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Abstract
This paper introduces a new method for the computation of an optimal semi-active
feedback of a plant, which is controlled by multiple semi-active control dampers and
subjected to external, a priori known deterministic disturbance input. The control force
is written in bilinear form in equivalent damping gains and a linear combination of
the states. This form leads to a bilinear state-space model with corresponding damp-
ing gain constraints. An optimal control problem, denoted as constrained bilinear
quadratic regulator, is formulated with a performance index, which is quadratic in the
states and the equivalent damping gains. The methodology, which is used for solving
this problem, is Krotov’s method. In this study, the sequence of improving functions,
which enables the use of Krotov’s method in this case, is formulated. Its incorporation
in Krotov’s algorithm leads to the suggested novel algorithm for solution of the con-
strained bilinear quadratic regulator problem for excited optimal semi-active control
design. The results are demonstrated numerically by constrained bilinear quadratic
regulator control design of controlled structure with seismic disturbance input.
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1 Introduction

A promising approach for the suppression of unwanted dynamic phenomena in civil
structures, known as structural control, attracts growing attention in the last decades
[1]. Generally speaking, physical realization of structural control is done by actuators
which apply forces to the vibrating structure in real time. There are many types of
such actuators; one can see, for example, [2–5]. However, each type imposes different
design constraints on the control law. Semi-active dampers are type of actuators, whose
physical properties ensure that they will only dissipate mechanical energy from the
structure [6]. Additionally, they can change their dissipative properties according to
external control commands by just a small power source [1]. These properties ensure
the stability of the controlled structure and allow the controller to operate in case of
external power outage.

The control design for a structure with semi-active dampers was addressed in many
studies. A strategy for practical semi-active controller design was described in [7].
It allows for the nonlinear properties of semi-active dampers to be considered sepa-
rately from the plant controller. Due to its simplicity, clipped optimal control is very
popular for plant controller design [8–11]. However, the arbitrary clipping of the con-
trol trajectory distorts it and therefore raises a theoretical question on its contribution
to the controlled plant. The synthesis of truly optimal controller for a structure with
semi-active dampers, which is also theoretically justified, was addressed in very few
studies. Recently, new results have been published in this area [12–14]. The present
study suggests a new method for the computation of optimal feedback for a plant con-
trolled by multiple semi-active control devices and subjected to an external, a priori
known deterministic disturbance input. It is an extension of the results reported for a
free vibration single input [12] and the free vibrating multi-input [13].

2 Background

2.1 The Plant Model

Consider a model of an excited structure with lumped masses, linear damping, linear
stiffness and a controller comprised of multiple actuators. The equations of motion in
its degrees of freedom (DOFs) are given by the following second-order initial value
problem [15]:

Mz̈(t) + Cd ż(t) + Kz(t) = �w(t) + e(t); z(0), ż(0),∀t ∈]0, t f [ (1)

This is a linear time-invariant (LTI) model, in which M > 0, Cd ≥ 0 and K > 0
are symmetric mass, damping and stiffness matrices, respectively;1 z : R → R

nz is a
smooth vector function, which represents the DOF displacements; w : R → R

nw is
vector function of the control forceswhich are generated by the actuators;� ∈ R

nz×nw

1 Recall that M > 0, K > 0 iff zTMz > 0, zTKz > 0 for all z ∈ R
nz , z �= 0 and Cd ≥ 0 iff zTCdz ≥ 0

for all z ∈ R
nz .
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is an inputmatrix that describes how the control force inputs affect the structure’sDOF;
e : R → R

nz is a vector function that describes the external disturbance force inputs.
The state-space form of (1) is

ẋ(t) = Ax(t) + Bw(t) + g(t); x(0),∀t ∈]0, t f [ (2)

where

x(t) :=
[
z(t)
ż(t)

]
; A :=

[
0 I

−M−1K −M−1Cd

]
∈ R

n×n

B :=
[

0
M−1�

]
∈ R

n×nw ; g(t) :=
[

0
e(t)

]

n = 2nz .

The semi-active dampers set limits on wi as follows:

1. wi is always opposed to the relative velocity of the damper anchors. That assures
that the damper will only consume mechanical energy from the structure.

