
Journal of Optimization Theory and Applications (2019) 181:324–346
https://doi.org/10.1007/s10957-018-1445-8

An Infeasible Interior-Point Algorithm for Stochastic
Second-Order Cone Optimization

Baha Alzalg1,2 · Khaled Badarneh1 · Ayat Ababneh1,3

Received: 24 March 2017 / Accepted: 13 November 2018 / Published online: 22 November 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Alzalg (J Optim Theory Appl 163(1):148–164, 2014) derived a homogeneous self-
dual algorithm for stochastic second-order cone programs with finite event space.
In this paper, we derive an infeasible interior-point algorithm for the same stochas-
tic optimization problem by utilizing the work of Rangarajan (SIAM J Optim 16(4),
1211–1229, 2006) for deterministic symmetric cone programs.We show that the infea-
sible interior-point algorithm developed in this paper has complexity less than that of
the homogeneous self-dual algorithm mentioned above. We implement the proposed
algorithm to show that they are efficient.

Keywords Second-order cone programming · Stochastic programming · Infeasible
interior-point algorithms · Euclidean Jordan algebra

Mathematics Subject Classification 90C25 · 90C06 · 90C15 · 90C30 · 90C51 · 90C60

1 Introduction

Two-stage stochastic second-order cone programs [1] have been defined to formu-
late many applications of second-order cone programs [2] that involve uncertainty in

Communicated by Florian Potra.

B Baha Alzalg
b.alzalg@ju.edu.jo

Khaled Badarneh
firsto_ojo@yahoo.com

Ayat Ababneh
ababneh.3@osu.edu

1 Department of Mathematics, The University of Jordan, Amman 11942, Jordan

2 School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA

3 Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-018-1445-8&domain=pdf

Journal of Optimization Theory and Applications (2019) 181:324–346 325

data. General and different classes of optimization problems, such as stochastic lin-
ear programs, stochastic quadratic programs, and quadratically constrained stochastic
quadratic programs, can be recast as stochastic second-order cone programs [1,2]. In
[1], the reader can find various application models of stochastic second-order cone
programs, namely the stochastic Euclidean facility location problem, the portfolio
optimization problem with loss risk constraints, the optimal covering random ellip-
soid problem, and an application in structural optimization.

Alzalg and Ariyawansa [3] (see also Alzalg [4,5]) proposed polynomial-time
decomposition-based interior-point algorithms for stochastic programs over all sym-
metric cones including second-order cones. While the decomposition-based interior-
point algorithms exploit the structure in a problem, there are other classes of algorithms
such as infeasible interior-point algorithms and homogeneous self-dual algorithms,
which are particularly designed for general problems. However, when applied to
problems with structure, in many cases homogeneous and infeasible interior-point
algorithms can be designed to exploit the structure by carefully tailoring the opera-
tions of the algorithm. In [6], Alzalg has derived a homogeneous self-dual algorithm
for stochastic second-order cone programswith finite event space of their random vari-
ables. In this paper, the focus is on developing an infeasible interior-point algorithm
for stochastic second-order cone programs.

For deterministic nonlinear programming problems, several infeasible interior-
point methods have been proposed. See, for examples, the work of Nesterov [7] in
nonlinear programming, the work of Rangarajan [8] over symmetric cones, the work
of Potra and Sheng [9] over the semidefinite cone, and the work of Xiaoni and Sanyang
[10] over the second-order cone. See also the work of Castro [11] and that of Castro
and Cuesta [12] which present interior-point methods for large-scale deterministic
optimization problems by exploiting block-angular structures. As mentioned earlier,
we are concerned to derive an infeasible interior-point algorithm for stochastic second-
order cone programs with finite event space of their random variables by utilizing the
work of Rangarajan [8]. We will see that the infeasible algorithm developed for these
problems has complexity less than that of the homogeneous algorithm developed in
[6] for the same problems.

We organize this paper as follows. In Sect. 2, we briefly review some preliminary
definitions, symbols, and notations from the theory of the Jordan algebra associated
with the second-order cone. Section 3 presents the definition of a stochastic second-
order cone programming with finite event space in primal standard form as defined
in [1]. In Sect. 4, we exploit the special structure in our stochastic second-order cone
programming problem to present a method for computing the search direction. In
Sect. 5, we state the infeasible interior-point algorithm for solving the stochastic
second-order cone programming problem and estimate its computational complex-
ity with the method presented and analyzed in Sect. 4 and applied on our problem. In
Sect. 6, we test the generic infeasible interior-point algorithm for stochastic second-
order cone programs with some numerical examples. Section 7 gives some concluding
remarks.

123

326 Journal of Optimization Theory and Applications (2019) 181:324–346

2 The Algebra of the Second-Order Cone: Definitions and Notations

The definitions and notations presented in this section are necessary to proceed with
our subsequent development. Those who are not familiar with the basics of the theory
of algebra of the second-order cone are highly encouraged to read [2, Section 4].

We use “,” for adjoining vectors and matrices in a row and use “;” for adjoining
them in a column. For each vector x ∈ R

n whose first entry is indexed with 0, we write
x̃ for the subvector consisting of entries 1 through n − 1 (therefore x = (x0, x̃

T)T ∈
R×R

n−1). We let En denote the nth-dimensional real vector space R×R
n−1 whose

elements x are indexed from 0.
In Table 1, we list some symbols and notations of the theory of the Jordan algebra

associated with the second-order cone. This table presents these notations and defini-
tions in both single and block-settings. The nth-dimensional second-order cone, which
is denoted by En+ and defined in Table 1, is the norm cone for the Euclidean norm.

We point out that the direct sum (of two square matrices A and B) used in Table 1
is the block diagonal matrix

A ⊕ B :=
[
A O
Ô B

]
.

where O and Ô are zero matrices with appropriate dimensions.
Note that the idempotents c1(x) and c2(x) defined in Table 1 satisfy the properties

c1(x) ◦ c2(x) = 0,
c1(x) ◦ c1(x) = c1(x),

c2(x) ◦ c2(x) = c2(x),

c1(x) + c2(x) = e.

Any pair of vectors {c1, c2} that satisfies the above properties is called a Jordan frame.
We say that elements x and y operator commute iff they share a Jordan frame, i.e.,
x = λ1c1 + λ2c2 and y = ω1c1 + ω2c2 for a Jordan frame {c1, c2}. In block-setting,
the vectors x = (x1; x2; . . . ; xr) and y = (y1; y2; . . . ; yr) operator commute iff xi
and yi operator commute for each i = 1, 2, . . . , r .

3 Stochastic Second-Order Cone Programs with Finite Event Space

We first write the stochastic second-order cone programming (SSOCP) problem in its
general definition as defined in [1, Section 2], and then we consider the special case
in which the event space is finite with K realizations.

Let r ≥ 1 be an integer. For i = 1, 2, . . . , r , let m0,m1, n0, n0i , n̄, n̄i be positive
integers such that n0 = ∑r

i=1 n0i and n̄ = ∑r
i=1 n̄i . The two-stage SSOCP with

recourse is the problem:

123

Journal of Optimization Theory and Applications (2019) 181:324–346 327

Table 1 Notations of the theory of the Jordan algebra associated with the second-order cone

Symbol Definition and description

In single-setting

‖ · ‖ The Euclidean norm which is defined as ‖u‖ =
(∑n

i=1 |ui |2
)1/2

for u ∈ R
n

En The n-dimensional real vector space R × R
n−1 whose elements are indexed from 0

En+ The second-order cone of dimension n defined as En+ := {x ∈ En : x0 ≥ ‖x̃‖}
e The identity of En which is defined as e := (1; 0)
x � 0 (x � 0) means that x ∈ En+

(
x ∈ int

(En+))
x � y or y 	 x x − y � 0. (We also write x � y or y ≺ x to mean that x − y � 0)

Arw(x) The arrow-shaped matrix associated with x ∈ En ; Arw(x) :=
[
x0 x̃T

x̃ x0 In−1

]

