time t , the investor chooses how much of the wealth to invest into the risky asset
and how much to consume to maximize the total expected utility.

A very popular model to describe the price of the risky asset is the classical geo-
metric Brownian motion model, in which the volatility is assumed as a constant.
However, it is widely accepted that stock volatilities exhibit random characteristics,
which presents limitations in models with a constant stock volatility. One commonly
noted example is the discrepancy between observed option prices and the prices pre-
dicted by the Black–Scholes formula. Implied volatilities are known to varywith strike
price (for a fixed maturity), creating a volatility smile or smirk. Stochastic volatility
models can capture this smile/smirk effect. Fouque et al. [2] discuss further benefits
of stochastic volatility models, including the generalization of more realistic return
distributions with fatter tails. They also discuss more difficulties presented by such
models and ways to address the challenges. Recently, Lorig and Sircar [3] consider a
finite-time horizon portfolio optimizationmodel in a general local-stochastic volatility
setting, and they derive the approximations for both the value function and the opti-
mal investment strategy. In Fatone et al. [4,5], some multi-scale stochastic volatility
models and the market calibration problems are considered. Some other results with
stochastic factor or stochastic volatility models can be found in Zariphopoulou [6],
Fleming and Hernández-Hernández [7], Fouque and Han [8], Fouque et al. [9], and
the references therein.

Moreover, unlike the constant interest rate assumed in the classical Merton model,
the interest rate on the riskless asset may fluctuate from time to time. Portfolio opti-
mization problems with stochastic interest rate models are considered in Fleming
and Pang [10] and Pang [11,12]. In those papers, the interest rate for the riskless
asset is assumed to follow a stochastic process with a mean-reverting feature. Goel
and Kumar [13] consider a class of risk-sensitive portfolio optimization problems,
where a fixed income security with stochastic interest rate is included. They prove
the existence results under certain conditions. Moreover, in Fleming and Hernández-
Hernández [14], Nagai [15], and Noh and Kim [16], stochastic interest rates and
stochastic volatility are both incorporated. Hata and Sheu [17,18] consider an optimal
investment problem in which they allow both the drift and volatility of price to be
stochastic. In [19], Kaise and Sheu prove existence and uniqueness of ergodic-type
Bellman equations.

The classical Merton model assumes that the risky asset does not pay any div-
idend (or equivalently, there is no productivity yield with the risky asset), and the
investor only makes profits from the asset price changes. However, in the real world,
many stocks do pay dividends, and there are some derivatives based on dividends (see
Tunaru [20]). Moreover, the dividend yield tends not to be constant due to the possi-
bility of bankruptcy (see Geske [21]), and the dividend yield rate and/or the dividend
amount usually changes from time to time. In [21], Geske considers the stochastic
dividend in the classical Black–Scholes–Merton option pricing formula, and a new
formula is derived in discrete time, under the assumption of a lognormal distribution
for dividend yield. Lioui [22] proposes a mean-reverting stochastic process to model
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the stochastic dividend yield in continuous time, under the complete market case. In
Pang and Varga [23], a portfolio optimization problem with stochastic dividend is
considered. Chevalier et al. [24] consider an optimal dividend and investment control
problem with debt constraints. We want to point out that the (stochastic) dividend
model can be used to model any risky asset with productivity yield, such as foreign
currency, gold (when lease yield is considered), farm land. In Fleming and Pang [25], a
portfolio optimization model with stochastic productivity is considered and the model
can be applied to an optimal investment problem on a stock with stochastic dividends.

In this paper, we consider a portfolio optimization problem in which the risky asset
price is modeled by a stochastic differential equation with stochastic volatility and
stochastic yields (dividends). In particular, we assume that the stochastic volatility
process is driven by a mean-reverting Ornstein–Uhlenbeck factor process, and the
stochastic dividend yield rate is modeled by a white noise-type stochastic process.
Investment and consumption controls are chosen tomaximize the expected discounted
utility of consumption. Our model can be used to describe an economic unit with
productive capital and liabilities in the form of debt.

This paper is an extension of Pang and Varga [23] by including stochastic volatility
in the model to make it more realistic. The introduction of stochastic volatility brings
more mathematical challenges, and a new method is needed to establish the results.
Similar to [23], we assume that the stochastic dividend yield rate is modeled by a white
noise-type stochastic process given by (4). There are a couple of reasons we use this
model for the dividend. First, the stock price can be treated as the total present value
of the future dividends, so the stock price can be written as an integral of discounted
future dividends. If we use the popular geometric Brownian motion to describe the
stock price, the dividend yield is more like the derivative of the geometric Brownian
motion, i.e., a white noise-type stochastic process. Second, for technical reasons, the
assumption of (4) for the dividend yield bt makes the model mathematically more
tractable.

The problem is formulated as a stochastic control problem, and we derive the
associated Hamilton–Jacobi–Bellman (HJB) equation using the dynamic program-
ming principle. The HJB equation is a second-order nonlinear partial differential
equation for which the current PDE existence results do not apply. By virtue of the
subsolution–supersolution method, which is proposed by Fleming and Pang [10] and
is later extended by Hata and Sheu [17,18], we establish the existence results of the
HJB equation. Further, we derive the optimal investment and consumption control
policies and establish the verification results.

The rest of the paper is organized as follows. InSect. 2, the problem is introduced and
formulated as a stochastic control problem. The HJB equation for the value function
is derived by the dynamic programming principle, and some preliminary results are
given. In Sect. 3, we establish the existence result of the solution for the HJB equation
by virtue of the subsolution–supersolution method. The verification results are given
in Sect. 4, and the optimal investment and consumption strategies are derived in this
section as well. We conclude the paper in Sect. 5.
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2 Problem Formulation

We consider a portfolio optimization problem of Merton’s type. In particular, we
consider an investor who, at time t, owns Nt shares of stock at price per share Pt . The
total worth of investments is given by Kt = Nt Pt . Then, we can write

d Kt = Nt d Pt + Pt d Nt = Kt
d Pt

Pt
+ Itdt, (1)

where It = d Nt
Nt

is the investment rate at time t . Here, we assume that the number of
shares Nt is of finite variation, so the term d Kt · d Nt vanishes here.

The investor’s debt, Lt , increases with interest payments, investment, and con-
sumption and decreases with income. Thus, the equation for the change in debt is
given by

d Lt = [r Lt + It + Ct − Dt ]dt, (2)

where r ≥ 0 is a constant interest rate, Ct is the consumption rate, and Dt is the rate of
income from the risky asset yield. For example, Dt can be treated as the total earned
dividends per unit time at time t . The total dividend is equal to the total number of
shares times the productivity of capital, or dividend rate, bt :

Dtdt = bt Ntdt . (3)

The investor’s net worth is given by Xt = Kt − Lt , and we require Xt > 0.
It is worth noting that the model applies to any economic unit with productive

capital and liabilities. For another example, consider a farm on which products are
grown and then sold for profits. Nt may represent the number of acres of the farm, with
Pt being the property value per acre. Debt increases with property taxes, the purchase
of new land, and consumption and decreases with income from selling the produce.
From here on, we continue our explanations with the investor example.

We assume that the dividend rate has a constant average growth rate of b with
a white noise. In particular, we assume that the dividend rate bt is governed by the
following equation:

btdt = bdt + σ1dB1,t , (4)

where b, σ1 > 0 are constants and B1,t is a standard Brownian motion. We assume
that the stock price follows a geometric Brownian motion with a stochastic volatility:

d Pt

Pt
= μdt + σ2(Zt )dB2,t (5)

where μ > 0 is a constant, and the function σ2(z) ∈ C1(R) satisfies

0 < σ̃2 ≤ σ2(Zt ) ≤ σ̂2,

∣
∣
∣
∣

dσ2(z)

dz

∣
∣
∣
∣
≤ σ̂ ′

2, (6)
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for some constants σ̃2, σ̂2, and σ̂ ′
2, and B2,t is a standard Brownian motion. We further

assume that the volatility is driven by a mean-reverting Ornstein–Uhlenbeck process
given by

d Zt = a(z̄ − Zt )dt + σ3dB3,t , (7)

where a, σ3, z̄ are positive constants and B3,t is a standard Brownian motion. The
mean-reverting feature captures the tendency of the stochastic volatility to revert back
to its invariant, or long-run, distribution.

Remark 2.1 In Eq. (5), instead of assuming μ is a constant, we can assume that μ

is a positive, bounded, and smooth function of Zt . All the results still hold, and all
the arguments are very similar. In this paper, we just consider the constant μ case for
notation convenience.

In the above equations, we introduce three one-dimensional standard Brownian
motions, B1,t , B2,t , and B3,t .We allow B1,t and B2,t to be correlatedwith a correlation
constant ρ ∈ [ρ0, 1] for some constant −1 < ρ0 < 0, and we suppose B3,t is
uncorrelated with B1,t and B2,t . That is,

E[B1,t · B2,t ] = ρdt, E[B1,t · B3,t ] = E[B2,t · B3,t ] = 0.

It is reasonable to assume that the dividend process and the stock price process are not
perfectly negatively correlated. So here we restrict ρ0 �= −1.

By virtue of (1) and (2), we can get the equation for the investor’s net worth
Xt = Kt − Lt as

d Xt = Kt
d Pt

Pt
− [r Lt + Ct − Dt ]dt . (8)

Define kt ≡ Kt

Xt
and ct ≡ Ct

Xt
as the control variables. Noting that

Lt = Kt − Xt = (kt − 1)Xt ,

and using (3), (4), and (5), we can get

d Xt = Xt

[(
b

Pt
+ μ − r

)

kt + (r − ct )

]

dt + Xt

[
σ1kt

Pt
dB1,t + σ2(Zt )ktdB2,t

]

.

Let Yt ≡ log Pt . Then, the above equation can be written as

d Xt = Xt

[

(be−Yt + μ − r)kt + (r − ct )
]

dt

+ Xt

[

σ1kt e
−Yt dB1,t + σ2(Zt )ktdB2,t

]

. (9)
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The Yt process follows

dYt = μ̃(Zt )dt + σ2(Zt )dB2,t , (10)

where μ̃(Zt ) = μ − 1
2σ

2
2 (Zt ). Note that μ̃(z) is bounded:

|μ̃(Zt )| =
∣
∣
∣
∣
μ − 1

2
σ 2
2 (Zt )

∣
∣
∣
∣
≤ |μ| + 1

2
σ̂ 2
2 ≡ M̃ . (11)

We define the admissible control space Π as the following:

Definition 2.1 (Admissible Control Space) The pair (kt , ct ) is said to be in the admissi-
ble control space Π if (kt , ct ) is anR2-process which is progressivelymeasurable with
respect to a (B1,t , B2,t , B3,t )-adapted family of σ1-algebras {Ft , t ≥ 0}. Moreover,
we require that kt , ct ≥ 0, and

Pr

(∫ T

0
k2t dt < ∞

)

= 1, Pr

(∫ T

0
ctdt < ∞

)

= 1 for all T > 0.

