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Abstract

We consider two classes of problems: unconstrained variational problems of Bolza
type and optimal control problems with state constraints for systems governed by
differential inclusions, both under fairly general assumptions, and prove necessary
optimality conditions for both of them. The proofs using techniques of variational
analysis are rather short, compared to the existing proofs, and the results seem to cover
and extend the now available. The key step in the proof of the necessary conditions
for the second problem is an equivalent reduction to one or a sequence of reasonably
simple versions of the first.

Keywords Optimal control - Differential inclusion - Maximum principle -
Variational analysis - Subdifferential calculus

Mathematics Subject Classification 49K21 - 49J53 - 49]J52 - 58C06

1 Introduction

The ultimate purpose of the paper is to study optimal control problems with state con-
straints for systems governed by differential inclusions. This is a fairly nontrivial class
of optimization problems. The result we prove seems to offer the sharpest and most
general necessary optimality conditions. It strengthens Clarke’s recent theorem [1] (so
far the strongest for problems without state constraints), in particular, by extending it
to problems involving state constraints, and accordingly weakens the assumptions on
which the principal results presented in the monograph by Vinter [2] (for problems
with state constraints) are based.

ButI believe the way the result has been obtained deserves a special, if not the main,
attention. The key element of the proof is reduction of the original problem to uncon-
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strained minimization of a functional that looks similar to the classical Bolza problem
of calculus of variations with Lipschitz integrand and off-integral term. (Actually, in the
absence of state constraints it is a standard Bolza problem with nonsmooth integrand
and off-integral term. In the presence of state constraints, the latter has more com-
plicated structure.) The proof of necessary optimality conditions for strong minimum
in this “generalized Bolza problem” is a combination of a simple relaxation theorem
that allows to reduce the task to finding necessary conditions for weak minimum in
the relaxed problem with subsequent application of standard rules of the nonconvex
subdifferential calculus which is a well-developed chapter of local variational analysis.

The idea behind the reduction is actually very simple: if in an optimization problem
the cost function is Lipschitz near a solution and constraints are subregular at the
point, then the problem admits exact penalization with a Lipschitz (but necessarily
nonsmooth) penalty function giving a certain measure of violation of constraints. This
fact was first mentioned and used in [3], but the very idea to use one or another type
of exact penalization appeared even earlier, at the very dawn of variational analysis.
Ioffe and Tikhomirov in [4] and Rockafellar in [5] used such reduction to prove
the existence of solutions in optimal control problems. Clarke in [6] applied similar
reduction to prove the maximum principle for optimal control problems under the
calmness assumption. This is a fairly weak assumption (implied, in particular, by
metric regularity of constraints), although difficult to verify directly. However, the
techniques used in [6] did not work in the absence of calmness and a different approach
(associated with controllability) was chosen in the accompanying paper [7] to prove
a full version of the maximum principle.

In the three mentioned works, the reduction was based on the standard trick when a
mapping was replaced by the indicator function of its graph, so the penalty functions
appeared to be extended real-valued. Loewen [8] was the first to use a Lipschitz
penalty to reduce an optimal control problem with free end points (automatically calm)
to a Bolza problem with everywhere finite integrand, even having certain Lipschitz
properties. His proof of the maximum principle for such problems was amazingly
simple. But again, the techniques could not be applied to problems with fixed end
points and, like Clarke, Loewen had to use another technique for the proof of a general
maximum principle.

A proof fully based on reduction to an unconstrained Bolza problem was given by
Toffe in [9] with the help of different exact penalization techniques associated with
subregularity property of constraints. This technique was later formalized in [17] in
terms of a certain “optimality alternative” (see the last section). The other key factor
that made the proof in [9] possible was the necessary condition for Bolza problems
obtained by loffe and Rockafellar in [10]. This paper was a crucial step in another (but
associated) line of developments related to the very structure of necessary optimality
conditions in optimal control problems with differential inclusions.

Here is a brief account of the developments up to the mentioned Clarke’s work
[1]. Starting with his early papers [6,7] and up to Loewen’s book [8], the adjoint
Euler-Lagrange inclusions were stated it terms of Clarke’s normal cones which are
convex closures of limiting normal cones. In the pioneering papers by Smirnov [11]
and Loewen and Rockafellar [12], a new and substantially more precise version of the
Euler-Lagrange inclusion was introduced that involved only partial convexification
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of the limiting normal cones. The problem was that in both cases the proof needed
convexity of values of the set-valued mapping in the right-hand side of the inclusion.
Mordukhovich in [13] showed that a modification of Smirnov’s proof (for bounded-
valued and Hausdorff Lipschitz set-valued maps) allows to establish the same type of
Euler-Lagrange inclusion without the convexity assumption. However, the maximum
principle was lost in this proof. In 1997, Ioffe in the mentioned paper [9] and Vinter and
Zheng [14], using a different approach, did prove that both the partially convexified
Euler—Lagrange inclusion and the maximum principle are necessary for a strong local
minimum in optimal control problems with differential inclusions under fairly general
conditions, basically the same as in [12] but without the convexity assumption on the
set-valued map. A detailed proof of the result combining the approaches of [9,14] is
present in Vinter’s monograph [2].

Another line of developments concerns Lipschitz properties of the set-valued map-
ping in the right-hand side of the differential inclusion near he optimal trajectory (see
the comments after the statement of Theorem 3.3).

The plan of the paper is the following. The next section contains information,
mainly from variational analysis, which is necessary for the statements and proofs of
the main results. Section 3 is central. It contains the statements of the problems and
the main theorems. We also give in this section some applications and versions of the
theorems. The subsequent two sections contain the proofs of the main theorems for
the generalized Bolza problem (Sect. 4) and the optimal control problem (Sect. 5),
and in a short last section we return to a question that has remained open for quite
a while. To conclude, we mention that for optimal control problems in the classical
Pontryagin form the proofs can be noticeably simplified. We hope to discuss this in
detail elsewhere.

2 Preliminaries
In what follows x € R”, ||x|| is the standard Euclidean norm of x, B is the unit ball,
B(x, r) is the closed ball of radius r around x and (w, x) stands for the inner product.

The symbol C[0, T'] stands for the space of R”-valued continuous functions on [0, T']
with the standard norm

x()|| = max ||x(2)];
Ol = max (0]

by wlrpo, 11, p € [1, oo] (orjust WL-P), we denote the space of R"-valued absolutely
continuous functions on [0, T'] whose derivatives belong to L? with the norm

Xl p = IxO)I + Xl p-

By f o G, we denote the composition of a mapping G and a function. But when
dependence on the variables should be emphasized, we would often write f(G(x))
rather than (f o G)(x).
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2.1 Subdifferentials

We shall need several types of subdifferentials: proximal and limiting subdifferential
in R" [2,15] and in general Hilbert spaces [16], Dini-Hadamard subdifferential in sepa-
rable Banach spaces, and G-subdifferential [17,18] and Clarke’s generalized gradients
in Banach spaces [19], all coinciding with the subdifferential in the sense of convex
analysis for convex functions. We shall denote by d,, the proximal subdifferential, by
dc the generalized gradient of Clarke and by 9 both the limiting subdifferential in
R” and the subdifferential in the sense of convex analysis, by d~ the Dini-Hadamard
subdifferential and by dg the G-subdifferential in the general Banach space.
Here are some basic facts about these subdifferentials we shall need in proofs.

