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Abstract
The variational approach to shape optimization in linearized elasticity is used in order
to improve convergence of a known heuristic algorithm. The speed method of shape
optimization is applied to obtain necessary optimality conditions for representative
test examples. The algorithm originates from the biomimetic approach to compliance
optimization. The trabecular bone adapts its form to mechanical loads and is able to
form structures that are lightweight and very stiff at the same time. In this sense, it is
a problem pertaining to both the nature or living entities which is similar to structural
optimization, especially topology optimization. The paper presents the biomimetic
approach, based on the trabecular bone remodeling phenomenon, with the aim of
minimizing the compliance in multiple load cases. The method employed aims at
minimizing the energy and combines structural evolution inspired by trabecular bone
remodeling and the shape gradient framework,with strict analysis based on functionals
in the 3-dimensional elasticity model. The method is enhanced to handle the problem
of structural optimization under multiple loads. The new biomimetic approach does
not require volume constraints. Instead of imposing volume constraints, shapes are
parameterized by the assumed strain energy density on the structural surface. The
stiffest design is obtained by adding or removing material on the structural surface in
virtual space. Structural evolution is based on shape gradient approximation by the
speedmethod, and it is separated from the finite element method of themodel solution.
Numerical examples confirm that the heuristic algorithm for structural optimization
is efficient.
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1 Introduction

The variational approach to shape and topology optimization can be developed, e.g.,
within the speed and the topological derivative methods. In particular, the topological
derivative method is used to this end [1–3]. Our aim in this paper is to improve the
convergence of the biomimetic approach to compliance optimization andmultiple load
cases by an application of the speedmethod. Thismeans that we introduce a variational
problem for which the proposed optimality criterion of biomimetic approach becomes
a necessary optimality condition. Such an approach is known in the theory of free
boundary problems.

The field of structural optimization is still a relatively new area but with many
applications in the automotive, aerospace, civil engineering, machine design and other
engineering fields. The classical approach to structural optimization can be found, e.g.,
in the monographs [4,5]. Many researchers must face challenges related to structural
optimization. One of the crucial ones is to develop structural optimization methods
that are appropriate for multiple load issues.

From an engineer’s point of view, single load case problems are rather rare. A more
common problem, but also more challenging in terms of mechanical design, is the one
of structural optimization under multiple loads. The biomimetic optimization method
should be useful as, in real life, multiple independent loads are always present.

It is widely believed that the trabecular bone adapts its form to mechanical loads
following Wolff’s law [6,7]. A healthy tissue of the trabecular bone has a very sophis-
ticated structure. The tissue forms a network of beams called trabeculae, and this
structure is capable of handling a wide range of loads. The length of a trabecula can
be 100 or 200µm, whereas its diameter is approximately 50µm. This structure is
continually rebuilding itself so that the whole bone tissue is replaced within a few
years. The process is called trabecular bone adaptation or remodeling.

Wolff’s law is not a mechanical law as such but rather the hypothesis that the
trabecular bone is a self-optimizing material. In addition, other researchers suggested
[8,9] that the trabecular tissue can adapt its structural form in reaction to external
loads. In this sense, it is a problemwhich resembles structural optimization, especially
topology optimization.

The strain energy density on the structural surface also appears in the area of opti-
mization research, which is distant from biomechanical studies [10,11]. The most
important theorem concerning the energy density on the structural surface states that
for the stiffest design, the energy density must be constant along the designed shape.
The new formulation of biomimetic optimization based on the trabecular bone phe-
nomenon used in [12] was established with the use of the shape derivative concept.
The mathematical analysis of the so-called speed method in shape optimization is
performed, e.g., in [13].

2 Structural Design withMultiple Load Cases

Amultiple load problem ariseswhen a real-life design has to be developed. In topology
optimization, a common procedure uses minimization of a weighted sum of different
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loads. The compliance for each load case is computed, and then, themulti-load problem
is replaced by minimization of the weighted sum of the compliances under each
load, as first presented by Sigmund [14]. For optimization of the worst possible case,
another approach is needed. One of the possible methods is the bound formulation
approach [15–17]. The main feature of the approach is the introduction of an upper
bound for other objectives and minimizing the upper bound. Another approach uses
the aggregation technique [18,19]. The main advantage of the constraint aggregation
method is that all load cases contribute throughout the optimization process, owing to
which the process does not lead to local minima.