We consider the hyperbolic absolute risk aversion (HARA) utility function

U (C) = 1

γ
Cγ , γ < 1, γ �= 0.

γ = 0 is the value corresponding to the log utility case U (C) = logC . In this paper,
we only consider 0 < γ < 1. The method to solve the problem for the γ < 0 case
is the same, so we omit it in this paper. The goal is to maximize the expected total
discounted HARA utility of consumption subject to the constraints (kt , ct ) ∈ Π and
Xt > 0. The objective function is

J (x, y, z, k., c.) = E
[∫ ∞

0
e−βt 1

γ
(ct Xt )

γ dt

]

, (12)

and the corresponding value function is given by

V (x, y, z) = sup
(ct ,kt )∈Π

E
[∫ ∞

0
e−βt 1

γ
(ct Xt )

γ dt

]

, (13)

where the discount factor β > 0 is a constant, and x, y, and z are the initial values of
the state variables Xt , Yt , and Zt , respectively.

The state variables Xt , Yt , and Zt are given by (9), (10), and (7), respectively. Using
the dynamic programming principle (refer to Fleming and Soner [26] for details), we
get the following HJB equation for V (x, y, z) :
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βV = σ̃ 2
1 (z)

2
Vyy + σ 2

3

2
Vzz + r xVx + μ̃(z)Vy + a(z̄ − z)Vz

+ max
c≥0

[
1

γ
(cx)γ − cxVx

]

+ max
k≥0

{

(by + μ − r)kxVx

+ k2x2

2
q(y, z)Vxx + kx

(

σ̃ 2
1 (z) + ρσ1σ2(z)y

)

Vxy

}

, (14)

where

q(y, z) = σ 2
1 e−2y + 2ρσ1σ2(z)e

−y + σ 2
2 (z). (15)

We look for a solution of the following form:

V (x, y, z) = 1

γ
xγ W (y, z). (16)

Substituting this form into Eq. (14), we can get the equation for W by canceling xγ :

βW = σ̃ 2
1 (z)

2
Wyy + σ 2

3

2
Wzz + γ r W + μ̃(z)Wy + a(z̄ − z)Wz

+max
c≥0

[

cγ − γ cW
] + γ max

k≥0

{

(be−y + μ − r)kW

+(σ 2
2 (z) + ρσ1σ2(z)e

−y)kWy − k2

2
(1 − γ )q(y, z)

}

. (17)

Define a function Q(y, z) = log W (y, z). Then, we can get the equation for Q:

β = σ 2
2 (z)

2
(Q2

y + Qyy) + σ 2
3

2
(Q2

z + Qzz)

+γ r + μ̃(z)Qy + a(z̄ − z)Qz + max
c≥0

[

cγ − γ ceQ] + G(y, z, Qy), (18)

where the function G(y, z, p) is defined by

G(y, z, p) ≡ max
k≥0

{[

be−y + μ − r + (σ 2
2 (z) + ρσ1σ2(z)e

−y)p
]

k

−k2

2
(1 − γ )q(y, z)

}

. (19)

The candidates for the optimal controls are

k∗(y, z) =
[

be−y + μ − r + (σ 2
2 (z) + ρσ1σ2(z)e−y)Qy

(1 − γ )q(y, z)

]+
, (20)

c∗(y, z) = e
Q(y,z)
γ−1 . (21)
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Substitute the (k∗, c∗) given by (20) and (21) into (18), andwe can rewrite the equation
for Q as

σ 2
2 (z)

2
Qyy + σ 2

3

2
Qzz = H(y, z, Q, Qy, Qz), (22)

where

H(y, z, u, p, s) ≡ −σ 2
2 (z)

2
p2 − σ 2

3

2
s2 − μ̃(z)p − a(z̄ − z)s

−γ G(y, z, p) + β − γ r − (1 − γ )e
u

γ−1 . (23)

Equation (22) is the reduced HJB equation for Q(y, z), and we want to show that
V (x, y, z) = 1

γ
xγ eQ(y,z) is equal to the value function given by (13). Next, we

establish the existence of the solution Q(y, z) to (23) in Sect. 3. Then, in Sect. 4, we
verify that V (x, y, z) = 1

γ
xγ eQ(y,z) is the value function, and the optimal investment

and consumption strategies are given by (20) and (21), respectively.
We present some useful results before we move to the next section. First, we have

the following lemma about the q(y, z) function defined by (15).

Lemma 2.1 For ρ ∈ [ρ0, 1], where −1 < ρ0 < 0, we have

q(y, z) ≥ q0 > 0, (24)

where q0 ≡ σ̃ 2
2 (1 − ρ2

0 ).

The proof can be found in “Appendix A:”. 
�
Note that if k∗ = 0, then G = 0. If k∗ > 0, then

G(y, z, p) = [be−y + μ − r + (σ 2
2 (z) + ρσ1σ2(z)e−y)p]2

2(1 − γ )q(y, z)
≥ 0. (25)

So we have G(y, z, p) ≥ 0. Define

Ψ (y, z) ≡
⎧

⎨

⎩

(be−y + μ − r)2

2(1 − γ )q(y, z)
, if be−y + μ − r > 0,

0, otherwise.
(26)

Then, it is easy to verify that G(y, z, 0) = Ψ (y, z). We have the following lemma
about the function Ψ .

Lemma 2.2 Ψ (y, z) is bounded.

The proof can be found in “Appendix B:”. 
�
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3 Existence Results

In this section, we prove the existence of a classical solution to (22). In particular,
we use the subsolution–supersolution method to establish the existence results. The
method is first introduced by Fleming and Pang [10] to solve the HJB equations that
arise in stochastic control problems, and it is later extended in Hata and Sheu [17,18].
The problem we consider here is not covered by the problems considered in [17,18].
Due to the particular structure of (22), the results of [17,18] cannot be applied here
and there are some technical difficulties that we have to overcome.

3.1 Subsolution and Supersolution

We first define subsolutions and supersolutions of (22).

Definition 3.1 Q(y, z) is a subsolution (supersolution) of (22), if

σ 2
2 (z)

2
Qyy + σ 2

3

2
Qzz ≥ (≤)H(y, z, Q, Qy, Qz). (27)

In addition, if Q̃ is a subsolution, Q̂ is a supersolution, and Q̃ ≤ Q̂, then, 〈Q̃, Q̂〉 is
an ordered pair of subsolution–supersolution.

Next, we show that there exists a pair of ordered subsolution and supersolutions.

Lemma 3.1 Suppose 0 < γ < 1 and

β > γ (r + Ψ̄ ), (28)

where Ψ̄ is defined by

Ψ̄ ≡ max

{

1,
1

1 + ρ0

}

· max

{

b2

σ 2
1 (1 − γ )

,
(μ − r)2

σ̃ 2
2 (1 − γ )

}

In addition, define

K1 ≡ (γ − 1) log

[
β − γ r

1 − γ

]

, and K2 ≡ (γ − 1) log

[
β − γ (r + Ψ̄ )

1 − γ

]

. (29)

Then, 〈K1, K2〉 is an ordered pair of subsolution–supersolution to (22).

The proof is straightforward, and we omit it here. The main existence result is as
follows:

Theorem 3.1 Suppose σ 2
2 (z) ∈ C1,α(B̄R). Define Q̃ ≡ K1 and Q̂ ≡ K2, where K1

and K2 are given by (29). Then, there exists a solution Q ∈ C2,β(R2) to (22) such
that Q̃ ≤ Q(y, z) ≤ Q̂ for all (y, z) ∈ R

2.
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The proof of Theorem 3.1 is given in Sect. 3.4.We first prove that, on the closed ball
B̄R ≡ {(y, z) ∈ R

2 : y2 + z2 ≤ R2}, there exists a classical solution to the following
boundary value problem

σ 2
2 (z)
2 Qyy + σ 2

3
2 Qzz − H(y, z, Q, Qy, Qz) = 0, on BR,

Q = ψ, on ∂ BR,
(30)

for a particular choice of ψ . Once we have a solution to (30) on B̄R for each R, we
take the limit as R → ∞ to show the existence of solution to (22). The details are
provided in the proof of Theorem 3.1 in Sect. 3.4.

3.2 Existence Results of Boundary Value Problem (30)

Following the approach taken by Hata and Sheu [17], we start by introducing the
parameter τ ∈ [0, 1] into our equation:

σ 2
2 (z)

2
Qτ

yy + σ 2
3

2
Qτ

zz − H(y, z, Qτ , Qτ
y, Qτ

z , τ ) = 0, (31)

where H(y, z, u, p, s, τ ) is equal to H(y, z, u, p, s) with γ replaced by τγ :

H(y, z, u, p, s, τ ) ≡ −σ 2
2 (z)

2
p2 − σ 2

3

2
s2 − μ̃(z)p − a(z̄ − z)s − τγ Gτ (y, z, p)

+β − τγ r − (1 − τγ )e

u

τγ − 1 , (32)

and

Gτ (y, z, p) = max
k≥0

{[

be−y + μ − r + (σ 2
2 (z) + ρσ1σ2(z)e

−y)p
]

k

−k2

2
(1 − τγ )q(y, z)

}

.

For 0 < τ ≤ 1, (31) is the reduced HJB equation corresponding to the value
function

V τ (x, y, z) = sup
(kt ,ct )∈Π

E
[∫ ∞

0
e−βt 1

τγ
(ct Xt )

τγ dt

]

, (33)

by taking V τ (x, y, z) = 1
τγ

xτγ eQτ (y,z). We consider τ = 0 to be a limiting case of
0 < τ ≤ 1. This corresponds to the consumption problem for log utility, for which
(31) has a unique solution [please refer to (49)].
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The boundary value problem for (31) is

σ 2
2 (z)
2 Qτ

yy + σ 2
3
2 Qτ

zz − H(y, z, Qτ , Qτ
y, Qτ

z , τ ) = 0, on BR,

Qτ = τψ, on ∂ BR .
(34)

The above boundary value problem is used to obtain the existence result over thewhole
space.

The following theorem states the sufficient conditions for the existence of solution
to (30).

Theorem 3.2 Let 0 < α < 1 and R > 0 be fixed. We assume the following conditions:

(a) H(y, z, u, p, s, 1) = H(y, z, u, p, s).
(b) σ 2

2 (z) ∈ C1,α(B̄R); H(·, ·, ·, ·, ·, τ ) ∈ Cα(B̄R × R
3) for τ ∈ [0, 1], and the

function H(y, z, u, p, s, τ ) is continuous when considered as a mapping from
[0, 1] into Cα(B̄R × R × R

2).
(c) ψ ∈ C2,α(B̄R).
(d) There exists a constant M such that every C2,α(B̄R)-classical solution Qτ of (34)

satisfies
|Qτ (y, z)| < M, (y, z) ∈ B̄R, where M is independent of Qτ and τ .

