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Abstract
We use the original form of Gerstewitz’s nonlinear scalarization functional to charac-
terize upper and lower set-less minimizers of set-valued maps acting from a nonempty
set into a real linear space with respect to the lower (resp. upper) set-less relation intro-
duced by Kuroiwa. Our main results are as follows: An upper set-less minimizer to a
set-valued map (with respect to the image space) is an upper set-less minimal solution
to a scalarization of the set-valued map (with respect to the space of real numbers),
where the hypergraphical multifunction is involved in the scalarization and vice versa,
a lower set-less minimizer to a set-valued map (with respect to the image space) is
an upper set-less minimal solution to an appropriate scalarization of the set-valued
map (in the space of real numbers), where the epigraphical multifunction is involved
in the scalarization and vice versa, and a lower set-less minimizer to a set-valued
map becomes a (Pareto) minimizer to the same map provided that the map enjoys a
domination property.
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1 Introduction

Set optimization means optimization of set-valued maps. It is an extension of vector
optimization to the set-valued case. Recently, there has been an increasing interest in
set optimization; see the books [1–4]. There are two main solution approaches: In the
vector approach, a solution of a set-valued map is defined via the ‘best’ element of the
image set of the map with respect to the usual ordering relation of vector optimization.
In the set approach, a solution is defined via the ‘best’ set of the collection of all output
sets with respect to set-less relations introduced by Kuroiwa [5] (compare [6] and
references therein). We use the name set optimization for optimization with set-valued
objective maps and Kuroiwa’s set-less relations, and the name set-valued optimization
when we work with the usual (Pareto) ordering relation in vector optimization.

Scalarization is a traditional approach to solve vector (single-valued) optimiza-
tion problems. It converts a vector optimization problem into a scalar one via an
extended real-valued scalarizing functional such that minimizers of a vector problem
areminimal solutions of the scalarized problem and/or minimal solutions of scalarized
problems areminimizers of the givenvector problem. It is known thatGerstewitz’ (non-
linear separation) scalarization functional introduced in [7,8] (see also Krasnoselskii
[9] for assertions in the context of operator theory and compare the scalar optimization
problem by Pascoletti and Serafini [10]) is an important tool in nonconvex vector opti-
mization and it has had a number of Gerstewitz-type scalarization functionals in set
optimization; see, for instance, [11–15]. They are defined from the space of sets in the
image space into the real numbers, and the existing generalized differentiation theories
could not be applied to compute subdifferentials of these Gerstewitz-type scalarization
functionals. Therefore, we could not derive necessary conditions in terms of subdiffer-
entials or coderivatives. It is important to stress that in [16] Bao and Tammer found an
effective way to compute basic and singular subdifferentials of Gerstewitz’ functionals
and formulated several calculus rules. Motivated by promising necessary conditions
for upper and lower set-less minimizers, we challenge ourselves to use the original
form to characterize minimizers of set-valued maps. Doing this leads to dealing with
scalarized set-valued optimization problems.

The main objective of this paper is a study on characterizations of lower and upper
set-less minimizers of set-valued maps F : X ⇒ Y in the linear space setting. Our
main results are as follows:

1. An upper set-less minimizer to a set-valuedmap F (with respect to the space Y ) is
an upper set-lessminimal solution to a scalarization of the set-valuedmap F (with
respect to the space of real numbers), where the hypergraphical multifunction is
involved in the scalarization and vice versa.

2. A lower set-less minimizer to a set-valued map F (with respect to the space Y ) is
an upper set-lessminimal solution to an appropriate scalarization of the set-valued
map F (in the space of real numbers), where the epigraphical multifunction is
involved in the scalarization and vice versa.

3. A lower set-less minimizer of a set-valued map F becomes a minimizer of F in
the vector approach provided that the map F enjoys a domination property.
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This paper is organized as follows: In Sect. 2, we recall the two main solution
approaches in optimization with a set-valued objective map and present Gerstewitz’
nonlinear scalarization functional as well as its basic properties in linear spaces. Sec-
tion 3 provides characterizations of lower and upper set-less relations. Section 4 is
devoted to characterizations of minimizers to set-valued maps with respect to lower
and upper set-less relations.

2 Preliminaries

2.1 Nonlinear Scalarization

Let Y be a real linear space and A be a nonempty set in Y . The set A is said to be
pointed if A ∩ (−A) ⊆ {0}, and a cone if λa ∈ A for all a ∈ A and λ ≥ 0. A cone A
is called nontrivial if A �= {0} and A �= Y . Ac denotes the complement to A in Y .

Given a nonempty set A in Y , the notations core A and vcl A stand for the algebraic
interior and the vector closure of A; i.e.,

core A := {y ∈ Y : ∀v ∈ Y , ∃λ > 0 : y + [0, λ]v ⊆ A},
vcl A := {y ∈ Y : ∃v ∈ Y : ∀λ > 0, ∃t ∈ [0, λ], y + tv ∈ A}.

For each vector k ∈ Y , we denote the vector closure of A in the direction k by

vcl k A := {y ∈ Y : ∀λ > 0, ∃t ∈ [0, λ], y + tk ∈ A}

Compare [17–19] and references therein. For more results on directionally vector
closedness and relationships with vector closedness and topological closedness, see
[18] and the references therein.

When Y is a real linear topological space, notations int(A), cl(A), and bd(A) stand
for the topological interior, the topological closure, and the topological boundary
of the set A, respectively. See [2,20,21] for basic definitions and concepts of vector
optimization, and [8] for some scalarizationmethods in (convex and nonconvex) vector
optimization with fixed ordering structure/ordering cone and important properties of
these methods.

Furthermore, for a given number t ∈ R, the t-level set of a functional ϕ : Y →
R ∪ {±∞} is denoted by Lev (t;ϕ,≤).

Let us recall a powerful nonlinear scalarization tool from [7,8] by Gerstewitz (Tam-
mer) and Weidner (cf. [21] for the case of linear topological spaces) generated by (not
necessarily closed or vectorially closed) sets in real linear spaces (cf. [18,19]).

Definition 2.1 (Scalarization directions of sets) Let A be a nonempty subset in a real
linear space Y . A vector k ∈ Y \ {0} is called a scalarization direction of A if
the following conditions hold:

∀t ≥ 0, A + tk ⊆ A, and (1)

∀y ∈ Y , ∃t ∈ R, y + tk /∈ A. (2)
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The set of all scalarization directions of A is denoted by sd (A).

Obviously, if A = C is a convex cone, then sd (C) = C \ (−C).

Definition 2.2 (Nonlinear scalarization functionals) Let A be a nonempty subset of Y
and k ∈ sd (A) be a scalarization direction of A. The functional ϕA,k : Y → R∪{±∞}
defined by

ϕA,k(y) := inf{t ∈ R : y ∈ tk − A} (3)

with inf ∅ = +∞, is called Gerstewitz’ nonlinear (separating) scalariza-
tion functional generated by the set A and the scalarization direction k.

Remark 2.1 (a) Condition (1)means thatwhenwemove−A along the ray [0,+∞[ k,
the set

A′ := {(y, t) ∈ Y × R : y ∈ tk − A}

is of epigraphical type; i.e., if (y, t) ∈ A′ and t ′ ≥ t , then (y, t ′) ∈ A′.
(b) Condition (2) means that A does not contain lines parallel to k and ensures that

values of scalarization functionals are not −∞. For example, let Y = R
2, A =

R×R+, and k = (1, 0). Obviously, condition (2) is not satisfied and Gerstewitz’
scalarization functional ϕA,k takes values −∞ for all y ∈ R × R+ and +∞
otherwise.

The following lemma consists of most important properties of scalarization func-
tionals; cf. [21, Theorem 2.3.1], [18, Theorem 4].

