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Abstract
In this paper, we mainly study nonsmooth mixed-integer nonlinear programming
problems and solution algorithms by outer approximation and generalized Benders
decomposition.Outer approximation and generalizedBenders algorithms are provided
to solve these problems with nonsmooth convex functions and with conic constraint,
respectively. We illustrate these two algorithms by providing detailed procedure of
solving several examples. The numerical examples show that outer approximation
and generalized Benders decomposition provide a feasible alternative for solving such
problems without differentiability.
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1 Introduction

Many practical optimization problems have both continuous and integer variables,
and these problems are generally modeled as mixed-integer nonlinear programming
problems (MINLPs). Such a problem is known as convex MINLP if the objective and
constraint functions are convex; otherwise, it is a nonconvex MINLP.

Since MINLPs provide a powerful framework for mathematically modeling many
optimization problems, they have been used in various applications such as electricity
transmission and electric power system, design of water distribution networks, process
industry, and finance and scheduling problems and production planning and control.
We refer readers to bibliographies [1–9] for more details on applications. The study
on MINLPs as well as solution algorithms has been an active focus of research over
the past decades. These algorithms are mainly based on branch-and-bound (B&B),
extended cutting plane, Lagrangian relaxation, outer approximation (OA) and gen-
eralized Benders decomposition (GBD). Readers are invited to consult references
[10–23] for more details on these solution methods.

One focus of this paper is OA. Duran and Grossmann [15] first introduced OA to
solve MINLPs in which subproblems are affine for fixed integer variables and convex
in continuous variables. Fletcher and Leyffer [16] improved the OA to solve convex
MINLPs with continuously differentiable functions and considered the nonsmooth
extension in the context of penalty functions therein. Kesavan et al. [17] applied OA
to separable nonconvex MINLPs and proposed outer approximation algorithms to
solve several relaxed master problems and nonlinear programming problems. Drewes
and Ulbrich [24] used OA to solve a mixed-integer second-order cone programming
problem with the linear objective function and the affine constraint function. Eronen
andMäkelä [25] applied the generalized OA to nonsmooth convexMINLPs. Based on
the above references, we study the OA for oneMINLP problem defined by nonsmooth
convex functions and use subgradients to reformulate the problem as an equivalent
mixed-integer linear program (MILP). An outer approximation algorithm is given for
solving this MILP, and several illustrative examples are computed by this algorithm.
Compared with aforementioned references, one part of main work in this paper is to
show the existence of subgradients that are applicable to the reformulation and provide
a complete proof on the equivalence between MINLP and the reformulated problem.

The other focus of this paper is GBD. It is known that Benders [20] first intro-
duced this decomposition for solving mixed-integer linear programming problems
and exploiting the structure of complicated problems. Geoffrion [21] generalized this
decomposition method to deal with MINLPs where the subproblems are nonlinear
programming. Hooker and Ottosson [8] studied logic-based Benders decomposition
and applied it to planning and scheduling problems (cf. [6,7] and references therein).
As the other part of main work in this paper, we study GBD and a generalized Benders
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algorithm for one MINLP with conic constraint. The main idea of this algorithm is
given and then several examples as well as their solutions are provided by the gener-
alized Benders algorithm.

The remainder of this paper is organized as follows. In Sect. 2, we give some def-
initions and preliminaries to be used in this paper. In Sect. 3, we consider OA and
the outer approximation algorithm and use this algorithm to solve nonsmooth convex
MINLP examples. Section 4 is devoted to the study of GBD and the generalized Ben-
ders algorithm. It is shown that several convexMINLP examples with conic constraint
can be solved by this algorithm. Section 5 is devoted to the proofs for results in Sects. 3
and 4. Conclusions of this paper are given in Sect. 6.

2 Preliminaries

Let ‖ · ‖ be the norm of an Euclidean space R
n and denote by 〈·, ·〉 the inner product

between two elements of R
n . For any subset C ⊂ R

n , we denote by int(C) and cl(C)

the interior and the closure of C , respectively.
Let A be a closed convex set of R

n and x ∈ A. We denote by

T (A, x) := cl(R+(A − x))

the contingent cone of A at x . Thus, v ∈ T (A, x) if and only if there exist vk → v and
tk → 0+ such that x + tkvk ∈ A for all k ∈ N, where N denotes the set of all natural
numbers.

We denote by

N (A, x) := {γ ∈ R
n : 〈γ, y − x〉 ≤ 0 for all y ∈ A}

the normal cone of A at x . It is known that N (A, x) is the dual of T (A, x); that is,

N (A, x) = {γ ∈ R
n : 〈γ, v〉 ≤ 0 for all v ∈ T (A, x)}.

Let ϕ : R
n → R ∪ {+∞} be a proper lower semicontinuous convex function. We

denote by dom(ϕ) := {u ∈ R
n : ϕ(u) < +∞} the domain of ϕ. Let x ∈ dom(ϕ). We

denote by

∂ϕ(x) := {α ∈ R
n : 〈α, y − x〉 ≤ ϕ(y) − ϕ(x) for all y ∈ R

n} (1)

the subdifferential of ϕ at x . Each vector in ∂ϕ(x) is said to be a subgradient of
ϕ at x .

Let K ⊂ R
m be a closed and convex cone with nonempty interior. The partial

order in R
m by K is defined as follows: for any z1, z2 ∈ R

m ,

z1 �K z2 ⇐⇒ z2 − z1 ∈ K and z1 ≺K z2 ⇐⇒ z2 − z1 ∈ int(K ). (2)
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For a function ψ : R
n → R

m , recall that ψ is said to be K-convex, if

ψ(λx1 + (1 − λ)x2) �K λψ(x1) + (1 − λ)ψ(x2) ∀x1, x2 ∈ R
n and ∀λ ∈ [0, 1].

For the case when ψ : R
n → R and K := [0,+∞[, K -convexity of ψ reduces to the

convexity of real-valued function ψ .
The following lemma, proved in [19, Proposition 2.3], will be used in our analysis.

Lemma 2.1 Let φ : R
n × R

p → R be a continuous and convex function and suppose
that (x̄, ȳ) ∈ R

n × R
p. Then for any α ∈ ∂φ(·, ȳ)(x̄), there exists β ∈ R

p such that
(α, β) ∈ ∂φ(x̄, ȳ).

We conclude this section with the following lemma (cf. [26, Theorem 2.4.18]).

Lemma 2.2 Let ϕ : R
n → R be a continuous convex function. Define

ϕ+(x) := max{ϕ(x), 0}, ∀x ∈ R
n .

Then ϕ+ is a convex and continuous function and

∂ϕ+(x) = [0, 1]∂ϕ(x)

holds for all x ∈ R
n with ϕ(x) = 0, where [0, 1]∂ϕ(x) := {tγ : t ∈ [0, 1] and γ ∈

∂ϕ(x)} for any x ∈ R
n.