(e) There are k̄ > 0, c, c̄, such that the following inequalities hold for (y, z) ∈
B̄R, |u| ≤ M, η ∈ R

2, τ ∈ [0, 1], and arbitrary (p, s):

c
2
∑

i=1

η2i ≤ σ 2
2 (z)η21 + σ 2

3 η22 ≤ c̄
2
∑

i=1

η2i ,

|H(y, z, u, p, s, τ )| +
∣
∣
∣
∣
∣

dσ 2
2 (z)

dz

∣
∣
∣
∣
∣
≤ c̄(1 + p2 + s2)

k̄
2 . (35)

(f) There is an M1 > 0 such that for any τ ∈ [0, 1], |Q0
τ (y, z)| < M1 and (y, z) ∈ B̄R,

where Q0
τ (·) is an arbitrary solution of

σ 2
2 (z)
2 Qyy + σ 2

3
2 Qzz − τ H(y, z, Q, Qy, Qz, 0) = 0 on BR,

Q = 0 on ∂ BR .

Then, boundary value problem (30) is solvable in C2,α(B̄R).

See Theorem 3.4 and the proof in [17] for more details. 
�
The next step is to prove that the conditions in Theorem 3.2 hold for the problem

considered in this paper. Then we can get the existence of solution to boundary value
problem (30). Several results are needed before that can be done. We begin with the
following definition.

Definition 3.2 Let Q̃, Q̂ be continuous second-order differentiable functions defined
on B̄R . Q̃ (Q̂) is called a subsolution (supersolution) of (30) if it satisfies

σ 2
2 (z)
2 Qyy + σ 2

3
2 Qzz − H(y, z, Q, Qy, Qz) ≥ (≤)0, on BR,

Q ≤ (≥)ψ, on ∂ BR .
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In addition, 〈Q̃, Q̂〉 is called an ordered pair of subsolution–supersolution if they also
satisfy

Q̃(y, z) ≤ Q̂(y, z), ∀(y, z) ∈ B̄R .

We can define an ordered pair of subsolution–supersolution to (34) in a similar
manner. The following lemma is used later.

Lemma 3.2 For G given by (19), there exist constants C̃1, C̃2 > 0 such that

G(y, z, p) ≤ C̃1 + C̃2 p2. (36)

The proof can be found in “Appendix C:”. 
�
Next, we establish a comparison result.

Lemma 3.3 Let 0 < τ ≤ 1. Assume Q̃, Q̂ are second-order continuous differentiable
functions on B̄R and satisfy

σ 2
2 (z)
2 Q̃yy + σ 2

3
2 Q̃zz − H(y, z, Q̃, Q̃y, Q̃z, τ ) ≥ 0 on BR,

σ 2
2 (z)
2 Q̂yy + σ 2

3
2 Q̂zz − H(y, z, Q̂, Q̂y, Q̂z, τ ) ≤ 0 on BR,

Q̃ ≤ Q̂ on ∂ BR .

(37)

Then, Q̃ ≤ Q̂ holds in B̄R.

The proof can be found in “Appendix D:”. From Lemma 3.3, we can get the following
result:

Corollary 3.1 For 0 < τ ≤ 1, the solution Qτ ∈ C2(B̄R) of (34) is unique.

The proof can be found in “Appendix E:”. 
�
To establish the existence result for (30) by virtue of Theorem 3.2, we need to verify

that the conditions (a)−( f ) are satisfied.
The coefficients of (22), σ 2

2 (z), μ̃(z), g0(y, z), g1(y, z), and g2(y, z), are Lip-
schitz continuous for all (y, z) ∈ R. If Q(y, z) ∈ C1(B̄R), it follows that
H(y, z, Q, Qy, Qz) ∈ Cα(B̄R × R × R

2). This helps to verify condition (b).
The next two theorems provide us with bounds on Qτ , which are useful when we

verify the conditions (d) and ( f ).

Theorem 3.3 Suppose σ 2
2 (z) ∈ C1,α(B̄R), ψ is continuous, and let Q̂ be a superso-

lution of (34) for τ = 1. Suppose that Qτ is a solution of (34) with 0 < τ ≤ 1.
Then,

eQτ (y,z) ≤ τeQ̂(y,z) + (1 − τ) f (y, z), (38)

where f (y, z) satisfies

σ 2
2 (z)
2 fyy(y, z) + σ 2

3
2 fzz(y, z) + μ̃(z) fy(y, z)

+ a(z̄ − z) fz(y, z) − β f (y, z) + 1 = 0, on BR,

f (y, z) = 1, on ∂ BR,

(39)
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and is given by

f (y, z) = 1

β
+
(

1 − 1

β

)

Ey,z[e−βtR ], (40)

where tR = inf

{

t ≥ 0;
√

Y 2
t + Z2

t = R

}

. Moreover, for 0 < γ < 1,

Qτ (y, z) ≥ − log

(

max

{
β

1 − γ
, 1

})

− sup
∂ BR

{|ψ(y, z)|}. (41)

Theorem 3.4 Let 0 < τ ≤ 1. Suppose σ 2
2 (z) ∈ C1,α(B̄R), and that Q0

τ is a solution
of

σ 2
2 (z)
2 Qyy + σ 2

3
2 Qzz − τ H(y, z, Q, Qy, Qz, 0) = 0, on BR,

Q = 0, on ∂ BR .
(42)

Then,

− βE[t̄R] ≤ Q0
τ (y, z) ≤ log(1 + E[t̄R]), (43)

where t̄R = inf

{

t ≥ 0;
√

Ŷ 2
t + Ẑ2

t = R

}

, and Ŷt , Ẑt are defined by

dŶt = τ μ̃(Ẑt )dt + σ2(Ẑt )dB2,t , Ŷ0 = y,

d Ẑt = τa(z̄ − Ẑt )dt + σ3dB3,t , Ẑ0 = z.

The proofs of Theorems 3.3 and 3.4 can be found in “Appendix G: and H:,” respec-
tively.

The following theorem gives us the existence of solution to boundary value problem
(30) with ψ = Q̃, on the closed ball given by

B̄R = {(y, z) ∈ R
2 : y2 + z2 ≤ R2}.

Theorem 3.5 Assume σ 2
2 (z) ∈ C1,α(B̄R), (22) has an ordered pair of subsolution–

supersolution 〈Q̃, Q̂〉, and Q̃ ∈ C2,β(B̄R) for some 0 < β ≤ 1. Further assume that
Q̂ is a supersolution of (34) for τ = 1, and Qτ is a solution of (34) with 0 < τ ≤ 1.
Then, the boundary value problem

σ 2
2 (z)
2 Qyy + σ 2

3
2 Qzz − H(y, z, Q, Qy, Qz) = 0 on BR,

Q = Q̃ on ∂ BR,
(44)

has a unique solution in C2,β(B̄R).
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Proof Notice that (44) is equivalent to (30) with ψ = Q̃. We use Theorem 3.2 to
prove the existence of solution. Note that conditions (a), (b), and (c) are automatically
satisfied. By Theorem 3.3, we have inequality (38):

eQτ (y,z) ≤ τeQ̂(y,z) + (1 − τ) f (y, z).

Since 0 < τ ≤ 1 and f > 0, we can write

eQτ (y,z) ≤ eQ̂(y,z) + f (y, z), or Qτ (y, z) ≤ log
[

eQ̂(y,z) + f (y, z)
] ≤ M̄,

where M̄ ≡ maxB̄R
log

[

eQ̂(y,z) + f (y, z)
]

. Also by Theorem 3.3, we have the fol-
lowing inequality:

Qτ (y, z) ≥ − sup
(y,z)∈∂ BR

{|Q̃(y, z)|} − log

(

max

{
β

1 − γ
, 1

})

≡ M. (45)

Note that M and M̄ are independent of both τ and Qτ . Here, we take

M ≡ max{|M|, M̄} + 1. (46)

Then, we have the bound

|Qτ (y, z)| < M, (47)

where M is independent of τ and Qτ . Hence condition (d) of Theorem 3.2 is satisfied.
For condition (e), take c ≡ min{σ̃ 2

2 , σ 2
3 } and c̄ ≡ max{σ̂ 2

2 , σ 2
3 }. Then, for any

(η1, η2) ∈ R
2,

c(η21 + η22) ≤ σ 2
2 (z)η21 + σ 2

3 η22 ≤ c̄(η21 + η22).

For the second part of condition (e), we have that for |z| ≤ M,

|H(y, z, u, p, s, τ )| + 2σ2(z)

∣
∣
∣
∣

dσ2(z)

dz

∣
∣
∣
∣

=
∣
∣
∣
∣
− σ 2

2 (z)

2
p2 − σ 2

3

2
s2 − μ̃(z)p − α(z̄ − z)s − γ G(y, z, p)

+β − γ r − (1 − γ )e
u

γ−1

∣
∣
∣
∣
+ 2σ2(z)

∣
∣
∣
∣

dσ2(z)

dz

∣
∣
∣
∣

≤ C(1 + p2 + s2). (48)

Thus, condition (e) is satisfied, with k̄ = 2.
ByTheorem3.4, we have estimate (43). Then, it is easy to get that |Qτ

0(y, z)| < M1,
where M1 = max

{

βE[t̄R], log(1 + E[t̄R])} + C1, for some constant C1 > 0. Thus,
condition ( f ) of Theorem 3.2 is satisfied.
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In (34), take ψ ≡ Q̃. For the τ = 0 case, (34) has the unique solution

Qτ
0 = log f , (49)

where f is given by (40). Indeed, setting τ = 0 in (34) and substituting (49) into the
equation satisfied on BR , we obtain

σ 2
2 (z)

2

[

− 1

f 2
f 2y + 1

f
fyy

]

+ σ 2
3

2

[

− 1

f 2
+ 1

f
fzz

]

+ σ 2
2 (z)

2

1

f 2
f 2y + σ 2

3

2

1

f 2
f 2z

+ μ̃(z)
1

f
fy + a(z̄ − z)

1

f
fz − β + 1

f

= 1

f

[

σ 2
2 (z)

2
fyy + σ 2

3

2
fzz + μ̃(z) fy + a(z̄ − z) fz − β f + 1

]

= 0,

by (39). On the boundary ∂ BR, τR = 0. Then, by (40) we see that f = 1, and so
Qτ

0 = 0 on ∂ BR . Therefore, Qτ
0 = log f is a solution to (34) for τ = 0. Uniqueness

can be proven using a method similar to that in Corollary 3.1.
The solution for τ = 0 corresponds to the solution of the log utility problem, which

is the limit case of the HARA utility case when parameter γ goes to 0. We do not
discuss the log utility case in detail in this paper as our main focus is on the nonlog
HARA utility with 0 < γ < 1.

By Theorem 3.2, (44) has a solution in C2,α(B̄R). For τ = 1, (34) is equivalent
to (30), which is equivalent to (44) when ψ = Q̃. Therefore, by Corollary 3.1, the
solution to (44) is unique. 
�

3.3 A Uniform Bound for supBR |DQ|2

Before proving existence of a classical solution to (22), we must prove the existence
of a uniform bound for supBR

|DQ|2 for any R.

Theorem 3.6 Let Q R̃ be a smooth function satisfying HJB equation (22) in BR̃. For
each R > 0 and R̃ > 2R, we have

sup
BR

|DQ R̃ |2 ≤ CR + C(β − γ r), (50)

where C is a nonnegative constant independent of R and R̃, and CR is a constant
depending only on R.