Proposition 2.1 ([10], Theorem 2) Let X be a Hilbert space, and let f1, ..., fr be lsc
functions on X which are finite at a certain x and uniformly lower semicontinuous at
x in the following sense: there is a ¢ > 0 such that for any sequences {x;n } of elements
of B(x, &) Ndom f; such that || X — xjm| — Oasm — oofori, j =1,...,k, there
is a sequence {u,,} such that ||xj, — um|| — O foranyi =1,...,k and

timinf » ©(fi im) = fi(um)) = 0.

Set f(x) = fi(x) +--- + fi(x) and let x* € 3, f(x). Then for any § > 0 there
are x; with ||x; — x| < & and | fi(x;) — fi(x)| < 8, and x} € 0 fi(x;) such that
lx}+--xf —x* <6, i=1,...,k

The uniform lower semicontinuity property is satisfied, in particular, when all functions
but possibly one of them are Lipschitz near x.

Proposition 2.2 ([16], Chapter 3, Theorem 5.10) Let ¢ (¢, x) be a function on [0, T] X
R which is measurable in t and lower semicontinuous in x. Consider in L*(0, T) the
functional

T
f(X(~))=/O @(t, x(1))d

and assume that &(-) € 0p f (x(-)). Then §(t) € d,¢(t, -)(x(t)) almost everywhere.

Note that it is assumed in [16] that ¢ does not depend on ¢ and is globally Lipschitz
as a function of x. But neither of the assumptions actually plays any role in the proof.

Proposition 2.3 ([17], Corollary 7.15) Let X be a Banach space, and let the functions
fi,i =1, ..., k be Lipschitz continuous in a neighborhood of a certain x. Set f(x) =
max; fi(x) andlet I = {i : f;(X) = f(X)}. Then 3c(f (X)) C >_ ;¢ f; (X) over all
a; > 0 suchthat a; =0fori ¢ I and> o = 1.

Proposition 2.4 ([17], Proposition 4.60) Let X and Y be Banach spaces and A : X —
Y a linear bounded operator withIm A =Y. Let further f be a function on Y which
is Lipschitz continuous in a neighborhood of a certain’y = AX. Set g = f o A. Then

dgg(x) = A* (96 f ().
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Surprisingly the next result seems to be absent in the literature, so we supply it
with a complete proof (in which we use without explanation the definition of the
G-subdifferential in a separable Banach space).

Proposition 2.5 Let X and Y be separable Banach spaces, let A : X — Y be a
bounded linear operator, and let ¢ be a function on Y which is Lipschitz continuous
in a neighborhood of a certain’ y = AX. Set f(x) = ¢(Ax). Then

I f (X) C A*dGe(3).

Proof Take an x sufficiently close to X, and suppose that x* € 3~ f(x). Setting y =
Ax, we deduce that forallh € X andv € Y

(x*,h) <@~ (y; Ah) < ¢~ (y,v) + K||Ah — v]|,

where K is the Lipschitz constant of ¢ near y, and therefore, the global Lipschitz
constant of the lower Dini derivative of ¢ at y:

o (v v) = liltlli(r)lft_l(w(y +1v) — p(3)).

Setg(u,z) = K||Au—z||.Asy = Ax,weseethatg™ ((x, y); (h,v)) = K||Ah—v|| for
all #, v. Note also that g is a convex continuous function. Hence, its lower directional
derivative coincides with the usual directional derivative and the inequality above can
be rewritten as

(x*,0) € 37 (¢ + g)(x, y).
We also have the obvious equality for the subdifferential of g:
agu,y) = {(A™", —v™) 1 v* € K9l - [(Au — y)}.

Both ¢ and g are Lipschitz functions, so we can apply the fuzzy sum rule (see, e.g.,
[17], Proposition 4.33) and find, given ¢ > 0 and a weak*-neighborhoods U and V
of zeros in X and Y, some u € X, 71,22 € Y e-close, respectively, to x and y, and
y* € 97 ¢(z1), (u*, y3) € 0g(u, y2) such that the inclusions u* = A*v* € x* + U
and y* — v* € V hold for some v* with [[v*|| < K . As both ¢ and g are Lipschitz,
we can be sure that actually u* € x* + U N (pB) and y* — v* € V. N (pB) for a
sufficiently large p that does not depend on the choice of U and V. In other words,
A*v* = x* 4+ w* and y* — v* = z* for some w* € U and z* € V whose norms do
not exceed p.

Assume now that x* € dg f(x). Then there are x,, converging to X and x;; €
d f~ (x;,) weak™® converging to x*. Let now x1, x3, ... and yj, y2, ... be dense count-
able subsets of X and Y. Take U,, = {u* € X* : |(u*,xi)| <m~ ', i =1,...m)

and V,, = {z" : (&5, y)| < m~', i = 1,...m}. Let finally u,,, Zim, z2m and
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wh, ye,ve, we, zk satisfy the above relations with x = x,,, U = Uy, and V =V,
that is, y,, = Ax;, and
-1 —1 —1.
lum — xpll <m™", Nzim — ymll <m™",  |zom — ymll <m™7;
wy =A%), whk =ul —xy € Upy;
Y €07 0(z1m), (s 23) € 38 (Wm,s 22m)s Yy = Up = 2y € Vi

Then u,, — X, zi;, — ¥ and all sequences of the functionals, being bounded, can be
assumed weak* converging. Obviously, w;, and z};, converge to zero by the Banach—
Steinhaus theorem. Therefore, u};, weak™® converges to x*; y* and v}, weak™ converge
to some y*. It follows that y* € dg¢(y) and x* = A*v™* as claimed.

Remark 2.1 If A is an operator onto Y, the proposition remains valid if ¢ is just lower
semicontinuous (and finite at X). Indeed, in this case, given x € X and v € Y, there
isau € X such that Au = v and ||x — u|| < K||A(x — u)||, where K is any number
greater than the inverse of the Banach constant of A (the maximal radius of a ball in
Y covered by the A-image of the unit ball in X). It follows that

d((x, @), epi f) < Kd((Ax, @), epi ¢) < K((d(y, @), epi ¢) + ||y — Ax]|)

for any (x, y,@) € X x Y x R, and the result follows from Theorem 7.19 of [17].

Remark 2.2 The previous results remain valid for a function g = f o F with a con-
tinuously differentiable F' : X — Y if as A we take the derivative of F at the point of
interest.

2.2 Lipschitz Properties of Set-Valued Mappings

We denote by F : Q = P a set-valued mapping from Q to P. If both Q and P
are topological spaces, then F is said to be a closed mapping if its graph is closed in
the product topology. The expressions like “closed-valued mapping,” “convex-valued
mapping,” etc., need no explanation.

Speaking about Lipschitz properties of maps, we of course assume that both the
domain and range spaces are at least metric. Here we mainly deal with mappings
between Euclidean spaces and shall use the corresponding notation and language
starting with this point. The simplest and the most convenient Lipschitz property of
a set-valued map to work with occurs when the mapping is Lipschitz with respect to
the Hausdorff metric in the range space. This, however, is a very restrictive property,
especially when the values of the mapping are unbounded sets.

A weaker property, that also has an advantage of being local, was introduced by
Aubin: it is said that F is pseudo-Lipschitz, or has the Aubin property at (x,y) €
Graph F if there are r > 0, R > 0 and ¢ > 0 such that

Fx)NB®G,r) C F(x')+ R|x —x'||B, VYx,x € B({X,s).

We shall call R a Lipschitz constant of F at (x, y). The following simple proposition
offers a nice metric characterization of the Aubin property.
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Proposition 2.6 Let F : R" = R"™ and (x,y) € Graph F. Then the following two
statements are equivalent:

(1) F has the Aubin property at (X, y);
(i1) there arer > 0, R > 0 and ¢ > 0 such that the function x — d(y, F(x)) is
R-Lipschitz in the e-ball around X for any y with ||y —y|| <r.

