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Abstract
Our purpose is to investigate several properties of the solution map of tensor comple-
mentarity problems. To do this, we focus on the R0-tensors and show some results
on the local boundedness and the upper semicontinuity. Furthermore, by using a tech-
nique from semi-algebraic geometry, we obtain results on the finite-valuedness, the
lower semicontinuity, and the local upper-Hölder stability of the map.
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1 Introduction

The tensor complementarity problem was firstly introduced by Song and Qi [1,2]. The
problem has attracted a lot of attention from researchers [3–20]. In particular, Huang
and Qi [3] have presented an explicit relationship between n-person noncooperative
games and tensor complementarity problems.

The involved function in a tensor complementarity problem is the sum of a homoge-
neous polynomial and a vector. Thus, the tensor complementarity problem is a special
case of the homogeneous complementarity problem, that was mentioned in the work
[21] of Oettli and Yen, and of the polynomial complementarity problem, which has
been recently introduced by Gowda [22]. All of them are natural extensions of the
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linear complementarity problems [23]. The local boundedness, the upper semiconti-
nuity, the lower semicontinuity, and the local upper-Lipschitz stability of the solution
map of linear complementarity problems have been deeply investigated [23–26].

In this paper, we firstly prove that the set of R0-tensors is open in the space of real
tensors. As a result, the local boundedness of the solution map is shown. Secondly,
using tools from semi-algebraic geometry, we show that the set of R0-tensors is semi-
algebraic and generic. A lower bound for the dimension of the complement of R0-
tensors is established. Furthermore,we prove that the solutionmap is generically finite-
valued. Consequently, a necessary condition for the lower semicontinuity of the map
is given. Thirdly, this paper shows a close relation between the upper semicontinuity
of the solution map and the R0 property of the involved tensors. Finally, a result on
the local upper-Hölder stability of the solution map is obtained.

The organization of the paper is as follows: Sect. 2 gives a brief introduction to
tensor complementarity problems and semi-algebraic geometry. Section3 investigates
the local boundedness of the solution map, the semi-algebraicity, and the genericity of
the set R0-tensors. The finite-valuedness and the lower semicontinuity are discussed
in Sect. 4. The last two sections give results on the upper semicontinuity and the local
upper-Hölder stability.

2 Preliminaries

In this section, we will recall some definitions, notations, and auxiliary results on
tensor complementarity problems and from semi-algebraic geometry.

2.1 Tensor Complementarity Problems

The scalar product of two vectors x, y in the Euclidean space IRn is denoted by 〈x, y〉.
Let F : IRn → IRn be a vector-valued function. The nonlinear complementarity
problem defined by F is the problem finding x ∈ IRn such that x ≥ 0, F(x) ≥ 0,
and 〈x, F(x)〉 = 0. We denote the problem and its solution set as CP(F) and Sol(F),
respectively.

The following remark shows that a solution of a complementarity problem can be
characterized by using some Lagrange multipliers.

Remark 2.1 A vector x solves CP(F) if and only if there exists a vector λ ∈ IRn such
that next system is satisfied

F(x) − λ = 0, 〈λ, x〉 = 0, λ ≥ 0, x ≥ 0.

To find the solution set of a complementarity problem, we will find the solutions
on each pseudo-face of IRn+. For every index set α ⊂ [n] = {1, . . . , n}, we associate
that with the following pseudo-face

Kα = {x ∈ IRn+ : xi = 0,∀i ∈ α; xi > 0,∀i ∈ [n]\α} .
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The pseudo-faces Kα, α ⊂ [n], establish a finite disjoint decomposition of IRn+. There-
fore, we have

Sol(F) =
⋃

α⊂[n]
[Sol(F) ∩ Kα] . (1)

Throughout this paper, we assume that m and n are given integers, and m, n ≥ 2.
An mth-order n-dimensional tensor A = (ai1···im ) is a multi-array of real entries
ai1···im ∈ IR, where i j ∈ [n] and j ∈ [m]. The set of all real mth-order n-dimensional
tensors is denoted by IR[m,n]. For any tensor A = (ai1···im ), the Frobenius norm of A
is defined and denoted as

‖A ‖ :=
√√√√

n∑

i1,i2,...,im=1

a2i1i2···im .

