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Abstract
Weconsider the regularization of two proximal point algorithms (PPA)with errors for a
maximalmonotone operator in a realHilbert space, previously studied, respectively, by
Xu, and by Boikanyo and Morosanu, where they assumed the zero set of the operator
to be nonempty. We provide a counterexample showing an error in Xu’s theorem,
and then we prove its correct extended version by giving a necessary and sufficient
condition for the zero set of the operator to be nonempty and showing the strong
convergence of the regularized scheme to a zero of the operator. This will give a first
affirmative answer to the open question raised by Boikanyo andMorosanu concerning
the design of a PPA, where the error sequence tends to zero and a parameter sequence
remains bounded. Then, we investigate the second PPA with various new conditions
on the parameter sequences and prove similar theorems as above, providing also a
second affirmative answer to the open question of Boikanyo and Morosanu. Finally,
we present some applications of our new convergence results to optimization and
variational inequalities.
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1 Introduction

In a fundamental work, Rockafellar [1] proved that the subdifferential of a proper,
convex and lower semicontinuous function is a maximal monotone operator. Since
the zeroes of the subdifferential correspond to the minimizers of the function, then
finding and approximating those zeroes is a problem of fundamental importance in
optimization. One of the most effective iterative methods for solving this problem is
the proximal point algorithm (abbreviated PPA), whichwas studied byRockafellar [2].
The first mean ergodic theorem for nonexpansive self-mappings of a nonempty closed
and convex subset of a Hilbert space was proved by Baillon [3]. For more details on
maximal monotone operators and nonexpansive mappings, we refer the reader to [4–
7]. In this paper, motivated by our approach in [8–12], we consider the regularization
of two PPA with errors for a maximal monotone operator in a real Hilbert space,
previously studied, respectively, by Xu, and by Boikanyo and Morosanu, where they
assumed the zero set of the operator to be nonempty. First, by providing a counter
example, we point out an error in the proof of Xu’s theorem concerning the uniformity
of the strong convergence with respect to a parameter. Subsequently, we prove a
correct extended version of that theorem with appropriate conditions, giving also a
necessary and sufficient condition for the zero set of the operator to be nonempty and
showing the strong convergence of the regularized scheme to a zero of the operator.
We note in passing that Song and Yang [13] had already noticed and corrected an
error in Xu’s paper, and Wang [14] had extended a theorem in Xu’s paper. However,
none of these authors had noticed the error that we point out and correct in our paper.
This will give a first affirmative answer to the open question raised by Boikanyo and
Morosanu concerning the design of a PPA, where the error sequence tends to zero
and a parameter sequence remains bounded. Then we investigate the second PPA with
various new conditions on the parameter sequences and prove similar theorems as
above, providing also a second affirmative answer to the open question of Boikanyo
and Morosanu. We note also that Yao and Shahzad [15] had already provided an
affirmative answer to the open question raised by Boikanyo and Morosanu, however,
with a PPA different from the one considered by them and with conditions stronger
than ours on the parameter sequences, whereas our paper answers affirmatively the
open question for the same PPA with mild conditions on the parameter sequences.
Finally, we present some applications of our new convergence results to optimization
and variational inequalities.

2 Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. An operator
T : D(T ) ⊆ H ⇒ H is said to be monotone if its graph G(T ) is a monotone subset
of H × H , that is,

〈y2 − y1, x2 − x1〉 ≥ 0,

for all x1, x2 ∈ D(T ) and all y1 ∈ T (x1) and y2 ∈ T (x2). Clearly, if T is monotone,
then its inverse defined by T−1 := {(y, x) : (x, y) ∈ G(T )} is also a monotone
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operator. We say that T is maximal monotone if T is monotone and the graph of T
is not properly contained in the graph of any other monotone operator. It is known
that in Hilbert space, this is equivalent to the range of the operator (I + T ) being
all of H , where I is the identity operator on H , i.e., R(I + T ) = H . Also it is
clear that T is maximal monotone if and only if T−1 is maximal monotone. For a
maximal monotone operator T , and for every t > 0, the operator Jt : H −→ H
defined by JTt (x) := (I + tT )−1(x) is well defined, single-valued and nonexpansive
on H . It is called the resolvent of T . Consider the following set valued problem: find
x ∈ D(T ) such that 0 ∈ T (x). One of the most effective iterative methods for solving
this problem is the proximal point algorithm (abbreviated PPA). The PPA generates an
iterative sequence (xn) as follows: xn+1 = JTγn (xn + en), for all n ≥ 0, where x0 ∈ H
is a given starting point, (γn) ⊂]0,+∞[ and (en) is a sequence of computational
errors. In 2006, Xu [16] proposed the following regularization for the proximal point
algorithm:

xn+1 = JTcn ((1 − tn)xn + tnu + en), (1)

where x0, u ∈ H , tn ∈]0, 1[, cn ∈]0,+∞[, for all n ≥ 0. He showed that if
T−1(0) �= ∅ and tn → 0,

∑∞
n=0 tn = ∞,

∑∞
n=0 ‖en‖ < ∞, tn+1 ≤ cn+1

cn
and

either limn→∞ 1
tn

| cn+1tn
cn tn+1

− 1| = 0 or
∑∞

n=0 | cn+1tn
cn tn+1

− 1| < ∞, then (xn) converges

strongly to an element of T−1(0) which is nearest to u. This algorithm essentially
includes the algorithm that was introduced by Lehdili and Moudafi [17].

Recently, Boikanyo and Morosanu [18] considered the sequence generated by the
following algorithm:

xn+1 = αnu + (1 − αn)J
T
βn

(xn) + en, n ≥ 0 (2)

where x0, u ∈ H , αn ∈]0, 1[, βn ∈]0,+∞[, for all n ≥ 0. They showed that if
T−1(0) �= ∅ and αn → 0, βn → +∞,

∑∞
n=0 αn = ∞ and either ‖en‖

αn
→ 0 or

∑∞
n=0 ‖en‖ < ∞, then (xn) converges strongly to an element of T−1(0) which is

nearest to u. It is easy to see that algorithms (1) and (2) are in fact equivalent (see, e.g.,
[18]). For more information on PPA, we refer the reader to [2,8,16,17,19,20], and the
references therein.