To prove Theorem 3.6, we need the following lemma:
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Lemma 3.4 Let Q(x) ∈ C2(RN ), and ai, j (x) ∈ C2(RN ) for all i, j ranging from 1
to N. Then,

N
∑

i, j,k=1

Dkai j Dk Q Di j Q ≤ 1

2ε

⎛

⎝

N
∑

i, j=1

|Dai j |2
⎞

⎠ |DQ|2 + ε

2
|D2Q|2, (51)

where ε > 0 is a small constant.

The proof can be found in “Appendix F:”. 
�
Now, we can give the proof of Theorem 3.6.

Proof of Theorem 3.6 We write G as defined in (19) in its quadratic form,

G(y, z, Qy) = γ g2Q2
y + γ g1Qy + γ g0,

where g2, g1, and g0 are defined by

g2(y, z) = (σ 2
2 (z) + ρσ1σ2(z)e−y)2

2(1 − γ )q(y, z)
,

g1(y, z) = (be−y + μ − r)(σ 2
2 (z) + ρσ1σ2(z)e−y)

(1 − γ )q(y, z)
,

g0(y, z) = (be−y + μ − r)2

2(1 − γ )q(y, z)
.

Then, Q R̃ satisfies

σ 2
2 (z)

2
Qyy + σ 2

3

2
Qzz + 1

2

(

σ 2
2 (z) + 2γ g2(y, z)

)

Q2
y + σ 2

3

2
Q2

z

+ (μ̃(z) + γ g1(y, z))Qy + a(z̄ − z)Qz + γ g0(y, z)

+ (1 − γ )e
Q

γ−1 = β − γ r (52)

on BR̃ . Note that this is the case of be−y + μ − r ≥ 0, which is true if we assume
μ > r . The more simple case of G = 0 (if be−y + μ − r < 0) can be proved using
the same steps as in this proof, so we do not prove this case explicitly.

For simplicity, we drop the subscript R̃ and set Q ≡ Q R̃ . Differentiating (52) with
respect to y and z, we obtain

σ 2
2 (z)

2
Qyyy + σ 2

3

2
Qzzy + (σ 2

2 (z) + 2γ g2)Qy Qyy + γ (g2)y Q2
y + σ 2

3 Qz Qzy

+ (μ̃(z) + γ g1)Qyy + γ (g1)y Qy + a(z̄ − z)Qzy + γ (g0)y − e
Q

γ−1 Qy = 0,

(53)
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and

σ 2
2 (z)

2
Qyyz + σ2(z)σ

′
2(z)Qyy + σ 2

3

2
Qzzz + (σ 2

2 (z) + 2γ g2)Qy Qyz

+ (σ2(z)σ
′
2(z) + γ (g2)z)Q2

y + σ 2
3 Qz Qzz + (μ̃(z) + γ g1)Qyz

+ (μ̃′(z) + γ (g1)y)Qy + a(z̄ − z)Qzz − aQz + γ (g0)z − e
Q

γ−1 Qz = 0,

(54)

respectively.Next,we take the sumofEq. (53)multipliedby Qy andEq. (54)multiplied
by Qz . Rearranging the result (to a form that is useful in a later step), we get

−σ 2
2 (z)

2
Qyyy Qy − σ 2

3

2
Qzzy Qy − σ 2

2 (z)

2
Qyyz Qz − σ 2

3

2
Qzzz Qz

− (σ 2
2 (z) + 2γ g2)(Qy Qyy Qy + Qy Qyz Qz) − σ 2

3 (Qz Qzy Qy + Qz Qzz Qz)

− (μ̃(z) + γ g1)(Qyy Qy + Qyz Qz) − a(z̄ − z)(Qzy Qy + Qzz Qz)

= σ2(z)σ
′
2(z)Qyy Qz + γ (g2)y Q3

y + (σ2(z)σ
′
2(z) + γ (g2)z)Q2

y Qz

+ γ (g1)y Q2
y + (μ̃′(z) + γ (g1)z)Qy Qz − aQ2

z + γ (g0)y Qy + γ (g0)z Qz

− e
Q

γ−1 [Q2
y + Q2

z ] (55)

Define

Φ ≡ 1

2
|DQ|2 = 1

2
(Q2

y + Q2
z ). (56)

Then, we have

DyΦ = Qy Qyy + Qz Qzy, DzΦ = Qy Qyz + Qz Qzz,

DyyΦ = Q2
yy + Qy Qyyy + Q2

yz + Qz Qzyy,

DzzΦ = Q2
yz + Qz Qyzz + Q2

zz + Qz Qzzz .

By (55), we can get

−σ 2
2 (z)

2
DyyΦ − σ 2

3

2
DzzΦ − (σ 2

2 (z) + 2γ g2)Qy DyΦ − σ 2
3 Qz DzΦ

− (μ̃(z) + γ g1)DyΦ − a(z̄ − z)DzΦ

= σ2(z)σ
′
2(z)Qyy Qz + γ (g2)y Q3

y + (σ2(z)σ
′
2(z) + γ (g2)z)Q2

y Qz + γ (g1)y Q2
y

+ (μ̃′(z) + γ (g1)z)Qy Qz − aQ2
z

+ γ (g0)y Qy + γ (g0)z Qz

− e
Q

γ−1 (Q2
y + Q2

z ) − σ 2
2 (z)

2
(Q2

yy + Q2
yz) − σ 2

3

2
(Q2

yz + Q2
zz). (57)
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By Lemma 3.4, we have that

σ2(z)σ
′
2(z)Qz Qyy ≤ 1

4ε
(2σ2(z)σ

′
2(z))

2(Q2
y + Q2

z ) + ε

4
(Q2

yy + 2Q2
yz + Q2

zz).

Then, we can get the following inequality of the right-hand side (RHS) of (57):

RHS of (57) ≤ 1

4ε
(2σ2(z)σ

′
2(z))

2(Q2
y + Q2

z ) + ε

4
(Q2

yy + 2Q2
yz + Q2

zz)

+ γ (g2)y Q3
y + (σ2(z)σ

′
2(z) + γ (g2)z)Q2

y Qz + γ (g1)y Q2
y

+ (μ̃′(z) + γ (g1)z)Qy Qz − aQ2
z + γ (g0)y Qy + γ (g0)z Qz

− e
Q

γ−1 (Q2
y + Q2

z ) − σ 2
2 (z)

4
(Q2

yy + Q2
yz) − σ 2

3

4
(Q2

yz + Q2
zz)

− σ 2
2 (z)

4
(Q2

yy + Q2
yz) − σ 2

3

4
(Q2

yz + Q2
zz)

≤ 1

ε
(σ2(z)σ

′
2(z))

2(Q2
y + Q2

z )

+ γ (g2)y Q3
y + (σ2(z)σ

′
2(z) + γ (g2)z)Q2

y Qz + γ (g1)y Q2
y

+ (μ̃′(z) + γ (g1)z)Qy Qz − aQ2
z + γ (g0)y Qy + γ (g0)z Qz

− e
Q

γ−1 (Q2
y + Q2

z ) − σ 2
2 (z)

4
(Q2

yy + Q2
yz) − σ 2

3

4
(Q2

yz + Q2
zz),

where the last step is based on the fact that

ε

4
(Q2

yy + 2Q2
yz + Q2

zz) − σ 2
2 (z)

4
(Q2

yy + Q2
yz) − σ 2

3

4
(Q2

yz + Q2
zz)

= 1

4

[

(ε − σ 2
2 (z))Q2

yy + (2ε − σ 2
2 (z) − σ 2

3 )Q2
yz + (ε − σ 2

3 )Q2
zz

]

≤ 0,

for any constant ε such that 0 < ε ≤ min{σ̃ 2
2 , σ 2

3 }, and σ̃2 given by (6).
Consider the matrix inequality (tr(AB))2 ≤ Nν2(tr(AB2)), where A and B are

N × N symmetric matrices, A is positive semidefinite, and ν2 is the maximum eigen-

value of A. We use this inequality with A =
[

σ 2
2 (z) 0
0 σ 2

3

]

and B =
[

Qyy Qyz

Qyz Qzz

]

to

get

−1

4

[

σ 2
2 (z)Q2

yy + (σ 2
2 (z) + σ 2

3 )Q2
yz + σ 2

3 Q2
zz

]

≤ − 1

8ν2
(σ 2

2 (z)Qyy + σ 2
3 Qzz)

2.

Then, we have

−σ 2
2 (z)

2
DyyΦ − σ 2

3

2
DzzΦ − (σ 2

2 (z) + 2γ g2)Qy DyΦ − σ 2
3 Qz DzΦ
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− (μ̃(z) + γ g1)DyΦ − a(z̄ − z)DzΦ

≤ CR |DQ| + CR |DQ|2 + CR |DQ|3 − 1

8ν2

(

σ 2
2 (z)Qyy + σ 2

3 Qzz

)2
in B2R .

(58)

We use CR to represent an arbitrary constant depending only on R, and we use C for
a nonnegative constant independent of R and R̃.

Fix arbitrary ξ ∈ BR , and let BR(ξ) be an open ball with radius R and center ξ .
Let φ ∈ C∞

0 (R2) be a cutoff function such that

0 ≤ φ ≤ 1 in R
2, φ(ξ) = 1, φ ≡ 0 in (BR(ξ))c, |Dφ| ≤ Cφ1/2, |D2φ| ≤ C .