Qx The quadratic representation of x ∈ En which is defined as

Qx := 2Arw2(x) − Arw(x2) =
[

‖x‖2 2x0 x̃
T

2x0 x̃ det(x)I + 2x̃ x̃T

]

x ◦ y The bilinear map ◦ : En × En −→ En ; x ◦ y :=
[

xT y
x0 ȳ + y0 x̄

]
= Arw(x) y

λ1(x), λ2(x) The eigenvalues of x which are defined as λ1,2(x) := x0 ± ‖x̃‖
c1(x), c2(x) The eigenvectors of x which are defined as c1,2(x) := 1

2

(
1; ± x̃

‖x̃‖
)

x−1 The inverse of x; x−1 := 1
λ1(x)

c1(x) + 1
λ2(x)

c2(x) (provided that λ1, λ2 �= 0)

xn Same as xn−1 ◦ x for n ≥ 2; xn := λn1(x)c1(x) + λn2(x)c2(x)

x1/2 The square root of x; x1/2 := √
λ1(x)c1(x) + √

λ2(x)c2(x) (provided that λ1, λ2 > 0)

tr(x) The trace of x which is defined as tr(x) := λ1(x) + λ2(x) = 2x0

det(x) The determinant of x which is defined as det(x) := λ1(x)λ2(x) = x20 − ‖x̃‖2
xT y The Frobenius inner product of x and y defined as xT y := 1

2 tr(x ◦ y)

In block-setting

E E := En1 × En2 × · · · × Enr
E+ E+ := En1+ × En2+ × · · · × Enr+
x ∈ E x := (x1; x2; . . . ; xr) and each xi ∈ Eni for i = 1, 2, . . . , r

e The identity of E ; e := (e1; e2; . . . ; er)
x � 0 (x � 0) xi � 0 (xi � 0) for i = 1, 2, . . . , r

Arw(x) Arw(x) := Arw(x1) ⊕ Arw(x2) ⊕ · · · ⊕ Arw(xr)

Qx Qx := Qx1 ⊕ Qx2 ⊕ · · · ⊕ Qxr

x ◦ y x ◦ y := (x1 ◦ y1; x2 ◦ y2; . . . ; xr ◦ yr)

x−1 x−1 := (x1−1; x2−1; . . . ; xr−1) (provided that each xi is invertible)

xn xn := (x1n; x2n; . . . ; xr n) for n ≥ 2

x1/2 x1/2 := (x11/2; x21/2; . . . ; xr 1/2)
tr(x) tr(x) :=∑r

i=1 tr(xi)

det(x) det(x) :=∏r
i=1 det(xi)

xT y xT y := x1T y1 + x2T y2 + · · · + xr T yr

123

328 Journal of Optimization Theory and Applications (2019) 181:324–346

min η(x0) := cT0x0 + E [Q(x0, ω)]
s.t. W0x0 = h0,

x0 � 0,
(1)

where E[Q(x0, ω)] := ∫
�
Q(x0, ω)P(dω) and Q(x0, ω) is the minimum value of

the problem
min c(ω)Tx(ω)

s.t. W (ω)x(ω) = h(ω) − B(ω)x0,
x(ω) � 0,

(2)

where x0 := (x01; x02; . . . ; x0r) ∈ En01 × En02 × · · · × En0r is the first-stage
decision variable, x(ω) := (x1(ω); x2(ω); . . . ; xr (ω)) ∈ E n̄1 × E n̄2 × · · · × E n̄r

is the second-stage variable, the matrix W0 := (W01,W02, . . . ,W0r) ∈ R
m0×n0

(with W0i ∈ R
m0×n0i) and the vectors h0 ∈ R

m0 and c0 := (c01; c02; . . . ; c0r) ∈
R
n0 (with c0i ∈ En0i) are deterministic data, and the matrices W (ω) :=

(W1(ω),W2(ω), . . . ,Wr (ω)) ∈ R
m1×n̄ (with Wi (ω) ∈ R

m1×n̄i) and B(ω) :=
(B1(ω), B2(ω), . . . , Br (ω)) ∈ R

m1×n̄ (with Bi (ω) ∈ R
m1×n̄i) and the vectors

h(ω) ∈ R
m1 and c(ω) := (c1(ω); c2(ω); . . . ; cr (ω)) ∈ R

n̄ (with ci (ω) ∈ E n̄i) are
random data whose realizations depend on an underlying outcome ω in an event space
� with a known probability function P .

Towrite the extensive formulationof theSQSOCPproblems (1) and (2),we examine
problems (1) and (2) when the event space � is finite.

Let {(Bl ,Wl , hl , cl) : l = 1, . . . , K } be the set of the possible values of the random
variables

(
B(ω),W (ω), h(ω), c(ω)

)
and let pl := P

(
B(ω),W (ω), h(ω), c(ω)

) =(
Bl ,Wl , hl , cl

)
be the associated probability for l = 1, 2, . . . , K . For i = 1, 2, . . . , r

and l = 1, 2, . . . , K , let nl and nli be positive integers such that nl =∑r
i=1 nli .

Thus, in analogue to the above notations, the matrices Bli ∈ R
m1×nli and Wli ∈

R
m1×nli and the vectors cli ∈ Enli are realizations of random data such that Bl :=

(Bl1, Bl2, . . . , Blr), Wl := (Wl1,Wl2, . . . ,Wlr), and cl := (cl1; cl2; . . . ; clr). Then,
problems (1) and (2) become

min η(x0) := cT0x0 +
K∑

k=1

pl Ql(x0)

s.t. W0x0 = h0,
x0 � 0,

(3)

where, for l = 1, 2, . . . , K , Ql(x0) is the minimum value of the problem

min clTxl
s.t. Wl xl = hl − Bl x0,

xl � 0.
(4)

For convenience, we redefine cl as cl := pl cl for each l = 1, 2, . . . , K and conse-

quently rewrite the objective function of Problem (3) as η(x0) := cT0x0 +
K∑
l=1

Ql(x0).

123

Journal of Optimization Theory and Applications (2019) 181:324–346 329

We write the SSOCP problems (3) and (4) as an SSOCP problem with finite event
space in primal standard form and get

min cT0x0 + cT1x1 + · · · + cTK xK

s.t. W0x0 = h0,
B1x0 + W1x1 = h1,

...
. . .

...

BK x0 + WK xK = hK ,

x0, x1, . . . , xK � 0,

(5)

where the variable x0 := (x01; x02; . . . ; x0r) ∈ En01 × En02 × · · · × En0r is the first-
stage decision variable, and xl := (xl1; xl2; . . . ; xlr) ∈ Enl1 × Enl2 × · · · × Enlr , for
l = 1, 2, . . . , K , are the second-stage decision variables.

The dual of (5) is the problem

max hT0 y0 + hT1 y1 + · · · + hTK yK
s.t. W T

0 y0 + BT
1 y1 + · · · + BT

K yK + s0 = c0,
W T

1 y1 + s1 = c1,
. . .

...

W T
K yK + sK = cK ,

s0, s1, . . . , sK � 0,

(6)

where y := (y0; y1; . . . ; yK) ∈ R
m0+Km1 is a dual variable and sk :=

(sk1; sk2; . . . ; skr) ∈ Enk1 × Enk2 × · · · × Enkr are dual slacks for k = 0, 1, . . . , K .
Note that the programs in (5) and (6) are SSOCPs in primal and dual standard

forms, respectively, with block diagonal structures [2, Definition 2]. It will become
clear in our subsequent development (see, in particular, Theorems 5.1, 5.2) that the
size of problems (5) and (6) increases with K , and thus is huge in practice since K is
typically very large.

The infeasible interior-point algorithm in [8] can be directly applied to the primal-
dual pair (5) and (6), but we emphasize that doing so is not good from a computational
point of view because the computation of the search direction is very expensive. In
fact, algorithms that exploit the special structures in problems (5) and (6) are very
important specially when K is large, which is the case in practice. In the remaining
part of this paper, wewill see that this computational work can be significantly reduced
by exploiting the special structure of problems (5) and (6).

4 Computation of Search Directions

In this section, we present a method for computing the search direction for the
infeasible algorithm that exploits the special structures in (5) and (6). This method
decomposes the problem into K smaller computations that can be performed in par-
allel. We start by making some assumptions about the primal-dual pair (5) and (6):

123

330 Journal of Optimization Theory and Applications (2019) 181:324–346

Assumption 4.1 The m0 rows of the matrixW0 = (W01,W02, . . . ,W0r), the m1 rows
of Wl = (Wl1,Wl2, . . . ,Wlr) , and the m1 rows of Bl = (Bl1, Bl2, . . . , Blr) are
linearly independent for each l = 1, 2, . . . , K .