3 Main Results

In this section, we use contractions as the Tikhonov regularization of the resolvent JTc
by considering the mapping Vt defined by

Vt x := JTc ((1 − t)x + tu + e), x ∈ H , (3)

where t ∈]0, 1[, c > 0 and u, e ∈ H are fixed. Since JTc is nonexpansive, it is easy to
see that Vt is a contraction. By using the Banach contraction principle, Vt has a unique
fixed point which is denoted by vt . Hence,
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vt := JTc ((1 − t)vt + tu + e). (4)

In the sequel, we denote F := T−1(0) and PF denotes the metric projection map of
H onto F .

3.1 The RegularizationMethod

In the following theorem, we consider the algorithm (5) below, and we show that the
sequence (vn) converges strongly to PFu. We provide also a necessary and sufficient
condition for the zero set of T to be nonempty.

Theorem 3.1 Let T : D(T ) ⊆ H ⇒ H be a maximal monotone operator. Let u ∈ H,
(tn)∞n=1 ⊂]0, 1[, (cn)∞n=1 ⊂]0,∞[ and (en)∞n=1 ⊂ H. Then the following statements
hold:

(i) For every n ∈ N, there exists a unique vn ∈ H such that

vn := JTcn ((1 − tn)vn + tnu + en). (5)

(ii) If either one of the following two conditions hold, then F := T−1(0) �= ∅ if and
only if lim inf

n→+∞‖vn‖ < +∞ if and only if (vn) is bounded.

(a) ( entn
) is bounded and limn→∞ cn = ∞.

(b) limn→∞ tn = 0, ( entn ) is bounded and lim infn→∞ cn ≥ β for some β > 0.

(iii) If either one of the following two conditions hold, and if F = T−1(0) �= ∅, then
s − limn→+∞ vn = PFu.

(a) limn→∞ ‖en‖
tn

= 0 and limn→∞ cn = ∞,

(b) limn→∞ tn = 0, limn→∞ ‖en‖
tn

= 0 and lim infn→∞ cn ≥ β for some β > 0.

Proof (i) From (4), it follows that for every n ∈ N there exists a unique vn ∈ H
such that (5) holds.

(ii) Assume that F := T−1(0) �= ∅ and let p ∈ T−1(0). Since Jcn (p) = p, from (5)
and the nonexpansiveness of the resolvent operator, we have:

‖vn − p‖ ≤ (1 − tn)‖vn − p‖ + tn‖u − p‖ + ‖en‖. (6)

Hence, ‖vn − p‖ ≤ ‖u − p‖ + en
tn
, and this shows that (vn) is bounded and hence

lim infn→+∞ ‖vn‖ < +∞.
Conversely, assume that lim infn→+∞ ‖vn‖ < +∞. Then, there exists a subse-

quence (n(k)) of N and some v∞ ∈ H such that vn(k)⇀v∞. Now for every x ∈ D(T )

and y ∈ T (x), by the monotonicity of T , we get:

〈
tn(k)(u − vn(k)) + en(k)

cn(k)
− y, vn(k) − x

〉

≥ 0. (7)
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By letting k → ∞ in (7), we have 〈0 − y, v∞ − x〉 ≥ 0, and therefore, by the
maximality of T , we conclude that v∞ ∈ D(T ) and 0 ∈ T (v∞). Hence, T−1(0) �= ∅.
The above proof shows that T−1(0) �= ∅, if and only if (vn) is bounded and this
completes the proof of (ii).
(iii) It follows from (ii) that F = T−1(0) �= ∅ and (vn) is bounded. Let p ∈ T−1(0).
By the monotonicity of T , we have: 〈 tn(u−vn)+en

cn
− 0, vn − p〉 ≥ 0 and hence 〈vn −

p, vn − u〉 ≤ 〈 entn , vn − p〉. Therefore,

‖vn − p‖2 = 〈vn − p, vn − u〉 + 〈vn − p, u − p〉
≤

〈
en
tn

, vn − p

〉

+ 〈vn − p, u − p〉

≤ ‖en‖ · ‖vn − p‖
tn

+ 〈vn − p, u − p〉. (8)

Since (vn) is bounded, there exists a subsequence (n(k)) of N and v ∈ H such that
vn(k)⇀v, and

lim sup
n→∞

〈vn − p, u − p〉 = lim
k→∞〈vn(k) − p, u − p〉 = 〈v − p, u − p〉.

Now for every (x, y) ∈ G(T ):

〈
tn(k)(u − vn(k)) + en(k)

cn(k)
− y, vn(k) − x

〉

≥ 0. (9)

Letting k −→ ∞ in the above inequality, we get 〈0− y, v − x〉 ≥ 0, and hence, by the
maximality of T , we conclude that v ∈ D(T ) and 0 ∈ T (v). Also from (8) we get:

lim sup
n→∞

‖vn − p‖2 ≤ 0 + 〈v − p, u − p〉. (10)

For q = PFu, since v ∈ T−1(0), we have: 〈v − q, u − q〉 ≤ 0. Now replacing p with
q in (10), and using the above inequality, we conclude that lim supn→∞ ‖vn −q‖ = 0
and hence s − limn→+∞ vn = q = PFu. This completes the proof. ��
Remark 3.1 In his Theorem 3.1, Xu [16] claims that the strong convergence in this
theorem is uniform with respect to c > 0. However, his proof is not correct because
the choice of vt in this theorem depends on the choice of c, and actually, the result
is not true, as shown by the following example. It is true if the condition c > 0 is
replaced by c > α for some α > 0. Therefore, our Theorem 3.1 is a true extension of
Xu [16, Theorem 3.1].