This norm can be considered as a vector norm. So, the norm of (A, a) in IR[m,n] × IRn

can be defined as follows

‖(A, a)‖ :=
√√√√‖A ‖2 +

n∑

i=1

a2i .

Clearly, IR[m,n] is a real vector space of dimension nm , so each tensor A ∈ IR[m,n]
is a real vector having nm components. In particular, if m = 2 then IR[2,n] is the
space of n × n-matrices which is isomorphic to IRn×n . Note that if A = (ai1···im ) and
B = (bi1···im ) are tensors in IR[m,n], then the sum A+B is (ai1···im + bi1···im ).

For any x = (x1, . . . , xn)T ∈ IRn ,A xm−1 is a vector whose i th component defined
by

(A xm−1)i :=
n∑

i2,...,im=1

aii2···im xi2 · · · xim , ∀i ∈ [n], (2)

and A xm is a polynomial of degree m, defined by

A xm := 〈x, Axm−1〉 =
n∑

i1,i2,...,im=1

ai1i2···im xi1xi2 · · · xim .

The polynomials (Axm−1)i andA xm are homogeneous of degree, respectively,m−1
and m, that isA(t x)m−1 = tm−1(A xm−1) andA(t x)m = tm(A xm) for all t ≥ 0 and
x ∈ IRn .

Remark 2.2 By the continuity of the polynomial function A xm−1, if U is a bounded
set in IRn , then there exists β > 0 such that ‖A xm−1‖ ≤ β‖A ‖ for all x ∈ U .
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Let A ∈ IR[m,n] and a ∈ IRn be given. If F(x) = A xm−1 + a, then one says that
CP(F) is a tensor complementarity problem defined by A and a. This problem and
its solution set are denoted, respectively, by TCP(A, a) and Sol(A, a). By definition,
x solves TCP(A, a) if and only if

x ≥ 0, A xm−1 + a ≥ 0, A xm + 〈x, a〉 = 0. (3)

Clearly, the vector 0 solves TCP(A, a) for all a ∈ IRn+. The solution map of tensor
complementarity problems is denoted and defined by

Sol : IR[m,n] × IRn ⇒ IRn, (A, a) �→ Sol(A, a). (4)

Remark 2.3 The graph of the map Sol, which is defined by

gph(Sol) = {(A, a, x) ∈ IR[m,n] × IRn × IRn : x ∈ Sol(A, a)
}
,

is closed. Indeed, take a sequence {(Ak, ak, xk)} in gph(Sol) such that

(Ak, ak, xk) → (Ā, ā, x̄).

It follows that Ak → Ā, ak → ā and xk → x̄ . From (3), one has

xk ≥ 0, Ak(xk)m−1 + ak ≥ 0, Ak(xk)m +
〈
xk, ak

〉
= 0.

Taking k → +∞, we can see that x̄ solves TCP(A, a). So, (Ā, ā, x̄) belongs to
gph(Sol), and the graph is closed.

A nonempty subset K ⊂ IRn is called a cone [27, p. 89] if λ > 0 and x ∈ K then
λx ∈ K . The cone K is bounded if and only if K = {0}.
Remark 2.4 The solution set of TCP(A, 0) is a nonempty and closed cone. Clearly,
we have 0 ∈ Sol(A, 0). Suppose that x is a solution of TCP(A, 0). For each t > 0,
from (3), we have

t x ≥ 0, A(t x)m−1 = tm−1(A xm−1) ≥ 0, A(t x)m = tm(A xm) = 0.

Hence, t x solves TCP(A, 0). This shows that Sol(A, 0) is a cone. The closedness of
Sol(A, 0) is implied from the continuity of F(x) = A xm−1 and the closedness of
IRn+.

Let us recall thatA is an R0–tensor (sometimes, we sayA is R0) if Sol(A, 0) = {0}.
We denoteR0 to be the set of allmth-order n-dimensional R0-tensors andO ∈ IR[m,n]
to be the zero tensor. The complement ofR0 is denoted and defined by

C(R0) = IR[m,n]\R0 .

Clearly, O belongs to C(R0) since Sol(O, 0) = IRn+.