3 OA for MINLPs with Nonsmooth Convex Functions

In this section, we study OA and an outer approximation algorithm for MINLPs with
nonsmooth convex functions. To illustrate this algorithm, we compute nonsmooth
convex MINLP examples with detailed computing procedure, including the choice
of nonnegative multipliers and subgradients that satisfy the KKT conditions and the
computation of normal cone.

3.1 Overview of an Outer Approximation Algorithm

This subsection is devoted to an overview of OA for MINLPs with nonsmooth convex
functions. The main idea of this method is to reformulate MINLP as an equiva-
lent mixed-integer linear programming (MILP) problem and then construct an outer
approximation algorithm for solving a sequence of relaxedMILPsusing several solvers
or softwares.

Suppose f , gi : R
n×R

p → R (i = 1, . . . ,m) are continuous convex functions (not
necessarily differentiable), X ⊂ R

n is a nonempty compact convex set and Y ⊂ Z
p

is a set of integers. A generalized nonsmooth MINLP is generally defined as follows:
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(P)

⎧
⎪⎨

⎪⎩

min
x,y

f (x, y)

s.t. gi (x, y) ≤ 0, i = 1, . . . ,m,

x ∈ X , y ∈ Y integer.

(3)

For any fixed y ∈ Y , we consider the following subproblem P(y):

P(y)

⎧
⎨

⎩

min
x

f (x, y)

s.t. gi (x, y) ≤ 0, i = 1, . . . ,m,

x ∈ X .

We divide Y into two disjoint subsets:

T := {y ∈ Y : P(y) is feasible} and S := {y ∈ Y : P(y) is infeasible}. (4)

We assume that problem (P) satisfies Slater constraint qualification:

(A1) For any y ∈ T , there is x̂ ∈ X satisfying gi (x̂, y) < 0 for all i = 1, . . . ,m.
Let y ∈ Y be given. Then exactly one of following two cases occurs:

Case 1 y ∈ T . We assume that y = y j for some y j ∈ T .
Solve subproblem P(y j ) and obtain an optimal solution x j ∈ X . By assumption

(A1) and KKT conditions (cf. [27]), there exist λ j,1, . . . , λ j,m ≥ 0 such that

m∑

i=1

λ j,i gi (x j , y j ) = 0 and 0 ∈ ∂ f (·, y j )(x j ) +
m∑

i=1

λ j,i∂gi (·, y j )(x j ) + N (X , x j ).

(5)

This and Lemma 2.1 imply that there exist α j ∈ ∂ f (·, y j )(x j ), ξ j,i ∈ ∂gi (·, y j )(x j )
and β j ∈ R

p, η j,i ∈ R
p such that (α j , β j ) ∈ ∂ f (x j , y j ), (ξ j,i , η j,i ) ∈ ∂gi (x j , y j )

(i = 1, . . . ,m) and

− α j −
m∑

i=1

λ j,iξ j,i ∈ N (X , x j ). (6)

Case 2 y /∈ T . We assume that y = yl for some yl ∈ S.
Let Jl be one subset of {1, . . . ,m} such that there is some x̃ ∈ X satisfying

gi (x̃, yl) < 0, ∀i ∈ Jl .

Denote by Il := {1, . . . ,m}\Jl the complement of Jl and consider the following
subproblem F(yl):

F(yl)

⎧
⎪⎨

⎪⎩

min
x

∑

i∈Il
[gi (x, yl)]+ := min

x

∑

i∈Il
max{gi (x, yl), 0}

s.t. gi (x, yl) ≤ 0 ∀i ∈ Jl ,
x ∈ X .

(7)
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Solve subproblem F(yl) and obtain the optimal solution xl . By KKT conditions, there
exist λl,i ≥ 0 for all i ∈ Jl such that

∑

i∈Jl

λ j,i gi (x j , y j ) = 0 and 0 ∈
∑

i∈Il
∂[gi (·, yl)]+(xl)

+
∑

i∈Jl

λl,i∂gi (·, yl)(xl) + N (X , xl). (8)

This togetherwithLemmas 2.1 and 2.2 implies that there existλl,i ∈ [0, 1] for all i ∈ Il
and ξl,i ∈ ∂gi (·, yl)(xl), ηl,i ∈ R

p (∀i ∈ Il ∪ Jl) such that (ξl,i , ηl,i ) ∈ ∂gi (xl , yl) for
all i ∈ Il ∪ Jl = {1, . . . ,m} and

−
∑

i∈Il∪Jl

λl,iξl,i ∈ N (X , xl),

λl,i = 0, if i ∈ Il with gi (xl , yl) < 0,

λl,i = 1, if i ∈ Il with gi (xl , yl) > 0. (9)

The following proposition provides constraints to exclude integers producing infea-
sible subproblems. The proof is given in Sect. 5.

Proposition 3.1 Consider the following constraint:

gi (xl , yl) + (ξl,i , ηl,i )
T

(
x − xl
y − yl

)

≤ 0, i = 1, . . . ,m,

x ∈ X , y ∈ Y . (10)

Then for any (x̂, ŷ) ∈ X × Y feasible to the constraints in (10), one has ŷ �= yl .

Byvirtue of subgradients given by (5),(6) (8) and (9), one can establish the following
MILP master program (MP):

(MP)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x,y,θ

θ

s.t. f (x j , y j ) + (α j , β j )
T

(
x − x j
y − y j

)

≤ θ ∀y j ∈ T ,

gi (x j , y j ) + (ξ j,i , η j,i )
T

(
x − x j
y − y j

)

≤ 0 ∀y j ∈ T , i = 1, . . . ,m,

gi (xl , yl) + (ξl,i , ηl,i )
T

(
x − xl
y − yl

)

≤ 0 ∀yl ∈ S, i = 1, . . . ,m,

x ∈ X , y ∈ Y integer.

(11)

The following proposition shows the equivalence between themaster program (MP)
and the MINLP problem (P). The reader is invited to consult Sect. 5 for the proof.

Proposition 3.2 The master program (MP) of (11) is equivalent to problem (P) in the
sense that both problems have the same optimal value and the optimal solution (x̄, ȳ)
to problem (P) corresponds to the optimal solution (x̄, ȳ, θ̄ ) to (MP) with θ̄ = f (x̄, ȳ).
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Remark 3.1 TheKKTconditions play an important role in the equivalent reformulation
of MINLP problem (P), and Example 3.2 shows that the subgradients, if not satisfying
KKT conditions, may be insufficient for this equivalent reformulation. ��

Based on Proposition 3.2, the outer approximation algorithm can be constructed to
solve a relaxed MP of (11).

At iteration k, subsets T k and Sk are defined as follows:

T k := T ∩ {y1, . . . , yk} and Sk := S ∩ {y1, . . . , yk}.