The implication (ii) — (i) is straightforward. The opposite implication is well
known (see, e.g., [15], Exercise 9.37). Note also that the ¢ and R in both properties
coincide, while the r in (ii) may be smaller.

We shall also use a noninfinitesimal version of the pseudo-Lipschitz property with
a priory fixed constants r, R and ¢. The following fundamental result shows that a
part of the mapping associated with the property admits lifting to a bounded-valued
mapping which is Lipschitz with respect to the Hausdorff metric.

Proposition 2.7 Let F : R" = R™ be a set-valued mapping with closed graph. Let
an X and a closed set C C F (X) be given such that for somer > 0, R > 0, ¢ > 0 and
n > 0 the relations

F(x)N(u+rB) C F(xX')+ Rllx —x'|B, F(x)NBu,(1—nr) £y
hold for any u € C and x, x' € B(X, €). Set

Frx)={0,y): 2€[0,1], y=u+ilz—u), ueC, z€ Fx), [lz—ul
< {1 —=Anr}.

Then there is a ¢ = c(n, r) such that T is ¢ R-Lipschitz with respect to the Hausdorff
metric in the e-neighborhood of x.

This is a slight generalization of a Clarke’s result ([1], Lemma 1) in which C is a
one point set. We omit the proof as it repeats almost word for word the original proof
by Clarke.

Lipschitz continuity of d(y, F(-)), on the other hand, offers a convenient way to
compute normal cones to the graph of F' which naturally appear in necessary optimality
conditions in problems involving set-valued mappings.

Proposition 2.8 ([9], Proposition 1) Let F : R" == R" be a closed-valued mapping
having the Aubin property at some (x,y) € Graph F. Then the (limiting) normal
cone to Graph F at (x, y) is generated by the limiting subdifferential of the function
(x,y) = d(y, F(x)) at (%, y).

The last result we have to mention offers a geometric characterization of the Aubin
property.

Proposition 2.9 Let F : R" = R™ be a set-valued mapping with closed graph that
has the Aubin property at (x,y) € Graph F with Lipschitz constant R. Let (g, p) €
N(Graph F, (x, y)). Then ||q]l < R pll.
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This is a simple and well-known fact whose proof, however, does not seem to be
explicitly available in the existing literature. The inequality is straightforward for
Fréchet normal cones (or regular normals in terminology of [15]). The Fréchet normal
cone to the graph of F at (x, y) is defined as the collection of pairs (g, p) such that
(g, h)y—{(p,v) <o(|h||+]lv]) if h and v are sufficiently small and y +v € F(x +h).
By the Aubin property, given an h, there is a v satisfying ||v|| < R|A]. If now we
take 1 = Ag, then we get Allg[> < (p,v) < AR||plllgll + o(|Ag|). It remains to
take into account that N (Graph F, (x, y)) is the outer limit of Fréchet normal cones
at (x, y) € Graph F, when (x, y) — (x,Y).

2.3 Measurability

A set-valued mapping F : [0, T] = R™ is measurable if its graph belongs to the
sigma-algebra generated by all products A x Q, where A C [0, T] is Lebesgue
measurable and O C R” is open. For closed-valued and open-valued mappings, a
convenient equivalent definition can be given in terms of so-called Castaing repre-
sentation: F is measurable if and only if there is a countable collection (u;(-)) of
measurable selections of F' such that for almost every ¢ the set {u;(¢),i = 1,2, ...} is
dense in F(1).

A set-valued mapping F : [0, T] x R" = R™ is called measurable (in the standard
sense) if the set-valued mapping + — Graph F (¢, -) is measurable. An extended real-
valued function f on [0.7] x R”" is measurable (in the standard sense) if so is the
mapping epi f (1) ={r,a: a = f(1)}.

The most important fact is that all basic operations used in analysis preserve mea-
surability. For details, we refer to [15,17].

2.4 Relaxation

Consider the functional fOT L(t, x(t), x(¢))dt, assuming that the integrand L is con-
tinuous in x and L (¢, x(¢), u(t)) is measurable whenever x(-) is continuous and u(-)
is measurable.

Proposition 2.10 (relaxation theorem) Given an x(-) € W' and summable R"-
valued functions u1(-), ..., ux(-). Set ug(t) = x(t) and assume that there are ¢ > 0
and a summable c(t) such that foralli =0, ...,k

max |L(t,x,u;(t))] <c(t), a.e..
lx—x(0)[<e

Then there is a § > 0 such that forany a; > 0, i = 1,...k, > o < 8 thereis a
sequence of xp, (-) € Wh1 such that %, (1) € {x(t), u1(1t), ..., ur(t)} for almost every
t, X (+) weakly in w1 converge to

t
w(t) =x<t)+Za,-/ (ui(r) — k(1))dr S0
i 0
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and

T T
limsup/ L(t, xp, (1), X ())dt 5/ L(t,w(t), x(¢))dt
0 0

m— 00

T 2
- Zai/ (L(t, w(t), ui (1)) — L(t, w(t), %(1)))dr.
i 0

This is a simplified version of Bogolyubov’s convexification theorem [20] (see also
[4] for more details).

Proof Take § < 1 to guarantee that §||u; () —x(-)||.1 < e&/2foralli =1,..., k. Let
«; and x () satisfy the conditions with the chosen §.

Now given an m, set A; = [(j — 1)/m, j/m], j = 1,...,m,and let Aj;, i =
1, ..., k be subsets of A; with Lebesgue measure «; /m, respectively, such that A ;; N
A =@ifi # i’ Define x,,(-) by

u;(t), if t € Aj; for some j,i;
x(t), otherwise.

X (0) = x(0); X (1) = {

It is clear that x,, (-) are uniformly integrable, so we may assume that x,, (-) converge
uniformly to some w(-). We can rewrite the definition of x,, as follows:

k

i (1) = (1 - Zaim(t)> () 4+ ) etim (i (1),
i=1

where

1, iftreAj, forsomej=1,...,m;
0, otherwise.

ain (1) = {

Then

k
L(t, X (1), X (1)) = L1, X (1), X(1)) +Zotim(t)(L(,xm(t), ui (1))

i=1

—L(t, xp (1), X(1))).

It is clear that every «;,, () weak™-converges in L™ (and hence weakly in LY to the
function identically equal to «;. The result is now immediate. O
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3 Statements of the Problems and Main Results

The principal object to be studied in the paper is the generalized Bolza problem

T
minimize J(x(:)) = ¢(x(-)) +f L(t, x(t), x(¢))dt, @P)
0

with ¢ being a function on the space C[0, T'], not necessarily a traditional function
of the end points (x(0), x(7)).

In what follows, we shall fix some X(-) € W!! which will be assumed a local
minimizer of J in one or another sense. Here are the basic hypotheses on the functions
¢ and L:

(H1) ¢ is Lipschitz in a neighborhood of x(-) in C[0, T], that is, there are K > 0
and € > 0 such that

lp(x() — (' (NI = Klx() = x"Ol;

if x(+), x'(-) are g-close to x(-) in C[0, T].