Relying on the approach presented in [12], using biomechanical models of the tra-
becular bone remodeling directly as a base for structural optimization, we will discuss
a design with multiple load cases. In general, there is no solution to the problem of
stiffest design (compliance minimization). If the volume of an object is increasing, the
compliance is decreasing. Hence, in the standard approach to energy-based topology
optimization, an additional constraint has to be added. Usually, the volume of mate-
rial is limited. When using volume constraints, additional stress constraints should
be introduced. As a result, topology optimization has to be separated from shape and
size optimization within the numerical procedure [17]. In the case of the biomimetic
approach, the role of an additional constraint is played by the strain energy density on
the structural surface, and the volume or structural mass results from the optimization
procedure. In the standard SIMP topology optimizationmethod, the volume constraint
is used. Also, in the stress-based topology optimization approach [20,21], the volume
constraint is present. To start the optimization procedure, the volume constraint has to
be imposed. In the biomimetic approach, instead of imposing a volume constraint, we
parameterize shapes by the assumed energy density, which may be quite accurately
predicted from yield criteria.

3 Problem Setting

Let us define the compliance functional

C(Ω; t) =
∫

Γ1

t · u ds (1)

for the standard elasticity system

div σ (u) = 0 in Ω, (2)

σ (u) · n = t on Γ1, (3)

σ (u) · n = 0 on Γv, (4)

u = 0 on Γ0. (5)

Here, ∂Ω = Γ0 ∪Γ1 ∪Γv and t is a constant vector of traction forces. This functional
depends on the shape of Ω , and Γv is a part of its boundary subject to modification.
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Now, suppose we want to take into account two possible loads (t1, t2) acting on Γ1,
the rest of the formulation remaining intact. This gives rise to two compliances

C(Ω; t1), C(Ω; t2)

and two solutions u1, u2. We wish to minimize somehow both compliances by modi-
fying Γv under the volume constraint

∫
Ω

dx − V0 ≤ 0. (6)

We have described this setting in the classical way in order to start similarly to other
considerations concerning multiple load problems. In the numerical procedure we
propose, shape and topology optimization is performed without volume constraint
and under the assumed energy density.

The assumption of constant strain energy density for the stiffest design [12] was
justified in the same setting, but for a single load. The derivative of the Lagrange
function gives (at the stationary point) the following condition for the stiffest design
configuration:

σ (u) : ε(u) = λ = const. (7)

Similar results were presented previously by other researchers [11]. Our result is based
on the shape derivative concept which does not need any additional assumptions. The
value of λ is not known, but the assumed value of the strain energy density on the
part of the boundary subject to modification could be related to material properties.
Changing that value results in a change of the structural form—topology and volume.
In this way, the final structural volume results from the optimization procedure. Instead
of imposing a volume constraint, we parameterize shapes by energy density, which
may be quite accurately predicted from yield criteria.

4 Insensitivity Zone Concept

The biomimetic approach based on trabecular bone remodeling allows comprising
optimization of size, shape and topology in one numerical procedure, where the lazy
zone concept is an important component of the algorithm. The lazy zone concept was
originally proposed by Carter [22], as an enhancement of the mechanostat theory of
Frost [23]. The concept was also exploited by other researchers [9,24]. The stiffest
design is obtained by adding or removing material on the structural surface in virtual
space, mimicking the natural process of trabecular bone remodeling [25]. Bone mass
increases above a certain level of mechanical stimulation (measured by the strain
energy density on the tissue surface) and decreases below a certain energy level. When
the strain energy density on the structural surface is between these two levels, the bone
mass ismaintained, and this rate of bonemechanical stimulation is called adaptation or
lazy zone because then the bone does not react to changes in themechanical stimulation
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level. The processes of resorption and formation are coupled in basic multicellular
units, regions smaller than the single trabecula where a sequence of successive bone
tissue resorption and formation occurs, and this is a local change. However, bone
formation depends on global mechanical stimulation of the whole bone [8,9].

5 Heuristic Algorithm

The numerical results of [26] show a similarity between trabecular bone remodeling
and structural optimization. The results have no biological background, but have been
rigorously proven mechanically and mathematically. Nonetheless, trabecular bone
remodeling models could be used to realize the optimization procedure.