2. wi must vanish when there is no motion in the damper. That is, physical consid-
erations does not allow control force generation when the relative velocity in the
damper is zero.

3. For some semi-active dampers, when there is motion in the damper there is some
minimal amount of damping that it provides, even in off-state, i.e., when no control
command is given.

When the relative velocity of the damper anchors can be written as linear combi-
nation of the state elements, i.e., as cix for some cTi ∈ R

n , then it follows that each w

should satisfy the following constraints:

C1: wi (t)cix(t) ≤ 0,
C2: cix(t) = 0 → wi (t) = 0,
C3: |wi (t)| ≥ wi,min(t, x(t)) ≥ 0

for all t ∈ [0, t f ] and for some wi,min : R×R
n → [0,∞[. Note that the lower bound

must satisfy wi,min(t, x(t)) = 0 whenever cix(t) = 0. Otherwise C2 and C3 will
contradict.

The control design process must take constraints C1–C3 into consideration, espe-
cially when optimal control design is sought. A method that can be used for control
synthesis of such constrained optimal control problems is Krotov’s method.

2.2 Krotov’s Method: Successive Global Improvements of Control

Krotov’smethod is aimed at numerical solution of optimal control problems. However,
the method requires the formulation of a function sequence with special properties.
If such sequence can be found, it allows the computation of a global optimum for the
addressed optimal control problem. This subsection describes elements fromKrotov’s
results which are relevant to this study.
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Let

ẋ(t) = f(t, x(t),u(t)); x(0),∀t ∈]0, t f [ (3)

be the state equation;U ⊆ {R → R
nu } be the set of admissible control trajectories and

X ⊆ {R → R
n} be the set of state trajectories which are reachable fromU and x(0).

The term admissible process refers to a state and control trajectories (x ∈ X ,u ∈ U )

which satisfy (3). The goal of an optimal control problem is to find an admissible
process which minimizes the following performance index.

J (x,u) =
t f∫
0

l(t, x(t),u(t))d t (4)

Definition 2.1 (Optimizing sequence) Let {(xk,uk)} be a sequence of admissible pro-
cesses and assume that infx∈X

u∈U
J (x,u) exists. If

J (xk,uk) ≥ J (xk+1,uk+1) (5)

for all k = 1, 2, . . . and

lim
k→∞ J (xk,uk) = inf

x∈X
u∈U

J (x,u) (6)

then {(xk,uk)} is said to be an optimizing sequence.

Krotov’s method is aimed at the computation of such sequence, and it does so by
successive improvements of admissible processes as follows [16].

Theorem 2.1 Let (xk,uk) be a given admissible process, qk be some smooth function
and define s and s f as:

s(t, ξ , ν) := qt (t, ξ) + qx(t, ξ)f(t, ξ , ν) + l(t, ξ , ν) (7)

s f (ξ) := l f (ξ) − q(t f , ξ) (8)

where ξ ∈ R
n, ν ∈ R

nu are some vectors.
If (xk,uk) is the solution to the following maximization problem:

sk(t, xk(t),uk(t)) = max
ξ∈X (t)

sk(t, ξ ,uk(t))

s f ,k(xk(t f )) = max
ξ∈X (t f )

s f ,k(ξ) (9)

and if ûk+1 is a control feedback which satisfies

ûk+1(t, ξ) = arg min
ν∈U (t)

sk(t, ξ , ν); ∀t ∈ [0, t f ] (10)
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then xk+1 which solves

ẋk+1(t) = f(t, xk+1(t), ûk+1(t, xk+1(t))); xk+1(0) = x(0),∀t ∈]0, t f [ (11)

and the control trajectory uk+1(t) = ûk+1(t, xk+1(t)) satisfy (5).

It follows from this theorem that if for given (xk,uk) one can find qk such that (9) holds,
then it is possible to find an improved process—(xk+1,uk+1). Such qk is denoted as
improving function. Solving this problem over and over yields an optimizing sequence
and hence leads to the solution of the optimization problem.