123



Journal of Optimization Theory and Applications (2019) 181:163–183 167

2.2 Semi-algebraic Geometry

Recall a subset in IRn is semi-algebraic, if it is the union of finitely many subsets of
the form

{
x ∈ IRn : f1(x) = · · · = f�(x) = 0, g�+1(x) < 0, . . . , gm(x) < 0

}
,

where �,m are natural numbers, and f1, . . . , f�, g�+1, . . . , gm are polynomials with
real coefficients. The semi-algebraic property is preserved by taking finitely union,
intersection, minus and taking closure of semi-algebraic sets. The well-known Tarski–
Seidenberg theorem states that the image of a semi-algebraic set under a linear
projection is a semi-algebraic set.

There are some ways to define the dimension of a semi-algebraic set. Here, we
choose the geometric approach which is presented in [28, Corollary 2.8.9]. If S ⊂ IRn

is a semi-algebraic set, then there exists a decomposition of S into a disjoint union of
semi-algebraic subsets [28, Theorem 2.3.6]

S =
s⋃

i=1

Si ,

where each Si is semi-algebraically diffeomorphic to ]0, 1[di . Let ]0, 1[0 be a point,
]0, 1[di ⊂ IRdi be the set of points x = (x1, . . . , xdi ) such that x j ∈]0, 1[ for all
j = 1, . . . , di . The dimension of S is, by definition,

dim(S) := max{d1, . . . , ds}.

This is well defined and not depend on the decomposition of S. Remind that if S �= ∅
and dim(S) = 0, then S has finitely many points.

Remark 2.5 For a semi-algebraic subset S of IRn , the dimension of the complement
IRn\S is strictly less than n if and only if S is topologically generic in IRn , i.e., S
contains a countable intersection of dense and open sets (see, e.g., [29, Lemma 2.3]).

We will use the Tarski–Seidenberg theorem in the third form in the next section.
To present the theorem, we have to describe semi-algebraic sets via the language of
first-order formulas. A first-order formula (with parameters in IR) is obtained by the
following induction rules [30]:

(i) If p ∈ IR[X1, . . . , Xn], then p > 0 and p = 0 are first-order formulas;
(ii) If P, Q are first-order formulas, then “P and Q”, “P or Q”, and “not Q”, which

are denoted, respectively, by P ∧ Q, P ∨ Q, and ¬Q, are first-order formulas;
(iii) If Q is a first-order formula, then ∃X Q and ∀X Q, where X is a variable ranging

over IR, are first-order formulas.

Formulas obtained by using only rules (i) and (ii) are called quantifier-free formulas.
A subset S ⊂ IRn is semi-algebraic if and only if there is a quantifier-free formula
QS(X1, . . . , Xn) such that
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(x1, . . . , xn) ∈ S if and only if QS(x1, . . . , xn).

In this case, QS(X1, . . . , Xn) is said to be a quantifier-free formula defining S.

Remark 2.6 The Tarski–Seidenberg theorem in the third form [30, Theorem 2.6] says
that if Q(X1, . . . , Xn) is a first-order formula, then the set

S = {(x1, . . . , xn) ∈ IRn : Q(x1, . . . , xn)
}

is a semi-algebraic set.

3 The Set of R0-Tensors

We prove the openness of the setR0 in IR[m,n]. Consequently, the local boundedness
of the solutionmap is shown. Furthermore, we show thatR0 is generic semi-algebraic,
and give a lower bound for the dimension of the complement C(R0).

3.1 Local Boundedness of the SolutionMap

Proposition 3.1 The setR0 of all R0-tensors is open in IR[m,n].

Proof If the complement C(R0) is closed, thenR0 is open. So, we only need to prove
the closedness ofC(R0). Let {Ak} ⊂ C(R0) be a convergent sequence withAk → A.
For each k, Sol(Ak, 0) is unbounded. There exists an unbounded sequence {xk} ⊂ IRn+
such that xk ∈ Sol(Ak, 0) and xk �= 0 for each k. Without loss of generality we can
assume that ‖xk‖−1xk → x̄ and ‖x̄‖ = 1. By definition, one has

Ak(xk)m−1 ≥ 0, Ak(xk)m = 0.