Suppose the maximum of φΦ in B̄R(ξ) is attained at (y0, z0). By the maximum
principle, at (y0, z0) we have

Di (φΦ) = φDiΦ + ΦDiφ = 0, and
∑

i, j

Di, j (φΦ)ηiη j ≤ 0,

where the second condition means that the Hessian of (φΦ)(y0, z0) is negative
semidefinite. Then, at (y0, z0), we have

0 ≤ −σ 2
2 (z)

2
Dyy(φΦ) − σ 2

3

2
Dzz(φΦ) − (σ 2

2 (z) + 2γ g2)Qy Dy(φΦ)

− σ 2
3 Qz Dz(φΦ) − (μ̃(z) + γ g1)Dy(φΦ) − a(z̄ − z)Dz(φΦ)

= −σ 2
2 (z)

2
φDyyΦ − σ 2

2 (z)DyφDyΦ − σ 2
2 (z)

2
ΦDyyφ

− σ 2
3

2
φDzzΦ − σ 2

3 DzφDzΦ

− σ 2
3

2
ΦDzzφ − (σ 2

2 (z) + 2γ g2)Qy(φDyΦ + ΦDyφ)

− σ 2
3 Qz(φDzΦ + ΦDzφ)

− (μ̃(z) + γ g1)(φDyΦ + ΦDyφ) − a(z̄ − z)(φDzΦ + ΦDzφ)

= φ

{

− σ 2
2 (z)

2
DyyΦ − σ 2

3

2
DzzΦ − (σ 2

2 (z) + 2γ g2)Qy DyΦ − σ 2
3 Qz DzΦ

− (μ̃(z) + γ g1)DyΦ − a(z̄ − z)DzΦ

}

− σ 2
2 (z)

2
ΦDyyφ − σ 2

3

2
ΦDzzφ

− σ 2
2 (z)DyφDyΦ − σ 2

3 DzφDzΦ − (σ 2
2 (z) + 2γ g2)ΦQy Dyφ − σ 2

3 ΦQz Dzφ

− (μ̃(z) + γ g1)ΦDyφ − a(z̄ − z)ΦDzφ

≤ φ

{

− σ 2
2 (z)

2
DyyΦ − σ 2

3

2
DzzΦ − (σ 2

2 (z) + 2γ g2)Qy DyΦ − σ 2
3 Qz DzΦ

− (μ̃(z) + γ g1)DyΦ − a(z̄ − z)DzΦ

}

+ CRΦ + Cφ1/2Φ3/2
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≤ φ

{

CR |DQ| + CR |DQ|2 + CR |DQ|3 − 1

8ν2

(

σ 2
2 (z)Qyy + σ 2

3 Qzz

)2
}

+ CRΦ + Cφ1/2Φ3/2

= φ

{

CR |DQ| + CR |DQ|2 + CR |DQ|3

− 1

2ν2

[

−
(

σ 2
2 (z)

2
+ γ g2

)

Q2
y − σ 2

3

2
Q2

z

− (μ̃(z) + γ g1)Qy − a(z̄ − z)Qz − γ g0 + β − γ r − (1 − γ )e
Q

γ−1

]2
}

+ CRΦ + Cφ1/2Φ3/2, (59)

where the last two steps are based on (58) and (52).
Note that there exist 0 < μ1 < μ2 such that

μ1|η|2 ≤ (σ 2
2 (z) + 2γ g2)η

2
1 + σ 2

3 η22 ≤ μ2|η|2 for all (y, z), η ∈ R
2.

In fact, we can take μ1 = min{L2, σ 2
3 } and μ2 = max{U 2 + γ C̃2}, where C̃2 is the

bound of the coefficient to p2 in (36). Then, we have

−1

2

(

σ 2
2 (z) + 2γ g2

)

Q2
y − σ 2

3

2
Q2

z − (μ̃(z) + γ g1)Qy − a(z̄ − z)Qz

− γ g0 + β − γ r − (1 − γ )e
Q

γ−1

≤ −μ1|DQ|2 + CR |DQ| − γ g0 + β − γ r − (1 − γ )e
Q

γ−1

≤ −κ|DQ|2 + CR − γ g0 + β − γ r − (1 − γ )e
Q

γ−1 , (60)

where κ > 0 is a constant that depends only on μ1, and the last step follows from the
identity |DQ| ≤ 1

2 (|DQ|2 + 1).
Now we split the problem up into cases. First, consider the case

−κ|DQ|2 + CR − γ g0 + β − γ r − (1 − γ )e
Q

γ−1 ≥ 0, at (y0, z0).

Then, it is easy to see that

κ|DQ|2(y0, z0) ≤ CR + β − γ r .

Noting that (y0, z0) is the maximizer of φΦ in B̄R(ξ), we can get that

1

2
|DQ|2(ξ) = Φ(ξ)φ(ξ) ≤ Φ(y0, z0)φ(y0, z0).
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Therefore,

κ|DQ|2(ξ) ≤ κ|DQ|2(y0, z0)φ(y0, z0) ≤ φ(y0, z0)[CR + β − γ r ]
≤ CR + β − γ r .

So in this case, we have

|DQ|2(ξ) ≤ CR + 1

κ
(β − γ r). (61)

Next, consider the case −κ|DQ|2 + CR − γ g0 + β − γ r − (1 − γ )e
Q

γ−1 ≤ 0 at
(y0, z0). By virtue of (60), we obtain

RHS of (59) ≤ φ

{

CR |DQ| + CR |DQ|2 + CR |DQ|3 − 1

2ν2

[

− κ|DQ|2 + CR

− γ g0 + β − γ r − (1 − γ )e
Q

γ−1

]2
}

+ CRΦ + Cφ1/2Φ3/2

= φ

{

CR |DQ| + CR |DQ|2 + CR |DQ|3 − 1

2ν2

[

κ2|DQ|4

− 2κ|DQ|2
(

CR − γ g0 + β − γ r − (1 − γ )e
Q

γ−1

)

+
(

CR − γ g0 + β − γ r − (1 − γ )e
Q

γ−1

)2]
}

+ CRΦ + Cφ1/2Φ3/2

≤ φ

{

CRΦ1/2 + CRΦ + CRΦ3/2 − 2κ2

ν2
Φ2

+ 2κ

ν2
Φ
(

CR − γ g0 + β − γ r − (1 − γ )e
Q

γ−1

)]}

+ CRΦ + Cφ1/2Φ3/2

= φ

{

CRΦ1/2 + CRΦ + CRΦ3/2

− 2κ

ν2
Φ
[

κΦ −
(

CR − γ g0 + β − γ r − (1 − γ )e
Q

γ−1

)]}

+ CRΦ + Cφ1/2Φ3/2, (62)

at (y0, z0). If κΦ ≤ CR − γ g0 + β − γ r − (1 − γ )e
Q

γ−1 = CR + β − γ r , then,

κΦ(ξ) = κφ(ξ)Φ(ξ) ≤ κφ(y0, z0)Φ(y0, z0) ≤ κΦ(y0, z0) ≤ CR + β − γ r ,

(63)
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so that

|DQ|2(ξ) ≤ CR + 2

κ
(β − γ r). (64)

If CR ≥ Φ(y0, z0), we have a similar result:

|DQ|2(ξ) ≤ CR ≤ CR + C(β − γ r), (65)

for some nonnegative constant C .

Finally, suppose both κΦ ≥ CR − γ g0 + β − γ r − (1− γ )e
Q

γ−1 = CR + β − γ r
and CR ≤ Φ(y0, z0). Then,

RHS of (62) ≤ φ

{

Φ3/2 + CRΦ + CRΦ3/2
}

+ CRΦ + Cφ1/2Φ3/2

≤ C1φΦ2 + C2φ
1/2Φ3/2 + C3CRΦ at (y0, z0), (66)

where C1, C2, and C3 are positive constants independent of R, R̃, and (β − γ r). In
above inequality (66), we used the inequality

CRΦ3/2 = CRΦ1/2Φ ≤ 1

2
(C2

RΦ + Φ2),

and the fact that φ ≤ 1.
Let Y ≡ (φ(y0, z0)Φ(y0, z0))

1
2 . Then, from (66) we have

0 ≤ −C1Y 2 + C2Y + C̃3, (67)

where C̃3 = C3CR . The quadratic on the right-hand side is concave down. Since the
quadratic is greater than or equal to zero, Y is bounded by the zeros of the quadratic.
This, along with the fact that Y ≥ 0, implies

φΦ(y0, z0) = Y 2 ≤
(

C2 +
√

C2 + 4C1C̃3

2C1

)2

≤ C2
2

2C2
1

+ C2
2 + 4C1C̃3

2C2
1

= C2
2

C2
1

+ 2C3CR

C1
.

By virtue of |DQ|2(ξ) ≤ φ(y0, z0)|DQ|2(y0, z0), we obtain the bound

|DQ|2(ξ) ≤ CR + C .

In each case, we have a bound for |DQ|2 in BR̃ that can be written in the form
CR + C(β − γ r), where CR is a constant depending only on R, and C is a positive
constant. 
�
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3.4 Existence of Solution to HJB Equation (22)

Now we are ready to prove the existence result.

Proof of Theorem 3.1 By Theorem 3.5, there is a unique solution Ql to

σ 2
2 (z)
2 Qyy + σ 2

3
2 Qzz − H(y, z, Q, Qy, Qz) = 0, on Bl ,

Q = Q̃, on ∂ Bl ,
(68)

for l = 1, 2, 3, . . . Since Q̃ and Ql+1 satisfy the following,

σ 2
2 (z)
2 Q̃yy + σ 2

3
2 Q̃zz − H(y, z, Q̃, Q̃y, Q̃z) ≥ 0, ∀(y, z) ∈ R

2,

σ 2
2 (z)
2 Ql+1

yy + σ 2
3
2 Ql+1

zz − H(y, z, Ql+1, Ql+1
y , Ql+1

z ) = 0, on Bl+1,

Q̃ = Ql+1, on ∂ Bl+1,

(69)

we see that they satisfy (37) with τ = 1. Thus, by Lemma 3.3,

Q̃ ≤ Ql+1 in B̄l+1.

In particular,

Q̃ ≤ Ql+1 on ∂ Bl .

On ∂ Bl , we also have Ql = Q̃. Therefore,

Ql ≤ Ql+1 on ∂ Bl .

Now we see that Ql and Ql+1 satisfy

σ 2
2 (z)
2 Ql

yy + σ 2
3
2 Ql

zz − H(y, z, Ql , Ql
y, Ql

z) = 0, on Bl ,

σ 2
2 (z)
2 Ql+1

yy + σ 2
3
2 Ql+1

zz − H(y, z, Ql+1, Ql+1
y , Ql+1

z ) = 0, on Bl ,

Ql ≤ Ql+1. on ∂ Bl .

(70)

By Lemma 3.3 again,

Ql ≤ Ql+1 in Bl .

Thus, for any k such that |(y, z)| ≤ k, Ql(y, z) is nondecreasing in l for l > k, and
is bounded above by Q̂. So by taking l → ∞, we can get that {Ql(y, z)} converges
pointwise to some function Q̃(y, z).

By Theorem 3.6, we have a uniform bound for |DQl |2 on B̄R for any R > 0. By
the Arzela–Ascoli theorem, {Ql} contains a subsequence that converges to a function
Q ∈ C2,β(B̄R) as l → ∞. Since {Ql} also converges pointwise to Q̃, we must have
Q̃ ≡ Q. By (48) and (50), it follows that Q̃ is a solution to (22) on B̄R for any R. Take
R to infinity, and we can get that Q̃ is a solution to (22) on R

2. 
�
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4 The Verification Theorem

In Sect. 3, we prove existence of a classical solution Q̃(y, z) to HJB equation (22). In
this section, we prove that Ṽ = 1

γ
xγ eQ̃ is equal to the value function given by (13).

In effect, we maximize the expected discounted utility of an investor whose net worth
depends on stochastic dividends and stochastic volatility of stock price.

We begin by stating a useful result.

Lemma 4.1 Let Q̃(y, z) be a classical solution to (22) such that

K1 ≤ Q̃ ≤ K2,

where K1 and K2 are defined by (29). Define k∗(y, z) and c∗(y, z) by (20) and (21),
respectively. Then, under the control policies (k∗, c∗), we have

E[Xm
T ] < ∞ (71)

for all fixed T ≥ 0 and m > 0.

The proof can be found in “Appendix I:”. 
�
We now state and prove the verification theorem.