Exactly one of the following cases occurs:
(a) yk ∈ T k : Solve subproblem P(yk) and denote the optimal solution by xk . Solve

the following optimization problem OP(xk, yk):

Find

⎡

⎣
(αk, βk)

(ξk,i , ηk,i )

λk,i ∈ R

⎤

⎦ such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−αk −
m∑

i=1
λk,iξk,i ∈ N (X , xk),

(αk, βk) ∈ ∂ f (xk, yk),
(ξk,i , ηk,i ) ∈ ∂gi (xk, yk), i = 1, . . . ,m,

λk,i ≥ 0, i = 1, . . . ,m.

(12)

Obtain subgradients (αk, βk) and (ξk,i , ηk,i ) for all i = 1, . . . ,m.
(b) yk ∈ Sk : Take Ik, Jk ⊂ {1, . . . ,m} and create subproblem F(yk) as in (7).

Solve F(yk) and denote the solution by xk . Solve the following optimization problem
Sub-OP(xk, yk):

Find

[
(ξk,i , ηk,i )

λk,i ∈ R

]

such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
m∑

i=1
λk,iξk,i ∈ N (X , xk),

(ξk,i , ηk,i ) ∈ ∂gi (xk, yk), i = 1, . . . ,m,

λk,i ≥ 0, i = 1, . . . ,m,

λk,i = 0, i ∈ Ik with gi (xk, yk) < 0,
λk,i = 1, i ∈ Ik with gi (xk, yk) > 0,
λk,i ∈ [0, 1], i ∈ Ik with gi (xk, yk) = 0.

(13)

Obtain subgradients (ξk,i , ηk,i ) for all i = 1, . . . ,m.
Let UBDk := min{ f (x j , y j ) : y j ∈ T k}. Consider the following relaxed master

program MPk :

MPk

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x,y,θ

θ

s.t. θ < UBDk

f (x j , y j ) + (α j , β j )
T

(
x − x j
y − y j

)

≤ θ ∀y j ∈ T k,

gi (x j , y j ) + (ξ j,i , η j,i )
T

(
x − x j
y − y j

)

≤ 0 ∀y j ∈ T k, i = 1, . . . ,m,

gi (xl , yl) + (ξl,i , ηl,i )
T

(
x − xl
y − yl

)

≤ 0 ∀yl ∈ Sk, i = 1, . . . ,m,

x ∈ X , y ∈ Y integer.

(14)
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The outer approximation algorithm for solving the relaxed master problems MPk

is stated as follow.

Algorithm 1 (Outer Approximation Algorithm)

1: Initialization. Given an initial y0 ∈ Y , set T 0 = S0 := ∅, UBD0 := ∞ and let
k := 1

2: for k = 1, 2, · · · , do
3: Check subproblem P(yk)
4: if yk ∈ T is feasible then
5: Solve subproblem P(yk) and denote the solution by xk

Solve OP(xk, yk) in (12) and obtain subgradients (αk, βk), (ξk,i , ηk,i )

Set T k := T k−1∪{yk}, Sk := Sk−1 andUBDk := min{UBDk−1, f (xk, yk)}
6: else
7: Create subproblem F(yk). Solve F(yk) and denote the solution by xk

Solve Sub-OP(xk, yk) in (13) and obtain subgradients (ξk,i , ηk,i )

Set Sk := Sk−1 ∪ {yk}, T k := T k−1 and UBDk := UBDk−1

8: end if
9: Solve the relaxation MPk and obtain a new integer yk+1

Set k := k + 1 and go back to line 3
10: end for

The following proposition is on the convergence of Algorithm 1. The proof is given
in Sect. 5.

Proposition 3.3 Suppose that the cardinality of Y is finite. Then either problem (P) is
infeasible or Algorithm 1 terminates in a finite number of steps at an optimal value of
problem (P).

3.2 Illustrative Examples

In this subsection, Algorithm 1 is tested by numerical examples and the results show
that Algorithm 1 is feasible and applicable to solve MINLPs with nonsmooth convex
functions. All computational tests for these examples are implemented in MATLAB
version R2014a and solved by BARON version 16.10.6 (cf. [12]).

Example 3.1 Let X = {(u, v) : −1 ≤ u + v ≤ 1 and − 1 ≤ u − v ≤ 1} and
Y = {−1, 1, 2}. Consider the following convex MINLP:

min
x,y

f (x, y) = max{−u + y, v2 + y − 1}
s.t. g1(x, y) = max{u − y, v + y − 1} ≤ 0,

g2(x, y) = max{2u − 4 + y, v − y} ≤ 0,

x = (u, v) ∈ X , y ∈ Y . (15)

Choose the tolerance ε = 0.005. Let y1 = 2 be the initial point.
At the first iteration, check subproblem P(y1) that is feasible. Solve subproblem

P(y1) and denote the optimal solution by x1 = (0,−1). Solve optimization problem
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OP(x1, y1) as in (12) and obtain multipliers λ1,1 = 2, λ1,2 = 0.5 and subgradients
(α1, β1) = ((−1, 0), 1), (ξ1,1, η1,1) = ((0, 1), 1), (ξ1,2, η1,2) = ((2, 0), 1). Solve the
following relaxed MILP problem:

MP1

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x,y,θ

θ

s.t. θ ≤ f (x1, y1) − ε,

f (x1, y1) + (α1, β1)
T

(
x − x1
y − y1

)

≤ θ,

gi (x1, y1) + (ξ1,i , η1,i )
T

(
x − x1
y − y1

)

≤ 0, i = 1, 2,

x ∈ X , y ∈ Y .

Denote the optimal solution by (x̂, ŷ, θ̂ ) = ((0, 1),−1,−2).
In the second iteration, we set y2 = ŷ = −1 and check subproblem P(y2) by

Algorithm 1; P(y2) is infeasible. Consider the following subproblem F(y2):

F(y2)

⎧
⎨

⎩

min
x

max{g1(x, y2), 0}
s.t. g2(x, y2) = max{2u − 5, v + 1} ≤ 0,

x = (u, v) ∈ X .

Solve subproblem F(y2) and denote the optimal solution by x2 = (0,−1). Solve
optimization problem Sub-OP(x2, y2) as in (13) and obtain subgradients (ξ2,1, η2,1) =
((1, 0),−1) and (ξ2,2, η2,2) = ((0,−1),−1). According to Algorithm 1, consider the
following constraints:

gi (x2, y2) + (ξ2,i , η2,i )
T

(
x − x2
y − y2

)

≤ 0, i = 1, 2.

Add these two constraints into MP1 and obtain relaxed MILP problem MP2. Solve
MP2 and denote the optimal solution by (x̂, ŷ, θ̂ ) = ((−1, 0), 1, 0). The second
iteration is concluded.

In the third iteration, we set y3 = ŷ = 1 and check subproblem P(y3), which
is feasible. Solve subproblem P(y3) and denote the optimal solution by x3 = (1, 0).
Solve optimization problemOP(x3, y3) as in (12) and obtainmultipliersλ3,1 = λ3,2 =
0 and subgradients (α3, β3) = ((0, 0), 1), (ξ3,1, η3,1) = ((1, 0),−1), (ξ3,2, η3,2) =
((0, 1),−1).