Dividing these ones by ‖xk‖m−1 and ‖xk‖m , respectively, and taking k → +∞, we
obtain A(x̄)m−1 ≥ 0 and A(x̄)m = 0. It follows that x̄ ∈ Sol(A, 0) and Sol(A, 0) �=
{0}. Hence, A must be in C(R0), and C(R0) is closed. The proof is completed. ��
Remark 3.1 The set R0 is a cone in IR[m,n]. Indeed, for any t > 0, one has

(t A)xm−1 = tm−1(A xm−1), (t A)xm = tm(A xm).

It is easy to check that Sol(t A, 0) = Sol(A, 0). Thus,A ∈ R0 if and only if t A ∈ R0.
This implies that R0 is a cone.

The boundedness of solution sets of tensor complementarity problems and poly-
nomial complementarity problems under the R0 condition is mentioned in [16] and
[22]. Based on the openness of the set R0, we show that the solution map is locally
bounded.

Here, B(O, ε) stands for the closed ball in IR[m,n] centered at O with radius ε.
Similarly, B(0, δ) is the closed ball in IRn centered at 0 with radius δ.
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Theorem 3.1 The following two statements are equivalent:

(a) The tensor A is R0;
(b) There exists ε > 0 such that the following set

S(ε, δ) :=
⋃

(B,b)∈B(O,ε)×B(0,δ)

Sol(A+B, a + b)

is bounded, for any a ∈ IRn and any δ > 0.

Proof (a) ⇒ (b) Let A be an R0–tensor. Since the set R0 is open in IR[m,n], due to
Proposition 3.1, there exists ε > 0 such that A+ B(O, ε) ⊂ R0. On the contrary, we
suppose that there exist a ∈ IRn and δ > 0 such that the set S(ε, δ) is unbounded. Let
{xk} be an unbounded sequence and {(Bk, bk)} be a sequence in B(O, ε) × B(0, δ)
satisfying xk ∈ Sol(A+Bk, a + bk). We can assume that xk �= 0, ‖xk‖−1xk → x̄
and ‖x̄‖ = 1. One has

(A+Bk)(xk)m−1 + (a + bk) ≥ 0, (A+Bk)(xk)m +
〈
a + bk, xk

〉
= 0. (5)

By the compactness of the sets A+ B(O, ε) and a + B(0, δ), we can assume that

A+Bk → Ā ∈ A+ B(O, ε), a + bk → ā ∈ a + B(0, δ). (6)

From (5) and (6), it is easy to show that x̄ solves TCP(Ā, 0). Since ‖x̄‖ = 1, Ā is not
R0. This contradicts Ā ∈ A+ B(O, ε) ⊂ R0.

(b) ⇒ (a) Suppose that there exists ε > 0 such that S(ε, δ) is bounded for any
a ∈ IRn and δ > 0. Take a = 0, one has Sol(A, 0) ⊂ S(ε, δ) and Sol(A, 0) is
bounded. Hence, A is an R0–tensor and the assertion is proved. ��
Remark 3.2 The tensor A is R0 if and only if Sol(A, a) is bounded for every a ∈ IRn

(see [16, Theorem 3.2]). Moreover, A is an R0–tensor if and only if the set

⋃

b∈B(0,δ)

Sol(A, a + b)

is bounded, for any a ∈ IRn and δ > 0 [22, Proposition 2.1]. Clearly, these assertions
are corollaries of Theorem 3.1.

Recall that the set-valued mapΨ : IRm ⇒ IRn is locally bounded at x̄ if there exists
an open neighborhood U of x̄ such that the set ∪x∈UΨ (x) is bounded.

Corollary 3.1 The following three statements are equivalent:

(a) The tensor A is R0;
(b) The solution map SolA is locally bounded at a, for any a ∈ IRn;
(c) The solution map Sol is locally bounded at (A, a), for any a ∈ IRn.
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Proof (a) ⇒ (c) Suppose thatA is an R0–tensor. By Theorem 3.1, there exists ε > 0
such that, for every a ∈ IRn , the following set is bounded

S(ε, ε) ⊃
⋃

(B,b)∈U
Sol(B, b),

where U = (A, a) + intB(O, ε) × int B(0, ε) is an open neighborhood of (A, a).
This means that the map Sol is locally bounded at (A, a).