Lemma 2.1 (Properties of scalarization functionals) Let Y be a real linear space, A
be a nonempty set in Y , and k ∈ sd (A). Then, the following hold for the functional
ϕA,k : Y → R ∪ {±∞} defined in (3):

(i) ∀y ∈ Y , ϕA,k(y) = ϕvclk (A),k(y).
(ii) dom ϕA,k = Rk − vclk(A).
(iii) ϕA,k is finite-valued; i.e., dom ϕA,k = Y if and only if Rk − vclk(A) = Y .
(iv) ∀ y ∈ Y , ∀ t ∈ R, ϕA,k(y + tk) = ϕA,k(y) + t; the scalarization functional is

linearly shifted along the scalarization direction k.
(v) The implication

y ∈ −A �⇒ ϕA,k(y) ≤ 0

holds. The inverse implication (⇐�) holds under an additional condition that
A is k-vectorially closed.

(vi) The t-level set of ϕA,k is given by

Lev (t;ϕA,k,≤) = tk − vcl k(A).

(vii) ϕA,k is convex if and only if A is convex.
(viii) ϕA,k is positively homogeneous, i.e., ϕA,k(t y) = tϕA,k(y) for all t ≥ 0 and

y ∈ Y if and only if A is a cone.
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(ix) Given B ⊆ Y . ϕA,k is B-monotone if and only if A + B ⊆ A, where B-
monotonicity of ϕA,k means a ∈ b − B �⇒ ϕA,k(a) ≤ ϕA,k(b).

(x) ϕA,k is subadditive if and only if A + A ⊆ A.

The reader is referred to [21, Theorem 2.3.1] for stronger properties of the function
ϕA,k such as continuity or even Lipschitz continuity.

Remark 2.2 (a) ϕA,k is called a scalarization functional with uniform level sets due
to (vi).

(b) In [18],Gutiérrrez et al. proposed an extended form for the scalarization functional
ϕ◦
B,k : Y → R ∪ {±∞} for an arbitrary subset B of Y and an arbitrary element

k ∈ Y with

ϕ◦
B,k(y) :=

{
inf{t ∈ R : y ∈ tk − B}, if y ∈ Rk − B,

+∞, if y /∈ Rk − B.
(4)

Obviously, dom ϕ◦
B,k = Rk − B. By Lemma 2.1 (i), ϕ◦

B,k = ϕ◦
vcl k B,k , but their

domains might be different due to the definition.

It is important to emphasize that

ϕ◦
B,k(y) = ϕA,k(y),

where A = Ek(B) := B + [0,+∞[ k is the epigraphical set of B with respect to
k. This means that without loss of generality our setting is not less general than
the one studied in the aforementioned paper and the references therein.

(c) In [14], Araya proposed four natural extensions for Gerstewitz’ scalarization
functionals to set optimization. Let Y be a linear topological space, P(Y ) be
the collection of all subsets in Y , C be a closed and convex cone of Y with a
nonempty interior, and k ∈ C \(−C) be a scalarization direction. The functionals
hlinf , h

u
inf , h

l
sup, h

u
sup : P(Y )2 → R ∪ {±∞} defined by

hlinf(A, B) := inf{t ∈ R : tk + B ⊆ A + C},
huinf(A, B) := inf{t ∈ R : A ⊆ tk + B − C},
hlsup(A, B) := sup{t ∈ R : A ⊆ tk + B + C},
husup(A, B) := sup{t ∈ R : B + tk ⊆ A − C}

are called Gerstewitz-like scalarization functionals. Obviously, they are not sub-
differentiable in the existing generalized differentiation theories. We strive to
characterize set relations by using Gerstewitz’ scalarization functional given by
(3), which is subdifferential in terms of Mordukhovich/limiting differentiation,
to derive necessary conditions in set optimization.
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2.2 Solutions in Set Optimization

F,G, H , . . . stand for set-valued maps and f , g, h, . . . for single-valued functions. It
is obvious that a single-valued function f : X → Y is a special case of a set-valued
map F : X ⇒ Y in the sense that

F(x) :=
{

{ f (x)}, if x ∈ dom f ,

∅, otherwise .

For the sake of simplicity, we write F(x) = f (x) and (F + g)(x) = F(x) + g(x)
instead of F(x) = { f (x)} and (F + g)(x) = F(x) + {g(x)}, respectively. Given a
set-valued map F : X ⇒ Y . The domain, the image set, and the graph of F are defined
by

dom F := {x ∈ X : F(x) �= ∅}, F(X) := ∪{F(x) : x ∈ dom F} and

gph F := {(x, y) ∈ X × Y : x ∈ dom F, y ∈ F(x)}.

Given F : X ⇒ R ∪ {±∞} and s : Y ⇒ R ∪ {±∞}. The composition of F and s is a
set-valued map s ◦ F : X ⇒ Y defined by

(s ◦ F)(x) := {s(y) : y ∈ F(x)}.

A set-valued optimization problem can be represented in the following way: Find
a ‘good’ solution of a set-valued map F : X ⇒ Y from some nonempty set X to a
real linear space Y , where a nontrivial and convex cone Θ in Y induces a preorder to
elements in Y . In this paper, we consider two solution approaches: (1) vector approach:
the ‘best’ element of the union of all outputs of F , and (2) set approach: the ‘best’
output set of the collection of all outputs of F .

Vector Approach

We first recall the definition of Pareto efficient points of sets with respect to a given
nontrivial and convex cone, which is standard in vector/multi-objective optimization
theory and various applications; see, e.g., the books [2,4,20] for more details.

Let Y be a real linear space and Θ be a nontrivial and convex cone in Y . Associate
with this cone, we introduce a preorder in Y denoted by ≤Θ and defined by

y1 ≤Θ y2 :⇐⇒ y1 ∈ y2 − Θ. (5)

Assume in addition that Θ is pointed. Then, ≤Θ becomes a partial order in Y .

Definition 2.3 (Efficient points of sets) Let A be a nonempty subset in Y and a ∈ A.
We say that:
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(i) a is an efficient point of A with respect to ≤Θ or a ≤Θ - minimal point of A
if ∀a ∈ A, a ≤Θ a �⇒ a ≤Θ a, i.e.,

A ∩ (a − Θ) ⊆ a + (Θ \ (Θ ∩ (−Θ))). (6)

(ii) a is a strict ≤Θ - minimal point of A if ∀a ∈ A \ {a}, a �Θ a, i.e.,

A ∩ (a − Θ) = {a}. (7)

Observe that the efficiency notion in (6) and the strict one in (7) are identical, when
Θ is pointed, i.e., Θ ∩ (−Θ) = {0}. Observe also that in the non-pointedness setting,
every ≤Θ -minimal point of A is a strict ≤C -minimal element of A with respect to the
pointed cone

C := (Θ ∩ (Y \ (−Θ))) ∪ {0}.

Observe finally that most of publications dealing with nonpointed ordering cones and
domination sets do not distinguish strict minimality and minimality.

When studying minimizers of a set-valued map based on the vector approach, we
fix one element y ∈ F(x) so that we could use the definitions in vector optimization.

Definition 2.4 (Solution concepts based on vector approach) Given a set-valued map
F : X ⇒ Y from a nonempty set to a real linear space and (x, y) ∈ gph F . The pair
(x, y) is a (resp. strict)≤Θ - minimizer of F if y is a (resp. strict)≤Θ -minimal point
of F(X).

When F = f : X → Y is a single-valued function, y = f (x) is unique and thus it
will not be mentioned; i.e., x is a (strict) minimizer of f .

Set Approach

In vector approach, x is a minimizer of F (see Definition 2.4) if F(x) contains the
best element of the image set F(X). However, it might not be appropriate for some
applications, for example, the problem of finding the best football team. A football
team is a set of 11 players, and each player could be viewed as a vector of his ability,
speed, power, stamina, skill, popularity, and other factors. Consider a set-valued map
F corresponding the name of a team to the player set of that team. Obviously, the team
with the best-of-all player is the best team according to the vector solution approach.
However, a team consisting of the best-of-all player and worse-of-all 10 players is a
very very bad team. In order to avoid this drawback of the vector approach, Kuroiwa
[5] proposed new ways to choose a ‘good’ solution for a set-valued map by using
different inclusions. Among them, the lower and upper set-less relations are promising
to practical applications. See [22] for possibilities to uncertain optimization.