Our heuristic algorithm is as follows:

– it is assumed that the energy density σ (u) : ε(u) has a constant value λ on Γv;
– if at a given point on Γv this density is greater than λ + s, then the boundary is
moved outside;

– if at a given point on Γv this density is smaller than λ − s, then the boundary is
moved inside;

– these steps are repeated until equilibrium is achieved;
– the value of λ is modified if the final design is unsatisfactory.

Since apart from the boundary modification there is a need to take into account
the increase or decrease in the surface area itself, an additional step is introduced to
the algorithm. The κ curvature is incorporated into the procedure in the following
way. The improvement of descent direction should result from the partially heuristic
modification.

– If κ > 0 and F > F̄ , then after a biomimetic modification the boundary is
additionally moved inside Ω by 50% of the biomimetic step.

– If κ < 0 and F > F̄ , then after a biomimetic modification the boundary is
additionally moved outside Ω by 50% of the biomimetic step.

Thus, the curvature term locally enhances or diminishes the purely biomimetic mod-
ification of the structure. Numerical experiments seem to confirm this claim, and the
speed method furnishes a better descent direction compared to the already published
results.

6 Multiple-Objective Problems

The systematic approach proposed in this article consists in formulating two versions
of scalarized multiple-objective problems.

Problem 1

J1(Ω) = max
[C(Ω; t1), C(Ω; t2)

] −→ min
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subject to

∫
Ω

dx − V0 ≤ 0.

Problem 2

J2(Ω) = α1C(Ω; t1) + α2C(Ω; t2) −→ min

subject to

∫
Ω

dx − V0 ≤ 0

where α1 + α2 = 1, αi ≥ 0.
The problems will be transformed suitably and analyzed using the speed method.

7 Definition of the SpeedMethod

LetV(x) be a smooth vector field defined on IR3 and Tt : IR3 → IR3 the transformation
defined by

Tt (x) = x + tV(x), x ∈ IR3, t ∈ [0, ε], ε > 0.

Let also Ω0 ⊂ IR3 be a certain domain and Ωt = Tt (Ω0). Note that T0(Ω0) = Ω0.
Next, we take a function ut (x) defined on Ωt and depending on it explicitly or, for
example, as a solution of the elasticity boundary value problem posed in Ωt .

Using this notation, we define in Ω0 the shape derivative of ut with respect to the
(fixed) vector field V(x) by

u′
0(x) = lim

t↓0
ut (x) − u0(x)

t
. (8)

Here, we need in fact an extension of ut to Ω0.
The shape derivative is used to analyze the behavior of domain functionals depend-

ing on both Ωt and ut . Their general form is

JΩ(Ωt ) =
∫

Ωt

F1(ut (x)) dx (9)

and, denoting Γt = ∂Ωt ,

JΓ (Ωt ) =
∫

Γt

F2(ut (x)) ds. (10)

If we define the shape derivatives of these functionals in the direction of the fieldV(x)
as
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J ′
Ω(Ω0) = lim

t↓0
JΩ(Ωt ) − JΩ(Ω0)

t
, (11)

J ′
Γ (Ω0) = lim

t↓0
JΓ (Ωt ) − JΓ (Ω0)

t
, (12)

then it can be proved that

J ′
Ω(Ω0) =

∫
Ω0

F ′(u0(x))u′
0(x) dx

+
∫

Γ0

F(u0(x))V(x) · n(x) ds (13)

and

J ′
Γ (Ω0) =

∫
Γ0

[
F ′(u0(x))u′

0(x) + ∂F(u0(x))
∂n

+ κ(x)F(u0(x))V(x) · n(x)
]
ds. (14)

Here, κ(x) denotes the average curvature of the surface Γ0 at the point x, namely

κ(x) = 1

R1(x)
+ 1

R2(x)

where R1(x) and R2(x) are the principal curvatures at this point.

8 Problem Transformation

Problem 1 may be transformed into an equivalent form:

Problem 1a

F1(s,Ω) = s −→ min

subject to

∫
Ω

dx − V0 ≤ 0,

C(Ω; t1) − s ≤ 0,

C(Ω; t2) − s ≤ 0.
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The corresponding Lagrange function has the form

L1(s,Ω; λ0, λ1, λ2) = s + λ0

( ∫
Ω

dx − V0

)

+ λ1(C(Ω; t1) − s) + λ2(C(Ω; t2) − s). (15)

Problem 2 does not need transforming, and the corresponding Lagrange function has
the form

L2(Ω; λ0) = α1C(Ω; t1) + α2C(Ω; t2) + λ0

( ∫
Ω

dx − V0

)
. (16)

Next, one may formulate the Kuhn–Karush–Tucker conditions for both problems.
To this end, we shall need shape derivatives of compliances.