(c) ⇒ (b) Suppose that the assertion (c) is true. There exists an open neighborhood
U of (A, a) such that

⋃

b∈ϕ(U )

Sol(A, b) ⊂
⋃

(B,b)∈U
Sol(B, b),

where ϕ : IR[m,n] × IRn ⇒ IRn defined by (B, b) �→ b, is bounded. Clearly, ϕ

is surjective, continuous, and linear. According to the open mapping theorem [31,
Theorem 2.11], ϕ(U ) is an open neighborhood of a. So, SolA is locally bounded at a.

(b) ⇒ (a) Suppose that (b) holds. Take a = 0, there exists an open neighborhood
U of 0 such that

Sol(A, 0) ⊂
⋃

b∈U
Sol(A, b)

is bounded. So, Sol(A, 0) is also bounded and A is R0. ��

3.2 Semi-algebraicity and Genericity ofR0

Remind that the space IR[m,n] of real mth-order n-dimensional tensors can be consid-
ered as the Euclidean space IRnm . By abuse of terminology, we say that S ⊂ IR[m,n]
is semi-algebraic if ϕ(S) is semi-algebraic in IRnm , where ϕ : IR[m,n] → IRnm is an
isomorphism.

Proposition 3.2 The setR0 is semi-algebraic in IR[m,n].

Proof Remind thatA ∈ R0 if and only if Sol(A, 0) = {0}. Since 0 always belongs to
Sol(A, 0), the set R0 can be described as follows:

R0 = {A ∈ IR[m,n] : �x ∈ IRn+\{0} ([A xm−1 ≥ 0
] ∧ [A xm = 0

])}

= {A ∈ IR[m,n] : ∀x ∈ IRn+\{0} ([A xm−1
� 0
] ∨ [A xm �= 0

])}
.

(7)

Because IRn+ and {0} are semi-algebraic, the set K = IRn+\{0} is also a semi-algebraic
set in IRn . Let QK (x) be the quantifier-free formula defining K . Since

(A xm−1
)
i ,

i = 1, . . . , n, and A xm are polynomials, the following formulas

Q1(A, x) :=
m∨

i=1

[(
A xm−1

)

i
< 0
]
, Q2(A, x) := [A xm > 0

] ∨ [A xm < 0
]
,
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are quantifier-free. From the last equation in (7), A ∈ R0 if and only if Q(A), where
Q(A) is the following first-order formula

Q(A) := ∀x (QK (x) ∧ [Q1(A, x) ∨ Q2(A, x)]) .

According to the Tarski–Seidenberg theorem in the third form,R0 is a semi-algebraic
set in IR[m,n]. ��

Let Φ : X → Y be a differentiable map between manifolds, where X ⊂ IRm

and Y ⊂ IRn . A point y ∈ Y is called a regular value for Φ if either the level set
Φ−1(y) = ∅ or the derivative map

DΦ(x) : Tx X → TyY

is surjective at every point x ∈ Φ−1(y), where Tx X and TyY denote, respectively, the
tangent spaces of X at x and of Y at y. So y is a regular value of f if and only if
rank DΦ(x) = n for all x ∈ Φ−1(y).

Remark 3.3 Consider the differentiable semi-algebraic map Φ : X → IRn where
X ⊂ IRn . Assume that y ∈ Y is a regular value of Φ and Φ−1(y) is nonempty.
According to the regular level set theorem [32,Theorem9.9], one has dimΦ−1(y) = 0.
It follows that the semi-algebraic set Φ−1(y) has finite points.

Remark 3.4 Let Φ : IRp × X → IRn be a differentiable semi-algebraic map, where
X ⊂ IRn . Assume that y ∈ IRn is a regular value of Φ. According to the Sard theorem
with parameter [29, Theorem 2.4], there exists a generic semi-algebraic set S ⊂ IRp

such that, for every p ∈ S, y is a regular value of the map Φp : X → Y with
Φp(x) = Φ(p, x).