Definition 2.5 (Set-less relations) Let Y be a real linear space and Θ be a nontrivial
and convex cone of Y . For any nonempty subsets A, B in Y , we say that
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(i) A is lower set- less than B, denoted by A ≤l
Θ B if ∀b ∈ B, ∃a ∈ A : a ≤Θ b,

i.e.,

B ⊆ A + Θ.

(ii) A is upper set- less than B, denoted by A ≤u
Θ B, if ∀a ∈ A, ∃b ∈ B : a ≤Θ b,

i.e.,

A ⊆ B − Θ.

Remark 2.3 (Set-less relations in real numbers) Set

M := {A ⊆ R : A is a closed set in R}.

Given A, B ∈ M. The set-less relations given in Definition 2.5 become

A ≤l
R+ B ⇐⇒ inf A ≤ inf B and A ≤u

R+ B ⇐⇒ sup A ≤ sup B.

Definition 2.6 (Solution concepts based on set approach) Given a set-valued map
F : X ⇒ Y from a nonempty set to a real linear space and x ∈ dom F . The relation
≤◦

Θ stands for either ≤l
Θ or ≤u

Θ introduced in Definition 2.5. We say that

(i) x is a ≤◦
Θ -minimizer of F if

∀x ∈ dom F : F(x) ≤◦
Θ F(x) �⇒ F(x) ≤◦

Θ F(x).

(ii) x is an x-partly strict ≤◦
Θ -minimizer of F if

∀x ∈ dom F : F(x) ≤◦
Θ F(x) �⇒ x = x .

(iii) x is a y-partly strict ≤◦
Θ -minimizer of F if F(x) is a strict ≤◦

Θ -minimal element
of the image set {F(x) : x ∈ dom (F)}; i.e.,

∀x ∈ dom (F), F(x) ≤◦
Θ F(x) �⇒ F(x) = F(x).

(iv) x is a strong/ideal ≤◦
Θ -minimizer of F if

∀x ∈ dom F, F(x) ≤◦
Θ F(x).

When Y = R and Θ = R+, we use ≤l
R+- and ≤u

R+-minimal solutions.

Remark 2.4 (On solution concepts in the set approach)

(a) Observe that an x-partly strict minimizer of F w.r.t. ≤l
Θ was named as a min-

imizer in [23]. This adjective seems to be essential since the x-partly strict
≤l
R+-minimality to ϕ agrees with strict minimality of ϕ in scalar optimization,

when F = ϕ : X → R ∪ {±∞} is an extended real-valued functional with
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Θ = R+. Note also that the y-partly strict minimality seems to be too restrictive
in set optimization. However, it is weaker than the concept of strict minimal-
ity in scalar optimization. For example, consider a constant real-valued function
ψ(x) :≡ c for some real number c ∈ R. Then, ψ has no strict minimum, but
every real number is a y-partly strict ≤l

R+-minimal solution of ψ .
(b) The x-partly strict minimality is called strict minimality in [23, Definition 11 (c)].

The y-partly strict minimality is defined based on the strict minimality for sets
w.r.t. set-less relations in [23, Definition 9 (c)]. Consider set-valued maps F,G :
R ⇒ R defined by

F(x) := ] − ∞, |x |] and G(x) :=] − ∞, 0].

It is easy to check that x = 0 is both an x-partly and a y-partly strict≤u
R+-minimal

solution of F , and that x = 0 is not an x-partly strict ≤u
R+-minimal solution of

G, but a y-partly strict ≤u
R+-minimal solution of G.

Remark 2.5 (On solution concepts in the vector approach) In [23, Theorem 3.4 (i)],
the authors dealt with set optimization problems, where the image space Y is equipped
with a closed and convex cone being not necessarily pointed. They called a pair
(x, y) ∈ gph F satisfying the condition

∀x ∈ dom F \ {x}, F(x) ∩ (y − Θ) ⊆ {y},

a minimizer of F ; we name this type of minimizers KTY-minimizers in order to distin-
guish with≤Θ -minimizers introduced in Definition 2.4 (i). Since the KTY-minimality
is defined for x �= x , disregard of the image F(x), the map F : X ⇒ R with

F(x) :=
{

{|x |}, if x �= 0,

R, if x = 0,

has infinitely many KTY-minimizers of the form (0, y) for all y ∈ R, but it has no
≤Θ -minimizer. It is important to emphasize that both subdifferential and coderivative
Fermat rules in terms of limiting normal cones and coderivatives (see [4] for definitions
and calculus rules) do not hold at any KTY-minimizer of F . In fact, we have

N ((0, y); epi F) =

⎧⎪⎨
⎪⎩

{(0, 0)}, if y > 0,

gph (−| · |) ∪ (R × {0}), if y = 0,

R × {0}, if y < 0

and

N ((0, y); gph F) =
{

R × {0}, if y �= 0,

{(x, y) : |x | = |y|} ∪ (R × {0}), if y = 0.
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Therefore, for any λ �= 0, we have ∂F(0, y)(λ) = D∗F(0, y)(λ) = ∅ for all y ∈
R \ {0} and ∂F(0, 0)(λ) = D∗F(0, 0)(λ) = {−λ, λ}.
Remark 2.6 Vector optimization may be viewed as a special case of set optimization.
When F = f : X → Y is a single-valued function in the sense that F(x) = { f (x)}
for x ∈ dom f and ∅ otherwise, there is no difference between ≤u

Θ -optimality and
≤l

Θ -optimality; both of them reduce to ≤Θ -optimality.

3 Characterization of Set-Less Relations via Scalarization

In this section, we use Gerstewitz’ scalarization functionals defined in (3) to charac-
terize the upper and lower set-less relations introduced in Definition 2.5.

(H1) Standing assumptions for sets Y is a real linear space.Θ is a nontrivial and convex
cone in Y . A and B are two nonempty subsets of Y .

Let us recall definitions of epigraphical sets and epigraphical multifunctions which
play an important role in establishing necessary optimality conditions.

Definition 3.1 (Epigraphical and hypergraphical properties) Suppose that (H1) holds.

(i) The epigraphical (resp. hypergraphical) set of A with respect to Θ is defined by

EΘ(A) := A + Θ (resp.HΘ(A) := A − Θ).

The set A is said to have the epigraphical (resp. hypergraphical) property if A =
EΘ(A) (resp. A = HΘ(A)).

(ii) The epigraphical (resp. hypergraphical) multifunction of a set-valued map F :
X ⇒ Y with respect to Θ is defined by

EΘ
F (x) := EΘ(F(x)) = F(x) + Θ (8)

and
HΘ

F (x) := HΘ(F(x)) = F(x) − Θ. (9)

The map F is said to have the epigraphical (resp. hypergraphical) property if for
every x ∈ X , F(x) enjoys the corresponding property.

For the sake of simplicity, we drop the superscript Θ and/or subscript F in the epi-
graphical and hypergraphical notations.

Proposition 3.1 (Properties of epigraphical and hypergraphical sets) Suppose that
(H1) holds. Then,

(i) [E(A)]c has the hypergraphical property, i.e.,H([E(A)]c) = [E(A)]c − Θ .
(ii) [H(A)]c has the epigraphical property, i.e., E([H(A)]c) = [H(A)]c + Θ .
(iii) A ≤l

Θ B ⇐⇒ E(A) ≤l
Θ E(B) ⇐⇒ [E(A)]c ≤u

Θ [E(B)]c.
(iv) A ≤u

Θ B ⇐⇒ H(A) ≤u
Θ H(B) ⇐⇒ [H(A)]c ≤l

Θ [H(B)]c.
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Proof Let us prove (i) and (iii); the others could be proved in a similar way.
(i) Since 0 ∈ Θ , we have [H(A)]c ⊆ [H(A)]c + Θ . We prove the truth of the

inverse inclusion by contradiction. Assume that there are a ∈ [H(A)]c and y ∈ Θ

such that a + y /∈ [H(A)]c, i.e., a + y ∈ H(A) = A − Θ . Then, a ∈ A − Θ − y ⊆
A − Θ = H(A), clearly implying a /∈ [H(A)]c. This contradiction justifies that
[H(A)]c + Θ ⊆ [H(A)]c and thus [H(A)]c + Θ = [H(A)]c.