By Algorithm 1, consider the following constraints:

θ ≤ f (x3, y3) − ε,

f (x3, y3) + (α3, β3)
T

(
x − x3
y − y3

)

≤ θ,

gi (x3, y3) + (ξ3,i , η3,i )
T

(
x − x3
y − y3

)

≤ 0, i = 1, 2.
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Add these four constraints into MP2 and get relaxed MILP problem MP3. As MP3

is infeasible, the algorithm stops and an ε-optimal solution is obtained. ��
The following example shows that the chosen subgradients, if not satisfying KKT

conditions, may be not sufficient for solving nonsmooth convex MINLPs.

Example 3.2 Let X = [0, 2] and Y = {1, 2, 3}. Consider the following convex
MINLP:

(P)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
x,y

f (x, y) = x + y

s.t. g1(x, y) = max{−x + y + 1, x − y + 1} ≤ 0,
g2(x, y) = x − y ≤ 0,
x ∈ X , y ∈ Y .

(16)

It is not hard to verify that (P) of (16) is infeasible.
Let y1 = 1 be the initial point and check subproblem P(y1). As P(y1) is infeasible,

we consider the following subproblem F(y1):

F(y1)

⎧
⎨

⎩

min
x

max{g1(x, 1), 0}
s.t. g2(x, y1) = x − 1 ≤ 0,

x ∈ X .

Solve subproblem F(y1) and denote the optimal solution by x1 = 1. Solve optimiza-
tion problemSub − OP(x1, y1) as in (12) andobtain subgradients ξ1,1 = −1, ξ1,2 = 1,
multiplier λ1,2 = 1 and numbers η1,1 = 1, η1,2 = −1 such that

ξ1,1 + λ1,2ξ1,2 ∈ N (X , x1) and (ξ1,i , η1,i ) ∈ ∂gi (x1, y1), i = 1, 2.

According to Algorithm 1, consider the following constraints:

g1(x1, y1) + (ξ1,1, η1,2)
T

(
x − x1
y − y1

)

≤ 0,

g2(x1, y1) + (ξ2,1, η2,2)
T

(
x − x1
y − y1

)

≤ 0.

Solve this constraint problem and then the problem is infeasible which shows that
problem (P) of (16) is infeasible.

However, if taking

(ξ∗
1,1, η

∗
1,1) = (1,−1) ∈ ∂g1(x1, y1) and (ξ∗

1,2, η
∗
1,2) = (1,−1) ∈ ∂g2(x1, y1),

then one can verify that these two subgradients do not satisfy KKT conditions; that
is,

�λ1,2 ≥ 0 satisfying ξ∗
1,1 + λ1,2ξ

∗
1,2 ∈ N (X , x1) = {0}.
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Consider the following constraints:

g1(x1, y1) + (ξ∗
1,1, η

∗
1,2)

T
(
x − x1
y − y1

)

≤ 0,

g2(x1, y1) + (ξ∗
2,1, η

∗
2,2)

T
(
x − x1
y − y1

)

≤ 0,

which has a feasible point (x̂, ŷ) = (0, 1). This means that OA for this MINLP may
generate an infinite loop between point (x1, y1) and point (0, 1). Thus OA is invalid
for MINLP problem of (16). ��

4 GBD for MINLPs with Conic Constraint

In this section, we study GBD for solving MINLPs with the vector conic constraint.
Several MINLP examples with vector conic constraint are solved, and the computing
procedure which includes the choice of optimal Lagrange multipliers of subproblems
is also provided.

4.1 Overview of the Generalized Benders Algorithm

This subsection is devoted to an overview of the generalized Benders algorithm for
solving MINLPs with vector conic constraint. The main idea of this algorithm is
to separate the original MINLP into many subproblems, then reformulate MINLP
as an equivalent master program by optimal Lagrange multipliers (of subproblems)
and finally construct an algorithm for solving a sequence of relaxed master program
problems.

Let X ⊂ R
n be a closed bounded convex set, Y ⊂ Z

p be a set with integers and
K ⊂ R

m be a closed convex cone with a nonempty interior which specifies a partial
order �K on R

m as (2). The MINLP problem is defined as follows:

(VOP)

⎧
⎪⎨

⎪⎩

min
x, y

f (x, y)

s.t. g(x, y) �K 0,
x ∈ X , y ∈ Y integer,

(17)

where f : R
n × R

p → R and g : R
n × R

p → R
m satisfy that f (·, y) is convex and

g(·, y) is K -convex on X for any fixed y ∈ Y .
We denote by

K+ := {z∗ ∈ R
m : 〈z∗, z〉 ≥ 0 for all z ∈ K } (18)

the dual cone of K .
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Let y ∈ Y . We consider the following subproblem P(y):

P(y)

⎧
⎨

⎩

min
x

f (x, y)

s.t. g(x, y) �K 0,
x ∈ X .

Recall that the perturbation function vy(·) associated with subproblem P(y) is defined
by

vy(z) : R
m → R ∪ {+∞}, z �→ vy(z) := inf

x∈X{ f (x, y) : g(x, y) �K z}, (19)

here we use the convention that infimum over the empty set is +∞.
Recall that a linear continuous functional ū∗ ∈ R

m is said to be an optimal Lagrange
multiplier for problem P(y) if there exists x̄ ∈ X such that (x̄, ū∗) satisfies the
following optimality conditions:

(i) f (x̄, y) + 〈ū∗, g(x̄, y)〉 = min
x∈X

{
f (x, y) + 〈ū∗, g(x, y)〉},

(ii) 〈ū∗, g(x̄, y)〉 = 0,

(iii) ū∗ ∈ K+,

(iv) g(x̄, y) �K 0. (20)

The following condition is assumed to hold for (VOP) in (17):

(A2) Suppose that functions f (·, y), g(·, y) are continuous on X for any y ∈ Y and
the Slater constraint qualification

g(x̂, y) ≺K 0 for some x̂ ∈ X (21)

holds for any y ∈ Y such that subproblem P(y) is feasible.
The following proposition establishes properties of the perturbation function vy(·)

and of the optimal Lagrange multipliers for subproblem P(y). The proof is given in
Sect. 5.

Proposition 4.1 The following statements hold:

(i) For any y ∈ Y , perturbation function vy(·) is convex, lower semicontinuous and
monotone nonincreasing (by �K ) on R

m, and dom(vy) is convex and closed.
(ii) For any y ∈ Y satisfying subproblem P(y) is feasible, vy(·) is continuous at

0 = (0, . . . , 0) ∈ R
m and −∂vy(0) is the set of all optimal Lagrange multipliers

of subproblem P(y).