Let us rewrite the state equation in the weak form

−
∫

Ω

σ (u) : ε(ϕ) dx +
∫

Γ1

t · ϕ ds = 0. (17)

Here, u, ϕ ∈ H1
Γ0

(Ω). Then, we take the shape derivative of the compliance using
the speed method (denoted by (•)′):

[C(Ω, t)]′ =
∫

Γ1

t · u′ ds, (18)

and the shape derivative of the weak formulation of the state equation

−
∫

Ω

σ (u′) : ε(ϕ) dx −
∫

Γv

σ (u) : ε(ϕ)V · n ds = 0. (19)

After substitutingϕ := u′ in theweak state equation andϕ := u in its shape derivative,
we get

[C(Ω, t)]′ = −
∫

Γv

σ (u) : ε(u)V · n ds. (20)

The Kuhn–Karush–Tucker conditions for Problem 1a are

∂s L1(s,Ω; λ0, λ1, λ2) = 1 − λ1 − λ2 = 0, (21)

[L1(s,Ω; λ0, λ1, λ2)]′

=
∫

Γv

[
λ0 − λ1σ (u1) : ε(u1) − −λ2σ (u2) : ε(u2)

]
V · n ds = 0. (22)

Hence

λ1 + λ2 = 1,

λ1σ (u1) : ε(u1) + λ2σ (u2) : ε(u2) = λ0.
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In the case of symmetry, when interchanging t1 and t2 does not change the problem,
and we have λ1 = λ2 = 0.5, the optimality condition reads

1

2
σ (u1) : ε(u1) + 1

2
σ (u2) : ε(u2) = λ0 = const. (23)

Obviously, we do not know the value of λ0.
The same conditions for Problem 2 are obtained immediately:

α1σ (u1) : ε(u1) + α2σ (u2) : ε(u2) = λ0 = const. (24)

9 ShapeModification Using Shape DerivativeWithout Volume
Constraint

Let us define a function F(z) penalizing the deviation of z from 0 and taking into
account the insensitivity zone:

F(z) =

⎧⎪⎨
⎪⎩

(z + s)2, z < −s,

0, −s ≤ z ≤ s,

(z − s)2, z > s.

(25)

Using this function, we replace the heuristic strategy byminimization of the functional

Jλ(Ω) =
∫

Γv

F(	(u1,u2)) ds, (26)

where for Problem 1a,

	(u1,u2) = 1

2
σ (u1) : ε(u1) + 1

2
σ (u2) : ε(u2) − λ0,

while for Problem 2,

	(u1,u2) = α1σ (u1) : ε(u1) + α2σ (u2) : ε(u2) − λ0.

For simplicity, we shall consider Problem 1a. After taking the shape derivative of
the functional (observe that F ′ = dF/dz), we have

Jλ(Ω)′ =
∫

Γv

F ′(	(u1,u2))	′(u1,u2) ds +
∫

Γv

[
∂F

∂n
+ κF

]
V · n ds, (27)

where

	′(u1,u2) = σ (u′
1) : ε(u1) + σ (u′

2) : ε(u2).
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Here, κ is the average curvature at the given point on Γv and

∂F

∂n
= F ′(	(u1,u2))

∂

∂n
(	(u1,u2)). (28)

In order to get rid of u′
1 and u′

2, we introduce adjoint equations for p1 and p2 in the
weak form

−
∫

Ω

σ (p1) : ε(ϕ) dx −
∫

Γv

F ′(	(u1,u2))σ (u1) : ε(ϕ) ds = 0 (29)

and

−
∫

Ω

σ (p2) : ε(ϕ) dx −
∫

Γv

F ′(	(u1,u2))σ (u2) : ε(ϕ) ds = 0 (30)

where p1, p2, ϕ ∈ H1
Γ0

(Ω). Then, substituting again ϕ := p1 or ϕ := p2 in the
shape derivative of the weak state equations and ϕ := u′

1 or ϕ := u′
2 in the adjoint

equations, we obtain

∫
Γv

F ′(	(u1,u2))	′(u1,u2) ds

=
∫

Γv

[σ (u1) : ε(p1) + σ (u2) : ε(p2)]V · n ds. (31)

As a result,

Jλ(Ω)′ =
∫

Γv

[
σ (u1) : ε(p1) + σ (u2) : ε(p2) + ∂F

∂n
+ κF

]
V · n ds. (32)

When the expression in square brackets is negative, we should addmaterial (V·n > 0);
otherwise, material has to be removed (V · n < 0).