Assumption 4.2 Both primal and dual problems are strictly feasible, that is, there exist
primal feasible vectors x0, x1, . . . , xK such that xk � 0 for k = 0, 1, . . . , K , and there
exist dual-feasible vectors y and s0, s1, . . . , sK such that sk � 0 for k = 0, 1, . . . , K .

Assumption 4.1 is of fundamental importance to ensure nonsingularity. Assump-
tion 4.2 guarantees strong duality for the primal-dual pair (5) and (6).

Given Assumptions 4.1 and 4.2, the optimality conditions for the pair (5) and (6)
are as follows:

W0x0 = h0; (7a)
Bl x0 + Wl xl = hl , l = 1, 2, . . . , K ; (7b)

W T
0 y0 +

K∑
l=1

BT
l yl + s0 = c0; (7c)

W T
l yl + sl = cl , l = 1, 2, . . . , K ; (7d)

sk ◦ xk = 0, k = 0, 1, . . . , K ; (7e)
xk, sk � 0, k = 0, 1, . . . , K . (7f)

(7)

Note that using (7a–d) we have that

K∑
k=0

cTkxk −
K∑

k=0

hTk yk =
(
W T

0 y0 +
K∑
l=1

BT
l yl + s0

)T

x0 +
K∑
l=1

(W T
l yl + sl)Txl

− (W0x0)T y0 −
K∑
l=1

(Blx0 + Wl xl)T yl

=
K∑

k=0

xTk sk ≥ 0.

Hence, for given primal feasible vectors x0, . . . , xK and dual-feasible vectors y and
s0, . . . , sK ,

∑K
k=0 x

T
k sk = 0 is sufficient for optimality, and therefore

∑K
k=0 x

T
k sk is

called the duality gap. By using [2, Lemma 15], for xk, sk � 0, k = 0, 1, . . . , K ,∑K
k=0 x

T
k sk = 0 is equivalent to (7e).

The key idea of the path-following interior-point algorithms is to replace the com-
plementarity equation (7e) by the parameterized equation xk ◦ sk = μek , for μ > 0
where ek be the identity element of Enk1 × Enk2 × · · · × Enkr for k = 0, 1, . . . , K , we
then obtain the so-called perturbed optimality conditions. We accordingly consider
the system

123

Journal of Optimization Theory and Applications (2019) 181:324–346 331

W0x0 = h0;
Bl x0 + Wl xl = hl , l = 1, 2, . . . , K ;
W T

0 y0 +
K∑
l=1

BT
l yl + s0 = c0;

W T
l yl + sl = cl , l = 1, 2, . . . , K ;

xk ◦ sk = μek, k = 0, 1, . . . , K ;
xk, sk � 0, k = 0, 1, . . . , K .

(8)

Under Assumptions 4.1 and 4.2, system (8) has a unique solution denoted by((
x0(μ), y0(μ), s0(μ)

)
, . . . ,

(
xK (μ), yK (μ), sK (μ)

))
for any μ > 0. We call

x0(μ), . . . , xK (μ) and (y0(μ), s0(μ)) , . . . , (yK (μ), sK (μ)) as the μ-centers of pri-
mal and dual problems, respectively. The set of all μ-centers is called the central
path of primal and dual. If μ approaches 0, then the limit of the central path exists,
and since the limit points do satisfy the complementarity condition, they produce an
ε-approximate optimal solution of primal and dual problems.

In order to solve system (8), we apply Newton’s method to find an ε-approximate
optimal solution of our problem. That is, we compute the Newton search direction((

�x0,�s0,� y0
)
, . . . ,

(
�xK ,�sK ,� yK

))
and make a step in this direction to

obtain the new iterate
((
x0(α), y0(α), s0(α)

)
, . . . ,

(
xK (α), yK (α), sK (α)

))
belong

to the sufficiently small neighborhood of the central path. The corresponding Newton
equations are:

W0�x0 = r p0; where r p0 := h0 − W0x0;
Bl�x0 + Wl�xl = r pl ; r pl := hl − Bl x0 − Wl xl;
W T

0� y0 +
K∑
l=1

BT
l � yl + �s0 = rd0; rd0 := c0 − W T

0 y0 −
K∑
l=1

BT
l yl − s0;

W T
l � yl + �sl = rdl; rdl := cl − W T

l yl − sl;
sk ◦ �xk + �sk ◦ xk = rck, rck := σμek − sk ◦ xk .

(9)

Here, l varies from 1 to K and k varies from 0 to K , and σ ∈]0, 1[is a parameter.
Short-, semi-long-, and long-step algorithms are associated with the following cen-

trality measures defined for each pair (xk, sk):

dF (xk , sk) :=
√√√√ r∑

i=1

((
λ1

(
Qx1/2ki

ski
)

− μ
)2 +

(
λ2

(
Qx1/2ki

ski
)

− μ
)2)

, k = 0, 1, . . . , K ,

d2(xk , sk) := max
1≤i≤r

{∣∣∣λ1
(
Qx1/2ki

ski
)

− μ

∣∣∣ , ∣∣∣λ2
(
Qx1/2ki

ski
)

− μ

∣∣∣} , k = 0, 1, . . . , K ,

d−∞(xk , sk) := μ − min
1≤i≤r

{
λ1

(
Qx1/2ki

ski
)

, λ2

(
Qx1/2ki

ski
)}

, k = 0, 1, . . . , K .

Let γ ∈]0, 1[be a given constant. We define the following neighborhoods of the
central path for our problem:

NF (γ) := {(x0, y0, s0, . . . , xK , yK , sK) : dF (xk , sk) ≤ γμ, xk � 0, sk � 0, k = 0, 1, . . . , K
}
,

N2(γ) := {(x0, y0, s0, . . . , xK , yK , sK) : d2(xk , sk) ≤ γμ, xk � 0, sk � 0, k = 0, 1, . . . , K
}
,

N−∞(γ) := {(x0, y0, s0, . . . , xK , yK , sK) : d−∞(xk , sk) ≤ γμ, xk � 0, sk � 0, k = 0, 1, . . . , K
}
.

(10)

123

332 Journal of Optimization Theory and Applications (2019) 181:324–346

Here, μ = 1
2(K+1)

∑K
k=0 x

T
k sk . The iterates of our algorithm will be restricted to

a specific neighborhood, namely the minus-infinity neighborhood, N−∞(·), of the
central path, which is defined above based on the minus-infinity centrality measure
d−∞(xk, sk).

Note that for each k = 0, 1, . . . , K , the elements xk and sk of the Newton equations
given in (9) may not operator commute. For this reason, system (11) may not have
unique solution. In order to overcome this difficulty, we scale the variables used in
the Newton system (11) in a way that the scaled variables operator commute and the
perturbed complementarity equation is preserved (see Lemma 4.2). In other words,
we form different, but fully compatible, perturbed optimality conditions, and conse-
quently lead ourselves to different Newton equations shown in (11) where their scaled
elements, sk and xk , operator commute as will be seen in Lemma 4.1. The way of
scaling that we use is well known and proposed originally byMonteiro [13] and Zhang
[14] (called Monteiro-Zhang family of directions) for semidefinite programming and
generalized later by Schmieta and Alizadeh to symmetric programming [15].

Let p ∈ E be such that p � 0. With the quadratic form of p, we define w := Q pw,
and w := Q p−1w. From [15, Lemma 8], we have that Q pQ p−1 = I , so the operators
· and · are inverse of each other. Furthermore, from [2, Theorem 8], the existence of
w−1 indicates the existence of w−1 and w−1.

The above definitions are also applied to multiple block cases as follows:

w := (w1;w2; . . . ;wr), w := (w1;w2; . . . ;wr) and A := (A1, A2, . . . , Ar),

where Ai := Ai Q p−1 for i = 1, 2, . . . , r .
For each k = 0, 1, . . . , K , an invertible vector pk is chosen as a function of xk and

sk , and for each choice of pk we get a different search direction. The following three
choices of pk are the most common in practice [15]:

– Choice I (The HRVW/KSH/M direction) We may choose pk = sk1/2 and obtain
sk = ek . This choice is analogue of the XS direction in semidefinite programming
and is known as the HRVW/KSH/M direction (it was introduced by Helmberg,
Rendl, Vanderbei, andWolkowicz [16], and Kojima, Shindoh, and Hara [17] inde-
pendently, and then rediscovered by Monteiro [13]).