The following proposition is a key result for reformulating MINLP (VOP) as an
equivalent master program. The reader is invited to consult Sect. 5 for the proof.

Proposition 4.2 The following statements hold:

123



852 Journal of Optimization Theory and Applications (2019) 181:840–863

(i) Let y ∈ Y . Then subproblem P(y) is feasible if and only if

inf
x∈X〈u∗, g(x, y)〉 ≤ 0 ∀u∗ ∈ K+ with ‖u∗‖ = 1. (22)

(ii) Let y ∈ Y be such that subproblem P(y) is feasible. Then

vy(0) = max
u∗∈K+

{
inf
x∈X

{
f (x, y) + 〈u∗, g(x, y)〉}

}
. (23)

Based on Proposition 4.2, we have the following master program (MP) which is
equivalent to MINLP problem (VOP) in (17):

(MP)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min
y,θ

θ

s.t inf
x∈X{ f (x, y) + 〈u∗, g(x, y)〉} ≤ θ, ∀u∗ ∈ K+

inf
x∈X〈z∗, g(x, y)〉 ≤ 0, ∀z∗ ∈ K+ with ‖z∗‖ = 1,

y ∈ Y , θ ∈ R.

(24)

To solve the equivalent master program (MP) in (24), we consider the following
relaxation of (MP) and optimization problems L-P(yk) and I n-P(yk) referring to
subproblem P(yk).

For any subsets T ⊂ K+, S ⊂ K+, the relaxed master programRMP(T , S) is defined
as follows:

RMP(T , S)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min
y,θ

θ

s.t. inf
x∈X{ f (x, y) + 〈u∗, g(x, y)〉} ≤ θ, ∀u∗ ∈ T ,

inf
x∈X〈z∗, g(x, y)〉 ≤ 0, ∀z∗ ∈ S,

y ∈ Y , θ ∈ R.

(25)

For any yk ∈ Y such that P(yk) is feasible, optimization problem L − P(yk) is defined
as follows:

Find

[
xk ∈ X
u∗
k ∈ R

m

]

such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xk ∈ argmin
x∈X

{ f (x, yk) + 〈u∗
k , g(x, yk)〉},

〈u∗
k , g(xk, yk)〉 = 0,

u∗
k ∈ K+,

g(xk, yk) �K 0.

(26)

For any yk ∈ Y such that P(yk) is infeasible, optimization problem In-P(yk) is defined
as follows:

Find
[
z∗k ∈ R

m
]

such that

⎧
⎪⎨

⎪⎩

inf
x∈X〈z∗k , g(x, yk)〉 > 0,

z∗k ∈ K+,

‖z∗k‖ = 1.

(27)
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The generalized Benders algorithm is stated as follows. This algorithm can be used
to find the optimum of MINLP problem (VOP).

Algorithm 2 (Generalized Benders Algorithm)

1: Initialization. Take y1 ∈ Y such that P(y1) is feasible and z∗1 ∈ K+ with ‖z∗1‖ = 1
Solve L-P(y1) as in (26) and obtain the optimal Lagrange multiplier u∗

1
Set T 1 := {u∗

1}, S1 := {z∗1} and UBD1 := vy1(0)
Select the convergence tolerance parameter ε > 0 and set k := 1

2: for k = 1, 2, · · · , do
3: Solve RMP(T k, Sk) and denote the optimal solution by (yk+1, θk+1)

4: if UBDk ≤ θk+1 + ε then
5: Stop the Algorithm
6: else
7: Check subproblem P(yk+1)

8: if P(yk+1) is feasible then
9: if vyk+1(0) ≤ θk+1 + ε then
10: Stop the Algorithm
11: else
12: Solve subproblem L-P(yk+1) as in (26) and obtain u∗

k+1
SetT k+1 := T k∪{u∗

k+1}, Sk+1 := Sk ,UBDk+1 := min{UBDk, vyk+1(0)}
13: end if
14: else
15: Solve subproblem In-P(xk+1) as in (27) and obtain z∗k+1

Set T k+1 := T k, Sk+1 := Sk ∪ {z∗k+1}, UBDk+1 := UBDk

16: end if
17: end if
18: Set k := k + 1 and go back to line 3
19: end for

The following proposition shows the termination of Algorithm 2 after a finite num-
ber of steps. The detailed proof is presented in Sect. 5.

Proposition 4.3 Suppose that the cardinality of Y is finite. Then for any given ε > 0,
Algorithm 2 terminates in a finite number of steps.

4.2 Illustrative Examples

In this subsection, MINLP examples are solved by Algorithm 2. The algorithm is
implemented in MATLAB version R2014a, and examples are all solved by BARON
version 16.10.6 (cf. [12]). The implementation of Algorithm 2 also demonstrates that
GBD is feasible and applicable to solve MINLPs with conic constraint.

Example 4.1 Let K := {(u, v) ∈ R
2 : u ≥ 2|v|, u ≥ 0}, Y = {−1, 0, 1, 2} and

X = {(u, v) ∈ R
2 : −1 ≤ u + v ≤ 1 and − 1 ≤ u − v ≤ 1}. Consider the following

MINLP with vector conic constraint:
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min
x,y

f (x, y)

s.t. g(x, y) �K 0,

x = (u, v) ∈ X ,

y ∈ Y , (28)

where f (x, y) = max{−u + y, v2 + y − 1}, g(x, y) = (g1(x, y), g2(x, y)) with

g1(x, y) = u2 + v2 − 1

2
y and g2(x, y) = −1

2
v2 + 1

4
y.

It is easy to verify that g(·, y) is K -convex.We solveMINLP in (28) byAlgorithm2.
Choose the tolerance ε = 0.005. Let y1 = −1 be the initial point and z∗1 =

(1, 0) ∈ K+ with ‖z∗1‖ = 1. Solve optimization problem L-P(y1) as in (26) and
obtain an optimal Lagrange multiplier u∗

1 = (0.991, 0.01). Set T 1 = {u∗
1}, S1 =

{z∗1} and UBD1 = vy1(0) = 2. Solve the relaxed master program RMP(T 1, S1) and
denote the optimal solution by (y2, θ2) = (1, 0.2547). Since the termination criterion
is not satisfied, we check subproblem P(y2) which is feasible and obtain optimal
Lagrange multiplier u∗

2 = (0, 0) by solving L − P(y2) as in (26). Set T 2 = T 1 ∪{u∗
2},

S2 = S1 and UBD2 = min{UBD1, vy2(0)} = 0. Solve the relaxed master program
RMP(T 2, S2) and denote the optimal solution by (y3, θ3) = (1, 0). Since UBD2 ≤
θ3 + ε, it follows that the termination criterion is satisfied and the algorithm stops.
This means that (x3, y3) = ((1, 0), 1) is an ε-tolerance optimal solution of problem
(28). ��
Example 4.2 Let K := {(u, v) ∈ R

2 : −u ≥ 2|v|, u ≤ 0}, Y = {−2,−1, 0, 1}
and X = {(u, v) : u2 + v2 ≤ 2}. Consider the following MINLP with vector conic
constraint:

min
x,y

f (x, y)

s.t. g(x, y) �K 0,

x = (u, v) ∈ X ,

y ∈ Y . (29)

where f (x, y) = −2u + v + y, g(x, y) = (g1(x, y), g2(x, y)) with

g1(x, y) = −u2 − v2 + y and g2(x, y) = −1

2
u2 + 1

4
v2 + 1

2
y.