The iterations are summarized in the following algorithm. Its initialization requires
the computation of some initial admissible process—(x0,u0). Afterward, the follow-
ing steps are iterated for k = {0, 1, 2, . . .} until convergence is reached:
1. Find qk that solves

sk(t, xk(t),uk(t)) = max
ξ∈X (t)

sk(t, ξ ,uk(t))

s f ,k(xk(t f )) = max
ξ∈X (t f )

s f ,k(ξ)

for a given (xk,uk) and for all t in [0, t f ]. Here sk and s f ,k are the functionals
obtained by substitution of qk into (7) and (8).

2. Find an optimal feedback

ûk+1(t, x(t)) = arg min
ν∈U (t)

sk(t, x(t), ν)

for all t in [0, t f ]
3. Propagate into the next, improved state and control processes, by solving

ẋk+1(t) = f
(
t, xk+1(t), ûk+1(t, xk+1(t))

)

and setting

uk+1(t) = ûk+1(t, xk+1(t))

As it can be seen from the above, the use of Krotov’s method requires formulation
of a suitable sequence—{qk}. However, the search for these improving functions is
a significant challenge. As of this writing, there is no known unified approach for
the formulation of these functions and they usually differ from one optimal control
problem to another.

3 Main Results

Consider a structure which is controlled by a set of semi-active dampers and subjected
to an a priori known external excitation—g : R → R

n . The state-space equation
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of such structure is given in (2), and constraints C1–C3 are induced on the control
forces due to the semi-active nature of the dampers. However, here, an alternative
representation will be used. It will be shown that the alternative representation is
equivalent to the first one.

Consider the bilinear state-space equation:

ẋ(t) =
(
A −

nu∑
i=1

bi ui (t)ci

)
x(t) + g(t); x(0),∀t ∈]0, t f [ (12)

where nu = nw; cTi ∈ R
n is constructed such that cix is the relative velocity of the

damper’s anchors; ui is a control trajectory that satisfies

u(t) ∈ [
ui,min(t, x(t)), ui,max(t, x(t))

]
(13)

ui,min, ui,max : R × R
n → R satisfy ui,max(t, ξ) ≥ ui,min(t, ξ) ≥ 0 for all t ∈ R and

ξ ∈ R
n . Additionally, ui,min satisfies ui,min(t, ξ)|ciξ | = wi,min(t, ξ).

Proposition 3.1 If (x,u) is an admissible process by means of (12) and (13), then
(x, (−uicix)

nu
i=1) is an admissible process by means of (2) with constraints C1–C3.

Proof Let (x,u) be an admissible process by means of (12) and (13) and let

ŵi (x(t), t) := −ui (t)cix(t) (14)

It follows that

ŵi (x(t), t)cix(t) = −ui (t)(cix(t))2 ≤ 0 (15)

i.e., C1 is satisfied. The compliance of ŵi withC2 is straightforward from its definition.
Finally,

|ŵi (x(t), t)| = ui (t)|cix(t)| ≥ ui,min(t, x(t))|cix(t)| = wi,min(t, x(t))

Hence, (x, ŵ(x)) is admissible by means of (2) with constraints C1–C3. 
�
It should be noted that in addition to the semi-active constraints, many practical

implementations require that the control force will not exceed some upper bound. That
can be achieved by a proper definition of ui,max.

Let the set of control trajectories,which are admissible in the i th semi-active damper,
be denoted by Ui (x). Its x dependency can be clearly seen in (13). In other words,
each u inUi (x) satisfies (13) where ci , ui,max and ui,min follow the above-mentioned
definitions.

The addressed optimal control problem is given in the next definition.
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Definition 3.1 (CBQR) The constrained bilinear quadratic regulator (CBQR) control
problem is a search for an optimal and admissible process (x∗,u∗), which minimizes
the quadratic performance index:

J (x,u) = 1

2

t f∫
0

x(t)TQx(t) +
nu∑
i=1

ui (t)
2rid t (16)

where 0 ≤ Q ∈ R
n×n and ri > 0 for i = 1, . . . , nu . An admissible process is a pair

(x,u) which satisfies (12) and ui ∈ Ui (x) for i = 1, . . . , nu .