– Choice II (The dual HRVW/KSH/M direction) We may choose pk = xk−1/2 and
obtain xk = ek . This choice of directions arises by switching the roles of X and
S; it is analogue of the SX direction in semidefinite programming and is known
as the dual HRVW/KSH/M direction.

– Choice III (The NT direction) We choose pk in such a way that xk = sk . In this
case, we choose

pk =
[
Qxk1/2

(
Qxk1/2 sk

)−1/2
]−1/2 =

[
Qsk−1/2

(
Qsk1/2xk

)1/2]−1/2
.

This choice of directions was introduced by Nesterov and Todd [18] and is known
as the NT direction.

The following lemma is due to the discussion after Definition 32 in [2].

123

Journal of Optimization Theory and Applications (2019) 181:324–346 333

Lemma 4.1 Suppose that xk, sk � 0, k = 0, 1, . . . , K. Then, for each of the choices
I, II and III of pk , xk and sk operator commute.

We have the following proposition, where the first item is based on the fact that
Qx1/2ki

ski and Qs1/2ki
xki have the same spectrum [2, Proposition 2.11] and the second

item follows from [8, Proposition 3.2].

Proposition 4.1 Let γ ∈ [0, 1] be a given constant, then

1. d−∞(xk, sk) is symmetric with respect to xk and sk , that is d−∞(xk, sk) =
d−∞(sk, xk), k = 0, . . . , K, and so is N−∞(γ).

2. N−∞(γ) is scaling invariant, that is (x0, y0, s0, . . . , xK , yK , sK) ∈ N−∞(γ) iff
(x0, y0, s0, . . . , xK , yK , sK) ∈ N−∞(γ).

We also have the following lemma, where item 1 follows from Q pQ p−1 = I and
item 2 follows from [15, Lemma 28].

Lemma 4.2 Let xk, sk � 0, k = 0, 1, . . . , K, and pk be invertible. Then, for each
k = 0, 1, . . . , K, we have xTk sk = xkTsk . Moreover, sk ◦ xk = μek iff sk ◦ xk = μek.

As a result, we have the following lemma.

Lemma 4.3 (Lemma31, [2])The searchdirections (�xk,� yk,�sk), k = 0, 1, . . . , K,
solve the Newton equations (9) iff the search directions (�xk,� yk,�sk), k =
0, 1, . . . , K, solves the scaled Newton equations:

W0�x0 = r̂ p0; where r̂ p0 := h0 − W0x0; (11a)
Bl�x0 + Wl�xl = r̂ pl ; r̂ pl := hl − Bl x0 − Wl xl; (11b)

W0
T� y0 +

K∑
l=1

Bl
T� yl + �s0 = r̂d0; r̂d0 := c0 − W0

T y0 −
K∑
l=1

Bl
T yl − s0; (11c)

Wl
T� yl + �sl = r̂dl; r̂dl := cl − Wl

T yl − sl; (11d)
sk ◦ �xk + �sk ◦ xk = r̂ck, r̂ck := σμek − sk ◦ xk . (11e)

(11)

Using Assumption 4.2 and using part 5 of Theorem 8 in [2], we conclude that
xk, sk � 0 for k = 0, 1, . . . , K . Since xk and sk operator commute, it follows that
xk ◦ sk � 0. This under Assumption 4.1 validates the operations described in our
upcoming computations. In particular, the matrix Ml defined in (13a) is nonsingular
and positive definite for each l = 1, 2, . . . , K , and the matrix M0 defined in (13c) and
the matrix W0M

−1
0 W T

0 in (13e) are also nonsingular and positive definite.
Our main result in this section is the following proposition.

Proposition 4.2 The solution of the scaled Newton equations in (11) at (xk, yk, sk) is

(
�xk,� yk,�sk

) = (βk,αk,−xk−1◦(sk◦βk)+xk−1◦ r̂ck
)
, k = 0, 1, . . . , K , (12)

123

334 Journal of Optimization Theory and Applications (2019) 181:324–346

where

Ml := WlArw(sl)−1Arw(xl−1)
−1

Wl
T; (13a)

νl := M−1
l (r̂ pl + Wl(sl−1 ◦ (xl ◦ r̂dl)) − Wl(sl−1 ◦ r̂cl)); (13b)

M0 := Arw(x0−1)Arw(s0) +
K∑
l=1

Bl
TM−1

l Bl; (13c)

ν0 := M−1
0

(
K∑
l=1

Bl
Tνl − r̂d0 + x0−1 ◦ r̂c0

)
; (13d)

α0 := (W0M
−1
0 W0

T)−1(r̂ p0 − W0ν0); (13e)
β0 := M−1

0 W0
Tα0 + ν0; (13f)

αl := −M−1
l Blβ0 + νl; (13g)

βl := sl−1 ◦ (xl ◦ (Wl
Tαl)) − sl−1 ◦ (xl ◦ r̂dl) + sl−1 ◦ r̂cl . (13h)

(13)

Here, l varies from 1 to K .

Proof From equation (11e), we obtain

�sk = −xk−1 ◦ (sk ◦ �xk) + xk−1 ◦ r̂ck, (14)

for k = 0, 1, . . . , K . Substituting (14) into (11d), we get −Wl
T� yl + xl−1 ◦ (sl ◦

�xl) = −r̂dl + xl−1 ◦ r̂cl . Using the above equality, we can write �xl as

�xl = sl−1 ◦ (xl ◦ (Wl
T� yl)) − sl−1 ◦ (xl ◦ r̂dl) + sl−1 ◦ r̂cl (15)

for l = 1, 2, . . . , K . Now, we substitute (15) into (11b) to obtain

Bl�x0 + Wl(sl−1 ◦ (xl ◦ (Wl
T� yl)) − sl−1 ◦ (xl ◦ r̂dl) + sl−1 ◦ r̂cl) = r̂ pl

for l = 1, 2, . . . , K . It follows that

� yl = −M−1
l Bl�x0 + νl , (16)

where Ml and νl are defined in (13a, b) for l = 1, 2, . . . , K . By using (14) and (16)
in (11c), we obtain

r̂d0 = W0
T� y0 +

K∑
l=1

Bl
T(−M−1

l Bl�x0 + νl)

−x0−1 ◦ (s0 ◦ �x0) + x0−1 ◦ r̂c0.

Thus,

�x0 = M−1
0 W0

T� y0 + M−1
0

(
K∑
l=1

Bk
Tνk − r̂d0 + x0−1 ◦ r̂c0

)
.

123

Journal of Optimization Theory and Applications (2019) 181:324–346 335

So, �x0 can be written as

�x0 = M−1
0 W0

T� y0 + ν0, (17)

where M0 and ν0 are defined in (13c, d).
Substituting (17) into (11a) we get r̂ p0 = W0(M

−1
0 W0

T� y0 + ν0), which then is
used to express � y0 as

� y0 = (W0M
−1
0 W0

T)−1(r̂ p0 − W0ν0). (18)

By substituting (17) in (16), � yl can be expressed as

� yl = −M−1
l Bl(M

−1
0 W0

T� y0 + ν0) + νl , (19)

for l = 1, 2, . . . , K . Hence, we can denote � yk = αk,�xk = βk, and �sk =
−xk−1 ◦ (sk ◦ βk) + xk−1 ◦ r̂ck, where αk and βk are defined in (13e–h) for k =
0, 1, . . . , K . The proof is complete. ��

5 Infeasible Interior-Point Algorithm for SSOCPs and Its Complexity
Estimates

The generic infeasible algorithm for the primal-dual pair (5) and (6) is stated formally
in Algorithm 5.1.

Note that we can provide different values for the primal step lengths α
(j)
p0 , α

(j)
p1 , . . . ,

α
(j)
pK , the dual step lengths α

(j)
d0 , α

(j)
d1 , . . . , α

(j)
dK , and the largest step length α̂(j) as long

as we can satisfy all the required conditions. However, if we choose α
(j)
p0 = α

(j)
p1 =

· · · = α
(j)
pK = α

(j)
d0 = α

(j)
d1 = · · · = α

(j)
dK = α̂(j), we can satisfy all the required

conditions and remain inside the neighborhood while making a comparable progress
toward feasibility and complementarity.