Example 3.1 Let T : R −→ R be defined by T x = x . Obviously F = T−1(0) = {0}.
Let u ∈ R. For every t ∈]0, 1[ and c > 0 there exists a unique vct ∈ R such that
vct = JTc ((1 − t)vct + tu) and hence vct = t

t+c u. Suppose u = 1. If tn −→ 0 and

cn = tn , then we have v
cn
tn = 1

2 � PF (u) = 0.
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Remark 3.2 Our regularization method introduced in Theorem 3.1 provides an affir-
mative answer to an open question raised by Boikanyo and Morosanu [18, p. 640],
concerning the design of a PPA where limn→∞‖en‖ = 0 and the sequence (cn) is
bounded.

3.2 Proximal Point Algorithm

In the following theorem, we give a necessary and sufficient condition for the zero set
of T to be nonempty, in which case we show the strong convergence of the sequence
generated by (1).

Theorem 3.2 Let T : D(T ) ⊆ H ⇒ H be a maximal monotone operator. For any
fixed x0, u ∈ H, let the sequence (xn) be generated by

xn+1 = JTcn ((1 − tn)xn + tnu + en), (11)

for all n ≥ 0, where tn ∈]0, 1[, cn ∈]0,+∞[ and en ∈ H for all n ≥ 0. Then the
following statements hold:

(i) If limn→+∞ cn = +∞, (en) ⊂ H is bounded and

lim sup
m→∞

m∑

k=1

(1 − tk)(1 − tk+1) · · · (1 − tm) < ∞, (12)

then T−1(0) �= ∅ if and only if lim infn→∞(‖xn+1‖ + ‖xn‖) < ∞ if and only if
(xn) is bounded.

(ii) If F := T−1(0) �= ∅, then for every sequence (en) ⊂ H, (tn)∞n=1 ⊂]0, 1[ and
(cn)∞n=1 ⊂]0,∞[ where (12) holds, limn→+∞ cn = +∞ and limn→+∞ ‖en‖

tn
=

0, we have that the sequence (xn) generated by (11) converges strongly to PFu.

Proof (i) Assume that T−1(0) �= ∅, and let p ∈ T−1(0). Since Jcm (p) = p, from
(11), and the nonexpansiveness of the resolvent operator, we have:

‖xm+1 − p‖ ≤ (1 − tm)‖xm − p‖ + tm‖u − p‖ + ‖em‖. (13)

LetM > 0 be such that ‖en‖ < M for all n ∈ N. Then from (13)we get: ‖xm+1− p‖ ≤
(1 − tm)‖xm − p‖ + ‖u − p‖ + M for all m ≥ 0. Hence, by using induction, for all
n ≥ 0, we get:

‖xn+1 − p‖ ≤(1 − tn)(1 − tn−1) · · · (1 − t0)‖x0 − p‖

+
(

1 +
n∑

k=1

(1 − tk)(1 − tk+1) · · · (1 − tn)

)

(‖u − p‖ + M).

This shows that (xn) is bounded and so lim infn→∞(‖xn+1‖ + ‖xn‖) < ∞.
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Conversely, assume that lim infn→∞(‖xn+1‖ + ‖xn‖) < ∞. Then there exists a sub-
sequence (n(k)) ofN such that ‖xn(k)+1‖+‖xn(k)‖ is bounded. Therefore, there exists
a subsequence (m(l)) of (n(k)) such that xm(l)+1⇀p as l → +∞ for some p ∈ H .
Also (xm(l)) is a bounded sequence. Now for every x ∈ D(T ) and y ∈ T (x), by the
monotonicity of T , we get:

〈

y − (1 − tm(l))xm(l) + tm(l)u + em(l) − xm(l)+1

cm(l)
, x − xm(l)+1

〉

≥ 0. (14)

Now lettingm → ∞ in (14), we get 〈y−0, x − p〉 ≥ 0, and hence, by the maximality
of T , we conclude that p ∈ D(T ) and 0 ∈ T (p). Moreover, the above proof shows
that T−1(0) �= ∅ if and only if (xn) is bounded, and this completes the proof of (i).
(ii) Since (12) holds, there exists some M < ∞ such that for all n ∈ N,

∑n
k=1(1 −

tk)(1 − tk+1) · · · (1 − tn) < M .
We know from Theorems 3.1 and 3.2 (i) that the two sequences (vn) and (xn) are
bounded. Also for all m ∈ N

‖xm+1 − vm+1‖ ≤ ‖xm+1 − vm‖ + ‖vm+1 − vm‖
= ‖JTcm ((1 − tm)xm + tmu + em) − JTcm ((1 − tm)vm + tmu + em)‖

+ ‖vm+1 − vm‖ ≤ (1 − tm)‖xm − vm‖ + ‖vm+1 − vm‖. (15)

Let ε > 0 be arbitrary. Since by Theorem 3.1 we have s − limn−→∞ vn = PFu, there
exists some p ∈ N such that for every i ≥ p we have ‖vi − vi−1‖ < ε. Hence, from
(15) and by using induction, for every n ≥ p, we have:

‖xn+1 − vn+1‖ ≤(1 − tn)‖xn − vn‖ + ε ≤ · · ·
≤(1 − tn)(1 − tn−1) · · · (1 − tp)‖xp−1 − vp−1‖

+
⎛

⎝1 +
n∑

k=p

(1 − tk)(1 − tk+1)...(1 − tn)

⎞

⎠ ε

≤(1 − tn)(1 − tn−1) · · · (1 − tp)‖xp−1 − vp−1‖

+
(

1 +
n∑

k=1

(1 − tk)(1 − tk+1) · · · (1 − tn)

)

ε

≤(1 − tn)(1 − tn−1) · · · (1 − tp)‖xp−1 − vp−1‖ + (1 + M)ε.

By the above inequality, we have: lim sup
n−→∞

‖xn+1 − vn+1‖ ≤ 0 + (1 + M)ε. Since

ε > 0 is arbitrary, from the above inequality we get limn→∞ ‖xn − vn‖ = 0, and
hence, since s − limn→∞ vn = PFu (Theorem 3.1), we have s − limn→∞ xn = PFu.
This completes the proof. ��
Remark 3.3 If (tn)∞n=1 ⊂]0, 1[ and lim infn→+∞ tn ≥ α for some α ∈]0, 1[, then
clearly (12) holds. However, from (12) we cannot conclude that liminfn→+∞tn ≥ α

for some α ∈]0, 1[. For example, if tn = 1
ln(n+2) then the condition (12) holds,
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but limn→∞ tn = 0. In fact, condition (12) holds for any sequence (tn)∞n=1 ⊂]0, 1[
that converges to zero as n → ∞ and satisfies tn > 1

ln(n+2) , e.g., tn = 1
ln(ln(n+2)) .