(iii) We have

A ≤l
Θ B ⇐⇒ B ⊆ A + Θ⇐⇒B + Θ ⊆ A + Θ + Θ ⇐⇒ E(A) ≤l

Θ E(B)

and

E(A) ≤l
Θ E(B) ⇐⇒ [E(A)]c ⊆ [E(B)]c (i)= [E(B)]c − Θ ⇐⇒ [E(A)]c ≤u

Θ [E(B)]c.

The proof is complete. ��
To characterize the upper set-less relation ≤u

Θ in Definition 2.5, we use the
hypergraphical scalarization functional of a set B and a scalarization direction
k ∈ sd (−H(B)) defined by

sB,k(y) := inf{t ∈ R : y ∈ tk + H(B)} = ϕ−H(B),k(y). (10)

The next proposition provides several important properties of the hypergraphical
scalarization functional sB,k(y) needed in the sequence.

Proposition 3.2 (Properties of hypergraphical scalarization functionals) Assume that
(H1) holds and k ∈ sd (−H(B)). Consider the hypergraphical scalarization functional
sB,k defined in (10). Then,

(i) y ∈ H(B) �⇒ sB,k(y) ≤ 0. The inverse implication (⇐�) holds provided that
−H(B) is k-vectorially closed.

(ii) If t ∈ sB,k(H(A)), then ] − ∞, t] ⊆ sB,k(H(A)).
(iii) We always have sB,k(H(B)) ⊆ ]−∞, 0]. When −H(B) is k-vectorially closed,

sB,k(H(B)) = ] − ∞, 0].
(iv) H(A) ⊆ H(B) �⇒ sB,k(H(A)) ⊆ ] − ∞, 0], where the inverse implication

(⇐�) holds under an additional condition that −H(B) is k-vectorially closed.
(v) Assume that both −H(B) and −H(A) are k-vectorially closed. Then,

sB,k(H(A)) = sA,k(H(B)) = ] − ∞, 0] if and only ifH(A) = H(B).

Proof (i) By the definition of sB,k = ϕ−H(B),k , we get from y ∈ H(B) = 0k −
(−H(B)) that sB,k(y) = inf{t ∈ R : y ∈ tk + H(B)} ≤ 0. Assume now
that H(B) is a k-vectorially closed set and there is some element y such that
sB,k(y) = t ≤ 0. By the definition of sB,k = ϕ−H(B),k , we for every ε ≥ 0
sufficiently small have

y ∈ (t + ε)k + H(B) ⇐⇒ (−y + tk) + εk ∈ −H(B).
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Taking to the account the k-vectorial closedness of −H(B) and the property of
the scalarization direction, we obtain

−y + tk ∈ vcl k(−H(B)) = −H(B) ⇐⇒ y ∈ tk + H(B) ⊆ H(B).

(ii) If t ∈ sB,k(H(A)), then we could find a ∈ H(A) such that sB,k(a) = t . Since
a − τk ∈ H(A) for any τ ∈ [0,+∞[, Lemma 2.1 (e) yields sB,k(a − τk) =
sB,k(b) − τ = t − τ . Since τ was arbitrary in [0,+∞[, we have ] − ∞, t] =
t − [0,+∞[ ⊆ sB,k(HA).

(iii) sB,k(H(B)) = ] − ∞, 0] is derived from (i) and (ii).
(iv) The ⇐� implication holds due to (i), and the �⇒ implication holds due to (iii).
(v) Assume that −H(B) and −H(A) are k-vectorially closed and

sB,k(H(A)) = sA,k(H(B)) = ] − ∞, 0].

By (iv),H(A) ⊆ H(B) and H(B) ⊆ H(A), and thus HA = HB .
��

Remark 3.1 (a) Proposition 3.2 (iv) does not hold when the inclusion is replaced with
an equality; i.e., sB,k(H(A)) = ] − ∞, 0] does not imply H(A) = H(B). For
example, letΘ = R

2+, k = (1, 1),H(B) = BR2−R
2+ andH(A) =]−∞, 1]× ]−

∞,−2]. Obviously,H(A) ⊆ H(B) andH(A) �= H(B). By Proposition 3.2 (ii),
we have sB,k(H(A)) = ] − ∞, 0] since sB,k(y) = 0 and y = (1,−2) ∈ H(A).

(b) The requirement = ] − ∞, 0] in Proposition 3.2 (v) is essential for H(A) =
H(B); in the other words, sB,k(H(A)) = sA,k(H(B)) does not imply H(A) =
H(B). Construct two sets H(A) := ] − ∞, 0] × ] − ∞, 1] and H(B) := ] −
∞, 1]× ]−∞, 0] inR

2 withΘ = R
2+ and take k = (1, 1).Wehave sB,k(H(A)) =

sA,k(H(B)) = ] − ∞, 1], but H(A) �= H(B).

Proposition 3.3 (Characterization of the upper set-less relation≤u
Θ ) Assume that (H1)

holds. Then,

A ≤u
Θ B �⇒ ∀k ∈ sd (−H(B)), sB,k(H(A)) ⊆ ] − ∞, 0]. (11)

The reverse implication holds provided that there is k ∈ sd (−H(B)) such that−H(B)

is k-vectorially closed.

Proof Assume that A ≤u
Θ B ⇐⇒ A ⊆ B − Θ ⇐⇒ H(A) ⊆ H(B). For every

k ∈ sd (−H(B)) and for every a ∈ H(A) ⊆ H(B), we have a ∈ 0k+H(B) and thus

sB,k(a) = inf{t ∈ R : a ∈ tk + H(B)} ≤ 0.

Therefore, (11) holds.
Assume now that (11) holds for some k ∈ sd (−H(B)) and −H(B) is a k-

vectorially closed set. By Proposition 3.2, we have H(A) ⊆ vcl kH(B) = H(B).
By Proposition 3.1 (iv), the last inclusion is equivalent to A ≤u

Θ B. The proof is
complete. ��
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Remark 3.2 (Comparisons with known results) In [24, Theorem 3], Köbis and Tam-
mer formulated the following characterization for the upper set-less relation ≤u

C in a
real linear topological space Y equipped with a nontrivial, closed, convex, and pointed
cone C of Y . For any two sets A, B ⊆ Y , we have

A ≤u
C B �⇒ ∀k ∈ C \ {0}, sup

a∈A
inf
b∈B ϕC,k(a − b) ≤ 0. (12)

Assume that there is k ∈ C \{0} such that for all a ∈ A the infimum infb∈B ϕC,k(a−b)
is attained, which is called the attainment property on a − B for all a ∈ A. Then, the
converse of (12) holds.

It is important to mention that sd (C) = C \ {0}, when C is a nontrivial, closed,
convex, and pointed cone. Observe that

inf
b∈B ϕC,k(a − b) = inf

b∈B inf{t ∈ R : a − b ∈ tk − C}
= inf

b∈B inf{t ∈ R : a ∈ tk + b − C}
= inf{t ∈ R : a ∈ tk + B − C}
= ϕ−H(B),k(a) = sB,k(a)

and

sup
a∈A

inf
b∈B ϕC,k(a − b) ≤ 0 ⇐⇒ sup

a∈A
sB(a) ≤ 0

⇐⇒ sup
a∈H(A)

sB,k(a) ≤ 0 ⇐⇒ sB,k(H(A)) ⊆ ] − ∞, 0].