Note that the Rangarajan’s results in [8] apply to all types of symmetric cones.
Because it is well known that the second-order cone is a particular symmetric cone
with the standard inner product, we can apply the Rangarajan’s result in [8, Theorem
3.11] for iteration bound to our problem setting and obtain a bound for the number of
iterations required to obtain ε-approximate optimal solution as we will see below. For
this reason, Algorithm 5.1 is well defined and it converges.

Algorithm 5.1 Generic infeasible interior-point algorithm for solving the SSOCP (5)
and (6).
Input 1 > β > σ > 0, ε > 0, and γ ∈]0, 1[(

x(0)
0 , y(0)

0 , s(0)0 , . . . , x(0)
K , y(0)

K , s(0)K

) ∈ N−∞(γ),

φ
(0)
p0 = φ

(0)
p1 = · · · = φ

(0)
pK = 1, φ(0)

d0 = φ
(0)
d1 = · · · = φ

(0)
dK = 1 and j = 0

while
∑K

k=0 x
(j)T

k s(j)k ≥ ε
∑K

k=0 x
(0)T

k s(0)k do

choose scaling elements p(j)
0 , p(j)

1 , . . . , p(j)
K form the corresponding scaled

123

336 Journal of Optimization Theory and Applications (2019) 181:324–346

iterate
and compute

(
�x0(j),� y(j)

0 ,�s0(j), . . . , �xK
(j),� y(j)

K ,�sK (j)
)
using (12)

and (13)
for k = 0, 1, . . . , K do

�x(j)
k := Q

p(j)
k

−1�xk (j),� y(j)
k := � y(j)

k ,�s(j)k := Q
p(j)
k

�sk (j),

xk(α) := x(j)
k +α�x(j)

k , yk(α) := y(j)
k +α� y(j)

k , sk(α) := s(j)k +α�s(j)k ,
end for
compute the largest step length α̂(j) ∈]0, 1] such that for all α ∈ [0, α̂(j)]
satisfying that

(x0(α), y0(α), s0(α), . . . , xK (α), yK (α), sK (α)) ∈ N−∞(γ),∑K
k=0 xk(α)Tsk(α) ≥ max

0≤k≤K

(
φ

(j)
pk , φ

(j)
dk

)
(1 − α)

∑K
k=0 x

(0)T

k s(0)k and

∑K
k=0 xk(α)Tsk(α) ≤ (1 − (1 − β)α)

∑K
k=0 x

(j)T

k s(j)k .

choose primal step lengths α
(j)
p0 , α

(j)
p1 , . . . , α

(j)
pK > 0 and dual step lengths

α
(j)
d0 , . . . , α

(j)
dK > 0

such that(
x0(α

(j)
p0), y0(α

(j)
d0), s0(α

(j)
d0), . . . , xK (α

(j)
pK), yK (α

(j)
dK), sK (α

(j)
dK)
)

∈ N−∞(γ),∑K
k=0 xk(α

(j)
pk)Tsk(α

(j)
dk) ≥ max

0≤k≤K

(
φ

(j)
pk (1 − α

(j)
pk), φ

(j)
dk

(1 − α
(j)
dk)
)∑K

k=0 x
(0)T

k s(0)k and∑K
k=0 xk(α

(j)
pk)Tsk(α

(j)
dk) ≤ (1 − (1 − β)α̂(j)

)∑K
k=0 x

(j)T

k s(j)k .
for k = 0, 1, . . . , K do

xk(α
(j)
pk) := x(j)

k + α
(j)
pk �x(j)

k , yk(α
(j)
dk) := y(j)

k + α
(j)
dk � y(j)

k ,

sk(α
(j)
dk) := s(j)k + α

(j)
dk �s(j)k ,

xk (j+1) := xk(α
(j)
pk), y(j+1)

k := yk(α
(j)
dk), sk (j+1) := sk(α

(j)
dk),

φ
(j+1)
pk := φ

(j)
pk

(
1 − α

(j)
pk

)
, φ

(j+1)
dk := φ

(j)
dk

(
1 − α

(j)
dk

)
end for
j := j + 1,

end while
An immediate result motivated by [8, Theorem 3.3] is that if α̂(j) ≥ α for all j and

for some α > 0, then Algorithm 5.1 will terminate with
(
x(j)
0 , y(j)

0 , s(j)0 , . . . , x(j)
K ,

y(j)
K , s(j)K

)
such that

∥∥r̂(j)
pk

∥∥ ≤ ε
∥∥r̂(0)

pk

∥∥ and ∥∥r̂(j)
dk

∥∥ ≤ ε
∥∥r̂(0)

dk

∥∥, for k = 0, 1, . . . , K ,

and
K∑

k=0

x(j)T

k s(j)k ≤ ε
K∑

k=0

x(0)T

k s(0)k in O
(

1

α
ln

(
1

ε

))
iterations.

Rangarajan [8] proved that such a lower bound on α exists and established an
estimate of the lower bound. Taking into account such bounds in [8] and applying this
to our problem setting, we define

α := min

(
1,

γ σ

((K + 1)r + 1 − γ)ω
√

κ
,

2σ

ω
√

κ
,
2(β − σ)

ω
√

κ

)
,

123

Journal of Optimization Theory and Applications (2019) 181:324–346 337

where κ := (K+1)r
1−γ

, ω := (
ξ + √

ξ + ζ
)2

, ζ ≤ 9 + 1
1−γ

, and ξ ≤ √
κ(5 +

4�) for some constant � > 0. This leads to the following theorem which gives
polynomial convergence results for Algorithm 5.1.

Theorem 5.1 Algorithm 5.1 will terminate in O(((K + 1)r)2 ln(1
ε)) iterations if the

NT direction is used at every iteration, and will terminate inO(((K + 1)r)2.5 ln(1
ε))

iterations if the HRVW/KSH/M direction or the dual HRVW/KSH/M direction is used
at every iteration.

The above theorem is a consequence of [8, Theorem 3.11] where the underlying
symmetric cone is replaced by the product

∏K
k=0 Enk1+ × Enk2+ × · · · × Enkr+ .

We estimate the computational complexity of Algorithm 5.1 for computing the
search directions with the method described in Sect. 4 applied to problems (5) and (6).
The dominant computations occur at (13) in Proposition 4.2. In Table 2, we list the
corresponding numbers of arithmetic operations for these computations where m1 =
m0 and n0 = n1 = · · · = nK . Note that the most expensive steps in each iteration are
the computations of M−1

0 in (13c, d). In particular, we analyze the computational work
in (13c, d) and also (13a, b) in detail. For any � := (�1; �2; . . . ; �r) with �i ∈ Eni ,
the j th block of BT

l M
−1
l Bl� is written as

(BT
l M

−1
l Bl�) j = BT

l j (M
−1
l Bl�) = BT

l j M
−1
l

(
r∑

i=1

Bli�i

)
=

r∑
i=1

BT
l j M

−1
l Bli�i .

The number of arithmetic operations required to compute BT
l j M

−1
l Bli isO(m2

0n0i n0 j)
for all i, j = 1, 2, . . . , r . Accordingly, the number of arithmetic operations required to
compute BT

l M
−1
l Bl isO(m2

0n0i n0 j r
2) = O(m2

0n
2
0) (noting that

∑r
i=1 n0i = n0). The

inverse of M0 requires O(n30) arithmetic operations. Thus, the number of arithmetic
operations required for M−1

0 is O(Km2
0n

2
0 + n30) as listed in Table 2. Similarly, the

number of arithmetic operations required to computeMl = WlArw(sl)−1Arw(xl)Wl
T

isO(m2
0n0), sincewhenwemake a column-wise decomposition ofWl ,we can compute

Arw(xl)Wl
T in O(m0n0) by Arw(xl)Wl

T = [xl ◦ w1 . . . xl ◦ wm0].
In addition, the number of arithmetic operations required to computeArw(sl)−1Wl

T

isO(m0n0). The inverse ofMl requiresO(m3
0) arithmetic operations. Thus, the number

of arithmetic operations required for M−1
l isO(m2

0n0 +m3
0) for each l = 1, 2, . . . , K .