From physical viewpoint, the performance index weighs the states response against
the time-varying damping gains. Smaller values of (ri )

nu
i=1 will produce a control

law which tends to generate larger gain values. This might require larger semi-active
dampers, depending on the specific damper type.

The CBQR problem will be solved by Krotov’s method. To this end, a class of
improving functions that suit to the CBQR problem will be formulated in the next
lemmas.

Lemma 3.1 Let

q(t, ξ) = 1

2
ξ TP(t)ξ + p(t)T ξ ; P(t f ) = 0; p(t f ) = 0

where ξ ∈ R
n; P : R → R

n×n is a continuous, piecewise smooth and symmetric,
matrix function; and p : R → R

n is a continuous and piecewise smooth, vector
function.

Let vi (t, ξ) := bTi (P(t)ξ+p(t))ci ξ
ri

. The vector of control laws, (ûi )
nu
i=1, which mini-

mizes s(t, x(t),u(t)), is given by

ûi (t, x(t)) = arg min
ν∈Ui (t,x)

s(t, x(t), ν)

=
⎧⎨
⎩
ui,min(t, x(t)), vi (t, x(t)) ≤ ui,min(t, x(t))
ui,max(t, x(t)), vi (t, x(t)) ≥ ui,max(t, x(t))
vi (t, x(t)), otherwise

(17)

Proof The partial derivatives of q are

qt (t, ξ) = 1

2
ξ T Ṗ(t)ξ + ṗ(t)T ξ ; qx(t, ξ) = ξTP(t) + p(t)T (18)

Let ν ∈ R
nu . Substituting into (7) and (8) yields

s f (x(t f )) = 0 ∀x(t f ) ∈ X (t f ) (19)

s(t, x(t), ν) = qt (t, x(t)) + qx(t, x(t))f(t, x(t), ν)

+ 1

2

(
x(t)TQx(t) +

nu∑
i=1

ν2i ri

)
(20)
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= 1

2
x(t)T

(
Ṗ(t) + P(t)A + ATP(t) + Q

)
x(t)

+ x(t)T (ṗ(t) + ATp(t) + P(t)g(t)) + p(t)T g(t)

+ 1

2

nu∑
i=1

riν
2
i − 2riνivi (t, x(t)) (21)

where vi was defined in the lemma. Completing the square leads to

s(t, x(t), ν) = 1

2
x(t)T

(
Ṗ(t) + P(t)A + ATP(t) + Q

)
x(t)

+ x(t)T (ṗ(t) + ATp(t) + P(t)g(t)) + p(t)T g(t)

+ 1

2

nu∑
i=1

ri (νi − vi (t, x(t)))2 − rivi (t, x(t))2

= f2(t, x(t)) + 1

2

nu∑
i=1

ri (νi − vi (t, x(t)))2

where f2 : R × R
n → R is some functional independent of νi . It follows that a

minimum of s(t, x(t), ν) over {ν|ν ∈ U (t, x)} is the minimum of the quadratic sum
with relation to each {νi |νi ∈ Ui (t, x)}, independently. Theminimizing and admissible
νi ∈ Ui (t, x) is calculated as follows:

1. If vi (t, x(t)) ≤ ui,min(t, x(t)), the admissible minimum is attained at νi =
ui,min(t, x(t)).

2. If vi (t, x(t)) ≥ ui,max(t, x(t)), the admissible minimum is attained at νi =
ui,max(t, x(t)).

3. Otherwise the admissible minimum is attained at νi = vi (t, x(t)).

The admissible minimizing ûi that corresponds to the admissible minimizing νi is
given by (17). 
�
Lemma 3.2 Let (xk,uk) be a given admissible process, and let Pk and pk be the
solutions of

Ṗk(t) = −Pk(t)(A − Bdiag(uk(t))C)

− (A − Bdiag(uk(t))C)TPk(t) − Q; Pk(t f ) = 0 (22)

and

ṗk(t) = − (A − Bdiag(uk(t))C)T pk(t) − Pk(t)g(t); pk(t f ) = 0 (23)

then

qk(t, x(t)) = 1

2
x(t)TPk(t)x(t) + pk(t)T x(t)
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is an improving function and the related sk satisfies

sk(t, xk(t),uk(t)) = max
ξ∈X (t)

sk(t, ξ ,uk(t)) (24)