Theorem 4.1 (Verification Theorem) Suppose 0 < γ < 1 and (28) holds. Let Q̃(y, z)
denote a classical solution of (22) which satisfies K1 ≤ Q̃ ≤ K2, where K1, K2 are
defined by (29). Denote

Ṽ (x, y, z) ≡ 1

γ
xγ eQ̃(y,z). (72)

Then, we have

Ṽ (x, y, z) ≡ V (x, y, z),

where V (x, y, z) is the value function defined by (13). Moreover, the optimal control
policy is

k∗(y, z) =
[

be−y + μ − r + (σ2(z)2 + ρσ1σ2(z)e−y)Q̃y(y, z)

(1 − γ )q(y, z)

]+
, (73)

c∗(y, z) = e
Q̃(y,z)
γ−1 . (74)

Before we give the proof of the above theorem, we like to make the following
remark:

Remark 4.1 From (22), we can get that its solution Q̃ not only depends on the average
dividend rate b, but also depends on the stochastic dividend volatility parameter σ1,
and it is true for the value function V , too. In addition, the optimal investment control
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k∗, given by (73), and the optimal consumption control c∗, given by (74), both depend
on b and σ1 explicitly or implicitly through the dependence on Q̃. Therefore, under
the stochastic dividend case, both the average dividend rate (in terms of b) and the
volatility of the dividend rate (in terms of σ1) have some effects on the value function
as well as the optimal investment and consumption controls.

Proof of Theorem 4.1 Since Q̃ is a classical solution of (22), it is not hard to show that
Ṽ , given by (72), is a classical solution of (14). For any admissible control (kt , ct ) ∈ Π ,
using Ito’s rule, we can get

dṼ (Xt , Yt , Zt ) =
[k2t X2

t q(Yt , Zt )

2
Ṽxx + σ2(z)2

2
Ṽyy + σ 2

3

2
Ṽzz

+ (σ2(Zt )
2 + ρσ1σ2(Zt )e

−Yt )kt Xt Ṽxy + μ̃(Zt )Ṽy

+ (r − ct )Xt Ṽx + (be−Yt + μ − r)kt Xt Ṽx + a(z̄ − Zt )Ṽz

]

dt

+σ1e−Yt kt Xt ṼxdB1,t +
[

σ2(Zt )kt Xt Ṽx + σ̃1(Zt )Ṽy

]

dB2,t

+ σ3ṼzdB3,t .

Further, by Ito’s rule, we have

d[e−βt Ṽ (Xt , Yt , Zt )] = e−βt d Ṽ (Xt , Yt , Zt ) − βe−βt Ṽ (Xt , Yt , Zt )dt . (75)

Then, using the fact that Ṽ is a solution of (14), we can get

e−βT Ṽ (XT , yT , zT ) − Ṽ (x, y, z)

=
∫ T

0
e−βtdṼ (Xt , Yt , Zt ) −

∫ T

0
βe−βt Ṽ (Xt , Yt , Zt )dt

=
∫ T

0
e−βt

[
k2t X2

t q(Yt , Zt )

2
Ṽxx + σ2(Zt )

2

2
Ṽyy + σ 2

3

2
Ṽzz + μ̃(Zt )Ṽy

+ (r − ct )Xt Ṽx + (be−Yt + μ − r)kt Xt Ṽx + a(z̄ − Zt )Ṽz

+ kt Xt (σ2(Zt )
2 + ρσ1σ2(Zt )e

−Yt )Ṽxy − β Ṽ (Xt , Yt , Zt )

]

dt

+ m1,T + m2,T + m3,T

≤ −
∫ T

0
e−βt 1

γ
(ct Xt )

γ dt + m1,T + m2,T + m3,T , (76)

where

m1,T ≡
∫ T

0
σ1e−Yt kt Xt ṼxdB1,t ,

m2,T ≡
∫ T

0

(

σ2(Zt )kt Xt Ṽx + σ̃1(Zt )Ṽy

)

dB2,t ,
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m3,T ≡
∫ T

0
σ3ṼzdB3,t .

Then, we can get

Ṽ (x, y, z) ≥
∫ T

0
e−βt 1

γ
(ct Xt )

γ dt + e−βT Ṽ (XT , yT , ZT )

− m1,T − m2,T − m3,T . (77)

It is easy to show that m1,T , m1,T , and m3,T are local martingales. Define

τR ≡ inf
t≥0

{t : X2
t + Y 2

t + Z2
t = R2}.

Then, we have

E[m1,T ∧τR ] = E[m2,T ∧τR ] = E[m3,T ∧τR ] = 0.

Replacing T with T ∧ τR in (77) and taking expectations, we arrive at the following:

Ṽ (x, y, z) ≥ E
[∫ T ∧τR

0
e−βt 1

γ
(ct Xt )

γ dt + e−βT ∧τR Ṽ (XT ∧τR , YT ∧τR , ZT ∧τR )

]

≥ E
[∫ T ∧τR

0
e−βt 1

γ
(ct Xt )

γ dt

]

.

The second inequality is true because Ṽ > 0. Now let R approach infinity, and by
Fatou’s lemma, we can get that

Ṽ (x, y, z) ≥ lim inf
R→∞ E

[∫ T ∧τR

0
e−βt 1

γ
(ct Xt )

γ dt

]

≥ E
[∫ T

0
e−βt 1

γ
(ct Xt )

γ dt

]

.

Now, letting T → ∞ and using the monotone convergence theorem, we have

Ṽ (x, y, z) ≥ lim
T →∞E

[∫ T

0
e−βt 1

γ
(ct Xt )

γ dt

]

≥ E
[∫ ∞

0
e−βt 1

γ
(ct Xt )

γ dt

]

. (78)

Since (78) holds for all arbitrary values of (kt , ct ) ∈ Π , we have

Ṽ (x, y, z) ≥ sup
(kt ,ct )∈Π

E
[∫ ∞

0
e−βt 1

γ
(ct Xt )

γ dt

]

= V (x, y, z). (79)

Next we show the reverse inequality, Ṽ (x, y, z) ≤ V (x, y, z). For (k∗, c∗) given
by (73) and (74), it is easy to check that (k∗

t , c∗
t ) ∈ Π . Using k∗

t and c∗
t instead of

arbitrary kt , ct > 0, we have equality in (77):
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Ṽ (x, y, z) =
∫ T

0
e−βt 1

γ
(c∗

t Xt )
γ dt + e−βT Ṽ (XT , YT , ZT )

− m∗
1,T − m̃∗

2,T − m∗
3,T , (80)

where m∗
1,T , m∗

2,T , and m∗
3,T are equal to the expressions for m1,T , m2,T , and m3,T ,

respectively, with arbitrary kt and ct replaced with k∗
t and c∗

t . It is not hard to verify
that m∗

1,T , m∗
2,T , and m∗

3,T are martingales (see the proof of Lemma 4.1). Therefore,
we can get

Ṽ (x, y, z) = E
[∫ T

0
e−βt 1

γ
(c∗

t Xt )
γ dt

]

+ E
[

e−βT Ṽ (XT , YT , ZT )
]

. (81)

From (78), we can see that

E
[∫ ∞

0
e−βt 1

γ
(c∗

t Xt )dt

]

≤ Ṽ (x, y, z) < ∞. (82)

This implies that

lim inf
T →∞ E

[

e−βT 1

γ
(c∗

T XT )γ
]

= 0, (83)

which is easily seen with a proof by contradiction. Note that c∗
t is bounded below by

a positive constant:

c∗
t ≥ e

K2
γ−1 ≡ c > 0.

Then, we have

0 = lim inf
T →∞ E

[

e−βT 1

γ
(c∗

T XT )γ
]

≥ cγ lim inf
T →∞ E

[

e−βT 1

γ
Xγ

T

]

≥ 0,

which implies

lim inf
T →∞ E

[

e−βT 1

γ
Xγ

T

]

= 0. (84)

Using this along with the fact that eQ̃ ≤ eK2 , we have that

lim inf
T →∞ E

[

e−βT Ṽ (XT , YT , ZT )
]

= 0. (85)

Now taking the lim inf of (81) as T approaches infinity, we get
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Ṽ (x, y, z) = lim inf
T →∞ E

[∫ T

0
e−βt 1

γ
(c∗

t Xt )
γ dt

]

= E
[∫ ∞

0
e−βt 1

γ
(c∗

t Xt )
γ dt

]

. (86)

The second equality is true due to the monotone convergence theorem. Finally, by (86)
and the definition of V , we have

Ṽ (x, y, z) ≤ V (x, y, z). (87)

Combining (79) and (87), we have Ṽ (x, y, z) = V (x, y, z). 
�

5 Conclusions

We consider a portfolio optimization problem with stochastic dividend and stochastic
volatility in this paper. The problem is formulated as a stochastic control problem,
and the HJB equation is derived. We then establish the existence results of the HJB
equation by virtue of the subsolution–supersolutionmethod and somePDE techniques.
It is verified that the solution of the HJB equation is the same as the value function,
and the optimal investment and consumption strategies are derived. It turns out that
both the average dividend rate and the volatility of the dividend play some roles in the
value function, the optimal investment strategy, and the consumption strategy.

There are some extensions that can be done beyond the work presented in this
paper. For example, one could consider other utility functions such as exponential
utility. Another problem is to consider the optimization problem over a finite-time
horizon. Moreover, some other realistic features, such as delay effects and transaction
costs, can be added to the model. Those can be topics for future research.

Appendices

Appendix A: Proof of Lemma 2.1

Proof First consider ρ ∈ [0, 1]. It is easy to get that q(y, z) > σ 2
2 (z) ≥ σ̃ 2

2 > q0 > 0.
Now consider ρ0 ≤ ρ < 0. The minimum of q with respect to y is given by the
function σ 2

2 (z)(1 − ρ2). So we have

q(y, z) ≥ σ 2
2 (z)(1 − ρ2) ≥ σ̃ 2

2 (1 − ρ2
0 ) = q0 > 0.

So (24) holds for all ρ ∈ [ρ0, 1]. 
�
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Appendix B: Proof of Lemma 2.2

Proof To prove this, we consider two cases. First, let 0 ≤ ρ ≤ 1. Then, by virtue of
(26) and (15), we can get

Ψ (y, z) = (be−y + μ − r)2

2(1 − γ )(σ 2
1 e−2y + 2ρσ1σ2(z)e−y + σ 2

2 (z))

≤ (be−y + μ − r)2

2(1 − γ )(σ 2
1 e−2y + σ̃ 2

2 )
≤ 2b2e−2y + 2(μ − r)2

2(1 − γ )(σ 2
1 e−2y + σ̃ 2

2 )

= b2

σ 2
1 (1 − γ )

+
(μ − r)2 − b2σ̃ 2

2
σ 2
1

(1 − γ )(σ 2
1 e−2y + σ̃ 2

2 )
.

If (μ − r)2 − b2σ̃ 2
2

σ 2
1

≤ 0, then, we have Ψ (y, z) ≤ b2

σ 2
1 (1−γ )

. Otherwise, we have

Ψ (y, z) ≤ b2

σ 2
1 (1 − γ )

+
(μ − r)2 − b2σ̃ 2

2
σ 2
1

(1 − γ )σ̃ 2
2

= (μ − r)2

σ̃ 2
2 (1 − γ )

.