Accordingly, the number of arithmetic operations for (13c, d) in each iteration is
dominated byO(K (m2

0n0+n30)). From the data presented in Table 2, it follows that the
total number of arithmetic operations in each iteration is dominated byO(K (m2

0n
2
0 +

n30)) for any choice of p stated in Sect. 4. We then have the following theorem.

Theorem 5.2 Suppose that m1 = m0 and n0 = n1 = · · · = nK . By utilizing Proposi-
tion 4.2 for computing the search directions in Algorithm 5.1, we have that the number
of arithmetic operations in each iteration of Algorithm 5.1 is O(K (m2

0n
2
0 + n30)).

We investigate the comparison between Algorithm 5.1 and the homogeneous self-
dual algorithm presented in [6].

123

338 Journal of Optimization Theory and Applications (2019) 181:324–346

Ta
bl
e
2

C
om

pl
ex
ity

es
tim

at
es

fo
r
do

m
in
an
ts
te
ps

in
m
et
ho

d
of

Se
ct
.4

E
qu

at
io
n

A
ri
th
m
et
ic
op

er
at
io
ns

in
vo
lv
ed

in
th
e
eq
ua
tio

n
E
st
im

at
e
of

th
e
nu

m
be
r
of

ar
ith

m
et
ic
op

er
at
io
ns

(1
3a
,b
)

W
lA

rw
(s
l)

−1
A
rw

(x
l−1

)−1
W
lT

;1
≤

l
≤

K
O

(K
m
2 0
n 0

+
m
3 0
)

M
−1 l

(r̂
pl

+
W
l(
s l

−1
◦(

x l
◦r̂

d
l)

)
−

W
l(
s l

−1
◦r̂

cl
))

;1
≤

l
≤

K

(1
3c
,d
)

A
rw

(x
0
−1

)A
rw

(s
0
)
+
∑ K l=

1
B
lT
M

−1 l
B
l

O
(K

(m
2 0
n2 0

+
n3 0

))

M
−1 0

(∑
K l=

1
B
lT

ν
l
−

r̂ d
0

+
x 0

−1
◦r̂

c0

)

(1
3e
)

(W
0
M

−1 0
W
0
T
)−

1
(r̂

p0
−

W
0
ν
0
)

O
(m

2 0
n 0

+
m
0
n2 0

+
m
3 0
)

(1
3f
)

M
−1 0

W
0
T
α
0

+
ν
0

O
(m

0
n2 0

)

(1
3g

)
−M

−1 l
B
lβ

0
+

ν
l;1

≤
l
≤

K
O

(K
m
2 0
n 0

)

(1
3h

)
s l

−1
◦(

x l
◦(

W
lT

α
l)

)
−

s l
−1

◦(
x l

◦r̂
d
l)

+
s l

−1
◦r̂

cl
;1

≤
l
≤

K
O

(K
m
0
n3 0

)

123

Journal of Optimization Theory and Applications (2019) 181:324–346 339

First, we provide an evidence of a clear superiority of Algorithm 5.1 over the
homogeneous self-dual algorithm in terms of complexity estimates of the number of
arithmetic operations needed per iteration. Theorem 5.2 is the counterpart of Theorem
5.1 in [6]. In [6, Theorem 5.1], the number of arithmetic operations in each iteration
of the homogeneous self-dual algorithm is O(K (m2

0n
3
0 + m3

0)). Therefore, the Theo-
rem 5.2 in this paper demonstrates that Algorithm 5.1 for our problem has complexity
less than that of the homogeneous algorithm developed for the same problem in [6].
The reason of this superiority of Algorithm 5.1 is probably due to the fact that the
homogeneous algorithm is based on embedding the original problem into the larger
problem that is always feasible. From this point of comparison stems the importance
of the results of this paper.

Another point of comparison is to look at the number of iterations needed to obtain
ε-approximate optimal solution. As far as the homogeneous self-dual algorithm is con-
cerned for comparison purposes, there is no confirmed evidence of a clear preference
of Algorithm 5.1 over the homogeneous self-dual algorithm in terms of the number of
iterations needed to obtain ε-approximate optimal solution because the latter has also
a polynomial convergence [19,20]. However, numerically speaking, in the next section
we will demonstrate through a simple numerical example (Example 6.1) such a clear
preference of Algorithm 5.1 over the homogeneous self-dual algorithm in terms of
both: the number of iterations needed to obtain ε-approximate optimal solution and
the number of arithmetic operations needed per iteration.

It is known that the homogeneous self-dual algorithm begins with a solution that is
feasiblewith respect to both the linear equalities and the second-order cone constraints,
but Algorithm 5.1 begins with a solution that may be infeasible with respect to the
linear equalities but is feasiblewith respect to the second-order cone constraints. In fact,
on the other side of the comparison mirror, the main advantage of the homogeneous
algorithm is to be able to detect infeasibility since the homogeneous self-dual model
produces a problem with a strictly feasible starting point and has a relatively simple
certificate of infeasibility. In fact, Algorithm 5.1 does not have this advantage, but it
is worth mentioning that Algorithm 5.1 can also be modified to detect infeasibility by
extending the constraint set and adding extra variables to make the so-called self-dual
embedding (see for example [21]), where the original primal and dual problems are
embedded in a larger problem with a known strictly feasible starting point on the
central path.

6 Implementation of the Algorithm

In this section, we implement the generic infeasible interior-point algorithm to solve
some two-stage SSOCP problems. To obtain our numerical experiments, we used
MATLAB version R2013b on Windows 7 Ultimate, which were carried out on a PC
with Intel(R) Core(TM) i5-4210U CPU at 2.40 GHz and 6 GB of physical memory.
Our numerical results are presented and discussed in the following three examples. In
these examples, “Iter” denotes the number of iterations, “CPU(s)” denotes the CPU
time (in seconds) required to get an approximate optimal solution of the underlying
problem, and “Gap” denotes the value of duality gap with a step length α∗.

123

340 Journal of Optimization Theory and Applications (2019) 181:324–346

Fig. 1 The relationship between
the duality gap and the number
of iterations in Example 6.1

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

G
A
P

Iter

Example 6.1 In this example, for simplicity, we consider the simple case of K = 5
scenarios of SSOCP problems where the matrices W0,Wl , B0, and Bl and the vectors
c0, cl , h0, and hl , with pl = 1

K = 1
5 as the associated probability for each l =

1, 2, . . . , 5, are as follows:

W0 W1 W2 W3 W4 W5

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎝ 1 0 0
0 1 0
0 0 1

⎞
⎠

⎛
⎝ 1 0 0
0 1 0
0 0 1

⎞
⎠

⎛
⎝ 1 0 0
0 1 0
0 0 1

⎞
⎠

⎛
⎝ 1 0 0
0 1 0
0 0 1

⎞
⎠

⎛
⎝ 1 0 0
0 1 0
0 0 1

⎞
⎠

B1 B2 B3 B4 B5
⎛
⎝ 1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎠

⎛
⎝ 1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎠

⎛
⎝ 1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎠

⎛
⎝ 1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎠

⎛
⎝ 1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎠

c0 c1 c2 c3 c4 c5
⎛
⎜⎜⎝
0.2
0.5
1.5
1

⎞
⎟⎟⎠

⎛
⎝ 2
2
2

⎞
⎠

⎛
⎝ 2
2
2

⎞
⎠

⎛
⎝ 2
2
2

⎞
⎠

⎛
⎝ 2
2
2

⎞
⎠

⎛
⎝ 2
2
2

⎞
⎠

h0 h1 h2 h3 h4 h5
⎛
⎜⎜⎝
0.020
0.005
0.005
0.005

⎞
⎟⎟⎠

⎛
⎝ 0.05
0.01
0.01

⎞
⎠

⎛
⎝ 0.06
0.01
0.01

⎞
⎠

⎛
⎝ 0.07
0.01
0.01

⎞
⎠

⎛
⎝ 0.08
0.01
0.01

⎞
⎠

⎛
⎝ 0.09
0.01
0.01

⎞
⎠

The parameters of problems (1) and (2) 5.1 are given by ε = 0.1, β = 0.3, γ = 0.9
and σ = 0.25.With the initial values x(0)

k = e, s(0)k = e, y(0)
k = 0, for k = 0, 1, . . . , 5,

andwith optimalα = 0.7, the solution is reached after 3 iterationswithGap = 0.0147