Proof Bysubstitutingvi into (21) and then reordering terms, sk(t, x(t),uk(t))becomes

sk(t, x(t),uk(t)) = 1

2
x(t)T

(
Ṗk(t) + Pk(t) (A − Bdiag(uk(t))C)

+ (A − Bdiag(uk(t))C)T Pk(t) + Q
)
x(t)

+ x(t)T
(
ṗk(t) + (A − Bdiag(uk(t))C)T pk(t) + Pk(t)g(t)

)

+ pk(t)T g(t) + 1

2

nu∑
i=1

ui,k(t)
2ri

As Ṗk(t) and ṗk(t) satisfies (22) and (23), we have

sk(t, x(t),uk(t)) = 1

2
x(t)T 0x(t) + x(t)T 0 + pk(t)T g(t) (25)

= pk(t)T g(t) + 1

2

nu∑
i=1

ui,k(t)
2ri (26)

Since sk(t, x(t),uk(t)) = sk(t, xk(t),uk(t)) it is obvious that

sk(t, x(t),uk(t))) ≤ sk(t, xk(t),uk(t))

for all x(t). 
�
It can be seen that, if g = 0, then pk(t) = 0 and the problem is reduced to the free
vibrations case reported in [17].

By putting together Sect. 2.2 and these two lemmas, the sequences {qk} and
{(xk,uk)} can be computed where the second one is an optimizing sequence. As J is
nonnegative, it has an infimum and {(xk,uk)} gets arbitrarily close to the optimum.

The resulting algorithm is summarized in Fig. 1. Its output is an arbitrary approxi-
mation forP∗ and p∗, which define the optimal control law. It should be noted that even
the use of absolute value in step (8) of the iterations stage is theoretically unnecessary;
it is needed due to practical considerations. Sometimes, numerical computation errors
may cause the algorithm to lose its monotonicity when getting closer to the optimum.

4 Numerical Example

This section demonstrates the seismic response of a controlled structure whose control
trajectories are calculated by the suggested method. The simulations were carried out
using original subroutines written in MATLAB.
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Algorithm 1 CBQR - Algorithm for successive improvement of control process.
1: Input:A,B = [

b1 b2 . . .
]
,C = [

c1 c2 . . .
]
, g, (ui,min)

nu
i=1, (ui,max )

nu
i=1, x(0),Q ≥ 0, (ri |ri > 0)nui=1.

2: Initialization:

(1) Select a convergence tolerance - ε > 0.
(2) Solve:

ẋ0(t) =(A − Bdiag(umin(t, x0(t)))C)x0(t) + g(t); x(0)

and set u0(t) = umin(t, x0(t)). Solve

Ṗ0(t) = − P0(t)(A − Bdiag(u0(t)))C) − (A − Bdiag(u0(t)))C)T P0(t) − Q; P0(t f ) = 0

ṗ0(t) = − (A − Bdiag(u0(t)))C)T p0(t) − P0(t)g(t); p0(t f ) = 0

(3) Compute: J0(x0, u0) = 1
2

t f∫
0
x0(t)TQx0(t) + ∑nu

i=1 ui,0(t)
2rid t

3: for k = {0, 1, 2, 3, 4, . . .} do
4: Propagate to the improved process by solving:

ẋk+1(t) =(A − Bdiag(ûk+1(t, xk+1(t)))C)xk+1(t) + g(t); xk+1(0) = x(0)

where vi,k (t, x(t)) := bTi (Pk (t)x(t) + pk (t))cix(t)/ri and

ûi,k+1(t, x(t)) =
⎧⎨
⎩
ui,min(t, x(t)), vi,k (t, x(t)) ≤ ui,min(t, x(t))
ui,max (t, x(t)), vi,k (t, x(t)) ≥ ui,max (t, x(t))
vi,k (t, x(t)), otherwise

5: Set uk+1(t) = ûk+1(t, xk+1(t)).
6: Solve:

Ṗk+1(t) = − Pk+1(t)(A − Bdiag(uk+1(t))C) − (A − Bdiag(uk+1(t))C)T Pk+1(t) − Q

ṗk+1(t) = − (
A − Bdiag(uk+1(t))C

)T pk+1(t) − Pk+1(t)g(t)

for Pk+1(t f ) = 0 and pk+1(t f ) = 0.
7: Compute:

J (xk+1,uk+1) = 1

2

t f∫
0

xk+1(t)
TQxk+1(t) +

nu∑
i=1

ui,k+1(t)
2rid t

8: If |J (xk ,uk ) − J (xk+1, uk+1)| < ε, stop iterating, otherwise - continue.
9: end for
10: return Pk+1, pk+1.