Thus, if 0 ≤ ρ ≤ 1, we have

Ψ (y, z) ≤ max

{

b2

σ 2
1 (1 − γ )

,
(μ − r)2

σ̃ 2
2 (1 − γ )

}

≡ Ψ̃ .

Wecan get a similar bound if ρ is negative. If ρ0 ≤ ρ < 0, then ρ(σ1e−y −σ2(z))2 ≤ 0
implies

2ρσ1σ2(z)e
−y ≥ ρσ 2

1 e−2y + ρσ 2
2 (z),

and so we can get

Ψ (y, z) = (be−y + μ − r)2

2(1 − γ )(σ 2
1 e−2y + 2ρσ1σ2(z)e−y + σ̃ 2

1 (z))

≤ (be−y + μ − r)2

2(1 − γ )(σ 2
1 e−2y + ρσ 2

1 e−2y + ρσ 2
2 (z) + σ 2

2 (z))

= (be−y + μ − r)2

2(1 − γ )(1 + ρ)(σ 2
1 e−2y + σ 2

2 (z))

≤ 2b2e−2y + 2(μ − r)2

2(1 − γ )(1 + ρ)(σ 2
1 e−2y + σ̃ 2

2 )

≤ 1

1 + ρ
max

{

b2

σ 2
1 (1 − γ )

,
(μ − r)2

σ̃ 2
2 (1 − γ )

}

≤ 1

1 + ρ0
Ψ̃ .
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Let

Ψ̄ ≡ max

{

Ψ̃ ,
Ψ̃

1 + ρ0

}

. (88)

Then, we can get that 0 ≤ Ψ (y, z) ≤ Ψ̄ < ∞. Thus, Ψ (y, z) is bounded. 
�

Appendix C: Proof of Lemma 3.2

Proof Recall from (25) that for k∗ > 0, G is defined by

G(y, z, p) = [be−y + μ − r + (σ 2
2 (z) + ρσ1σ2(z)e−y)p]2

2(1 − γ )q(y, z)
≥ 0, (89)

or in the trivial case when k∗ = 0, G ≡ 0 otherwise. Consider the expression for G
given above. We can expand G to a quadratic form in p:

G(y, z, p) = g2(y, z)p2 + g1(y, z)p + g0(y, z), (90)

where

g2(y, z) = (σ 2
2 (z) + ρσ1σ2(z)e−y)2

2(1 − γ )q(y, z)
,

g1(y, z) = (be−y + μ − r)(σ 2
2 (z) + ρσ1σ2(z)e−y)

(1 − γ )q(y, z)
, and

g0(y, z) = (be−y + μ − r)2

2(1 − γ )q(y, z)
. (91)

By the definition of q(y, z) [see (15)], it is not hard to show that |g2|, |g1|, and |g0|
are bounded for all (y, z) ∈ R

2. Then, we can get (36) very easily. 
�

Appendix D: Proof of Lemma 3.3

Proof Suppose sup
(y,z)∈B̄R

(Q̃ − Q̂)(y, z) > 0. Since Q̃ ≤ Q̂ on ∂ BR, this implies that

Q̃ − Q̂ reaches its maximum at (y0, z0) ∈ BR . So we have that

(Q̃ − Q̂)yy(y0, z0) < 0, (Q̃ − Q̂)zz(y0, z0) < 0, (92)

Q̃y(y0, z0) = Q̂y(y0, z0), and Q̃z(y0, z0) = Q̂z(y0, z0). (93)
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By (37) we have that, for (y, z) ∈ BR,

σ 2
2 (z)

2
(Q̃yy − Q̂yy) + σ 2

3

2
(Q̃zz − Q̂zz)

−H(y, z, Q̃, Q̃y, Q̃z, τ ) + H(y, z, Q̂, Q̂y, Q̂z, τ ) ≥ 0.

Evaluating this inequality at (y0, z0) and applying (92), (93) and (32), we can get

−(1 − τγ )e
Q̂(y0,z0)

τγ−1 > −(1 − τγ )e
Q(y0,z0)

τγ−1 ,

or equivalently Q̂(y0, z0) > Q̃(y0, z0), which is a contradiction. Therefore, Q̃ ≤ Q̂
on B̄R . 
�

Appendix E: Proof of Corollary 3.1

Proof Suppose Q(1), Q(2) ∈ C2(B̄R) are both solutions of (34). Then, Q(1) = Q(2)

on ∂ BR . Further, for (y, z) ∈ BR , we have

σ 2
2 (z)

2
(Q(2)

yy − Q(1)
yy ) + σ 2

3

2
(Q(2)

zz − Q(1)
zz )

−H(y, z, Q(2), Q(2)
y , Q(2)

z , τ ) + H(y, z, Q(1), Q(1)
y , Q(1)

z , τ ) = 0. (94)

Nowwe assume that sup
(y,z)∈BR

(Q(2)−Q(1)) > 0. Then, Q(2)−Q(1) attains itsmaximum

at some (y0, z0) ∈ BR . Then,

(Q(2)
yy − Q(1)

yy )(y0, z0) < 0, (Q(2)
zz − Q(1)

zz )(y0, z0) < 0, (95)

Q(1)
y (y0, z0) = Q(2)

y (y0, z0), and Q(1)
z (y0, z0) = Q(2)

z (y0, z0). (96)

Evaluating (94) at (y0, z0) and applying (96) and (95), we arrive at

(1 − τγ )e
Q(2)(y0,z0)

τγ−1 > (1 − τγ )e
Q(1)(y0,z0)

τγ−1 ,

or Q(2)(y0, z0) < Q(1)(y0, z0), which is a contradiction. Therefore, we must have
Q(2) ≤ Q(1) in BR . Similarly, we can show that Q(2) ≥ Q(1) in BR by assuming that

sup
(y,z)∈BR

(Q(1) − Q(2)) > 0.

Therefore, Q(1) ≡ Q(2) on B̄R . 
�
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Appendix F: Proof of Lemma 3.4

Proof By the Cauchy–Schwarz Inequality, we have

∑

i, j,k

Dkai j Dk Q Di j Q

=
∑

i, j

(
∑

k

Dkai j Dk Q

)

Di j Q ≤
∑

i, j

|Dai j ||DQ| · Di j Q

=
∑

i, j

1√
ε
|Dai j ||DQ| · √

εDi j Q ≤
∑

i, j

(
1

2ε
|Dai j |2|DQ|2 + ε

2
(Di j Q)2

)

= 1

2ε

⎛

⎝
∑

i, j

|Dai j |2
⎞

⎠ |DQ|2 + ε

2
|D2Q|2.

This completes the proof. 
�

Appendix G: Proof of Theorem 3.3

Proof We first prove inequality (41). Let

Q̃τ = − log

(

max

{
β

1 − γ
, 1

})

− sup
BR

{|ψ(y, z)|}. (97)

Then, it is easy to show that Q̃τ is a subsolution of (34). We also have that Q̃τ ≤
τψ = Qτ on ∂ BR . Therefore, Q̃τ and Qτ satisfy

σ 2
2 (z)
2 Q̃τ

yy + σ 2
3
2 Q̃τ

zz − H(y, z, Q̃τ , Q̃τ
y, Q̃τ

z , τ ) ≥ 0, on BR,

σ 2
2 (z)
2 Qτ

yy + σ 2
3
2 Qτ

zz − H(y, z, Qτ , Qτ
y, Qτ

z , τ ) = 0, on BR,

Q̃τ ≤ Qτ . on ∂ BR .

(98)

Then, by Lemma 3.3, Q̃τ ≤ Qτ holds in B̄R, which gives us (41). Next we prove
(38). It is equivalent to show that

1

τγ
(eQτ − f ) ≤ 1

γ
(eQ̂ − f ). (99)

Define V (x, y, z) ≡ 1
γ

xγ eQ̂(y,z) and V τ (x, y, z) ≡ 1
τγ

xτγ eQτ (y,z). Then, we have

max
c≥0

[
1

γ
(cx)γ − cxVx

]

= (1 − γ )e
Q̂

γ−1 V , and
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max
c≥0

[
1

τγ
(cx)τγ − cxV τ

x

]

= (1 − τγ )e
Qτ

τγ−1 V τ .

Now, we define

V0(x, y, z) ≡ 1

γ
(xγ eQ̂(y,z) − f (y, z)), and

V τ
0 (x, y, z) ≡ 1

τγ
(xτγ eQτ (y,z) − f (y, z)).

Since f does not depend on x, we have that (V0)x = Vx and (V τ
0 )x = V τ

x . Thus, we
can get

max
c≥0

[
1

γ
(cx)γ − cx(V0)x

]

= (1 − γ )e
Q̂

γ−1 V ,

and max
c≥0

[
1

τγ
(cx)τγ − cx(V0)x

]

= (1 − τγ )e
Qτ

τγ−1 V τ .

Define the operator Lk,c as

Lk,cV (x, y, z) ≡ k2x2

2
q(y, z)Vxx + σ 2

2 (z)

2
Vyy + σ 2

3

2
Vzz

+ kx(σ 2
2 (z) + ρσ1σ2(z)e

−y)Vxy

+ (be−y + μ − r)kxVx + (r − c)xVx + μ̃(z)Vy + a(z̄ − z)Vz .

Noting that f satisfies (39) and Q̂ is a supersolution of (34) for τ = 1, we can get
that, for (y, z) ∈ BR ,

−βV0 + max
k,c≥0

[

Lk,cV0 + 1

γ
(cx)γ

]

− 1

γ

= V

[

σ 2
2 (z)

2
Q̂yy + σ 2

3

2
Q̂zz − H(y, z, Q̂, Q̂y, Q̂z, 1)

]

− 1

γ

[

σ 2
2 (z)

2
fyy + σ 2

3

2
fzz + r x fx + μ̃(z) fy + a(z̄ − z) fz − β f + 1

]

= V

[

σ 2
2 (z)

2
Q̂yy + σ 2

3

2
Q̂zz − H(y, z, Q̂, Q̂y, Q̂z, 1)

]

− 1

γ
[0]

≤ 0. (100)

Similarly, for V τ
0 , we have

−βV τ
0 + max

k,c≥0

[

Lk,cV τ
0 + 1

τγ
(cx)τγ

]

− 1

τγ
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= V τ

[

σ 2
2 (z)

2
Qτ

yy + σ 2
3

2
Qτ

zz − H(y, z, Qτ , Qτ
y, Qτ

z , τ )

]

− 1

τγ

[

σ 2
2 (z)

2
fyy + σ 2

3

2
fzz + r x fx + μ̃(z) fy + a(z̄ − z) fz − β f + 1

]

= 0. (101)

Suppose that the optimal controls for the above equation are given by k̃ and c̃. Then,
we can rewrite (101) as

− βV τ
0 +

[

Lk̃,c̃V τ
0 + 1

τγ
(cx)τγ

]

− 1

τγ
= 0. (102)

At the same time, from (100) we obtain

− βV0 +
[

Lk̃,c̃V0 + 1

γ
(cx)γ

]

− 1

γ
≤ 0. (103)

Define g(τ ; θ) = 1
τγ

(θτ −1), ∀0 < τ ≤ 1. Then, the difference between Eqs. (102)
and (103) is the function g(τ ; θ), with θ = (cx)γ > 0 for τ = 1 in (102) and τ < 1
in (103). It is not hard to verify that g′(τ ) > 0, so g(τ ) is a nonincreasing function
with respect to τ . Therefore,

g(τ ) ≤ g(1), (104)

or equivalently,

1

τγ
((cx)τγ − 1) ≤ 1

γ
((cx)γ − 1). (105)

Therefore, from (103) we can get

−βV0 +
[

Lk̃,c̃V0 + 1

τγ
(cx)τγ

]

− 1

τγ
≤ 0.