123

Journal of Optimization Theory and Applications (2019) 181:324–346 341

andCPU = 0.0936. The curve in Fig. 1 illustrates the relationship between the duality
gap and the number of iterations for this example. After running the algorithm, we
obtain the following results:

x0 x1 x2 x3 x4 x5
⎛
⎜⎜⎝
0.0279
0.0050
0.0050
0.0050

⎞
⎟⎟⎠

⎛
⎝ 0.0361
0.0043
0.0043

⎞
⎠

⎛
⎝ 0.0433
0.0035
0.0035

⎞
⎠

⎛
⎝ 0.0500
0.0028
0.0028

⎞
⎠

⎛
⎝ 0.0562
0.0023
0.0023

⎞
⎠

⎛
⎝ 0.0622
0.0018
0.0018

⎞
⎠

s0 s1 s2 s3 s4 s5
⎛
⎜⎜⎝

0.9070
−0.0970
−0.0970
−0.0970

⎞
⎟⎟⎠

⎛
⎝ 0.7584

−0.0419
−0.0419

⎞
⎠

⎛
⎝ 0.6751

−0.0231
−0.0231

⎞
⎠

⎛
⎝ 0.6165

−0.0132
−0.0132

⎞
⎠

⎛
⎝ 0.5717

−0.0075
−0.0075

⎞
⎠

⎛
⎝ 0.5356

−0.0040
−0.0040

⎞
⎠

y0 y1 y2 y3 y4 y5
⎛
⎜⎜⎝

−7.3966
−11.4556
−10.4637
1.4251

⎞
⎟⎟⎠

⎛
⎝ 1.2369
2.0375
2.0375

⎞
⎠

⎛
⎝ 1.3403
2.0202
2.0202

⎞
⎠

⎛
⎝ 1.4190
2.0107
2.0107

⎞
⎠

⎛
⎝ 1.4819
2.0052
2.0052

⎞
⎠

⎛
⎝ 1.5338
2.0021
2.0021

⎞
⎠

It is important to point out that a very similar numerical example has been reported
in [20, Subsection 5.1] to test the performance of the algorithm proposed in [6].
The following remark demonstrates that Algorithm 5.1 is more efficient than the
homogeneous algorithm proposed in [6].

Remark 6.1 The following observations compare the performance of Algorithm 5.1
and the algorithm proposed in [6].

1. The optimal solution in Example 6.1 obtained by Algorithm 5.1 has been reached
after 3 iterations, while the optimal solution in [20, Subsection 5.1] obtained by
the homogeneous self-dual algorithm proposed in [6] has been reached after 6
iterations.

2. Solving Example 6.1 using Algorithm 5.1, we have

K∑
k=0

xTk sk = 0.1762, and
K∑

k=0

cTkxk − hTk yk = 0.1755, and hence

∣∣∣∣∣
K∑

k=0

xTk sk −
(
cTkxk − hTk yk

)∣∣∣∣∣ = 7.0000e − 04,

while solving the same example using the homogeneous self-dual algorithm pro-
posed in [6], we get

K∑
k=0

xTk sk = 0.03900232, and
K∑

k=0

cTkxk − hTk yk = 0.049936, and hence

123

342 Journal of Optimization Theory and Applications (2019) 181:324–346

∣∣∣∣∣
K∑

k=0

xTk sk −
(
cTkxk − hTk yk

)∣∣∣∣∣ = 0.01093368.

3. According toTheorem5.2, for any choice of p, the number of arithmetic operations
in each iteration is dominated byO(K (m2

0n
2
0+n30)), which in our case is K (m2

0n
2
0+

n30) = 1600. Solving this problem using the homogeneous self-dual algorithm, the
number of arithmetic operations in each iteration is dominated by O(K (m2

0n
3
0 +

n30)), which in that case is K (m2
0n

3
0 + n30) = 5440.

In the following example, we consider K scenarios of our problem where K varies
from 5 to 50.

Remark 6.2 Consider K scenarios of SSOCPproblemswhere K = 10, 15, . . . , 50 and
pl = 1

K as the associated probability for l = 1, 2, . . . , K . We letW0 = Im0×n0 ,Wl =
Im1×nl and Bl = [Im1×m1Om1×(nl−m1)

]
. We also let

c0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0.2
0.5
...

0.5
1.5
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
n0 , cl =

⎛
⎜⎜⎜⎝
2
2
...

2

⎞
⎟⎟⎟⎠ ∈ R

nl , h0 =

⎛
⎜⎜⎜⎜⎜⎝

0.020
0.005
0.005

...

0.005

⎞
⎟⎟⎟⎟⎟⎠

∈ R
m0 and

hl =

⎛
⎜⎜⎜⎜⎜⎝

0.04 + l
100

0.01
0.01

...

0.01

⎞
⎟⎟⎟⎟⎟⎠

∈ R
ml , l = 1, 2, . . . , K .

As in Example 6.1, the parameters of Algorithm 5.1 are given as ε = 0.1, β = 0.3,
γ = 0.9 and σ = 0.25. With the initial values x(0)

k = e, s(0)k = e, y(0)
k = 0, for

k = 0, 1, . . . , K , the solutions are reached and the numerical results of Algorithm 5.1
are summarized in Table 3.

Finally, Fig. 2 illustrates the relationship between the duality gap and the number of
iterations for some numerical results with fixed α = 0.0003 in Table 3. It is interesting
to note that the duality gaps decrease in a linear pace as the number of iterations
increases.

Remark 6.3 The algorithm is performed with the accuracy ε = 10−1 for a number of
SSOCPs inwhich their data are generated randomly.We input (m0, n0) and (m1, n1) as
the dimensions of coefficient matrices W0 and Wl , respectively, l = 0, 1, . . . , K . For
suitability, we assume (m0, n0) = (m1, n1). In each problem, we also consider a finite
event space with K scenarios. The algorithm proceeds to generate the deterministic
dataW0, h0 and c0 and randomdata Bl ,Wl , hl and cl for l = 1, 2, . . . , K , with pl = 1

K
as the associated probability. We summarize the numerical results of Algorithm 5.1
for this example in Table 4.

123

Journal of Optimization Theory and Applications (2019) 181:324–346 343

Ta
bl
e
3

T
he

nu
m
er
ic
al
re
su
lts

of
E
xa
m
pl
e
6.
2

Pr
ob
le
m

si
ze

an
d
nu
m
be
r
of

re
al
iz
at
io
ns

N
um

er
ic
al
re
su
lts

fo
r
op
tim

al
va
lu
es

fo
r
α

N
um

er
ic
al
re
su
lts

w
ith

fix
ed

α
=

0.
00

03

(l
,
m

)&
(s

,
n)

K
It
er

C
PU

(s
)

G
ap

α
It
er

C
PU

(s
)

G
ap

(5
,1
0)

5
8

0.
06

24
0.
47

29
2

0.
00

7
21

1
1.
85

64
0.
47

29
1

(1
0,
20

)
10

9
0.
28

08
0.
48

68
9

0.
00

3
94

2.
38

68
0.
48

76
6

(1
5,
30

)
15

9
11

.4
35

2
0.
49

11
9

0.
00

2
60

9.
25

09
0.
49

20
4

(2
0,
40

)
20

13
5.
58

48
0.
49

38
6

0.
00

1
44

17
.0
82

1
0.
49

41
1

(2
5,
50

)
25

9
9.
73

45
0.
49

51
7

0.
00

1
35

29
.6
71

4
0.
49

52
8

(3
0,
60

)
30

8
14

.4
76

9
0.
49

60
5

0.
00

1
28

47
.4
08

7
0.
49

61
9

(3
5,
70

)
35

8
25

.5
37

4
0.
49

64
2

0.
00

09
24

70
.6
84

1
0.
49

67
1

(4
0,
80

)
40

9
47

.6
11

5
0.
49

69
1

0.
00

07
21

10
4.
50

51
0.
49

71
1

(4
5,
90

)
45

8
66

.6
90

4
0.
49

72
1

0.
00

07
19

15
0.
29

14
0.
49

73
6

(5
0,
10

0)
50

8
10

0.
99

5
0.
49

76
2

0.
00

06
17

20
0.
64

85
0.
49

76
2

123

344 Journal of Optimization Theory and Applications (2019) 181:324–346

Fig. 2 The duality gap versus the number of iterations [Table 3 for which α is fixed (α = 0.0003)]