Therefore, the following corollary is a direct consequence of Theorem 3.2.

Corollary 3.1 Let T : D(T ) ⊆ H ⇒ H be a maximal monotone operator. For any
fixed x0, u ∈ H, let the sequence (xn) be generated by (11), for all n ≥ 0, where
tn ∈]0, 1[, cn ∈]0,+∞[ and en ∈ H for all n ≥ 0. Then the following statements
hold.

(i) If lim infn→+∞ tn ≥ α for some α ∈]0, 1[, limn→+∞ cn = +∞ and (en) ⊂ H
is bounded, then T−1(0) �= ∅ if and only if lim inf

n→+∞(‖xn+1‖ + ‖xn‖) < ∞ if and

only if (xn) is bounded.
(ii) If F := T−1(0) �= ∅, lim inf

n→+∞tn ≥ α for some α > 0, limn→+∞ cn = +∞,

and limn→+∞ ‖en‖ = 0, then the sequence (xn) generated by (11) converges
strongly to PFu.

In the following corollary, we prove a similar theorem for the scheme (2) considered
by Boikanyo and Morosanu [18].

Corollary 3.2 Let T : D(T ) ⊆ H ⇒ H be a maximal monotone operator. For any
fixed y0, u ∈ H, let the sequence (yn) be generated by

yn+1 = tnu + (1 − tn)J
T
cn (yn) + en, (16)

for all n ≥ 0, where tn ∈]0, 1[, cn ∈]0,+∞[ and en ∈ H for all n ≥ 0. Then the
following statements hold:

(i) If the condition (12) holds, limsupn→+∞tn < 1, limn→+∞ cn = +∞ and (en) ⊂
H is bounded, then T−1(0) �= ∅ if and only if liminfn→+∞(‖yn+1‖+‖yn‖) < ∞
if and only if (yn) is bounded.

(ii) If F := T−1(0) �= ∅, limn→+∞ ‖en‖ = 0, limn→+∞ tn = t for some t ∈]0, 1[,
and limn→+∞ cn = +∞, then the sequence (yn) generated by (16) converges
strongly to tu + (1 − t)PFu.

(iii) If F := T−1(0) �= ∅, (12) holds, limn→+∞ tn = 0, limn→+∞ ‖en‖
tn

= 0
and limn→+∞ cn = +∞, then the sequence (yn) generated by (16) converges
strongly to PFu.

Proof (i) For every n ≥ 0, define

xn := yn+1 − tnu − en
1 − tn

, (17)

then we have xn := JTcn (yn) = JTcn (tn−1u + (1 − tn)xn−1 + en−1).
Also liminfn→+∞(‖yn+1‖ + ‖yn‖) < ∞, if and only if liminfn→+∞(‖xn+1‖ +
‖xn‖) < ∞. Hence, the conclusion follows from a similar proof as in Theorem 3.2
(i).
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(ii) and (iii) Let (xn) be generated by (17). Then, by a similar proof as in Theorem 3.2
(ii), s − limn→∞ xn = PFu. Hence, by

yn := tn−1u + (1 − tn−1)xn−1 + en−1

we conclude that s − limn→∞ yn = tu + (1− t)PFu and this completes the proof. ��
The following examples show that without additional assumptions, we cannot

replace the condition limn→+∞ cn = +∞ with the boundedness condition for (cn).
In the first example T−1(0) = ∅, and in the second one T−1(0) �= ∅.
Example 3.2 Let T : R −→ R be defined by T x = 1. Obviously T is a maximal
monotone operator. By taking cn = 1, en = 0, tn = 1

2 for all n ≥ 0, x0 = 0 and
u = 0, we have xn+1 = 1

2 xn − 1. (The sequence (xn) is generated by (11).) Then (xn)
is a decreasing sequence, and obviously limn→+∞ xn = −2, but T−1(0) = ∅.
Example 3.3 Let T : R −→ R be defined by T x = x + 1. Obviously T is a maximal
monotone operator. By taking cn = 1, en = 0, tn = 1

2 for all n ≥ 0, x0 = 1 and u = 0
we have xn+1 = 1

4 xn − 1
2 (the sequence (xn) is generated by (11)). Then (xn) is a

decreasing sequence, and obviously limn→+∞ xn = −2
3 , but T−1(0) = {−1}.

In the following theorem, we give another necessary and sufficient condition for the
zero set of T to be nonempty, and show the strong convergence of the corresponding
PPA.

Theorem 3.3 Let T : D(T ) ⊆ H ⇒ H be a maximal monotone operator. For any
fixed x0, y0, z0, u ∈ H, let the sequences (xn), (yn) and (zn) be generated by

xn+1 = JTcn ((1 − tn)xn + tnu + en)

yn+1 = JTcn ((1 − tn)yn)

zn+1 = JTγ ((1 − tn)zn),

for all n ≥ 0, where tn ∈]0, 1[, cn ∈ [γ,+∞[ for some γ ∈]0,+∞[, and en ∈ H for
all n ≥ 0. Suppose that (12) holds. Then the following statements hold:

(i) If (en) is bounded, then (xn) is bounded if and only if (yn) is bounded. Also if
(yn) is bounded, then (zn) is bounded too, but the converse is not true, as Remark
3.6 shows.

(ii) If (en) is bounded, limn−→∞ tn = 0 and
∑∞

n=1 |tn − tn−1| < +∞ then F =
T−1(0) �= ∅ if and only if (xn) is bounded.

(iii) If limn→∞ tn = 0, limn→∞ ‖en‖
tn

= 0,
∑∞

n=1 |tn − tn−1| < +∞ and F =
T−1(0) �= ∅, then s − limn−→∞ xn = s − limn−→∞ yn = s − limn−→∞ zn =
PF (0).