Choose the tolerance ε = 0.005. Let y1 = 1 be the initial point and z∗1 = (−1, 0) ∈
K+ with ‖z∗1‖ = 1. Solve optimization problem L-P(y1) as in (26) and obtain the
optimal Lagrange multiplier u∗

1 = (−0.001, 0.002). Set T 1 = {u∗
1}, S1 = {z∗1} and

UBD1 = vy1(0) = −1.001. Solve the relaxed master program RMP(T 1, S1) and
denote the optimal solution by (y2, θ2) = (−2,−5.1697). Noting that the termination
criterion is not satisfied, we check subproblem P(y2) (that is feasible) and get the opti-
mal value vy2(0) = −5.1623 (of P(y2)). This implies that the termination criterion is
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satisfied and then the algorithm is stopped. Thus (x2, y2) = ((1.2649,−0.6325),−2)
is an ε-tolerance optimal solution of MINLP problem (28). ��

Let us turn back to Example 3.1 in Sect. 3. We next use generalized Benders
decomposition procedure in Algorithm 2 to solve this example.

For this case, one has that K = {(u, v) : u ≥ 0, v ≥ 0} and K+ = K .
Let y1 = 2 be the initial point and z∗1 = (0, 1) ∈ K+ with ‖z∗1‖ = 1. Obtain optimal

Lagrangemultiplieru∗
1 = (1, 0.001)by solving theoptimizationproblemL − P(y1) as

in (26). Set T 1 = {u∗
1}, S1 = {z∗1} and UBD1 = vy1(0) = 2. Solve the relaxed master

program RMP(T 1, S1) and denote the optimal solution by (y2, θ2) = (1,−0.002).
Since vy2(0) ≤ θ2+ε, the termination criterion is satisfied and then the algorithm stops.
Thus (x2, y2) = ((1, 0), 1) is an ε-tolerance optimal solution ofMINLP problem (15).

��

5 Proofs of Results in Sects. 3 and 4

This section is devoted to proofs of Propositions 3.1–3.3 and 4.1–4.3.

Proof of Proposition 3.1 From yl ∈ S, one has
∑

i∈Il [gi (xl , yl)]+ > 0. Suppose on the
contrary that there exists x̂ ∈ X such that (x̂, yl) is feasible to the constraint of (10).
Then

gi (xl , yl) + 〈ξl,i , x̂ − xl〉 ≤ 0, ∀i ∈ Il ∪ Jl = {1, . . . ,m}.

This implies that

m∑

i=1

(λl,i gi (xl , yl) + 〈λl,iξl,i , x̂ − xl〉) ≤ 0

and by (8), one has

∑

i∈Il
λl,i gi (xl , yl) +

m∑

i=1

〈λl,iξl,i , x̂ − xl〉 ≤ 0. (30)

Noting that x̂ − xl ∈ T (X , xl) by the convexity of X , it follows from (9) and (30) that

∑

i∈Il
λl,i gi (xl , yl) ≤ 0.

By (9), one can verify that

∑

i∈Il
[gi (xl , yl)]+ =

∑

i∈Il
λl,i gi (xl , yl) ≤ 0,

which contradicts
∑

i∈Il [gi (xl , yl)]+ > 0. The proof is complete. ��
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For the proof of Proposition 3.2, we need the following lemma.

Lemma 5.1 Let x j solve subproblem P(y j ) and subgradients (α j , β j ), (ξ j,i , η j,i ) be
given as said in the case that y j ∈ T . Then

〈α j , x − x j 〉 ≥ 0, ∀x ∈ X with gi (x j , y j ) + 〈ξ j,i , x − x j 〉 ≤ 0,∀i = 1, . . . ,m.

(31)

Proof Let x ∈ X be such that

gi (x j , y j ) + 〈ξ j,i , x − x j 〉 ≤ 0,∀i = 1, . . . ,m.

This and (5) imply that

m∑

i=1

〈λ j,iξ j,i , x − x j 〉 =
m∑

i=1

(λ j,i gi (x j , y j ) + 〈λ j,iξ j,i , x − x j 〉) ≤ 0. (32)

Noting that x − x j ∈ T (X , x j ) by the convexity of X , it follows from (6) and (32)
that

〈α j , x − x j 〉 =
〈
α j +

m∑

i=1

λ j,iξ j,i , x − x j
〉
−

〈 m∑

i=1

λ j,iξ j,i , x − x j
〉
≥ 0.

Hence (31) holds. The proof is complete. ��
Proof of Proposition 3.2. Suppose that (x̂, ŷ, θ̂ ) is an optimal solution of master pro-
gram (MP) in (11) and (x j0 , y j0) solves problem (P) in (3). We need to prove that
θ̂ = f (x j0 , y j0).

Note that (x̂, ŷ, θ̂ ) is feasible to (MP) and thus (x̂, ŷ, θ̂ ) satisfies constraints in
(MP). By Proposition 3.1, one has ŷ /∈ S and thus we can assume that ŷ = y j1 for
some y j1 ∈ T . Then

f (x j1 , y j1) + (α j1 , β j1)
T

(
x̂ − x j1

0

)

≤ θ̂ (33)

and

gi (x j1 , y j1) + (ξ j1,i , η j1,i )
T

(
x̂ − x j1

0

)

≤ 0, i = 1, . . . ,m.

This and Lemma 5.1 imply that 〈α j1 , x̂ − x j1〉 ≥ 0 and by (33), one has

θ̂ ≥ f (x j1 , y j1) ≥ f (x j0 , y j0).
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On the other side, (x j0 , y j0) is feasible to problem (P) and thus gi (x j0 , y j0) ≤ 0 for
all i = 1, . . . ,m. Noting that (α j , β j ) ∈ ∂ f (x j , y j ), (ξ j,i , η j,i ) ∈ ∂gi (x j , y j ) for all
y j ∈ T and (ξl,i , ηl,i ) ∈ ∂gi (xl , yl) for all yl ∈ S, it follows that

f (x j , y j ) + (α j , β j )
T

(
x j0 − x j
y j0 − y j

)

≤ f (x j0 , y j0) ∀y j ∈ T ,

gi (x j , y j ) + (ξ j,i , η j,i )
T

(
x j0 − x j
y j0 − y j

)

≤ gi (x j0 , y j0) ≤ 0 ∀y j ∈ T , i = 1, . . . ,m,

gi (xl , yl) + (ξl,i , ηl,i )
T

(
x j0 − xl
y j0 − yl

)

≤ gi (x j0 , y j0) ≤ 0 ∀yl ∈ S, i = 1, . . . ,m.