Theorem 3.2 The setR0 of all R0-tensors is generic in IR[m,n].

Proof Wewill show that there exists a generic semi-algebraic set S ⊂ IR[m,n] such that
Sol(A, 0) = {0} for all A ∈ S. Indeed, let Kα �= {0} be a given pseudo-face of IRn+.
To avoid confusion, we only consider the case α = {1, . . . , �}, where � < n, because
other cases can be treated similarly. Then, if x ∈ Kα then x�+1 �= 0. We consider the
function

Φα : IR[m,n] × Kα × IR� → IRn+�,

which is defined by

Φα(A, x, λα) =
(
A xm−1 − λ, xα

)T
, (8)

where xα = (x1, . . . , x�), λα = (λ1, . . . , λ�), and λ = (λ1, . . . , λ�, 0, . . . , 0) ∈ IRn .
The Jacobian matrix of Φα is determined as follows

DΦα =
[

DA(A xm−1 − λ) Dx (A xm−1 − λ) Dλα (A xm−1 − λ)

DA(xα) Dx (xα) Dλα (xα)

]
.
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We claim that the rank of DΦα is n + � for all x ∈ Kα . Indeed, it is easy to check
that the rank of Dx (xα) is �. Therefore, if we prove that the rank of DA(A xm−1 − λ)

is n then the claim follows. Clearly, one has

DA(A xm−1 − λ) =

⎡

⎢⎢⎢
⎣

Q1 O · · · O
O Q2 · · · O

. . .

O O · · · Qn

⎤

⎥⎥⎥
⎦

,

where O is the zero 1 × nm−1-matrix and Qi is an 1 × nm−1-matrix. From (2) and
(8), for each i ∈ [n], we conclude that Qi is a nonzero matrix because

∂(A xm−1 − λ)i

∂ai(�+1)···(�+1)
= xm−1

�+1 �= 0.

This shows that rank DA(A xm−1 − λ) = n.
Therefore, 0 ∈ IRn+� is a regular value of Φα . According to Remark 3.4, there

exists a generic semi-algebraic set Sα ⊂ IR[m,n] such that ifA ∈ Sα then 0 is a regular
value of the map

Φα,A : Kα × IR� → IRn+�, Φα,A(x, λα) = Φα(A, x, λα).

By Remark 3.3, if the set Ω(α,A) := Φ−1
α,A(0) is nonempty, then it is a finite set.

Moreover, from (8) and Remark 2.1, one has

Sol(A, 0) ∩ Kα = π(Ω(α,A)),

where π is the projection IRn+� → IRn , which is defined by π(x, λα) = x . Thus, the
cardinality of Sol(A, 0) ∩ Kα is finite.

If Kα = {0}, i.e., α = [n], then Sol(A, 0)∩ Kα = {0}. By the finite decomposition
in (1), Sol(A, 0) is a finite set.

By setting S := ∩α⊂[n] Sα , we see that S is generic in IR[m,n]. For any A in S, the
cardinality of Sol(A, 0) is finite. Since Sol(A, 0) is a cone, one has Sol(A, 0) = {0}.
This leads to S ⊂ R0; consequently,R0 is generic in IR[m,n]. The proof is completed.

��
Remark 3.5 Theorem 6 in [21] asserts that the set of all R0–matrices is dense in IRn×n .
This is a special case of Theorem 3.2 when m = 2.

3.3 The Dimension of C(R0)

From Remark 2.5 and Theorem 3.2, the complement C(R0) is thin in the set of real
mth-order n-dimensional tensors. A natural question is:How thin is C(R0) in IR[m,n]?
The dimension of C(R0) tells us about the thinness of this set. The following theorem
gives a rough lower estimate for dimC(R0).
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Theorem 3.3 The dimension of the semi-algebraic set C(R0) satisfies the following
inequalities

(n − 1)m ≤ dimC(R0) ≤ nm − 1.

Proof The second inequality immediately follows from Theorem 3.2 and Remark 2.5.
To prove the first inequality, let α ⊂ [n] be given with α �= [n], and we consider the
set

Sα =
{
A = (ai1i2···im ) ∈ IR[m,n] : ai1i2···im = 0, ∀i j ∈ [n]\α

}
.