The difference between these two scalar characterizations is that our result is estab-
lished for the case of the k-vectorial closedness of −H(B) and the nonemptiness of
sd (−H(B)), while the other needs the attainment assumption that seems to be not
easy to verify.

Next, we will study scalar characterizations of the lower set-less relation≤l
Θ in two

ways. The first way is based on the relationship between the lower and upper set-less
relations:

A ≤l
Θ B ⇐⇒ B ⊆ A + Θ = A − (−Θ) ⇐⇒ B ≤u−Θ A.

Given k ∈ sd (−E(A)). Considering the epigraphical scalarization functional eA,k :
Y → R ∪ {±∞} with

eA,k(y) := ϕ−E(A),k(y), (13)

we get the following characterization of the lower set-less relation ≤l
Θ .
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Corollary 3.1 (Characterization of the lower set-less relation ≤l
Θ ) Assume that (H1)

holds. Then,

A ≤l
Θ B �⇒ ∀k ∈ (−E(A)), eA,k(E(B)) ⊆ ] − ∞, 0]. (14)

Assume that there is k ∈ sd (−E(A)) such that −E(A) is k-vectorially closed. Then,
eA,k(E(B)) ⊆] − ∞, 0] implies that A ≤l

Θ B.

Proof Since A ≤l
Θ B ⇐⇒ B ≤u−Θ A, we consider the space Y equipped with the

nontrivial and convex cone C := −Θ . Then, HC (A) = A − C = A + Θ = EΘ(A),
HC (B) = EΘ(B), and eA,k(y) = ϕ−HC (A),k(y) = ϕ−EΘ(A),k(y). This corollary is
derived from Proposition 3.3 applied to B ≤u

C A. ��
The second way to derive a characterization for the lower set-less relation is based

on the relationship

A ≤l
Θ B ⇐⇒ [E(A)]c ≤u

Θ [E(B)]c

[see, Proposition 3.1 (iii)]. For the sake of simplicity, we use Ec(A) for [E(A)]c. Given
k ∈ sd (−Ec(B)). We define the functional scB,k : Y → R ∪ {±∞} by

scB,k(y) := ϕ−Ec(B),k(y), (15)

in order to obtain another scalar characterization for the lower set-less relation ≤l
Θ .

Corollary 3.2 (Characterization of the lower set-less relation ≤l
Θ ) Assume that (H1)

holds. Then,

A ≤l
Θ B �⇒ ∀k ∈ sd (−Ec(B)), scB,k(Ec(A)) ⊆] − ∞, 0]. (16)

Assume in addition that vcl (Ec(B)) = [core (E(B))]c and E(A) = vcl E(A). Then,
scB,k(Ec(A)) ⊆ ] − ∞, 0] implies A ≤l

Θ B.

Proof By Proposition 3.1 (iii), A ≤l
Θ B ⇐⇒ [E(A)]c ≤u

Θ [E(B)]c. By Proposi-
tion 3.3, (16) holds.

Assume now that scB,k(Ec(A)) ⊆ ] − ∞, 0]. Then, we get

[E(A)]c ⊆ vcl ([E(B)]c) = [core (E(B))]c

clearly implying that E(A) ⊇ core (E(B)). Hence, we have

E(A) = vcl (E(A)) ⊆ vcl (core (E(B))) ⊆ E(B)

and thus A ≤l
Θ B. The proof is complete. ��
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4 Characterization of Set-Less Solutions

This section is devoted to establishing characterizations for ≤◦
Θ -minimizers of a set-

valued map F , where ≤◦
Θ stands for either lower or upper set-less relation ≤l

Θ or ≤u
Θ

introduced in Definition 2.5. It is important to emphasize that the setting of this paper
covers many important general situations. Let us provide two problems.

First, consider a constrained set optimization problem of the form

≤◦
Θ −Min F(x) subject to x ∈ Ω,

where F : X ⇒ Y is a set-valued map, ≤◦
Θ is a set-less relation in Y defined via a

nontrivial and convex cone Θ , and Ω is a subset of X . By considering a restricted
set-valued map FΩ : X ⇒ Y with

FΩ(x) :=
{
F(x), if x ∈ Ω,

∅, if x ∈ Ω,

a point x ∈ dom F ∩ Ω is a ≤◦
Θ -minimizer of F over Ω if and only if it is a ≤◦

Θ -
minimizer of FΩ .

The second example is to find a ≤◦
Θ -minimal set from a family of sets. Given a

family of nonempty sets of a real linear space Y denoted by A := {Ai }i∈I and a
set-less relation ≤◦

Θ in Y . By considering a set-valued map FA : I ⇒ Y denoted by

∀i ∈ I , FA(i) := Ai ,

Ai0 is a ≤◦
Θ -minimal set of A if and only if it is a ≤◦

Θ -minimizer of FA.

(H2) Standing assumption for maps X is a nonempty set. Y is a real linear space.
F : X ⇒ Y is a set-valued map with dom F �= ∅. Θ is a nontrivial and convex
cone in Y .

Next, we consider two important kinds of set-less relations in set optimization:
the upper set-less relation ≤u

Θ and the lower set-less relation ≤l
Θ defined in Defini-

tion 2.5. We will show that by choosing an appropriate scalarization functional, an
≤u

Θ -minimizer of a set-valued map is also an ≤u
R+-minimal solution of the scalar

real-valued set-valued map.
Given a set-valued map F : X ⇒ Y and an element x ∈ dom F . Consider the

hypergraphical scalarization functional sx,k : Y → R ∪ {±∞} along the scalarization
direction k ∈ sd (−H(x)) from Y to the set of extended real-valued numbers defined
by

sx,k(y) := ϕ−H(x),k(y) = inf{t ∈ R : y ∈ tk + H(x)}. (17)

It is well defined since k ∈ sd (−H(x)) by Lemma 2.1.
The generalized composition of H and sx,k is a set-valued map with values

sx,k ◦ H(x) := sx,k(H(x)) = ∪{sx,k(y) : ∀y ∈ F(x) − Θ}. (18)
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We call it the scalarized map of F via sx,k . Furthermore, a minimizer of sx,k ◦H with
respect to the space of real numbers and the upper set-less relation ≤u

R+ is called an
≤u
R+-minimal solution for short.

Theorem 4.1 (Characterization of ≤u
Θ -minimizers) Assume that (H2) holds and x ∈

dom F.

(i) If x is an ≤u
Θ -minimizer of F, then for every k ∈ sd (−H(x)), x is an ≤u

R+-
minimal solution of the scalarized map sx,k ◦ H.

(ii) Assume that there is k ∈ sd (−H(x)) for all x ∈ dom F and that −H is a k-
vectorially closed valued map, i.e., −H(x) is k-vectorially closed for all x ∈
domH. Assume also that

∀x ∈ dom F, sx,k(H(x)) = sx,k(H(x)) �⇒ sx,k
(H(x)

) = sx,k(H(x)). (19)

Then, x is an≤u
Θ -minimizer of F if x is an≤u

R+-minimal solution of the scalarized
map sx,k ◦ H.

Proof (i) Assume that x is an ≤u
Θ -minimizer of F , i.e.,

∀x ∈ dom F,H(x) ⊆ H(x) �⇒ H(x) = H(x),

where H(x) = H(x) is used due to the hypergraphical property of H. We need
to show that x is an ≤u

R+-minimal solution of sx,k ◦ H. By Proposition 3.2 (ii),
sx,k ◦ H enjoys the hypergraphical property and thus it is sufficient to show that
for every k ∈ sd (−H(x)) and for every x ∈ dom F , we have

sx,k(H(x)) ⊆ sx,k(H(x)) �⇒ sx,k(H(x)) = sx,k(H(x)).