Proof (i) For all n ≥ 0, by using the fact that the resolvent operator is nonexpansive
and by induction, we get:
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‖xn+1 − yn+1‖ ≤(1 − tn)‖xn − yn‖ + tn‖u‖ + ‖en‖
≤ · · · ≤ (1 − tn)(1 − tn−1) · · · (1 − t0)‖x0 − y0‖

+ (tn + tn−1(1 − tn) + · · · + t0(1 − t1) · · · (1 − tn))‖u‖
+ (‖en‖ + ‖en−1‖(1 − tn) + · · · + ‖e0‖(1 − t1) · · · (1 − tn)).

(18)

Since (en) is bounded, there exists some M1 > 0 such that ‖en‖ ≤ M1, for all n ≥ 0
and ‖u‖ ≤ M1. Hence, from (18) we conclude that

‖xn+1 − yn+1‖ ≤ (1 − tn)(1 − tn−1) · · · (1 − t0)‖x0 − y0‖
+(tn + tn−1(1 − tn) + · · · + t0(1 − t1) · · · (1 − tn))M1

+(1 + (1 − tn) + · · · + (1 − t1) · · · (1 − tn))M1

≤ ‖x0 − y0‖ + 2M1

(

1 +
n∑

k=1

(1 − tk)(1 − tk+1) · · · (1 − tn)

)

.

Since (12) holds, the above inequality shows that (xn) is bounded if and only if (yn)
is bounded.
Now for all m ≥ 0, by using the resolvent identity, and the fact that the resolvent
operator is nonexpansive, we have:

‖ym+1 − zm+1‖ = ‖JTcm ((1 − tm)ym) − JTγ ((1 − tm)zm)‖
= ‖JTγ

(
γ

cm
(1 − tm)ym +

(

1 − γ

cm

)

ym+1

)

− JTγ ((1 − tm)zm)‖

≤ ‖ γ

cm
(1 − tm)ym +

(

1 − γ

cm

)

ym+1 − (1 − tm)zm‖

= ‖(1 − tm)(ym − zm) +
(

1 − γ

cm

)

(ym+1 − (1 − tm)ym)‖

≤ (1 − tm)‖ym − zm‖ +
(

1 − γ

cm

)

‖ym+1 − (1 − tm)ym‖. (19)

If (yn) is bounded, then there exists some M2 > 0 such that for all m ≥ 0:

(

1 − γ

cm

)

‖ym+1 − (1 − tm)ym‖ ≤ M2. (20)

From the inequalities (19) and (20), and by induction, for all n ≥ 0, we get:

‖yn+1 − zn+1‖ ≤(1 − tn)‖yn − zn‖ + M2

≤ · · · ≤ (1 − tn)(1 − tn−1) · · · (1 − t0)‖y0 − z0‖
+ M2(1 + (1 − tn) + (1 − tn)(1 − tn−1) + · · ·
+ (1 − tn) · · · (1 − t0)).
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Since (12) holds, the above inequality shows that (zn) is bounded.
(ii) Assume that T−1(0) �= ∅. By a similar proof as in Theorem 3.2(i), (xn) is bounded.
Conversely, assume that (xn) is bounded. Then from (i), (zn) is bounded too. First,
let’s show that (zn) converges. Let M3 > 0 be such that ‖zn‖ ≤ M3 for all n ≥ 0.
Since the resolvent operator is nonexpansive, by induction, we have for all n ≥ 0:

‖zn+1 − zn‖ ≤‖(1 − tn)zn − (1 − tn−1)zn−1‖
=‖(1 − tn)(zn − zn−1) − (tn − tn−1)zn−1‖
≤(1 − tn)‖zn − zn−1‖ + |tn − tn−1|‖zn−1‖
≤(1 − tn)‖zn − zn−1‖ + M3|tn − tn−1|
≤ · · · ≤ (1 − tn)(1 − tn−1) · · · (1 − t1)‖z1 − z0‖

+ M3

(

|tn − tn−1| +
n−1∑

k=1

|tk − tk−1|(1 − tk+1) · · · (1 − tn)

)

. (21)

From the above inequality, we have

∞∑

n=2

‖zn+1 − zn‖ ≤
( ∞∑

n=2

(1 − t1)(1 − t2) · · · (1 − tn)

)

‖z1 − z0‖

+M3

∞∑

n=2

⎛

⎝|tn − tn−1| +
n−1∑

k=1

|tk − tk−1|(1 − tk+1) · · · (1 − tn)

⎞

⎠

≤
( ∞∑

n=2

(1 − t1)(1 − t2) · · · (1 − tn)

)

‖z1 − z0‖

+M3

∞∑

k=1

|tk − tk−1|
⎛

⎝1 +
∞∑

n=k+1

(1 − tk+1)(1 − tk+2) · · · (1 − tn)

⎞

⎠ .

(22)

We are going to show that
∑∞

n=2(1 − t1)(1 − t2) · · · (1 − tn) < +∞ and that there
exists some M4 ∈]0,+∞[ such that

∞∑

n=k+1

(1 − tk+1)(1 − tk+2) · · · (1 − tn) ≤ M4,

for all k ≥ 1. Then,we can conclude from (22) that (zn) is convergent. First, let us show
that

∑∞
n=2(1− t1)(1− t2) · · · (1− tn) < +∞. For every l ∈ N, since limn−→∞ tn = 0,

there exists an integer n ∈ N such that n > 2l and 1− ti < 1− tn−i+1 for all 1 ≤ i ≤ l.
Then,

l∑

m=1

(1 − t1)(1 − t2) · · · (1 − tl)

= (1 − t1) + (1 − t1)(1 − t2) + · · · + (1 − t1)(1 − t2) · · · (1 − tl)
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≤ (1 − tn) + (1 − tn)(1 − tn−1) + · · · + (1 − tn)(1 − tn−1) · · · (1 − tn−l+1)

≤
n∑

k=1

(1 − tk)(1 − tk+1) · · · (1 − tn).