Table 4 The numerical results of Example 6.3 with optimal values for α

Problem size

(l,m)&(s, n) K Iter CPU (s) Gap α

(5, 10) 5 11 0.14040090 0.113369732 0.1

(10, 20) 10 13 0.43680279 0.101689883 0.1

(15, 30) 15 9 1.66921070 0.177520305 0.1

(20, 40) 20 10 4.33682780 0.177053070 0.09

(25, 50) 25 9 9.21965910 0.218042132 0.08

(30, 60) 30 8 16.0681029 0.236607181 0.08

(35, 70) 35 9 31.1845998 0.243461841 0.07

(40, 80) 40 9 52.3539355 0.269078010 0.06

(45, 90) 45 9 81.1829204 0.258468730 0.06

(50, 100) 50 11 148.278950 0.251315772 0.04

7 Conclusions

Interior-point methods are one of the most effective classes of algorithms for solving
SSOCPs. In this paper, we have developed an infeasible interior-point algorithm for
solving SSOCPs as an alternative to the homogeneous self-dual algorithm proposed in
[6]. We have presented a method for computing the search direction by exploiting the
special structure in the SSOCP problem. The polynomial convergence of the proposed
algorithm has been demonstrated for three important directions: the NT direction, the
HRVW/KSH/M direction, and the dual HRVW/KSH/M direction. More specifically,
we have seen that given a Cartesian product of r second-order cones with appropriate
dimensions in the first-stage problem, a Cartesian product of r second-order cones

123

Journal of Optimization Theory and Applications (2019) 181:324–346 345

with appropriate dimensions in the second-stage problem, K number of realizations,
and a stopping criterion ε > 0, we need at most O(((K + 1)r)2 ln(1

ε)) iterations to
terminate the algorithm if theNTdirection is used, and atmostO(((K+1)r)2.5 ln(1

ε))

iterations to terminate the algorithm if any of the other two directions is used.
We have also estimated the number of arithmetic operations in each iteration of

the proposed algorithm. More specifically, by assuming that the dimensions of the
underlying second-order cones in each stage have the same sum which equals n0 and
that the number of linear equalities in each stage equalsm0, and by utilizing ourmethod
for computing the search directions, we need at most O(K (m2

0n
2
0 + n30)) arithmetic

operations in each iteration of the algorithm. Given this result, we have concluded that
the algorithm developed in this paper for SSOCPs has complexity less than that of the
homogeneous self-dual algorithm developed in [6] for the same problem. Finally, we
have also presented computational results on three simple problems for the algorithm
and have shown that the proposed algorithm is efficient. Our numerical results show
also a clear superiority of the infeasible interior-point algorithm developed in this
paper over the homogeneous self-dual algorithm developed in [6].

Future work is devoted to develop an infeasible interior-point algorithm for solving
stochastic convex optimization problems over nonsymmetric cones (non-self-scaled
cones). Despite widespread applications of nonsymmetric programming problems,
they have been studied narrowly in comparison with symmetric programming prob-
lems such as linear programming, second-order cone programming, and semidefinite
programming. This probably is due to the fact that there is a unifying theory based on
Euclidean Jordan algebras that connects all symmetric cones. This makes developing
an infeasible interior-point algorithm for nonsymmetric optimization problems more
challenging. However, this could be achieved for instance by adopting local Hessian
norms on the underlying nonsymmetric cone and its dual cone and by using properties
based on skew-symmetry of the constraint system of the resulting model.

Acknowledgements A part of the first author’s work was performed while he was visiting The Center
for Applied and Computational Mathematics at Rochester Institute of Technology, NY, USA. The work
of the first author was supported in part by Deanship of Scientific Research at The University of Jordan.
The authors thank the two expert anonymous referees for their valuable suggestions, whose constructive
comments have greatly enhanced the paper.

References

1. Alzalg, B.: Stochastic second-order cone programming: application models. Appl. Math. Model. 36,
5122–5134 (2012)

2. Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. Ser. B 95, 3–51 (2003)
3. Alzalg, B., Ariyawansa, K.A.: Logarithmic barrier decomposition-based interior-point methods for

stochastic symmetric programming. J. Math. Anal. Appl. 409, 973–995 (2014)
4. Alzalg, B.: Decomposition-based interior point methods for stochastic quadratic second-order cone

programming. Appl. Math. Comput. 249, 1–18 (2014)
5. Alzalg, B.: Volumetric barrier decomposition algorithms for stochastic quadratic second-order cone

programming. Appl. Math. Comput. 256, 494–508 (2015)
6. Alzalg, B.: Homogeneous self-dual algorithms for stochastic second-order cone programming. J.

Optim. Theory Appl. 163(1), 148–164 (2014)

123

346 Journal of Optimization Theory and Applications (2019) 181:324–346

7. Nesterov, Y.E.: Infeasible start interior point primal-dual methods in nonlinear programming. Working
paper, Center for Operations Research and Econometrics, 1348 Louvain-la-Neuve, Belgium (1994)

8. Rangarajan, B.K.: Polynomial convergence of infeasible-interior-point methods over symmetric cones.
SIAM J. Optim. 16(4), 1211–1229 (2006)

9. Potra, F., Sheng, R.: A superlinearly convergent primal-dual infeasible interior point algorithm for
semidefinite programming. SIAM J. Optim. 8(4), 1007–1028 (1998)

10. Xiaoni, C., Sanyang, L.: An infeasible-interior-point predictor-corrector algorithm for the second-order
cone program. Acta Math. Sci. 28(3), 551–559 (2008)

11. Castro, J.: An interior-point approach for primal block-angular problems. Comput. Optim. Appl. 36,
195–219 (2007)

12. Castro, J., Cuesta, J.: Quadratic regularization in an interior-point method for primal block-angular
problems. Math. Program. 130, 415–445 (2011)

13. Monteiro, R.D.: Primal-dual path-following algorithms for semidefinite programming. SIAMJ.Optim.
7, 663–678 (1997)

14. Zhang,Y.:On extending primal-dual interior-point algorithms from linear programming to semidefinite
programming. SIAM J. Optim. 8, 356–386 (1998)

15. Schmieta, S.H., Alizadeh, F.: Extension of primal-dual interior point methods to symmetric cones.
Math. Program. Ser. A 96, 409–438 (2003)

16. Helmberg, C., Rendl, F., Vanderbei, R., Wolkowicz, H.: An interior-point method for semidefinite
programming. SIAM J. Optim. 6, 342–361 (1996)

17. Kojima, M., Shindoh, S., Hara, S.: Interior-point methods for the monotone semidefinite linear com-
plementary problem in symmetric matrices. SIAM J. Optim. 7, 86–125 (1997)

18. Nesterov, Y.E., Todd, M.J.: Primal-dual interior-point methods for self-scaled cones. SIAM J. Optim.
8, 324–364 (1998)

19. Potra, F., Sheng, R.: On homogeneous interior-point algorithms for semidefinite programming. Optim.
Methods Softw. 9, 161–184 (1998)

20. Alzalg, B., Maggiono, F., Vitali, S.: Homogeneous self-dual methods for symmetric cones under
uncertainty. Far East J. Math. Sci. 99(11), 1603–1778 (2016)

21. De Klerk, E., Roos, C., Terlaky, T.: Infeasible-start semidefinite programming algorithms via self-dual
embeddings. Fields Inst. Commun. 18, 215–236 (1998)

123

	An Infeasible Interior-Point Algorithm for Stochastic Second-Order Cone Optimization
	Abstract
	1 Introduction
	2 The Algebra of the Second-Order Cone: Definitions and Notations
	3 Stochastic Second-Order Cone Programs with Finite Event Space
	4 Computation of Search Directions
	5 Infeasible Interior-Point Algorithm for SSOCPs and Its Complexity Estimates
	6 Implementation of the Algorithm
	7 Conclusions
	Acknowledgements
	References