(H») L(¢, x, y) is lower semicontinuous in (x, y) and measurable in the standard
sense! and there are € > 0, measurable () > 0, summable R(r) > 0 and k(z) > 0
and a measurable set-valued mapping D(-) : [0, T] = R” such that for almost every
t € [0, T] the function L(t, -) is continuous on B(x(t),€) x D(t) and

IL(t,x, ) = L, x', )] < ROIlx —x'[l, Vx,x' € BE(),8), y € BE(®), r()); 3)
|L(t,x,y)| <k(), VYxe€ B(x(t),g), y e B(x(t),¢).
hold a.e. on [0, T].

Note that the conditions do not exclude the possibility that L is extended real-
valued, in particular, that L(#,x,y) = oo if y ¢ D(¢), even if x is close to x(¢). It
should also be taken into account that inf (¢) can be zero and L need not be Lipschitz
with respect to the last argument.

Theorem 3.1 Assume (Hy) and (Ho). If X(-) is a local minimizer of J on W', then
there are an R"-valued Radon measure v € 9gp(x(-)), an R"-valued function of

bounded variations p(t), continuous from the left and a summable R" -valued function
q(t) such that

T T
0=~ [ awis - [ aww. por=o, @
t t
and the following conditions are satisfied almost everywhere on [0, T]:

q(1) € conv {q : (q, p(1)) € IL(t, -, ) (¥ (1), X(1))} (&)

1 Actually, it will be sufficient to assume that L(, x(¢), y(¢)) is measurable if so are x(¢) and y(t)
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(the Euler inclusion) and
L(t,%(t), u) — L(t,X(t),x(1)) — (p(t),u —x(t)) >0 if u € D(r) (6)

(the Weierstrass condition).

An interesting (and perhaps the most interesting) case corresponds to D(t) = R”. It
will be easy to see from the proof that in this case the Euler inclusion (5) is a necessary
condition for a weak minimum in (P), that is, on a set of x(-) that are W *-close to
x(-). Looking ahead, we just say that the proof of this fact is noticeably simpler and
need not any reference to the relaxation theorem.

We deduce from the theorem in this case that the Euler inclusion (5) and the
Weierstrass condition (6) together give a necessary condition for a strong minimum
in the classical sense, that is, when there is an & > 0 such that J(x(-)) > J(x(-)) for
all x(-) e wh! satisfying ||x(#) —X(¢)|| < &, V t. Another point we wish to mention
in this connection is that L(¢, x, y) have to satisfy the Lipschitz property w.r.t x only
for y in a possibly small neighborhood of X (7).

Applying the theorem to the nonsmooth version of the standard Bolza problem:

T
minimize E(x(O),x(T))—i—[ L(t, x(t), y(t))dt Py;,)
0

(under the assumption that D(r) = R"), we get the following extension of the classical
necessary conditions.

Theorem 3.2 Assume that £ is Lipschitz near (x(0), x(T)) and L satisfies (H) with
D(t) = R". Ifx(-) is a weak local minimum in the problem, then thereisa p(-) € w1
satisfying the Euler inclusion

p(t) econv {g : (g, p(t)) € IL(t,-, )(x(1),X(1))} 7N
a.e. on [0, T'] and the end points condition
(p(0), —=p(T)) € 3L((x(0), x(T))). )]

If, moreover, X (-) is a strong minimum, then for almost every t the Weierstrass condition
(4) holds for all u € R™ with the same p(-).

Proof As ¢(x(-)) = £(x(0), x(T)) is a function of terminal values of x(-), it is an
easy matter to see that v € dg(x(-)) if and only if there are g, 2 € R” such that
(g, h) € 30€(x(0), x(T)) and the action of v on elements of C ([0, T']) is defined by

T
/0 u(Ow(dr) = (b, u(T)) + (g, u(0)).

Applying Theorem 3.1, we therefore find some (g, h) € 0£((x(0), x(T"))) such that
for some ¢ () and p(1) = — [ v(d) — [T q(s)ds = —h — [T q(s)ds (fort > 0) we
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get (if we redefine p(¢) at zero by continuity: p(0) = —h + fOT q()dr) p(0)—g =0,
hence (8).

Let us now turn to the optimal control problem:

minimize £(x(0), x(T)), ocC
stieFx), O),xM)eSs, gexw)<o ve (00

Here we assume that there are x(-) € W'! and € > 0 such that

(H3) £ is Lipschitz near (x(0), (7)), S C R"” x R" is closed;
(H4) g is upper semicontinuous on the set {(t,x) : t € [0, T], |[x —Xx(t)|| < €}
and there is a K > 0 such that for x, x’ € B(X(¢), &)

lg(t,x) —g(t,x")| < Kx — x| ae.on[0,T].

(Hs) F is closed-valued and measurable in the standard sense and there are a
measurable 7(¢) > 0 bounded away from zero, a summable R(f) > 0 and an
n €]0, 1] such that the relations

F(t,x) N B(X(1)),7(t) C F(t,x") + R(t)||x — x'|| B,
F(t,x) N BE @), (1 —nF@)) # 0 &)

hold for all x, x" € B(x(t), g).

The first of the relations is the a nonlocal extension of Aubin’s pseudo-Lipschitz
property. In one or another form, it was used in all results on the maximum principle
for differential inclusions starting with [12]. The necessity of the second condition in
(9) under weaker versions of the first was observed by Clarke in [1].

We need more notation to state the theorem. Let U (¢) be the closure of the collection
of all u € F(t,x(t)) such that

F(t,x)NBu,r) CF({t,x)+ R|x —x'|B, Ft,x) N B, (1 —n)r) #d, )

if [x =x(ll <&

forsomer >0, R > 0, n > 0, ¢ > 0 (depending on u). Finally, set A(x(-)) = {f :
g(t, x(1)) = max, g(¢, x(¢))} and

3580,)6) = conv {limsup dg(ty, Xm) : tm —> t, Xm — X, g(tm, Xm) > g(t, X)}.

Theorem 3.3 We posit (H3)—(Hs) and assume that X(t) € Wb is a local solution in
(OC). Then there are ). > 0, a nonnegative measure (1 on [0, T'] supported on A(x(-)),
a measurable R"-valued function q(t) satisfying ||lq(t)|| < R(t) a.e., an R"-valued
function p(t) of bounded variation, continuous from the left, and a j-measurable
selection y (-) of the set-valued mapping t — 97 (¢, x(t)) such that dp(t) = q(t)dt +
y (t)u(dt) and the following four conditions are satisfied:
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) A+ lIpOI+ (0, T1) = 1 (nontriviality);
(i) (p0), —p(T) — y(Mu(T}H € 2134(x(0),x(T)) + N(S, (x(0), x(T)))
(transversality);
(iii) q(t) € conv {g : (g, p(t)) € N(Graph F(z,-), (x(t),x(1)))} a.e. on [0, T]
(Euler—Lagrange inclusion);
av) (p@),y — x;(t)) <0,VyeU(t) ae onl0,T] (maximum principle).

By (Hs), F (¢, -) has the Aubin property at every u € F(¢t,x(t)) with |ju — x;(t) I <
7(t). Thus, replacing in the statement U () by B();c(t), 7(t)), we get an extension
of Clarke’s “stratified maximum principle” to optimal control problems with state
constraints. It seems to be appropriate at this point to add a few words concerning
the evolution of the assumptions concerning Lipschitz properties of F. In [7,8,11],
the mapping was assumed globally Lipschitz in the state variable with the Lipschitz
constant being a summable function of the time variable. In [12], this property was
weakened and replaced by a certain global version of the Aubin pseudo-Lipschitz
property with a linear growth of the Lipschitz constant as a function of the radius
of the ball on which the mapping is considered. This assumption (also applied in
[9,14]), although still sufficiently restrictive, made possible meaningful treatment of
differential inclusions with unbounded right-hand sides. Finally, Clarke’s stratified
maximum principle implied that arbitrary rate of growth works as well.