It follows that Sα is a subspace of IR[m,n] whose the dimension is |α|m . Hence, Sα is
semi-algebraic. Denote by K̄α the face

K̄α = {x ∈ IRn+ : xi = 0,∀i ∈ α; xi ≥ 0,∀i ∈ [n]\α} .

A trivial verification shows that K̄α ⊂ Sol(A, 0) for allA ∈ Sα . We conclude that the
subspace Sα is a subset of C(R0). Thus, one has

|α|m = dim Sα ≤ dimC(R0).

Taking α = {2, . . . , n}, one has |α| = n − 1, and the first inequality is obtained. ��

4 Lower Semicontinuity of the SolutionMap

We will prove that the solution map of tensor complementarity problems is finite-
valued on a generic semi-algebraic set in the parametric space. Consequently, a
necessary condition for the lower semicontinuity of the solution map is given.

The set-valued map Ψ : IRm ⇒ IRn is finite-valued on S ⊂ IRm if the cardinality
of the image Ψ (x) is finite, namely |Ψ (x)| < +∞, for all x ∈ S. The map Ψ is lower
semicontinuous at x̄ if for every open set V ⊂ IRn such that Ψ (x̄) ∩ V �= ∅ , there
exists a neighborhood , U of x̄ such that Ψ (x) ∩ V �= ∅ for all x ∈ U . Remind that
(see, e.g., [33, p.139]), if Ψ is lower semicontinuous at x̄ , then

Ψ (x̄) ⊂ lim inf
x→x̄

Ψ (x),

where

lim inf
x→x̄

Ψ (x) =
{
u ∈ IRn : ∀xk → x̄, ∃uk → u with uk ∈ Ψ (xk)

}
.

If Ψ is lower semicontinuous at every x ∈ X then Ψ is said that to be lower semicon-
tinuous on X .
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Remark 4.1 The number of connected components of Sol(A, a) does not exceed χ =
d(2d − 1)5n , where d = max {2,m − 1} . Indeed, let Ω be the set of all (x, λ) ∈
IRn × IRn such that the following conditions are satisfied

A xm−1 + q − λ = 0, 〈λ, x〉 = 0, λ ≥ 0, x ≥ 0.

Clearly, Ω is a semi-algebraic set determined by 3n + 1 polynomial equations and
inequalities in 2n variables, whose degrees do not exceed the number d. According
to [30, Proposition 4.13], the number of connected components of Ω does not exceed
χ . By the definition of Ω , one has Sol(A, a) = π(Ω), where π is the projection

IRn+n → IRn, π(x, λ) = x .

Since π is continuous, the number of connected components of Sol(A, a) also does
not exceed χ .

Let Sol be given by (4) and SolA defined by

SolA : IRn ⇒ IRn, a �→ SolA(a) = Sol(A, a), (9)

where A is given.

Proposition 4.1 There exists a generic semi-algebraic set S ⊂ IR[m,n] × IRn such that
the map Sol is finite-valued on S.

Proof To prove the assertion, we apply the argument in the proof of Theorem 3.2
again, the only difference being in the analysis of the function

Φα : IR[m,n] × IRn × Kα × IR� → IRn+�,

which is defined by

Φα(A, a, x, λα) =
(
A xm−1 + a − λ, xα

)T
.

Note that, since DAΦα has rank n, the rank of DΦα is n + � for x ∈ Kα �= {0}. The
proof is completed. ��
Remark 4.2 Let A be given. There exists a generic semi-algebraic set SA ⊂ IRn such
that SolA is finite-valued on SA. This property is implied from [35, Theorem 3.2] with
the note that IRn+ is a semi-algebraic set satisfying the linearly independent constraint
qualification.

Theorem 4.1 If the solutionmapSol is lower semicontinuous at (A, a), thenSol(A, a)

has finite elements. Hence, if dim Sol(A, a) ≥ 1, then Sol is not lower semicontinuous
at (A, a).
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Proof According to Proposition 4.1, there is a generic set S in IR[m,n] × IRn such that
Sol is finite-valued on S. By the density of S, there exists a sequence {(Ak, ak)} ⊂ S

such that (Ak, ak) → (A, a). Remark 4.1 says that Sol(Ak, ak) is finite and
|Sol(Ak, ak)| ≤ χ . Since Sol is lower semicontinuous, one has

Sol(A, a) ⊂ lim inf
k→+∞ Sol(Ak, ak).