The model follows the one suggested by Spencer et al. [15], as a control benchmark
problem for seismically excited buildings, except slight modifications. Its response
was simulated to artificial white noise horizontal ground acceleration input [18] with
a peak acceleration of 0.3 g.

The control forces were applied through 21 control devices. The model and the
control device locations are shown in Fig. 1. In this figure, zi is the i th DOF and wi is
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Fig. 1 Evaluation model and dampers configuration

the control force related to the adjacent device. The devices are numbered from 1 to
21 in an increasing order starting from the device mounted in B-2.

The state-space model parameters were computed according to (2). The external
disturbance force input was set to e = γ T z̈g where γ = [

1 1 . . . 1
]T ∈ R

21 and z̈g is
the earthquake input.

The response was analyzed for four cases:

Case 1: There are no control devices.
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Case 2: The control devices are fluid viscous dampers.
Case 3: The control devices are semi-active dampers which are governed by clipped

LQR control law.
Case 4: The control devices are semi-active dampers which are governed by CBQR

control law.

In case 2, the control law for each damper was assumed to be linear:

wc2
i (t) = −ũicix(t)

where ũi is the linear viscous gain of the i th damper and cTi ∈ R
42 is constructed

such that cix is the elongation velocity of the i th damper. ũi ’s values were computed
by the optimal control design method suggested in [19]. They are given in the second
column of Table 1.

In case 3, a clipped LQR control law was used. The control forces were computed
according to an inhomogeneous LQR control law [20] andwere clippedwhenever they
violated the following semi-active constraints. In accordance with (14), each control
force wc3

i is associated with an equivalent damping gain—uc3i . The lower bound of
uc3i was set to ui,min = mini∈[1,21] ũi = 1.039 × 105 kg/s, and its upper bound was
set to

Table 1 Damper properties for
cases 2, 3 and 4

Damper Case 2 Cases 2, 3 and 4
ũi /10

5 (kg/s) wi,max/10
5 (N)

1 1.039 0.1

2 85.12 12.85

3 48.6 5.579

4 48.27 5.207

5 46.96 4.785

6 46.82 4.649

7 47.29 4.566

8 45.68 4.149

9 43.43 3.699

10 41.25 3.504

11 39 3.297

12 39.96 3.502

13 39.58 3.544

14 35.68 3.125

15 34.48 3.168

16 33.27 3.199

17 27.37 2.527

18 25.1 2.365

19 21.74 2.017

20 18.93 1.721

21 14.34 1.149
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ui,max(t, x(t)) =
⎧⎨
⎩
0, cix(t) = 0,
maxt |wc2

i (t)|
cix(t)

, otherwise

Here ci identical to that of case 2 and maxt |wc2
i (t)| is the peak control force value that

was generated in case 2 at the i th damper. It means that the controller was designed
such that the control force generated in the i th semi-active damper will not exceed the
peak control force value of the corresponding viscous damper from case 2. The peak
control forces values are given in the third column of Table 1.

In case 4, the semi-active control forces were also modeled as in (14) and the same
constraints from case 3were imposed. The control forceswere computed by theCBQR
method.