Nevertheless, in such a form the algorithm may have a tendency to liquidate the
variable part of the boundary Γv altogether. To control this unwanted behavior, we
introduce the averaged versions of Jλ and F :

J̄λ = Jλ∫
Γv

ds
, (33)

F̄ =
∫
Γv

F ds∫
Γv

ds
. (34)

Observe that for |Γv| = ∫
Γv

ds we have

|Γv|′ =
∫

Γv

κV · n ds.
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Hence, the shape derivative of the averaged functional may be expressed as

J̄ ′
λ = 1

|Γv|2
[
J ′
λ(Ω)|Γv| − Jλ(Ω)|Γv|′

]

= 1

|Γv|
∫

Γv

[
σ (u1) : ε(p1) + σ (u2) : ε(p2) + ∂F

∂n
+ κF

]
V · n ds

− 1

|Γv| F̄
∫

Γv

κV · n ds.

As a result, the final formula has the form

J̄ ′
λ = 1

|Γv|
∫

Γv

[
σ (u1) : ε(p1) + σ (u2) : ε(p2) + ∂F

∂n
+ κ(F − F̄)

]
V · n ds. (35)

We assume that the heuristic algorithm for Problem 1a is realized as follows, taking
into account the first three terms in (35):

– it is assumed that the energy density σ (u) : ε(u) has a constant value λ0 on Γv;
– the energy densities σ (u1) : ε(u1) and σ (u2) : ε(u2) are computed for loads t1
and t2 acting on the same boundary Γ1;

– the average energy density is 1
2σ (u1) : ε(u1) + 1

2σ (u2) : ε(u2) for loads t1 and
t2;

– if at a given point on Γv this density is greater than λ0 + s, the boundary is moved
outside;

– if at a given point on Γv this density is smaller than λ0 − s, the boundary is moved
inside;

– these steps are repeated until equilibrium is achieved;
– the value of λ0 is modified if the final design is unsatisfactory.

The last term in (35), involving the curvature κ , is incorporated into the procedure in
the following way:

– If κ > 0 and F > F̄ , then after a biomimetic modification the boundary is
additionally moved inside Ω by 50% of the biomimetic step.

– If κ < 0 and F > F̄ , then after a biomimetic modification the boundary is
additionally moved outside Ω by 50% of the biomimetic step.

The insensitivity range parametrized by s is needed to ensure existence of equilibrium.
For Problem2 the algorithmwill be the same,with 1

2σ (u1) : ε(u1)+ 1
2σ (u2) : ε(u2)

replaced by α1σ (u1) : ε(u1) + α2σ (u2) : ε(u2).

10 Numerical Examples

The heuristic biomimetic procedure is based directly on the biomechanical model of
the trabecular bone remodeling phenomenon.

To compute the strain energy density on the structural surface, the finite element
method is used. (The details of the numerical environment can be found in [12].) For
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Fig. 1 Two load cases for the
square design domain. Left:
Force set P; right: force set Q.
All loads are of the same
magnitude

Fig. 2 The problem with square design domain with a central square rigid support; selected steps of the
optimization procedure for the multiple load cases

the multiple load case simulation, the problem with a square design domain with a
central square rigid support was chosen. The reason was the existence of an exact
analytical solution examined in many papers [27–29].

Two different load cases were examined, depicted in Fig. 1. The forces in each
case are of the same magnitude. Material parameters were taken as follows: Young’s
modulus 2 × 1011 Pa, Poisson’s ratio 0.3 and the size of the insensitivity zone 80–
180MPa. Since the biomimetic method works in 3-D only, the design domain is in fact
3-dimensional, but due to very small thickness it can be treated as quasi 2-dimensional.