Fix an arbitrary scalarization direction k ∈ sd (−H(x)) and an arbitrary element
x ∈ dom F such that sx,k(H(x)) ⊆ sx,k(H(x)). ByProposition3.2, sx,k(H(x)) ⊆
] − ∞, 0], i.e., ∀y ∈ H(x), sx,k(y) = ϕ−H(x),k(y) ≤ 0. The latter implies that
y ∈ H(x). Since y was arbitrary inH(x),H(x) ⊆ H(x). The ≤u

Θ -minimality of
F implies that H(x) = H(x), and thus, sx,k(H(x)) = sx,k(H(x)). This verifies
the ≤u

R +-minimality of x to sx,k ◦ H.
(ii) Assume that x is an ≤u

R +-minimal solution of sx,k ◦ H and condition
(19) holds. Fix an arbitrary element x ∈ dom F such that H(x) ⊆ H(x).
Obviously, we have sx,k(H(x)) ⊆ sx,k(H(x)). The minimality of sx,k ◦ H
forces sx,k(H(x)) = sx,k(H(x)). Taking into account condition (19), we have
sx,k(H(x)) = sx,k(H(x)). Proposition 3.2 and the k-vectorial closedness of
−H(x) imply that H(x) ⊆ H(x) and thus H(x) = H(x). Since x was arbi-
trary, x is an ≤u

Θ -minimizer of F . ��

Let us illustrate Theorem 4.1 with an example.
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Example 4.1 Consider a set-valued map F : R ⇒ R
2 with

F(x) :=

⎧⎪⎨
⎪⎩

[0, 1] × {x}, if x ∈ [0, 1[,
{(a,

√
1 − a2) : a ∈ [0, 1]}, if x = 1,

∅, otherwise,

and Θ = R
2+. Then, the hypergraphical map of F is given by

H(x) =

⎧⎪⎨
⎪⎩

] − ∞, 1] × ] − ∞, x], if x ∈ [0, 1[,
{(a,

√
1 − a2) : a ∈ [0, 1]} − R

2+, if x = 1,

∅, otherwise.

It is easy to check that x = 0 is an ≤u
R
2+
-minimizer of F and that x̂ = 1 is not an

≤u
R
2+
-minimizer of F (H(0) ⊆ H(1), but H(0) �= H(1)).

Fix k = (1, 1) ∈ sd (H(1)) = sd (H(0)). Consider two hypergraphical scalariza-
tion functionals s1,k := ϕ−H(1),k and s0,k := ϕ−H(0),k . We find

(s1,k ◦ H)(x) =

⎧⎪⎨
⎪⎩

] − ∞, x2/(2 + 2x)], if x ∈ [0, 1[ ,

] − ∞, 0], if x = 1,

∅, otherwise,

and

(s0,k ◦ H)(x) =
{

] − ∞, x], if x ∈ [0, 1],
∅, otherwise.

It is easy to check that x̂ = 1 is an≤u
R+-minimal solution of the scalarizedmap s1,k◦H,

but not an ≤u
R
2+
-minimizer of F . Since

s1,k(H(0)) = s1,k(H(1)) = ] − ∞, 0] but

s0,k(H(1)) = ] − ∞, 1] �= s0,k(H(0)) = ] − ∞, 0],

condition (19) is not fulfilled for x = 0 and thus Theorem 4.1 is not applicable to
x̂ = 1.

We could easily check that x = 0 is an ≤u
R+-minimal solution of s0,k ◦ H and

condition (19) is satisfied; indeed, for all x ∈ (0, 1], we have s0,k(H(x)) =]−∞, x] �=
s0,k(H(0)) = ] − ∞, 0]. By Theorem 4.1, x = 0 is an ≤u

R
2+
-minimizer of F .

Theorem 4.2 (Characterization of strict/strong/ideal ≤u
Θ -minimizers) Assume that

(H2) holds.

(i) If x is an x-partly strict≤u
R+-minimizer of sx,k◦F for some scalarization direction

k ∈ sd (−H(x)), then x is an x-partly strict ≤u
Θ -minimizer of F. The reverse
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implication holds for every scalarization direction k ∈ sd (−H(x)) such that
−H(x) is k-vectorially closed.

(ii) Assume that sd (−H(x)) �= ∅ for all x ∈ dom F. If x is a strong/ideal ≤u
Θ -

minimizer of F, then

∀x ∈ dom F,∀k ∈ sd (−H(x)), sx,k(H(x)) ⊆ R−. (20)

The reverse implication holds provided that for every x ∈ dom F, there exists
k ∈ sd (−H(x)) such that −H(x) is k-vectorially closed.

(iii) If x is a strong/ideal ≤u
Θ -minimizer of F, then x is a strong/ideal ≤u

R+-minimal
solution of the scalarized map ϕHc(x),k ◦ Hc, where

∀x ∈ dom F,Hc(x) := Y \ H(x).

The reverse implication holds provided that for all x ∈ dom F, one has H(x) =
vclH(x) and coreH(x) �= ∅.

Proof (i) Assume that x is an x-partly strict ≤u
Θ -minimizer of F , i.e.,

∀x ∈ dom F,H(x) ⊆ H(x) �⇒ x = x . (21)

Fix an arbitrary scalarization direction k ∈ sd (H(x)) and an arbitrary element
x ∈ dom F such that

sx,k ◦ H(x) ⊆ sx,k ◦ H(x) ⊆ ] − ∞, 0]. (22)

To verify the x-partly strict ≤u
R+-minimality of x to sx,k ◦ F , it is sufficient to

show that x = x . By the definition of the functional sx,k , we get from (22) that

∀y ∈ H(x), sx,k(y) ≤ 0.

Since−H(x) is a k-vectorially closed set, we get y ∈ H(x). Since y was arbitrary
inH(x), we have H(x) ⊆ H(x). By (21), we obtain x = x .

To prove the inverse implication, we assume that x is an x-partly strict ≤u
R+-

minimal solution of sx,k ◦ H for some scalarization direction k ∈ sd (−H(x)),
i.e.,

∀x ∈ dom F, sx,k ◦ H(x) ⊆ sx,k ◦ H(x) �⇒ x = x .

Fix an arbitrary element x ∈ dom F such that H(x) ⊆ H(x). Applying the
functional sx,k to both sides of the inclusion, we have sx,k ◦H(x) ⊆ sx,k ◦H(x).
The x-partly strict ≤u

R+-minimality of x to sx,k ◦ H forces x = x , and hence, x
is an x-partly strict ≤u

Θ -minimizer of F .
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(ii) It is directly derived from Proposition 3.2.

x is a strong ≤u
Θ -minimizer of F

⇐⇒ ∀x ∈ dom F,H(x) ⊆ H(x)
vcl k⇐⇒ ∀x ∈ dom F, sx,k(H(x)) ⊆ sx,k(H(x)) = R−.

(iii)

x is a strong ≤u
Θ -minimizer of F

⇐⇒ ∀x ∈ dom F,H(x) ⊆ H(x)

⇐⇒ ∀x ∈ dom F,Hc(x) ⊆ Hc(x)

�⇒ ∀x ∈ dom F, ϕ−Hc(x),k(Hc(x)) ⊆ ϕ−Hc(x),k(Hc(x))

⇐⇒ x is a strong ≤u
R+ -minimal solution of ϕ−Hc(x),k ◦ Hc.

x is a strong ≤u
R+ -minimal solution of ϕ−Hc(x),k ◦ Hc

⇐⇒ ∀x ∈ dom F, ϕ−Hc(x),k(Hc(x)) ⊆ ϕ−Hc(x),k(Hc(x))

�⇒ ∀x ∈ dom F, vclHc(x) ⊆ vclHc(x)
core⇐⇒ ∀x ∈ dom F, coreH(x) ⊆ coreH(x)
vcl⇐⇒ ∀x ∈ dom F,H(x) ⊆ H(x)

⇐⇒ x is a strong ≤u
Θ -minimizer of F .