This implies that (x j0 , y j0 , f (x j0 , y j0)) is feasible to (MP) and consequently

θ̂ ≤ f (x j0 , y j0).

Hence θ̂ = f (x j0 , y j0). The proof is complete. ��
Proof of Proposition 3.3. We prove that no integer variable will be generated more than
once. Granting this, Algorithm 1 terminates in a finite number of steps by the finite
cardinality of Y .

At iteration k, suppose that (x̂, ŷ, θ̂ ) is an optimal solution to the relaxed master
program MPk . We need to show that ŷ /∈ T k ∪ Sk .

By Proposition 3.1, one has ŷ /∈ Sk and thus it suffices to prove that ŷ /∈ T k .
Suppose on the contrary that ŷ = y jk for some y jk ∈ T k . Then (x̂, y jk , θ̂ ) is feasible
to the relaxed master program MPk and

θ̂ < UBDk ≤ f (x jk , y jk ),

f (x jk , y jk ) + 〈α jk , x̂ − x jk 〉 ≤ θ̂ ,

gi (x jk , y jk ) + 〈ξ jk ,i , x̂ − x jk 〉 ≤ 0, i = 1, . . . ,m. (34)

By Lemma 5.1, one has

〈α jk , x̂ − x jk 〉 ≥ 0.

This and (34) imply that f (x jk , y jk ) ≤ θ̂ , which contradicts θ̂ < f (x jk , y jk ).
Now suppose that Algorithm 1 terminate at k-th step for some k; that is, the relaxed

master program MPk is infeasible. To complete the proof, we need to show that the
optimal value of problem (P) is attainable.

Let r∗ denote the optimal value of problem (P) in (3). If there exists y j ∈ T k−1

such that f (x j , y j ) = r∗, then the conclusion holds. Next, we consider the case that
f (x j , y j ) > r∗ for all y j ∈ T k−1. Then UBDk−1 > r∗ and yk ∈ T k (otherwise,
yk ∈ Sk , UBDk = UBDk−1 by Algorithm 1 and consequently MPk is feasible, a
contradiction). This implies that subproblem P(yk) is feasible and thus f (xk, yk) ≥ r∗.
We claim that f (xk, yk) = r∗. (Otherwise f (xk, yk) > r∗. Then r∗ < UBDk and
thus one can verify that MPk is feasible, a contradiction). The proof is complete. ��

123



858 Journal of Optimization Theory and Applications (2019) 181:840–863

Proof of Proposition 4.1. (i) Let y ∈ Y . From the convexity of f (·, y) and K -convexity
of g(·, y), one can verify that vy(·) is a convex and monotone nonincreasing and thus
dom(vy) is convex. Since X is compact and f (·, y), g(·, y) are continuous, it is easy
to verify that dom(vy) is closed.

We next prove the lower semicontinuity of vy(·). Let z ∈ dom(vy) and zk → z
with zk ∈ dom(vy). Then for any k ∈ N, there exists xk ∈ X such that g(xk, y) �K zk
and

vy(zk) ≥ f (xk, y) − 1

k
.

Noting that X is compact, without loss of generality, we can assume that xk → x̄ ∈ X
(considering subsequence if necessary). Thus g(x̄, y) �K z by the continuity of
g(·, y). This implies that

lim inf
k→∞ vy(zk) ≥ lim inf

k→∞ ( f (xk, y) − 1

k
) ≥ f (x̄, y) ≥ vy(z).

(ii) Let y ∈ Y be such that P(y) is feasible. By the Slater constraint qualification
in (21), one has −g(x̂, y) ∈ int(K ) and then there exists δ > 0 such that −g(x̂, y) +
B(0, δ) ⊂ K . This implies that 0 ∈ int(dom(vy)) and it follows from [28, Proposition
3.3] that vy is continuous at 0.

Let −ū∗ ∈ ∂vy(0) and suppose that x̄ is an optimal solution of subproblem P(y).
We next prove that (x̄, ū∗) satisfies the optimality conditions in (20).

For any z ∈ K , by −ū∗ ∈ ∂vy(0), one has

〈ū∗, z〉 ≥ vy(0) − vy(z) ≥ 0

as vy(·) is monotone nonincreasing. This implies that ū∗ ∈ K+. Noting that x̄ solves
P(y), it follows that

g(x̄, y) �K 0, vy(g(x̄, y)) = vy(0) and 〈ū∗, g(x̄, y)〉 ≥ vy(0) − vy(g(x̄, y)) = 0.

(35)

From ū∗ ∈ K+, one has 〈ū∗, g(x̄, y)〉 ≤ 0 and so 〈ū∗, g(x̄, y)〉 = 0 by (35) .
For any x ∈ X , by −ū∗ ∈ ∂vy(0), one has

f (x, y) ≥ vy(g(x, y)) ≥ vy(0) − 〈ū∗, g(x, y)〉 = f (x̄, y)

+〈ū∗, g(x̄, y)〉 − 〈ū∗, g(x, y)〉.

This implies that f (x̄, y)+〈ū∗, g(x̄, y)〉 = minx∈X
{
f (x, y)+〈ū∗, g(x, y)〉}. Hence

ū∗ is the optimal Lagrange multiplier of P(y).
Conversely, let ū∗ be an optimal Lagrange multiplier of P(y). Then there exists

x̄ ∈ X such that (x̄, ū∗) satisfies optimality conditions in (20). Let z ∈ dom(vy) and
x ∈ X satisfying g(x, y) �K z. Then 〈ū∗, z〉 ≥ 〈ū∗, g(x, y)〉 and

f (x, y) + 〈ū∗, z〉 ≥ f (x, y) + 〈ū∗, g(x, y)〉 ≥ f (x̄, y) + 〈ū∗, g(x̄, y)〉 = vy(0).
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This implies that vy(z) ≥ vy(0) − 〈ū∗, z〉 and thus −ū∗ ∈ ∂vy(0). The proof is
complete. ��
Proof of Proposition 4.2 (i) Note that if P(y) is feasible, then there is x ∈ X such that
g(x, y) �K 0 and thus the necessity part follows.

The sufficiency part. By (22), one has

sup
u∗∈K+,‖u∗‖=1

inf
x∈X〈u∗, g(x, ȳ)〉 ≤ 0.

This implies that

max
u∗∈K+

{
inf
x∈X〈u∗, g(x, ȳ)〉

}
= 0. (36)

Note that P(y) is feasible if and only if 0 ∈ dom(vy) and it suffices to prove that

0 ∈ dom(vy).