The i th rows in the observationmatrixC ∈ R
21×42 is ci . The state weightingmatrix

Q for cases 3 and 4 was chosen such that

x(t)TQx(t) = 5 × 1018
21∑
i=1

di (t)
2

where di (t) is the inter-story drift in the i th floor. For the given model, such weighting
can be achieved by lettingQ = 5×1018NTNwhereN ∈ R

n×n is defined by (N)i,i = 1
for 1 ≤ i ≤ 21, (N)i+1,i = −1 for 2 ≤ i ≤ 20 and (N)i, j = 0 in the other elements.
Unlike the states weighting, which have the same meaning both in case 3 and case 4,
the control weighting for case 3 has a different meaning from that of case 4. In the
LQR method, which is the design basis in case 3, the control weighting relates to the
control forces, whereas in case 4 the CBQR control weighting relates to the equivalent
damping gains. It means that case 3 and case 4 have completely different design
goals. Hence, in order to create a common comparison basis, case 3 control weighting
was chosen such that the euclidean norm ‖(uc3i )

nu
i=1‖ will be of the same order as

‖(uc4i )
nu
i=1‖. As a result, Rc3 = I × 4.5 × 105 and (rc4i )21i=1 = (1, 1, . . . , 1) × 10−4

were chosen for case 3 and 4, respectively.
The initial state vector was set to zero.
Figure 2 shows the progress of the performance index during nine design iterations.

A dramatic monotonic improvement can be seen in the first three iterations. Some
small non-monotonic variations were observed after that due to numerical computa-
tion issues. Practically, the solution converged at the third iteration. Figure 3 shows the
roof displacements for each case. In case 3, the control law gained a modest improve-
ment, comparing to case 1. On the other hand, a significant enhancement in peak roof
displacement is evident in cases 2 and 4. Figure 4 shows the form of control trajectory
u2 for cases 3 and 4. A logarithmic scale was used due to the extreme changes in
its values. Its complex form can be clearly seen for both cases. As u2 serves as an
equivalent, time-varying damping gain for the second semi-active damper it makes
sense to compare it with ũ2 from case 2. In both cases, the control law generates
large u2 values, compared to ũ2. Its peak values are more than 1100 times bigger than
ũ2. That is because its upper bound is u2,max which is an unbounded function on its
own. u2,max becomes infinite when the damper velocity reaches zero. That allows a
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Fig. 2 Performance index values in each iteration

Fig. 3 Roof displacements

Fig. 4 Control trajectory u2

significant increase in u2 values at such moments. Yet, even that u2 peak values are
very large, compared to case 2, the peak control forces have the same magnitude of
those from case 2. Figure 5 shows the form of control forcew2, for cases 2, 3 and 4. Its
saturation in case 4 can be seen clearly. In case 3, the control force magnitude is very
low. Considering the modest improvement in the roof displacements, which are given
in Fig. 3, Fig. 5 implies that the clipped optimal control fails to generate an efficient
control which is equivalent to that from case 4.
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Fig. 5 Control force w2

5 Conclusions

Anewmethod for computing optimal semi-active feedback was formulated. It extends
previously published results on CBQR control design to a case of a plant controlled
by multiple semi-active control dampers and subjected to external, a priori known
deterministic disturbance input. The addressed plant was modeled by a linear state-
space model with constraints on the control forces reflecting the semi-active nature of
the dampers. The control force was written in an equivalent bilinear form. The incor-
poration of this force representation led to a bilinear state-space model. The optimal
control problemwas defined for the above-mentioned state-space model, control force
constraints and a performance index which is quadratic in the states and the equivalent
damping gains. The methodology that was used for optimal control synthesis for this
problem is Krotov’s method.

Krotov’s method requires the formulation of a piecewise smooth function sequence
with special properties. However, the search for these functions, denoted here as
improving functions, is a significant challenge due to its strong relation with the for-
mulated problem. In this study, a new sequence of improving functions, which enables
the use of Krotov’s method in this case, was formulated. Its incorporation in Krotov’s
algorithm led to the suggested novel algorithm for solution of the CBQR problem for
excited optimal semi-active control design. The results were demonstrated numeri-
cally by CBQR control design of controlled structure which is subjected to seismic
input.

The results imply that the solution of the addressed optimal control problem has
strong dependency on the excitation input. It means that an optimal control that was
designed for one disturbance input will be sub-optimal for other one. Hence, the
method can be used for optimal semi-active control design of problems with a priori
known disturbance inputs and as a basis for control design in case of unknown distur-
bance inputs. For example, it can be used to evaluate how some sub-optimal solution
is far from the optimal one.
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