��
Next, we study a characterization for minimizers of a set-valued map F with respect to
the lower set-less relation ≤l

Θ . First, we derive a characterization for ≤l
Θ -minimizers

of F based on the known relationship between ≤l
Θ -minimizers and ≤u

Θ -minimizers
by using the epigraphical scalarization functional scx,k : Y → R ∪ {±∞} along the
scalarization direction k ∈ sd (−Ec(x)) by

scx,k(y) := ϕ−Ec(x),k(y) = inf{t ∈ R : y ∈ tk + Ec(x)}. (23)

It is well defined due to Lemma 2.1.
The generalized composition of Ec and scx,k is a set-valued map with values

scx,k ◦ Ec(x) = scx,k(Ec(x)) := ∪{scx,k(y) : ∀y ∈ Ec(x) = F(x) − Θ}. (24)

We call it the scalarized map of F via scx,k . Furthermore, a minimal solution of the
composition of Ec and scx,k is called upper set-less minimal solution of scx,k ◦ Ec (with
respect to the space of real numbers), for short ≤u

R+-minimal solution.

Theorem 4.3 (Characterization of ≤l
Θ -minimizers) Assume that (H2) holds and x ∈

dom F. Assume also that E(x) = vcl E(x) and core E(x) �= ∅ for all x ∈ dom F.
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(i) If x is a ≤l
Θ -minimizer of F, then x is an ≤u

R+-minimal solution of the scalarized
map scx,k ◦ Ec for all k ∈ sd (−Ec(x)).

(ii) Assume that there is k ∈ sd (−Ec(x)) such that

∀x ∈ dom F, scx,k(Ec(x)) = scx,k(Ec(x)) �⇒ scx (Ec(x)) = scx (Ec(x)). (25)

If x is an ≤u
R+-minimal solution of scx,k ◦ Ec, then x is a ≤l

Θ -minimizer of F.

Proof To prove (i), first we observe that

x is a ≤l
Θ -minimizer of F

⇐⇒ ∀x ∈ dom F, F(x) ≤l
Θ F(x) �⇒ F(x) ≤l

Θ F(x)

⇐⇒ ∀x ∈ dom F, E(x) = F(x) + Θ ⊆ E(x) = F(x) + Θ �⇒ E(x) = E(x)

⇐⇒ ∀x ∈ dom F, Ec(x) ⊆ Ec(x) �⇒ Ec(x) = Ec(x)

⇐⇒ ∀x ∈ dom F, Ec(x) ≤u
Θ Ec(x) �⇒ Ec(x) = Ec(x)

⇐⇒ x is an ≤u
Θ -minimizer of Ec.

To show that x is an≤u
R+-minimal solution of scx,k ◦Ec, we fix an arbitrary scalarization

direction k ∈ sd −Ec; it is sufficient to show that

∀x ∈ dom F, scx,k ◦ Ec(x) ⊆ scx,k ◦ Ec(x) �⇒ scx,k ◦ Ec(x) = scx,k ◦ Ec(x).

Assume that scx,k ◦ Ec(x) ⊆ scx,k ◦ Ec(x) ⊆ ] − ∞, 0]. It yields Ec(x) ⊆ vcl Ec(x) =
X \ {core (E(x))} and thus core E(x) ⊆ E(x). Under the assumptions made, we have
vcl (core E(x)) = E(x) ⊆ vcl E(x) = E(x) and thus Ec(x) ⊆ Ec(x). Since x is an
≤u

Θ -minimizer of Ec, the last inclusion implies Ec(x) = Ec(x) and thus scx,k ◦Ec(x) =
scx,k ◦ Ec(x), clearly verifying the ≤u

R+-minimality of x to scx,k ◦ Ec.

(ii) Assume that all assumptions are satisfied, to justify the ≤l
Θ -minimalily of x to

F , it is sufficient to show that x is an ≤u
Θ -minimizer to Ec, i.e.,

Ec(x) ⊆ Ec(x) �⇒ Ec(x) = Ec(x).

Fix an arbitrary element x ∈ dom F such that Ec(x) ⊆ Ec(x). We have scx,k(Ec(x)) =
scx,k(Ec(x)). By condition (25), we have

scx,k(Ec(x)) = scx,k(Ec(x)) �⇒ Ec(x) ⊆ vcl Ec(x) = X \ {core E(x)}
⇐⇒ core E(x) ⊆ E(x) = vcl E(x) �⇒ E(x) ⊆ E(x) ⇐⇒ Ec(x) ⊆ Ec(x).

This together with the choice of x gives Ec(x) = Ec(x) and completes the proof. ��
When F = f : X → Z is a vector-valued function; i.e., F(x) = { f (x)} for all

x ∈ dom f , both minimality concepts with respect to ≤u
Θ and ≤l

Θ coincide with the
efficiency concept with respect to≤Θ . Therefore, we have two scalar characterizations
for minimizers of vector-valued functions.
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Corollary 4.1 (Version 1: Characterization for minimizers in vector optimization) Let
F = f be a single-valued function with dom f �= ∅ and x ∈ dom f . Assume that
(H2) holds.

(i) If x is a ≤Θ -minimizer of f , then for every k ∈ sd (Θ), x is a minimal solution
of the scalarized function ϕΘ− f (x),k ◦ f (x).

(ii) If x is aminimal solution of the scalarized functionϕΘ− f (x),k◦ f and the condition

ϕΘ− f (x),k ◦ f (x) = 0 �⇒ ϕΘ− f (x),k ◦ f (x) = 0

holds, then x is a ≤Θ -minimizer of f .

Proof It is straightforward from Theorem 4.1 and the following observations:

(1) ϕΘ− f (x),k f (x) = supθ∈Θ ϕΘ− f (x),k( f (x) − θ). Fix an element θ ∈ Θ arbi-
trarily; we have f (x) − θ ≤Θ f (x). Since ϕΘ− f (x),k is Θ-monotone, we get
ϕΘ− f (x),k( f (x) − θ) ≤ ϕΘ− f (x),k( f (x)). Since θ was arbitrary, we have

sup
θ∈Θ

ϕΘ− f (x),k( f (x) − θ) ≤ ϕΘ− f (x),k( f (x)).

The equality holds since 0 ∈ Θ .
(2) x is an ≤u

R+-minimal solution of the scalarized map ϕΘ− f (x) ◦H f ,Θ if and only
if it is a minimal solution of the scalarized function of scalar optimization.

��
Corollary 4.2 (Version 2: Characterization for minimizers in vector optimization) Let
f , Θ as in Corollary 4.1. Assume that Θ = vclΘ and coreΘ �= ∅.
(i) If x is a ≤Θ -minimizer of f , then x is an ≤u

R+-minimal solution of the scalarized
map ϕ−(Ec

f ,Θ (x)),k ◦ Ec
f ,K .

(ii) If x is a minimal solution of the scalarized map ϕ−Ec
f ,Θ (x),k ◦ Ec

f ,K and the
condition

ϕ−Ec
f ,Θ (x),k(Ec

f ,K (x)) ⊆ R− �⇒ ϕ−Ec
f ,Θ (x),k(Ec

f ,Θ(x)) ⊆ R−

holds, then x is a minimizer of f .

Proof It is straightforward from Theorem 4.3. ��
Remark 4.2 While Corollary 4.1 (i) is known in vector optimization, (ii) is new. It
could be served as a sufficient condition for minimality. For example, consider a
vector-valued function f : R → R

2 with

f (x) :=
{

(0,−x), if x≥ 0,

(x, 0), if x < 0.
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Take k = (1, 1) and x = 0. Since

∀x ∈ R, ϕ
R
2+,k ◦ f (x) = ϕ

R
2+− f (0),k( f (x)) ≡ 0,

x = 0 is a minimal solution of ϕR2
, k

◦ f . Take x̂ = 1. We have ϕ
R
2+− f (0),k( f (1)) = 0,

but ϕ
R
2+− f (1),k( f (0)) = 1. Corollary 4.1 (ii) ensures that x = 0 is not a ≤

R
2+-

minimizer of f .
Again, k = (1, 1) and x = 0. Since

∀x ∈ R, ϕ−Ec
f (x),k

(Ec
f (x)

)
) = R−,

x = 0 is an ≤u
R+-minimal solution of the scalarized map ϕ−Ec

f (x),k
◦ Ec

f . Take

x̂ = 1. We have ϕ−Ec
f (0),k

(Ec
f (1)) = R−, but ϕ−Ec

f (1),k
(Ec

f (0)) = 1 + R−. By
Corollary 4.2 (ii), x = 0 is not a ≤

R
2+-minimizer of f .