Remark 3.1 There are certain differences in formulations of the maximum principle
for problems with state constraints in the literature. The above statement is structured
along the lines of the maximum principle proved in [4] (Theorem 1 of $ 5.2). On
the other hand, the statement of the maximum principle for (OC) proved in [2] look
differently at the first glance. But it is not a difficult matter to notice that the functions
p(t) here and ¢(¢) in [2] coincide up to a delicate difference: the first is continuous
from the left and may be discontinuous at the left end of the interval while the second
is continuous from the right and may be discontinuous at the right end of the interval.

4 Proof of Theorem 3.1

Without loss of generality, we can assume in the proof that X () = 0.

1. Letu;(-),i =1, ..., k be bounded measurable selections of D(t) a.e.. such that
for some & > 0 the functions max—x()|<¢ L(#, x, u; (¢)) is summable. Then
u; (-) satisfy the conditions of Proposition 2.10 with any x(-) € w1 close to
x(-). It follows immediately from the proposition that the vector (x(-), 0, ..., 0)
is a weak local minimizer of the functional

T
JxG),ar, ..., ar) = e(w()) + [0 L(t,w(t), x(r))dt

T
+ Zaf/(; (L, w(t), ui(t)) — L(t, w(t), x(1)))dt,

with w(-) defined by (1), subject to the constraint ||X(¢) — );c(t)|| <r(t)ae.
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(By saying that (x(-), 0, ..., 0) is a weak minimizer of J, we mean that there
is an ¢ > 0 such that f((x(~),oz1, N9) f(()_c(~), 0,...,0)) whenever
X100 <€and0 <o <é¢.)

Consider the space Z = R” x L?> x L?> x R¥ and let the operator A : Z —
W12 associate with every (a, x(-), y(-),®) € Z, where @« = (1, ..., o), the
function

t
Ala.y() e ..o =a+ / (v + Yt = y() )dr.
0 X
1
To simplify notation, we can assume without loss of generality that X () = 0.

Set

L(t,x,y), if x| <%, |yl <minfg, r(H)};
00, otherwise;

Z(t, X,y) = {

ie(t) = max (L(t,x.ui(1)) — L(t, x,y));

llxll lIyll<e

and consider the following four functionals on Z (where of course z =
(a,x(:), y() o1, ..., 0p) )

II(Z) = ¢(A(av y(')vah se ,(Xk));
T
B = [ Lo,y
T t
1) = /0 RO)|x(0) —a - /0 (@ + 3 et (@) = y(o) )dr | ar;
T
L@ = Yo [ ik Yo
i 0 i

and set I = Iy + I + I3 + I4. It is an easy matter to see that f(O, .0 =
1(0....,0) and (setting w(t) = a + fot y(r)dr)

Ty ar, . a) < 1, x(), y(), a1, ap).
if Jlall + foT Iy@llde|l <&, [lx@)[l < forallz, ||y < min{g, r(2)}ae.,
a; > 0 and K is sufficiently large. It follows that zero is a local minimum of
1(z) in Z. Therefore,
0€9,1(0).

2. Analysis of the inclusion is the next step in the proof. The functionals /; are
lower semicontinuous and uniformly lower semicontinuous near zero in Z since
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all I; except I satisfy the Lipschitz condition. By Proposition 2.1 for any

given § > 0, there are z; = (a;,x;(-), y;(),a1j,...,0kj) € Z, and zj =
(bj X y5. Bro.... Bo) € Z*, j = 1,2,3,4 such that |I;(zj) — I;(0)| < &
and

B X797 Bujs - Brj) € 0plj(2));
k
laj I+ 1 O+ 1y O+ D leij| < 8

i=1
= maX{

4 4
*
DBES
Jj=1
Finding estimates for d,,/; does not require much effort.

) ) ’ R

4
2.5
j=1

4
Db
j=1

4
2.5
j=1

Bij
1

4
Z,Bkj } <34
j=1

(10)

j=

— Let (b, x*, y*, B1, ..., Br) € 0611 (z). Then x* = 0 as I does not depend on
x (), and if w(-) = A(z), then there is a measure v € dg@(w(-)) such that

T T
b= [ van. o= 0= [ 6o, o

T
Bi =/0 (W), ui(r) — y())dt,

where we have set v(f) = ftT v(de).
Indeed, /; can be viewed as a composition of A and the restriction of ¢ to
W2 Denote for a moment this restriction by @. A is a smooth mapping and
its derivative at zero (and hence at all nearby points) is onto. By Proposition 2.4,
96 (2) = A'(2)*(06P)(z). On the other hand, ¢ is the composition of embed-
ding W2 into C([0, T]) and ¢. Therefore, by Proposition 2.5 dg@(x(-)) is
contained in the set of restrictions of elements of dg@(x(-)) to W2 x RK.
It remains to recall that the proximal subdifferential is contained in the G-
subdifferential.

- If (b, x*, y*, B1, ..., Bx) € p12(z), then b = 0, all B; = 0, and there are A(-)
and w(-) belonging to L? such that (A (), n(t)) € a,,i(t, (x(t), y(t)) almost
everywhere and

T
(x5, h(1)) + (¥3, v(D)) :/0 (A @), h(1)) + (n(2), v(1)))dr

for all A(-) and v(-) in L2. This is immediate from Proposition 2.2.
- If (b, x*, y*, B1,..., ) € 3,13(2), then there is a £(:) € L? with [|E()|| <
R(t) a.e. such that
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T T
bz—/o &(n)dt, (x*,h(.)>:/0 (1), h()dr,

T T
0 =~ (1 - Zai)/(; (), v(®))dr, ﬂi=—/0 (), u; (1) —y(1))dr,

where (1) = — [T &()dr.

Indeed, I3 is a composition of a convex lsc functional fOT R(t)||x(¢)||dt and
a smooth mapping from Z into L2. For such mappings, all subdifferentials
coincide and are equal to the composition of the derivative of the inner mapping

and the convex subdifferential of the outer function.
— if (b, x*, y*, B1, ..., B) € 0p14(2), then there are p; € [—K, 0] such that

T
b=0, x*=0, y*=0, ,3i=/0 gie(1)dt + p;.

Taking (10) into account, we conclude that for some z;, j =1, 2, 3, 4, satisfy-
ing the second inequality in (10) there are a regular R"-valued Radon measure
v € dge(z1), measurable (A(7), u(r)) € 3,L(¢, -, )(x2(F), y2(r)) and &(¢)
satisfying ||£(¢)|| < R(¢) and p; € [—K, 0] such that

< §;

T
H/O (v(dr) —&(n)dr)

T
/(; IA() + 5@ dr < 6;

T T
/O Ja- e+ ) = (1 = Zasi)(ft s(mydr)|ar <5

T
/0 ((1 — Zau) (W@, u; (1) — y1(®))

- (1 - fo&') (), ui (1) — y3(0))+ gis(t)) dr+p;

Y

<48, i=1,..., k.