Therefore, by (12) and the above inequality, we get:
∑∞

n=2(1−t1)(1−t2) · · · (1−tn) <

+∞.
Also, for all k ≥ 1 and all m > k, there exists an integer N ∈ N (large enough) such
that 1 − tk+i < 1 − tN−i+1 for all 1 ≤ i ≤ m − k and hence

m∑

n=k+1

(1 − tk+1)(1 − tk+2) · · · (1 − tn)

= (1 − tk+1) + (1 − tk+1)(1 − tk+2) + · · · + (1 − tk+1)(1 − tk+2) · · · (1 − tm)

≤ (1 − tN ) + (1 − tN )(1 − tN−1) + · · · + (1 − tN )(1 − tN−1) · · · (1 − tN−m+1)

≤
N∑

l=1

(1 − tl)(1 − tl+1) · · · (1 − tN ).

Therefore, by (12) and the above inequality, we conclude that there exists some M4 ∈
]0,+∞[ such that

∑∞
n=k+1(1 − tk+1)(1 − tk+2) · · · (1 − tn) ≤ M4, for all k ≥ 1.

Then (22) shows that (zn) is convergent. Let s− limn−→∞ zn = p. For every (x, y) ∈
GraphT, by the monotonicity of T , we have for all n ∈ N:

〈

y − (1 − tn)zn − zn+1

γ
, x − zn+1

〉

≥ 0.

By letting n −→ ∞ in the above inequality, we get 〈y − 0, x − p〉 ≥ 0, and hence,
by the maximality of T , p ∈ D(T ) and 0 ∈ T (p). So T−1(0) �= ∅.
(iii) It follows from Theorem 3.1 (iii) that s − limn−→∞ vn = PF (0), where

vn = JTcn ((1 − tn)vn + tn × 0 + 0) for all n ≥ 0.
For every ε > 0, there exists an integer n0 ∈ N such that for allm ≥ n0: ‖vm+1−vm‖ ≤
ε. First we show that s − limn−→∞ yn = PF (0).
By induction and the fact that the resolvent operator is nonexpansive, for all m ≥ n0,
we have:

‖ym+1 − vm+1‖ ≤ ‖ym+1 − vm‖ + ‖vm − vm+1‖ ≤ (1 − tm)‖ym − vm‖ + ε

≤ · · · ≤ (1 − tm)(1 − tm−1) · · · (1 − tn0)‖yn0 − vn0‖
+ ε(1 + (1 − tm) + · · · + (1 − tm) · · · (1 − tn0+1))

≤ (1 − tm)(1 − tm−1) · · · (1 − tn0)‖yn0 − vn0‖

+ ε

(

1 +
m∑

k=1

(1 − tk)(1 − tk+1) · · · (1 − tm)

)

. (23)
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Since (12) holds, there exists some M5 ∈]0,+∞[ such that, for all n ≥ 1.

n∑

k=1

(1 − tk)(1 − tk+1) · · · (1 − tn) ≤ M5. (24)

Hence, from (23) and (24), for all n ≥ n0 we have ‖yn+1 − vn+1‖ ≤ (1 − tn)(1 −
tn−1) · · · (1 − tn0)‖yn0 − vn0‖ + ε(M5 + 1), and therefore, lim supn−→∞ ‖yn+1 −
vn+1‖ ≤ ε(M5 + 1), for every ε > 0. Hence, limn−→∞ ‖yn − vn‖ = 0. Since
s − limn−→∞ vn = PF (0), we conclude that s − limn−→∞ yn = PF (0). Also, s −
limn−→∞ zn = PF (0), since (zn) is a special case of (yn), with constant sequence
(cn). Finally, we prove that s − limn−→∞ xn = PF (0).
Let ε > 0 be arbitrary. Since limn−→∞ ‖en‖ = limn−→∞ tn = 0, there exists an
integer N0 ∈ N such that for all k ≥ N0, ‖ek‖ < ε and tk < ε.
For all n ≥ N0, from the inequality (18), we deduce that

‖xn+1 − yn+1‖ ≤ (1 − tn)(1 − tn−1) · · · (1 − t0)‖x0 − y0‖
+ (ε + ε(1 − tn) + · · · + ε(1 − tN0+1)(1 − tN0+2) · · · (1 − tn)

+ tN0−1(1 − tN0 ) · · · (1 − tn) + · · · + t0(1 − t1)(1 − t2) · · · (1 − tn))‖u‖
+ (ε + ε(1 − tn) + · · · + ε(1 − tN0+1)(1 − tN0+2) · · · (1 − tn)

+‖eN0−1‖(1 − tN0 ) · · · (1 − tn) + · · · + ‖e0‖(1 − t1)(1 − t2) · · · (1 − tn))

= (1 − tn)(1 − tn−1) · · · (1 − t0)‖x0 − y0‖
+ (1 + ‖u‖)ε(1 + (1 − tn) + · · · + (1 − tN0+1)(1 − tN0+2) · · · (1 − tn))

+ (tN0−1‖u‖ + ‖eN0−1‖)(1 − tN0 ) · · · (1 − tn)

+ (tN0−2‖u‖ + ‖eN0−2‖)(1 − tN0−1) · · · (1 − tn)

+ · · · + (t0‖u‖ + ‖e0‖)(1 − t1)(1 − t2) · · · (1 − tn)

≤ (1 − tn)(1 − tn−1) · · · (1 − t0)‖x0 − y0‖ + (1 + ‖u‖)ε(1 + M5)

+ (tN0−1‖u‖ + ‖eN0−1‖)(1 − tN0 ) · · · (1 − tn)

+ (tN0−2‖u‖ + ‖eN0−2‖)(1 − tN0−1) · · · (1 − tn)

+ · · · + (t0‖u‖ + ‖e0‖)(1 − t1)(1 − t2) · · · (1 − tn).

It follows from the above inequality that:

lim sup
n−→∞

‖xn+1 − yn+1‖ ≤ (1 + ‖u‖)ε(1 + M5)

and since ε > 0 is arbitrary, we conclude that limn−→∞ ‖xn − yn‖ = 0. Since
s − limn−→∞ yn = PF (0), then s − limn−→∞ xn = PF (0) and this completes the
proof. ��
Remark 3.4 The above theorem provides another affirmative answer to the open ques-
tion raised by Boikanyo and Morosanu [18, p. 640].