We close this section with a relation between ≤l
Θ - and ≤Θ -minimizers .

Theorem 4.4 (Characterization for ≤l
Θ -minimizers) Let x be a ≤l

Θ -minimizer of a
set-valued map F. Assume that Θ is pointed and F(x) has a Θ-lower bound, i.e.,
there is y∗ ∈ Y such that F(x) ⊆ y∗ + Θ .

(i) The pair (x, y∗) is a ≤Θ -minimizer of the adjusted map Fy∗ : X ⇒ Y defined by

Fy∗(x) :=
{
y∗ + Θ, if x = x

F(x), if x �= x .
(26)

(ii) x is a ≤l
R+-minimal solution of the scalarized map ϕy∗−Θ,k ◦ Fy∗; indeed, we

have

∀x ∈ dom F, ϕy∗−Θ,k(Fy∗(x)) ⊆ [0,+∞[

and ϕy∗−Θ,k(Fy∗(x)) = [0,+∞[ .
Proof Assume that x is a ≤l

Θ -minimizer of F , i.e.,

∀x ∈ dom F, F(x) ≤l
Θ F(x) �⇒ F(x) ≤l

Θ F(x)
⇐⇒ x ∈ dom F, F(x) ⊆ F(x) + Θ �⇒ F(x) ⊆ F(x) + Θ.

(27)

Arguing by contradiction, assume that (x, y∗) is not a Θ-minimizer of Fy∗ , i.e., there
are x ∈ dom Fy∗ = dom F and y ∈ Fy∗(x) such that y ≤Θ y∗ and y �= y∗. Observe
that x �= x . Indeed, if x = x , then y ∈ Fy∗(x) = y∗ + Θ . This together with
y ≤Θ y∗ ⇐⇒ y ∈ y∗ − Θ gives

y − y∗ ∈ Θ ∩ (−Θ).
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Since Θ is a pointed cone, we have y = y∗ contradicting to y �= y∗. Since x �= x ,
by the definition of Fy∗ , we have Fy∗(x) = F(x). We now get from y ≤Θ y∗ and the
≤l

Θ -minimality of x to F that

y ≤Θ y∗ ⇐⇒ y∗ ∈ y + Θ

Θ+Θ=Θ⇐⇒ y∗ + Θ ⊆ y + Θ + Θ = y + Θ

�⇒ F(x) ⊆ y∗ + Θ ⊆ y + Θ ⊆ F(x) + Θ

(27)�⇒ F(x) ⊆ F(x) + Θ

�⇒ F(x) ⊆ y∗ + Θ

�⇒ y ∈ y∗ + Θ.

We get from inclusions in the first line and the last line y∗ ∈ y + Θ and y ∈ y∗ + Θ .
Again, the pointedness of Θ yields y = y∗, contradicting y �= y∗. The contradiction
verifies that (x, y∗) is a ≤Θ -minimizer of Fy∗ and completes the proof of (i).

(ii) It follows from (i) that

F(X) ∩ (y∗ − Θ) ⊆ {y∗},

and thus for every scalarization direction k ∈ sd (Θ), and for every y ∈ F(X), we
have ϕy∗−Θ,k(y) ≥ 0. Since ϕy∗−Θ,k(y∗) = 0, the proof is complete. ��

Let us illustrate the role of the Θ-minimality of y∗ to F(x) in Theorem 4.4.

Example 4.3 Consider a set-valued map F : R ⇒ R
2 with

F(x) :=

⎧⎪⎨
⎪⎩

[(x,−αx), (
√
2/2,

√
2/2)], if x > 0,

IB((1, 1), 1), if x = 0,

[(x,−βx), (
√
2/2,

√
2/2)], if x < 0,

whereα, β ≥ 0 [(a, b), (c, d)] is the line segment from (a, b) to (c, d) and IB((1, 1), 1)
is the ball centered at (1, 1) with radius 1. It is easy to check that for any α, β ≥ 0,
x = 0 is a ≤l

Θ -minimizer of F with Θ = R
2+.

When α = +∞ and β = +∞, i.e.,

F∞(x) =

⎧⎪⎨
⎪⎩

[(0, x), (√2/2,
√
2/2)], if x > 0,

IB((1, 1), 1), if x = 0,

[(x, 0), (√2/2,
√
2/2)], if x < 0,

x = 0 is no longer a ≤l
Θ -minimizer of F∞.

When α < 0 and β < 0, x = 0 is not a ≤l
Θ -minimizer of F∞.

The image of F could be any subset of Y \ {y∗ −Θ} provided that it is not identical
to F(x).
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Remark 4.4 (Applications to necessary conditions)

(a) Assume that x is an≤u
R+-minimal solution of a scalar set-valuedmap : X ⇒ R

and y = max F(x) ∈ F(x). Then, we have

D̂H(x, y)(1) ⊆ {0},

where D̂H(x, y) is the regular/Fréchet coderivative ofHF . Given a set-valued
map F : X ⇒ Y between two Banach spaces and an ≤u

Θ -minimizer x of F .
By Theorem 4.1, for every scalarization direction k ∈ sd (−HF (x)), x is an
≤u
R+-minimal solution of the scalarized map sx,k ◦ H. Therefore, we have

D̂(sx,k ◦ H)(x, 0)(1) ⊆ {0}.

(b) Theorem 4.4 provides a connection between efficiency of vector optimization and
lower set-less minimality. This improves and corrects the results in [23]. Assume
in addition that y∗ ∈ F(x). We have Fy∗ = F . By [25], under appropriate closed-
ness and sequential normal compactness assumptions, we obtain the following
necessary condition for lower set-less minimizers: There is y∗ ∈ Θ+ \ {0} such
that

0 ∈ D∗F(x, y∗)(y∗),

i.e., there is a sequence {(xk, yk)} ⊆ gph F and a sequence {(x∗
k , y

∗
k )} with

lim sup
(u,v)→(xk ,yk )

〈(x∗
k , y

∗
k ), (u, v) − (xk, yk)〉

‖(u, v) − (xk, yk)‖ ≤ 0

satisfying

(xk, yk) → (x, y∗) and (x∗
k , y

∗
k )

w∗→ (0,−y∗),

where Θ+ := {y∗ ∈ Y ∗ : ∀y ∈ Θ, y∗(y) ≥ 0} is the positive polar cone of Θ

and D∗F(x, y∗)(y∗) is the limiting/Mordukhovich coderivative of F at (x, y∗).
See [4] for the precise definitions and the full calculus of limiting differentiation.

Conclusions

In our paper, we established several important connections between upper/lower set-
less minimizers of set-valued maps and upper/lower set-less minimal solutions of
scalarized maps which are compositions of the map and Gerstewitz’ nonlinear scalar-
ization functional. This opens a new way to derive necessary conditions for lower and
upper minimizers of set-valued maps; see Remark 4.4. In addition, we also provide a
sufficient condition ensuring that a lower set-less minimizer of a set-valued map is a
(Pareto) minimizer in the sense of vector optimization.
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In a forthcoming paper, we will study characterizations via Gerstewitz’ nonlinear
scalarization functionals for all six types ofminimizers of set-valuedmaps correspond-
ing to six set relations introduced by Kuroiwa [5]. Furthermore, it is of interest to use
our results for developing numerical procedures based on scalarization.
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