3. Taking §,, — 0, we shall find sequences of z ,;, converging to zero as m — 00
and of vy, A (4), i (1)), Em (+) and pj, € [—K, 0], =1, ..., k such that

Vm € 06 (@(21m));

Am (@), (1)) € 8pL(t’ X2 (1), Yom (1));

I€x ()] < R(t) almost everywhere;

for every m (11) holds with § = §,,,, v = vy, etc.
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Setting g, (1) = —&,,(¢) and p,,, (t) = —v,, (t) — ftT gm(t)dt, we rewrite (11)
with some ¥, — 0 and y,,(-) — 0 as follows:

[ 2m O < Yim:

T
fo 12m (@) — gm@O11dt < Ym;

r (12)
/(‘) |t (2) — P (DNt < Vi

T
[ 0.0 = 30} + 100+ | < e i =1k

As ¢ is Lipschitz near zero, total variations of v,, are uniformly bounded and
we may assume that v,, weak® converges to some v such that v € dg¢(0).
The latter means, in particular, that v,,(f) converge to v(¢) at every point of
continuity of the latter, that is, everywhere except maybe countably many points.
Finally, as all ¢,,(-) are bounded by the same summable function R(t), this
sequence is relatively compact in the weak topology of L!. By the Eberlein—
Smulian theorem, we can assume that the sequence weak converges to a certain
q(t). Hence, the integrals ftT gm (s)ds uniformly converge to ftT q(s)ds, total
variations of p,, () are uniformly bounded, and p,, (¢) converge to

T
p() = —/ q(s)ds —v(r),
t

at every ¢ at which v(#) is continuous.

The second and the third relations in (12) imply that the distance from
(Gm (@), pm(t)) 10 9 L(t, -)(xm(t), ym(t)) goes to zero for almost every 7. On
the other hand, by definition of the limiting subdifferential, almost everywhere
on [0, T]

lim sup 9, L(t, -) (xp, (1), ym (¢)) C IL(2, -)(0, 0).

m— 00

By the Mazur theorem a certain sequence, g,,(-) of convex combinations
of g, (-) converges to ¢(-) almost everywhere. Hence the distance from
(@m (1), pm (1)) to the set {(g, p) : g € conv {g : (g, p) € IL(z,-)(0,0)}}
goes to zero as m — oo. The set dL(z, -)(0, 0) is closed and its projection
to the g-space is bounded as L(t, -, y) is Lipschitz near zero. Therefore, for
any p the set conv {g : (g, p) € 9L(¢,-)(0,0)} is also closed and we con-
clude that (¢ (t), p(t)) belongs to this set for almost every ¢. The equality
p(0) = 0 follows from the first relation in (12). This concludes the proof of (4)
and (5).

Finally, as sequences (p;;;) are uniformly bounded, we can assume that each
of them converges to some p; < 0. It follows from the last relation in (12) that
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T
/0 (8ie(1) — (p(1), ui(H)))dt = —p; = 0.

This is true for any ¢ > 0, and when ¢ — 0 the functions g;.(#) converge
decreasingly to L(¢, 0, u;(t)) — L(¢, 0, 0) and we get eventually that

T
/ (L, 0,u;(1)) = L(1,0,0) — (p(@), ui(0))dt = 0, i =1,....k. (13)
0

4. We can now conclude the proof. First we note that there is a countable collection

U of bounded measurable selection of D(-) such that for every u(-) € U the
function max|y|<g L(#, x, u(t)) is summable and for almost every ¢ the set
{u(t) : u(-) € U} is dense in D(¢).
Indeed, as D(-) is a measurable set-valued mapping, there is a countable
collection {v;(-), i = 1,2, ...} of measurable selections of D(-) whose val-
ues for almost every ¢ form a dense subset of D(¢). Take ¢ = £/2. Then
0; (1) = maxy<e L(t, x, v;(¢)) is finite-valued by (H;). Hence, for every
Jj = 1,2,... there is a subset A;; with measure not smaller than 7" — j”
on which v; is bounded and 6; () is summable. Set

- _ v; (1), ifl‘EAij;
wij(t) = {O, otherwise.

ThenU = {u;; : i, j=1,2,...}is arequired set.

As we have seen, for any finite collection U of u(-) € L' with u(r) € D(t) a.e.
satisfying the conditions of Proposition 2.10 the set A(U) of triples (p(-), g(-), v)
satisfying (4), (5) and such that (13) holds for u(-) € U is nonempty. As ||g(#)|| < R(t)
a.e. and the total variations of v are bounded by the Lipschitz constant of ¢, the set A
is compact in the product of the weak™*-topologies for functions of bounded variations
(thatis p(-) and v) and weak L !'-topology (for ¢(-)). Itis also clear that A(U’) C A(U)
if U C U’. Therefore, the intersection of all A(U), U C U is nonempty. It is also
clear that (13) holds for restrictions of #(-) to any measurable subsets of [0, T] (by
which we mean the function equals to u(¢) on the subset and zero outside).

The standard measurable selection arguments now allow to deduce that this may
happen only if for almost every ¢ the inequality L (¢, 0, u)—L(z, 0, 0)—(p(¢), u(¢)) > 0
holds for any u(-) € U almost everywhere. This in turn implies (6) since the values of
u(t) when u(-) runs through ¢/ and L (¢, X(t), -) are continuous on D (¢). This completes
the proof of the theorem.

5 Optimal Control: Proof of Theorem 3.3
As was mentioned in introduction, reduction of the optimal control problem (OC) to

the generalized Bolza problem (P) is based on a certain optimality alternative. Here
is its statement.
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Proposition 5.1 (Optimality alternative [17], Theorem 7,39) Let X be a complete
metric space and M a closed subset of X. Let also f be a function on X that attains
a local minimum on M at some X € M. If f is Lipschitz near X, then for any lsc
nonnegative function ¢ on X equal to zero at X the following alternative holds: either
thereisa K > 0 such thatd(x, M) < K(x) for all x of a neighborhood of x, so that
f + Ko has a local minimum at X for some Ko > 0 (not smaller than K times the
Lipschitz constant of f), or there is a sequence (x,) — X of elements of X\M such
that for each n the inequality ¢(x) + nld(x, x,) > @(xp) holds for all x € X.

The very fact, which is a simple consequence of Ekeland’s principle, was already
used in [9]. The nice feature of the approach based on the optimality alternative is that
actually there is no need to verify whether the distance estimate is satisfied or not.

We shall also need the following well-known technical fact. Set for x(-) € C[0, T']

nx(-)) = max g(t,x(t)), AxO)={tel0,T]: g, x®) =nx())},
t€l0,T]

and let dcg(r, x) be the convex hull of the collection of u € R” for which there are
sequences t,, — t, X, — x and u,, — u such that u,, € 9g(t,, -) (xn).

Proposition 5.2 ([19], Theorem 2.8.2; [21], Example 2.5.2) Assume (Hs). Then for
any v € dcn(x(-)) there are a probability measure | supported on the set A(x(-))
and a p-measurable selection of the set-valued mapping t — 5cg(t, )(x(+)) such
that v(dt) = y (t)u(de).

Recall that in the statement of the theorem we use a more precise object, namely,
d¢ . Itis an easy matter to see that

3¢ g(t, x) = conv {lim sup dc g (b Xm) : tm —> 1, Xm — X, gtm, Xm) > g(t, X)}.

So let us pass to the proof of the theorem. Again, we can assume that x(¢) = 0. We
also assume that £(x(0), x(7")) = 0. Then (OC) can be equivalently rewritten as

minimize @(x(-)) = max{€(x(0), x(T)), mtax g(t,x())},
s.t, x € F(t,x), (x(0),x(T)) € S.

We shall work with this form of (OC) in the proof. Finally, let V be a neighborhood
of zero in W such that ¢ (x(-)) > 0 = ¢(0) for all feasible x(-) € V.