Remark 3.5 Theorem 3.3 also shows that the convergence of the iterative sequences
(xn) and (yn) is equivalent, implying therefore that the choice of u in the convex
combination, as well as the error sequence (en), as long as it satisfies the assumptions
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of the theorem, is irrelevant for the convergence. However, they can be of course used
as control parameters to speed up the convergence in each case.

Remark 3.6 The following example shows that the boundedness of the sequence (zn)
in Theorem 3.3(i) does not imply that of the sequence (yn).

Example 3.4 Let H = R and T : R −→ R be defined by T x = 1. Suppose that

γ = 1, cn = n + 1 and tn = 1

2
for all n ≥ 1. By choosing z0 = y0 = 0, we have

zn+1 = 1

2
zn − 1

and so

lim
n−→∞ zn = −2.

Therefore, (zn) is bounded. Also, for all m ≥ 1:

m∑

k=1

(1 − tk)(1 − tk+1) · · · (1 − tm) =
m∑

k=1

1

2m−k+1 ≤
∞∑

n=1

1

2n
= 1.

Therefore,

lim sup
m→∞

m∑

k=1

(1 − tk)(1 − tk+1) · · · (1 − tm) < ∞,

and so the condition (12) holds. Also, all the assumptions of Theorem 3.2 hold. Thus,
by Theorem 3.2(i), (yn) is not bounded, since T−1(0) = ∅.
On the other hand, all the assumptions of Theorem 3.3 are satisfied too. However, (zn)
is bounded, but (yn) is not bounded.

4 Applications

4.1 Applications to Optimization

We can apply Theorems 3.1–3.3 and Corollary 3.1 to find a minimizer of a function
f . Let H be a real Hilbert space and f : H −→] − ∞,+∞] be a proper, convex and
lower semicontinuous function. Then the subdifferential ∂ f of f is the multivalued
operator ∂ f : H ⇒ H defined for z ∈ H as follows:

∂ f (z) := {ζ ∈ H : f (y) − f (z) ≥ (ζ, y − z),∀y ∈ H}. (25)

Weknowfrom[1] that the subdifferential of a proper, convex and lower semicontinuous
function ismaximalmonotone and the zeroes of ∂ f correspond to theminimizers of f .
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Therefore, the proximal point algorithm for ∂ f provides a scheme for approximating
a minimizer of f .

In this section, suppose H is a real Hilbert space and D is a nonempty, closed and
convex subset of H .

Theorem 4.1 Let f : H −→] − ∞,+∞] be a proper, convex and lower semicon-
tinuous function. For any x0, u ∈ H, let the sequence (xn) be generated by (11)
for T = ∂ f , where u ∈ H, (tn)∞n=1 ⊂]0, 1[ and (cn)∞n=1 ⊂]0,∞[ such that (12)
holds and cn → +∞ as n → +∞. Suppose that (en)∞n=1 ⊂ H is a sequence with

limn→+∞ ‖en‖
tn

= 0. If (xn) is bounded, then argmin f �= ∅ and (xn) converges strongly

to PFu, the metric projection of u onto F := ∂ f −1(0) = argmin f .

Proof This follows from Theorem 3.2. ��
Theorem 4.2 Let f : H −→ (−∞,+∞] be a proper, convex and lower semicon-
tinuous function. For any x0, u ∈ H, let the sequence (xn) be generated by (11) for
T = ∂ f , where u ∈ H, (tn)∞n=1 ⊂]0, 1[ with lim infn→+∞ tn ≥ α for some α > 0,
and (cn)∞n=1 ⊂]0,∞[ with cn → +∞ as n → +∞. Suppose that (en)∞n=1 ⊂ H is a
sequence with limn→+∞ ‖en‖ = 0. If (xn) is bounded, then argmin f �= ∅ and (xn)
converges strongly to PFu, the metric projection of u onto F := ∂ f −1(0) = argmin f .

Proof This follows from Corollary 3.1. ��
Theorem 4.3 Let f : H −→] − ∞,+∞] be a proper, convex and lower semicon-
tinuous function. For any x0, u ∈ H, let the sequence (xn) be generated by (1) for
T = ∂ f , where u ∈ H, (tn)∞n=1 ⊂]0, 1[ and (cn)∞n=1 ⊂]0,∞[ such that (12) holds,

limn→∞ tn = 0 and limn→∞ ‖en‖
tn

= 0 and
∑∞

n=1 |tn − tn−1| < +∞. If (xn) is

bounded, then s − limn−→∞ xn = PF (0), where F := ∂ f −1(0) = argmin f is
nonempty.

Proof This follows from Theorem 3.3. ��
Subgradient Proximal Algorithm
Initialization: select x0 ∈ H
Iterative step: The iterative sequence wn ∈ H is calculated by

w0 = x0
wn = (1 − tn)xn + tnu + en − cnzn,

where zn is such that

cnzn ∈ cn∂ f (xn+1) ∩ B
(
αu − αPFu,

ε

4

)

for all n ≥ 0, tn → α ∈]0, 1[, and B(x, r) denotes the open ball in H centered at x
with radius r . Nowwe can prove the following result which provides an approximation
to PFu, by using Theorem 3.2.
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Theorem 4.4 Let H be a real Hilbert space and f : H −→] − ∞,+∞] be a proper,
convex and lower semicontinuous function. For any x0, u ∈ H, let ε > 0 and the
sequence (xn) be generated by (11) with T = ∂ f , where tn ∈]0, 1[ and cn ∈]0,+∞[
for all n ≥ 0. Also let the sequence wn be generated by the iterative procedure

w0 = x0
wn = (1 − tn)xn + tnu + en − cnzn,

where zn is such that

cnzn ∈ cn∂ f (xn+1) ∩ B
(
αu − αPFu,

ε

4

)

for all n ≥ 0. If F := ∂ f −1(0) = argmin f �= ∅, tn → α ∈]0, 1[, cn → +∞, and
en → 0 as n → +∞, then there exists some N0 ∈ N such that

‖wn − PFu‖ ≤ ε

for all n ≥ N0.