The results (selected steps) of the optimization procedure for themultiple load cases
for force sets P and Q are presented in Fig. 2. The optimal configuration obtained is
similar to the results presented previously by other researchers.

To compare our approach with other results derived by a more classical approach,
a widely investigated T -bracket structure was chosen. The T -bracket problem model
is presented in Fig. 3. Two load cases were analyzed. The forces for both load cases
were of the samemagnitude, and the material parameters were taken as in the previous
example. For this example, 82 iterations were needed. The structural evolution was
based on shape gradient approximation by the speed method, and it was separated
from the finite element method computations. Each iteration included generation of
a mesh (tetrahedral elements) and finite element calculations for each load case. The
computational time for the initial configurationof 93,120 elementswas 10s (wall-clock
time) for the mesh generation and 25s for the finite element calculations for each load
case. For the final configuration, there were 42,396 elements, 5 s for meshing and 20s
for structural calculation. The calculations were carried out with the use of our own
mesh generation tool Cosmoprojector and the parallel finite element solver based on
Message Passing Interface (MPI). The computations were run on 4 CPUs with the use
of the cluster (16 GB RAM per node). The details of the mesh generation method can
be found in [12].
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Fig. 3 The T -bracket problem
model. Left: Force located on
the left part of the domain; right:
force located on the right part of
the domain. All loads are of the
same magnitude

Fig. 4 The T -bracket structure problem; selected steps of the optimization procedure for the multiple load
cases

Fig. 5 The box design domain.
Left: The horizontal bending
force; right: the vertical bending
force

Fig. 6 The box starting domain (isometric view); selected steps of the optimization procedure for the
multiple load cases for the 3-D problem

The results for the T -bracket structure problem analyzed in [30] with the level set
method are very similar to the results presented in Fig. 4.

In order to test the procedure for 3-D problems, two different load cases were
examined, and the design domains are presented in Fig. 5. It was assumed that all
nodes of the back wall of the domain box could be fixed (clamped wall), and the
bending force was applied to the middle of the opposite, front wall. The first load case
was with a vertical bending force, and the second with the same definition of boundary
conditions and a horizontal bending force. All loads were of the same magnitude.
Material parameters and the size of the insensitivity zone were assumed to be as in
the previous example.

Selected steps of the optimization procedure are presented in Fig. 6.
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Fig. 7 The stick starting domain (isometric view); selected steps of the optimization procedure for the
multiple load cases for the 3-D problem

The biomimetic optimization system, as in the case of living creatures, is 3-
dimensional, and the definition of the design domain is not needed. Moreover, the
definition of boundary conditions could be different for each step of the simulation.
Instead of starting the computations from a box domain, it is possible to start from just
a stick, connecting the clamped wall (the potential surface, where no displacement
boundary conditions could be defined) as a starting configuration. The results under
such assumptions are presented in Fig. 7.

11 Conclusions

In this paper, a new formulation of biomimetic optimization based on trabecular bone
remodeling applied to a multiple load problem is presented. The stiffest design is
obtained by adding or removing material on the structural surface in virtual space.
Three elements complete the formula driving the process of adding or removing mate-
rial: non-local influence of boundary modification, spatial variability of the function
penalizing deviation from the assumed strain energy density on the structural surface
and measuring the increase or decrease in the area of the surface itself, by measuring
the surface curvature. The structural evolution is based on shape gradient approxima-
tion by the speedmethod, and it is separated from finite element method computations.
The finite element method is used to compute the distribution of the strain energy den-
sity only. An important advantage of our approach is that optimization results are in
the form of a functional configuration. Accordingly, the assumed value of the strain
energy density on the part of the boundary subject to modification can be related to
material properties. Instead of imposing a volume constraint, we parameterize shapes
by energy density, which may be quite accurately predicted from yield criteria. The
functional configurations during the process of optimization allow including size,
shape and topology optimization in one numerical procedure.

The 2-D result for the common benchmark is in line with previous results by other
researchers [27–29]. The 3-D result shows the configuration for a real material. In view
of the above, our 3-D results with two perpendicular bending forces as multiple loads
could be a good benchmark for testing other approaches to multiple load optimization.
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1. Novotny, A.A., Sokołowski, J., Żochowski, A.: Topological derivatives of shape functionals. Part I:
theory in singularly perturbed geometrical domains. J. Optim. Theory Appl. 180, 341–373 (2019)
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