1. We shall first prove the theorem under the assumption that d(y, F(t,-)) is R(@)-
Lipschitz for all y € R" (which is the case when F(t, -) if R(¢)-Lipschitz in
the Hausdorff metric). Set
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T
¥(x() =d((x(0),x(T)),S)+/0 d(x(r), F(z, x(1)))dr.

Clearly ¥ is nonnegative and ¥ (0) = 0, so we can apply the optimality alterna-
tive. Denote by M the feasible setin (OC): M = {x(-) € Wl : ¢ (x(-)) = 0}.
Then either there is a K > 0 such that d(x(:), M) < Ky (x(-)) for all x(-) of
a neighborhood of zero, so that there is a K such that ¢ + Koy attains an
unconditional local minimum at zero (regular case), or there are x,,(-) € Wh1,
m =1, 2, ... converging to zero and such that ¥ (x,,(-)) > 0 and

T
Y (x()) +m " (1x(0) = x, (0)]] +/O xX(1) — Xm (N1dE) > ¥ (e (),
Vx() # xm().

(singular case).
In the regular case, we shall actually consider the problem with slightly different
cost functions:

@m (x(+)) = max{£(x(0), x(T)) + m~2, maxg(r, x(1)}, m=12....

Then 0 = ¢(0) < ¢(x(1) < Pu(x(-)) < @(x()) + m~2 for all feasible
x(-) € V.If m is so big that V contains the m~! ball around zero, then by
Ekeland’s principle there is a x,,(-) € W1 feasible in (OC) and such that
xm ()11 <m~! and

o (x () Fm x ) = O = @m(m () = ap

for all feasible x(-) € V. Clearly, a;, > 0 for all sufficiently large m. Otherwise,
£(xp, (0), x,,(T)) would be strictly smaller than zero and g(z, x,,(z)) < O for
all #, which contradicts to our assumption that the minimal value of the cost
function on V in the original formulation of (OC) is zero.

Since x,,(-) — 0as m — o0, the inequality d(x(-), M) < K (x(-)) holds for
x(+) of aneighborhood of x,, (-). The Lipschitz constants of ¢ and ¢, coincide;
hence, x,, (+) is an unconditional local minimum of ¢,, + Ko.

Summarizing, we conclude that there are g € {0, 1} (Ao = 1 in the regular case
and 19 = 0 otherwise) such that for sufficiently large m > 0 the functional

T
In(¥()) = g () + Ko fo d(E(), F (e, x(0)dt +d((x(0), x(T)), )

T

+m ! (140 = % )] +/O (1) — (1) )

attains a local minimum at some x,,(-) (feasible in the regular case and not
belonging to M in the singular case) with ||x,,(-)||1,1 < m~L. In either case, it
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is an easy matter to see that J, satisfies the hypotheses (H;) and (H,) and we
can apply Theorem 3.1.

Let us start with the regular case Ay = 1. Note first that as follows from
Propositions 2.3 and 5.2 for any v belonging to the G-subdifferential of ¢, at
x(-) thereare A € [0, 1], a positive measure p with w ([0, T]) = 1 — A supported
on the set A,, where g(t, x,, (1)) = ¢ (xm(+)), a p-measurable selection y (¢)
of the set-valued mapping dcg(z, -)(x(¢)) and a pair of vectors g,k in the
subdifferential of AL(-) + d(-, S) at (x(0), x(T)) such that for any continuous
R"™-valued u(r)

T

T
/0 u(O)v(dt) = A((h, w(T)) + (g, w(0))) + /0 W), y (D) (d).

Thus, applying Theorem 3.1 to J,, and x,,(-) we shall find some %,, €
[0, 11, gm» Am» e, Ym (), a function p, (-) of bounded variation, a summable
gm () satisfying [lgn (1) < R(t) ae. such that (g,,h,) € And(hol +
Kod (-, S))(x,(0), x,, (T)), up, is a positive measure with i, ([0, T]) = 1 —A4,,
supported on the A(x,,(-)) on which g(z, x,,(¢)) attains maximum , y,(-) €
dc g(t, -)(x;, (1)) and the relations

gm(t) € conv {q : (q, pm(t)) € OLn (2, -, )};

T T
Pun(t) = =l — / g (s)ds — / Y )t () pm(0) = g (14)
t t

(pm @), u — X, (1)) >0, forallu e F(¢t, x,(t))

hold for almost every ¢. Here we have set L,, (¢, x,y) = Kod(y, F(t,x)) +
m=Hy = g @)].

We may assume that A, and (g, h,,) converge to some A € [0, 1]and (4, g) €
ro(L+d(-, S))(0, 0). Furthermore, since g (¢, x(¢)) is upper semicontinuous, the
sets A(x,,) are closed and the excess of A(x,,) over A(0) goes to zero as x, (-)
goes to zero uniformly. Therefore, w1, weak™ converge (along a subsequence
of m) to a nonnegative measure y supported on A(0) and such that u ([0, T]) =
1 — A, whence (i). By (Ha) ||y (®)]] < K, so the sequence (¥, (+)) is weakly
compact in L! which implies (in view of upper semicontinuity of generalized
gradients of a Lipschitz function) that for almost any ¢ the value of any weak
limit point of this set at 7 is contained in dc g (z, -)(0). If 11, # 0, we necessarily
have max; g(, x,u(¢)) = an > 0, whence the appearance of 9 g(t, -)(0) at the
limit.

The sequence (g, (-)) is weakly compact in L! (as gm(-) are bounded by a
summable function) and we can assume that it weakly converges to some ¢(-)
in which case p;, (-) converge almost everywhere to

T T
p(t) = —h f g(s)ds — f y (s)u(ds)
t t
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with p(0) = g. We have p(T) = —h — y(T)u({T}) and (ii) follows from
the second relation in (14) (recall that the normal cone to a set is generated
by the subdifferential of the distance function to the set at the same point). As
[|%m (£)|| = O almost everywhere, the last relation in (14) implies (iv). Finally,
a certain sequence of convex combinations of ¢, (-) converges to g(-) almost
everywhere, and as follows from the first relation in (13), ¢(¢#) € conv {q :
(g, p(t)) € OL(t, -, -)(0,0)}, with L(¢, x, y) = Kod(y, F(t, x)), whence (iii).
This completes the proof in the regular case.

In the singular case, when Ay = 0, the same arguments work in substan-
tially simpler situation as the off-integral term reduces to d((x(0), x(¢)), S) +
m~|x(0) = x,, (0)]|. The only difference is the proof of (i). In the singular case,
Y (xp,(-)) > 0. This means that for any m either d ((x,,(0), x,, (7)), S) > 0 in
which case max{||gu|l, |Anll} = 1, or d (X, (t), F(t, x5 (t))) > 0 on the set of
positive measure which means that || p,, (t)|| = 1 —m~! at least at one point.
Thus, in either case || p,(1)]| = 1 —m~! at least at one point. On the other
hand, as u,, = 0 in the singular case, p,,(-) are continuous functions converg-
ing uniformly, so that p(-) # 0. This completes the proof of the theorem for
the case when d(y, F(t, -)) is R(t)-Lipschitz for any y.