Proof For all n ∈ N from

(1 − tn)xn + tnu + en ∈ xn+1 + cn∂ f (xn+1)

we deduce that there exists ξn ∈ ∂ f (xn+1) such that

(1 − tn)xn + tnu + en = xn+1 + cnξn .

Letting n −→ ∞ in the above equality, by Theorem 3.2 we get:

lim
n→∞ cnξn = αu − αPFu. (26)

Therefore, there exists some N1 ∈ N such that for all n ≥ N1

cnξn ∈ cn∂ f (xn+1) ∩ B
(
αu − αPFu,

ε

4

)
.

On the other hand, since by the hypothesis we have

cnzn ∈ cn∂ f (xn+1) ∩ B
(
αu − αPFu,

ε

4

)
,

it follows that there exists some N0 ≥ N1 such that for all n ≥ N0

‖xn+1 − PFu‖ <
ε

2
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and

‖cnzn − cnξn‖ <
ε

2
.

Then for all n ≥ N0

‖wn − PFu‖ ≤ ‖wn − xn+1‖ + ‖xn+1 − PFu‖
= ‖cnzn − cnξn‖ + ‖xn+1 − PFu‖
<

ε

2
+ ε

2
= ε,

and this completes the proof. ��

4.2 Applications to Variational Inequalities

Let T0 : D −→ H be a single-valued, monotone and hemicontinuous (i.e., continuous
along each line segment in H with respect to the weak topology) operator. Suppose
that ND(z) is the normal cone to D at z:

ND(z) := {w ∈ H : 〈w, z − u〉 ≥ 0,∀u ∈ D}, (27)

and T : H ⇒ H be defined by:

T (z) :=
{
T0(z) + ND(z), z ∈ D,

∅, z /∈ D.

The maximal monotonicity of such a multifunction T was proved by Rockafellar
[1]. The relation 0 ∈ T (z) reduces to −T0(z) ∈ ND(z), or the so-called variational
inequality:

find z ∈ D such that 〈z − u, T0(z)〉 ≤ 0 for all u ∈ D. (28)

Let V I (T0, D) denote the solution set of the above variational inequality. If D is a
cone, then V I (T0, D) is the set of all z ∈ D such that −T0(z) ∈ D◦ (the polar of
D) and 〈z, T0(z)〉 = 0, and the problem of finding such z is an important instance
of the well-known complementarity problem of mathematical programming. We can
then apply Theorems 3.2, 3.3 and Corollary 3.1 to find a solution for the variational
inequality of a single-valued monotone and hemicontinuous function T0.

Theorem 4.5 Let T0 : D −→ H be a single-valued, monotone and hemicontinuous
operator, and let ND(z) be the normal cone defined above. For any x0, u ∈ H, let the
sequence (xn) be generated by (11) for T defined as above, where (tn)∞n=1 ⊂]0, 1[,
(cn)∞n=1 ⊂]0,∞[, (12) holds and cn → +∞ as n → +∞. Suppose that (en)∞n=1 ⊂ H

is a sequence with limn→+∞ ‖en‖
tn

= 0. If (xn) is bounded, then V I (T0, D) �= ∅ and
(xn) converges strongly to an element of V I (T0, D).
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Proof Since T is a maximal monotone operator and V I (T0, D) = T−1(0), then the
conclusion follows from Theorem 3.2. ��
Theorem 4.6 Let T0 : D −→ H be a single-valued, monotone and hemicontinuous
operator, and let ND(z) be the normal cone defined above. For any x0, u ∈ H, let
the sequence (xn) be generated by (11) for T defined as above, where (tn)∞n=1 ⊂]0, 1[
with lim infn→+∞ tn ≥ α for some α > 0, and (cn)∞n=1 ⊂]0,∞[ with cn → +∞
as n → +∞. Suppose that (en)∞n=1 ⊂ H is a sequence with limn→+∞ ‖en‖ = 0. If
(xn) is bounded, then V I (T0, D) �= ∅ and (xn) converges strongly to an element of
V I (T0, D).

Proof The conclusion follows from Corollary 3.1. ��
Theorem 4.7 Let T0 : D −→ H be a single-valued, monotone and hemicontinuous
operator, and let ND(z) be the normal cone defined above. For any x0, u ∈ H, let the
sequence (xn) be generated by (1) for T defined as above, where (tn)∞n=1 ⊂]0, 1[ and
(cn)∞n=1 ⊂]0,∞[. Suppose that (12) holds, limn→∞ tn = 0 and limn→∞ ‖en‖

tn
= 0 and

∑∞
n=1 |tn − tn−1| < +∞. If (xn) is bounded, then V I (T0, D) �= ∅ and (xn) converges

strongly to an element of V I (T0, D).

Proof The conclusion follows from Theorem 3.3. ��

5 Conclusions

In this paper, we considered the regularized proximal point algorithms with errors
(5) and (11), with various conditions on the parameters and the error sequence, more
general than those considered by previous authors. We provided necessary and suffi-
cient conditions for the zero set of the operator to be nonempty and showed the strong
convergence of the scheme to a zero of the operator in this case. We presented also
some applications of our results to optimization and variational inequalities. In par-
ticular, we provided two affirmative answers to an open question raised by Boikanyo
and Morosanu [18, p. 640], concerning the design of a PPA where the error sequence
tends to zero and a parameter sequence remains bounded. Moreover, since verifying
that the zero set of the operator is nonempty might be a difficult task, then our criteria,
which is related only to the boundedness of the iterates, may provide a very useful
and convenient way for this task, especially from a computational point of view. As
a future direction for research, since numerous other PPA have been developed and
their convergence studied by many authors, it might be interesting to investigate the
possibility of implementing the ideas and methods developed in this paper to these
other PPA, as well as extending these methods to more general spaces, such as Banach
and metric spaces. In particular, in this connection, we can mention the recent work of
Wang et al. [21], as well as Cui and Ceng [22], dealing with the so-called contraction
proximal point algorithm.
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