Subtracting the above inequality from (102), we have

Lk̃,c̃(V τ
0 − V0) ≥ 0. (106)

Note that (106) holds for x > 0, (y, z) ∈ B̄R . This equation is used later in this proof
to show a contradiction.

To prove the estimate in (99), we wish to show that for x > 0, (y, z) ∈ B̄R,
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V τ
0 (x, y, z) ≤ V0(x, y, z), or equivalently,

1

τγ
(xτγ eQτ − f )

≤ 1

γ
(xγ eQ̂ − f ). (107)

We then take x = 1 to get the desired result.
From the definition of f [see (40)], we can get

f (y, z) = 1

β
+
(

1 − 1

β

)

Ey,z[e−βtR ] = 1

β

(

1 − Ey,z[e−βtR ]
)

+ Ey,z[e−βtR ].

Hence f > 0. Therefore,

− 1

τγ
f < − 1

γ
f . (108)

On the boundary (y, z) ∈ ∂ BR , we have that Q̂ ≥ ψ . Using (104) with θ = xγ eψ ,
we can get that

V τ
0 = 1

τγ
(xτγ eτψ − 1) ≤ 1

γ
(xγ eψ − 1)

≤ 1

γ
(xγ eQ̂ − 1) = V0, ∀x > 0, (y, z) ∈ ∂ BR . (109)

Next we prove that V τ
0 ≤ V0 for (y, z) ∈ B̄R . Suppose on the contrary that

sup
x>0,|(y,z)|≤R

{V τ
0 (x, y, z) − V0(x, y, z)} > 0. (110)

Then, the maximum is attained at some (x0, y0, z0), where x0 > 0 and |(y0, z0)| < R.
So at (x0, y0, z0) we have the following:

V0(x0, y0, z0) < V τ
0 (x0, y0, z0), (111)

(V τ
0 − V0)x (x0, y0, z0) = (V τ

0 − V0)y(x0, y0, z0) = (V τ
0 − V0)z(x0, y0, z0) = 0,

(112)

and D2(V τ
0 −V0) is negative semi-definite at (x0, y0, z0), where D2 is the 3×3matrix

operator of second derivatives (the Hessian). That is, for any η ∈ R
3,

ηT D2(V τ
0 − V0)(x0, y0, z0)η ≤ 0, (113)

or in expanded form, at (x0, y0, z0) for any η1, η2, η3 ∈ R,

(V τ
0 − V0)xxη

2
1 + (V τ

0 − V0)yyη
2
2 + (V τ

0 − V0)zzη
2
3

+ 2(V τ
0 − V0)xyη1η2 + 2(V τ

0 − V0)xzη1η3 + 2(V τ
0 − V0)yzη2η3 ≤ 0. (114)
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Note that this implies

(V τ
0 − V0)xx , (V τ

0 − V0)yy, (V τ
0 − V0)zz ≤ 0 (115)

at the point (x0, y0, z0). We also note that

q(y, z) = σ 2
2 (z) + 2ρσ1σ2e−y + σ 2

1 e−2y

≥ σ 2
2 (z) + 2ρσ1σ2e−y + ρ2σ 2

1 e−2y = (σ2(z) + ρσ1e−y)2. (116)

Now we evaluate (106) at (x0, y0, z0) and apply conditions (111) and (112). Then, at
the point (x0, y0, z0), we have

σ 2
2 (z)

2
(V τ

0 − V0)yy + σ 2
3

2
(V τ

0 − V0)zz + k̃2x2

2
q(y, z)(V τ

0 − V0)xx

+ k̃xσ2(z)(σ2(z) + ρσ1e−y)(V τ
0 − V0)xy > 0. (117)

Applying (115)–(117), we have

σ 2
2 (z)

2
(V τ

0 − V0)yy + k̃2x2

2
(σ2(z) + ρσ1e−y)2(V τ

0 − V0)xx

+ k̃xσ2(z)(σ2(z) + ρσ1e−y)(V τ
0 − V0)xy > 0.

at (x0, y0, z0). Taking η1 = k̃x√
2
(σ2 + ρσ1e−y), η2 = σ2(z)√

2
, and η3 = 0, we get a

contradiction to (114). Therefore, V τ
0 ≤ V0 for (y, z) ∈ B̄R . Thus, (107) holds. We

take x = 1 in (107) to arrive at (38). 
�

Appendix H: Proof of Theorem 3.4

Proof Since Q0
τ is a solution of (42), by virtue of the definition of H , we have that

σ 2
2 (z)

2
(Q0

τ )yy + σ 2
3

2
(Q0

τ )zz + τ

[
σ 2
2 (z)

2
(Q0

τ )
2
y + σ 2

3

2
(Q0

τ )
2
z

+ μ̃(z)(Q0
τ )y + a(z̄ − z)(Q0

τ )z − β + e−Q0
τ

]

= 0.

Then, we can get

σ 2
2 (z)

2
(Q0

τ )yy + σ 2
3

2
(Q0

τ )zz + τ μ̃(z)(Q0
τ )y + τa(z̄ − z)(Q0

τ )z − τβ ≤ 0. (118)

Applying Ito’s rule to Q0
τ (Ŷt , Ẑt ) and using (118), we have that, for 0 ≤ t ≤ t̄R,

d Q0
τ (Ŷt , Ẑt ) = (Q0

τ )y

[

τ μ̃(Ẑt )dt + σ2(Ẑt )dB2,t

]
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+ (Q0
τ )z

[

τa(z̄ − Ẑt )dt + σ3dB3,t

]

+ 1

2
(Q0

τ )yyσ
2
2 (Ẑt )dt + 1

2
(Q0

τ )zzσ
2
3 dt

=
[

σ 2
2 (Ẑt )

2
(Q0

τ )yy + σ 2
3

2
(Q0

τ )zz

+ τ μ̃(Ẑt )(Q0
τ )y + τa(z̄ − Ẑt )(Q0

τ )z

]

dt

+ σ2(Ẑt )(Q0
τ )ydB2,t + σ3(Q0

τ )zdB3,t

≤ τβdt + σ2(Ẑt )(Q0
τ )ydB2,t + σ3(Q0

τ )zdB3,t .

Integrate it from 0 to t̄R , and we can get

Q0
τ (Ŷt̄R

, Ẑ t̄R
) − Q0

τ (y, z) ≤
∫ t̄R

0
τβdt +

∫ t̄R

0
σ2(Ẑt )(Q0

τ )ydB2,t

+
∫ t̄R

0
σ3(Q0

τ )zdB3,t .

Since Q0
τ = 0 on ∂ BR , we can take expectations to the above inequality and get

−Q0
τ (y, z) ≤ τβE[t̄R] ≤ βE[t̄R],

which proves the first inequality in (43). Define φ(y, z) = eQ0
τ (y,z). Then,

φy = (Q0
τ )yφ, φz = (Q0

τ )zφ, φyy = ((Q0
τ )yy + (Q0

τ )
2
y)φ,

φzz = ((Q0
τ )zz + (Q0

τ )
2
z )φ.

Then, it is easy to check that φ satisfies

σ 2
2 (z)
2 φyy + σ 2

3
2 φzz − 1−τ

2φ (σ 2
2 (z)φ2

y + σ 2
3 φ2

z )

+ τ
(

μ̃(z)φy + a(z̄ − z)φz
) + τ(1 − βφ) = 0, on BR,

φ = 1. on ∂ BR .

(119)

Since the terms
1 − τ

2φ
(σ 2

2 (z)φ2
y + σ 2

3 φ2
z ) and τβφ are nonnegative, we can get an

inequality:

σ 2
2 (z)

2
φyy + σ 2

3

2
φzz + τ

(

μ̃(z)φy + a(z̄ − z)φz
) + τ ≥ 0.

Next, we can apply Ito’s rule to φ(Ŷt , Ẑt ) and use the above inequality to obtain

dφ(Ŷt , Ẑt ) = φy

[

τ μ̃(Ẑt )dt + σ2(Ẑt )dB2,t

]

+ φz

[

τa(z̄ − Ẑt )dt + σ3dB3,t

]
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+ 1

2
φyyσ

2
2 (Ẑt )dt + 1

2
φzzσ

2
3 dt

=
[

σ 2
2 (Ẑt )

2
φyy + σ 2

3

2
φzz + τ μ̃(Ẑt )φy + τa(z̄ − Ẑt )φz

]

dt

+ σ2(Ẑt )φydB2,t + σ3φzdB3,t

≥ −τdt + σ2(Ẑt )φydB2,t + σ3φzdB3,t .

The integral form is

φ(Ŷt̄R
, Ẑ t̄R

) − φ(y, z) ≥ −
∫ t̄R

0
τdt +

∫ t̄R

0
σ2(Ẑt )φydB2,t +

∫ t̄R

0
σ3φzdB3,t .

(120)

Using the boundary condition that φ = 1 on ∂ BR , we can get that 1 − φ(y, z) ≥
−τE[t̄R], which implies

Q0
τ ≤ log(1 + τE[t̄R]) ≤ log(1 + E[t̄R]).

This proves the second inequality in (43). 
�

Appendix I: Proof of Lemma 4.1

Proof By the definitions of (k∗, c∗), Theorem 3.6, and the fact that Q̃ is bounded, it is
easy to show that k∗ and c∗ are bounded. Further, by the definition of k∗ and q(y, z)
[see (15)], we can get that e−yk∗ is bounded. Therefore, we can assume that there is
a constant Λ such that

|(be−Yt + μ − r)k∗
t + (r − c∗

t )| ≤ Λ, |σ1k∗
t e−Yt | ≤ Λ, |σ2(Zt )k

∗
t | ≤ Λ.

(121)

From Eq. (9), we can get that

XT = x exp

(∫ T

0

[

(be−Yt + μ − r)k∗
t + (r − c∗

t )

− 1

2

[

σ 2
1 (k∗

t e−Yt )2 + (σ2(Zt )k
∗
t )2

]]

dt

+
∫ T

0
σ1k∗

t e−Yt dB1,t +
∫ T

0
σ2(Zt )k

∗
t dB2,t

)

.

Using the above equation and (121), we can get (71). 
�
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