2. Let us turn to the proof under the stated conditions. First we apply Proposi-

tion2.7to F = F(t,-),C = {0},r =7(t), R = R(t),e = ¢ and 5 € [7], 1).
Let I'g(z, x) be the corresponding mapping into R x R”". It is obviously mea-
surable.
By (Hs), 7(¢) is bounded away from zero, that is, there is an 7 > 0 such that
7(t) > 7 for almost all ¢. Fix some positive r < 7, R > 0, n € [, 1] and
e € (0,%) and let C(¢) be the set of all u € F(t, 0) such that (9”) holds with
chosen r, R, n and ¢. Clearly, C(¢) is a closed set (that in principle can be
empty). Again, it is not a difficult matter to verify that C(-) is a measurable
mapping. (Consider the functions

g(t,u) = sup{ex(F(x) N B(u,r), F(x'+ R(||x" — x||B))) : x,x" € eB};
h(t,u) = max{d(F(t, x), B((u, (1 —n)r)))}

(where ex(A, B) is the excess of A over B and d (A, B) is the distance between
A and B) and the sets of u € F (¢, 0) where both are equal zero.)

We shall slightly modify C(z): let C'() = {0} for ¢ in a set Q. of small positive
measure, say smaller than &, and otherwise C'(t) = C(¢). Let I'/(z) be the map-
ping into R x R” corresponding to C’(r) and the chosen r, R, ¢ and 5 according to
Proposition 2.7. Set I'(7, x) = [y(¢, x) U T’ (¢, x) and consider the problem

minimize @ (x(-)),
st. (§,%) e, x), (x(0),x(T)) €S, £€0)=0, &T)=T.

Then £(t) = ¢t for any feasible pair (§(-), x(-)), which means that x(-) is feasible

in (OC). Hence, (¢,0) is a local minimum in the problem and we can apply the
result obtained in the first part of the proof to get a necessary optimality condition. It
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follows that there are A > 0, a nonnegative measure p supported on the set A(0), a -
measurable y (t) € 95 g(¢, 0), R**+!_valued function (k (¢), p(t)) of bounded variation
and summable (w(t), g(¢)) such that

A+ NGy p()IE+ p(0, T = 1

15
(p(0), =p(T) — y(T)u({T}) € 29£(0,0) + N(S, (0, 0)); (1

and almost everywhere on [0, T']

k() =w(), dp@)=q@)dt+ y()u(do);
((1), g (1)) conv {(w, q) : ((w, q), (k(2), pt))) €3G, -, )((z,0), (1,0)); (16)
o) (x —D+(p@),u) =0, V(x,u)elQ0),

where G(t, (¢, x), (0,y)) = Kod((o,y), (¢, (&, x))) and Ky is a certain positive
number. Since I' does not depend on &, we deduce that w(t) = 0, and therefore,
k(t) = const = k. We claim that actually x(#) = 0 and the second relation in (16)
reduces to

q(t) econv {q : (g, p(t)) € KIL(t,-, -)(0,0)}, (17

where we have set L(t, x, y) = d(y, F(t, x)). This would prove the theorem for U (¢)
replaced by the union of 7(#) B and C(¢).

Lett € Q¢ and ((0, q), (x, p(t))) € 0G(¢, -, -)((t,0), (1,0)). Recall that ' (¢, -) =
I'o(¢, -) for such . Choose further small positive § and 6 to ensure that (1 — )7 > 36
and OR(7) < 8. The latter implies by (Hs) that d(0, F (¢, x)) < 8 if ||x|| < 6.

We have d((o, y), To(t,x)) = inf{lc —v|+ ||y — vzl : z € F@t,x), |z] <
(1 — ov)r(r)}. However, if 1 — o < 4§, ||yl < &, ||lx|| < O, then the inequality
Izl < (1 —ov)7(t) is automatically satisfied for (v, z) realizing the infimum. Hence,
d((o,y),To(t,x)) = inf{loc —v| + |ly —vz|| : z € F(t, x)}. On the other hand,
we can be sure that d((y/v), F(t,x)) < 1 for (v, y) close to (1, 0). Therefore, the
infimum is attained with v = ¢ and is equal to vd((y/v), F(t, x)) = vL(t, x, y/v).

Set g;(v,,x,y) = vL(t, x,y/v). We can view g; as a composition /; o A, where
h:(v,x,y) = vL(t,x,y) and A(v, x,y) = (v, x, y/v) is a smooth map. Applying
Proposition 2.5 (with a reference to Remark 2.2), we get the equality dg;(1,0,0) =
(0,9L(t, -, -))(0, 0) which proves the claim.

Denote by A, the collection of Lagrange multipliers A, p(-), g(-), v (where v(dt) =
y (t)(dr)) satisfying (15) (with x(-) = 0), (17). By Proposition 2.9, d|p|(t) <
R(1)|p|(t) + d|v|(r), where |p| and |v| stand for variations of p and v. The total
variation of v is bounded by the Lipschitz constant of ¢; hence, by Grownwall’s
lemma the total variation of p(-) is also bounded and (again by Proposition 2.9)
lg@®)] < E(t)|p|([0, T1). This means that A is a compact set if p(-) and v are con-
sidered with the weak*-topology of measures and ¢(-) with the weak topology of
L.

Let now r; — 0, n; — 0 (both decreasingly), R; — oo (increasingly) and &; — 0
(decreasingly) satisfy ; R; < (1 —n;)r;, and let C;/(z) be the corresponding subsets of
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F(t,0).1f Q,, are chosen to guarantee that Q,,,, C Q,; (whichis of course possible),
then C;(¢) C Ci4+1(¢) and every u € U(t) belongs to le(t) if i is sufficiently large. As
we have seen, for any i the set of A; of multipliers guaranteeing that the conclusion
of the theorem holds with U (¢) replaced by (7(¢) B) U C;(¢) in (iv) is nonempty. It is
obvious that A; ;1 C A;, and all A; are compact, NA; 7# . This completes the proof
of the theorem.

Remark 5.1 The only purpose of introducing functionals ¢,, in the regular case was to
get more precise information about location of values of ¢ (-). In case when we know
a priori that Ac g(t,-) and 92 g(t, -) coincide (e.g., when g(z, -) is differentiable and
the derivative is continuous in both variables), the proof will be noticeably shorter.

6 An Open Problem

If we know a priori that (OC) is regular, that is, the distance to the feasible set from any
x(-) of a W! ! -neighborhood of X(-) is majorized by K ( fOT d(x(t), F(t, x(1)))dt +
d((x(0), x(T)), S)), then the conclusion of the theorem can be significantly strength-
ened. Indeed, regularity would allow us to reduce the problem to unconstrained
minimization of

T
@(x(-)) + Ko (/o d(x(1), F(t, x(1)))dr 4+ d((x(0), x(T)), S)) .

Applying Theorem 3.1 to this functional, we would deduce that the conclusion of the
theorem is valid with U (¢) replaced by the set of u € F (¢, x(¢)) such that the function
d(u, F(t,-)) is continuous in the g-neighborhood of x(#). The question is whether
such a replacement can be justified also in the singular case. Positive answer to the
question would allow to extend (iv) to those u € F (¢, x(¢)) for which the function
d(u, F(t,-)) is continuous near x(z).

Similar extension is possible for optimal control problems in the classical Pontrya-
gin form when the right side of the equation is continuous with respect to the state
variable (see, e.g., [22] and references therein).

7 Conclusions

As is stressed in the introduction, the purpose of the paper has been not just to prove
new and stronger necessary optimality conditions but also to show that how a heavily
constrained optimal control problem can be equivalently reduced to an unconstrained
Bolza problem with simply structured integrand and off-integral term. It is to be once
again emphasized that such a reduction can be performed and effectively used for
further analysis only in the framework of modern variational analysis that allows to
work with nonsmoothness and set-valuedness. I believe that the approach has a strong
potential and can be effectively used far beyond first-order optimality conditions, in
particular, to study second-order conditions for a strong minimum in optimal control
and the Hamilton—Jacobi theory.
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