Suppose on the contrary that 0 /∈ dom(vy). Since dom(vy) is convex and closed by
Proposition 4.1(i), it follows from separation theorem that there exist z∗ ∈ R

m with
‖z∗‖ = 1 and r ∈ R such that

inf{〈z∗, z〉 : z ∈ dom(vy)} > r > 0. (37)

We first show that z∗ ∈ K+. Let z ∈ K and k ∈ N. Take any x ∈ X . Then kz ∈ K
and g(x, y) + kz ∈ dom(vy). By (37), one has 〈z∗, g(x, y) + kz〉 > r > 0 and thus

1

k
〈z∗, g(x, y)〉 + 〈z∗, z〉 >

r

k
> 0.

By taking limits as k → ∞, one has 〈z∗, z〉 ≥ 0. Hence z∗ ∈ K+.
Noting that f (·, y) is continuous and X is compact, it follows that

inf
x∈X f (x, y) > −∞

and for any t > 0, one has t z∗ ∈ K+ and

inf
x∈X{ f (x, y) + 〈t z∗, g(x, y)〉} ≥ inf

x∈X f (x, y) + t inf
x∈X〈z∗, g(x, y)〉 > inf

x∈X f (x, y) + tr .

By taking limits as t → +∞, one has

max
u∗∈K+

{
inf
x∈X

{
f (x, y) + 〈u∗, g(x, y)〉}

}
= +∞,

which contradicts (36).
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(ii) Using the weak duality, one has

max
u∗∈K+

{
inf
x∈X{ f (x, y) + 〈u∗, g(x, y)〉}

}
≤ inf

x∈X{ f (x, y) : g(x, y) �K 0} = vy(0).

On the other side, suppose that −ū∗ ∈ ∂vy(0). By Proposition 4.1(ii), ū∗ ∈ K+ and
for any x ∈ X , one has

f (x, y) ≥ vy(g(x, y)) ≥ vy(0) − 〈ū∗, g(x, y)〉

and thus

inf
x∈X{ f (x, y) + 〈ū∗, g(x, y)〉} ≥ vy(0).

This means that

max
u∗∈K+

{
inf
x∈X{ f (x, y) + 〈u∗, g(x, y)〉}

}
≥ vy(0).

Hence (23) holds. The proof is complete. ��
For the proof of Proposition 4.3, we need the following lemma.

Lemma 5.2 Let L : Y × K+ → R be defined as

L(y, u∗) := inf
x∈X

{
f (x, y) + 〈u∗, g(x, y)〉}, ∀(y, u∗) ∈ Y × K+. (38)

Then for any ȳ ∈ Y , one has that L(ȳ, ·) is continuous on K+.

Proof Let ȳ ∈ Y be fixed and ū∗ ∈ K+. We first prove that L(ȳ, ·) is lower semicon-
tinuous at ū∗. To do this, take any u∗

k → ū∗ with u∗
k ∈ K+. Then for any k ∈ N, there

exists xk ∈ X such that

f (xk, ȳ) + 〈u∗
k , g(xk, ȳ)〉 = L(ȳ, u∗

k) (39)

as X is compact and f (·, ȳ), g(·, ȳ) are continuous. Without loss of generality, we can
assume that xk → x̄ ∈ X (considering subsequence if necessary). By (39), one has

L(ȳ, ū∗) ≤ f (x̄, ȳ) + 〈ū∗, g(x̄, ȳ)〉 ≤ lim
k

( f (xk, ȳ) + 〈u∗
k , g(xk, ȳ)〉).

This implies that L(ȳ, ·) is lower semicontinuity at ū∗.
We next show that L(ȳ, ·) is upper semicontinuous at ū∗. For any x ∈ X , one has

f (x, ȳ) + 〈ū∗, g(x, ȳ)〉 = lim
k

( f (x, ȳ) + 〈u∗
k , g(x, ȳ)〉) ≥ lim sup

k
L(ȳ, u∗

k).
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This implies that

L(ȳ, ū∗) = inf
x∈X( f (x, ȳ) + 〈ū∗, g(x, ȳ)〉) ≥ lim sup

k
L(ȳ, u∗

k)

and consequently L(ȳ, ·) is upper semicontinuous at ū∗. Hence L(ȳ, ·) is continuous
at ū∗. The proof is complete. ��
Proof of Proposition 4.3. Suppose on the contrary that there exists ε0 > 0 such that
Algorithm2 can generate a sequence {(yk , θk)} satisfying subproblem P(yk) is feasible
and θk ∈ R for all k. Then for any k, one has u∗

k ∈ K+ is the optimal Lagrange
multiplier of subproblem P(yk) and thus u∗

k ∈ −∂vyk (0) by Proposition 4.1(ii). From
the relaxed master program RMP(T k, Sk), one can verify that {θk} is nondecreasing
and bounded above. By the finite cardinality of Y , there exist ȳ ∈ Y and a subsequence
{ki : i = 1, 2, . . .} such that yki ≡ ȳ for all i ∈ N. Using Proposition 4.1(ii), one
has that vȳ(·) is continuous at 0 and it follows from [28, Proposition 1.11] that ∂vȳ(0)
is closed and bounded. This implies that {u∗

ki
} is bounded. Thus, without loss of

generality, we can assume that (u∗
ki

, θki ) → (ū∗, θ̄ ) ∈ −∂vȳ(0) × R.

By solving relaxed master program RMP(T ki , Ski ) in Algorithm 2, one has

θki+1 ≥ L(yki+1 , u
∗
ki ) = L(ȳ, u∗

ki ).

By Lemma 5.2, L(ȳ, ·) is continuous at ū∗ and it follows by taking limits as i that

θ̄ ≥ L(ȳ, ū∗) = vȳ(0).

This implies that when i is sufficiently large, one has

θki + ε0

2
> θ̄ ≥ vȳ(0) = vyki

(0) > vyki
(0) − ε0

2

and consequently

vyki
(0) ≤ θki + ε0.

Then the termination criterion in Algorithm 2 is satisfied and thus Algorithm 2 will
terminate at ki -step, a contradiction. The proof is complete. ��

6 Conclusions

Compared with smooth functions, nonsmooth functions appear more frequently and
generally in optimization problems; for example, for the function space consisting of
all continuous functions on closed interval [a, b], the complement of the subset with
functions that fail to be differentiable everywhere is the first category. This means
that the number of nonsmooth functions is far more than that of smooth functions.
Meanwhile, over the past three decades, nonsmooth analysis has been recognized as a
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broad spectrumofmathematical theory that has grown in connectionwithmany aspects
of mathematical programming and optimization. This paper is motivated by the idea
of applying techniques in nonsmooth analysis to dealing with nonsmooth optimization
problems. By the subgradients, we study two algorithms by OA and GBD for dealing
with MINLPs that are lack of differentiability data. The further work may be done
along two lines: one is to consider how to solvemore complicated nonsmoothMINLPs
that are with a larger scale and difficult to solve by differentiability techniques, and
the other is to tackle the nonsmooth MINLPs by relaxing or dropping the convexity
assumption.
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