This yields |Sol(A, a)| ≤ χ , and the first assertion is proved. The second assertion
follows from the first one. ��

Example 4.1 Consider the problem TCP(A, a) where A ∈ IR[3,2] is given by setting
a111 = a122 = −1, a211 = a222 = −1, and ai1i2i3 = 0 for all other components. One
has

A xm−1 + q =
[−x21 − x22

−x21 − x22

]

+
[
a1
a2

]

,

where a1, a2 ∈ IR. Due to Remark 2.1, x ∈ Sol(A, a) if and only if there exists λ ∈ IR2

such that

[−x21 − x22

−x21 − x22

]

+
[
a1

a2

]

−
[
λ1

λ2

]

=
[
0

0

]

, λ1x1 + λ2x2 = 0, λ ≥ 0, x ≥ 0.

An easy computation shows that

Sol(A, a) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{
(0, 0), (0,

√
a2)
}
, if 0 ≤ a2 < a1,

{
(0, 0), (

√
a1, 0)

}
, if 0 ≤ a1 < a2,

{(0, 0)} ∪ Sa1, if 0 ≤ a1 = a2,

∅, if otherwise,

where

Sa1 = {(x1, x2) : x21 + x22 = a1, x1 ≥ 0, x2 ≥ 0}.

Clearly, SolA(a) is finite-valued for all a ∈ S, where

S = IR2\{a ∈ IR2 : 0 < a1 = a2}.

The set S is generic and semi-algebraic in IR2. Moreover, since dim Sa1 = 1 with
a1 > 0, according to Theorem 4.1, the map Sol is not lower semicontinuous at (A, a),
where a ∈ IR2 with 0 < a1 = a2.
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5 Upper Semicontinuity of the SolutionMap

This section establishes a closed relationship between the R0 property and the upper
semicontinuity of the solutionmap of tensor complementarity problems. Furthermore,
two results on the single-valued continuity of the solution map SolA are obtained.

Now we recall that the set-valued map Ψ : IRm ⇒ IRn is upper semicontinuous at
x ∈ IRm iff for any open set V ⊂ IRn such that Ψ (x) ⊂ V there exists a neighborhood
U of x such that Ψ (x ′) ⊂ V for all x ′ ∈ U . If Ψ is upper semicontinuous at every
x ∈ IRm then Ψ is said to be upper semicontinuous on IRm . Remind that if Ψ is closed
and locally bounded at x then Ψ is upper semicontinuous at x (see, e.g., [33, p.139]).

5.1 Necessity and Sufficiency

Proposition 5.1 If A is an R0–tensor and a ∈ IRn satisfying Sol(A, a) �= ∅, then the
following two statements are valid:

(a) The map Sol is upper semicontinuous at (A, a);
(b) The map SolA is upper semicontinuous at a.

Proof Suppose that A is an R0–tensor and Sol(A, a) is nonempty. By Remark 2.3
and Corollary 3.1, the map Sol is closed and locally bounded at (A, a). Hence, Sol is
upper semicontinuous at (A, a). The assertion (a) is proved. The closedness of SolA
follows that of Sol, according to Corollary 3.1; SolA is locally bounded at a. Hence,
SolA is upper semicontinuous at a, and the proof of (b) is completed. ��
Example 5.1 Consider the problem TCP(A, a) given in Example 4.1. One has
SolA(0) = {0}, so A is an R0–tensor. By Proposition 5.1, SolA is upper semicontin-
uous on IR2+.

Remark 5.1 The inverse assertion of (b) in Proposition 5.1 is not true. Indeed, choose
A = O ∈ IR[3,2]; one has

SolO(a1, a2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

IR2+, if a1 = 0, a2 = 0,

IR+ × {0}, if a1 = 0, a2 > 0,

{0} × IR+, if a1 > 0, a2 = 0,

{(0, 0)}, if a1 > 0, a2 > 0,

∅, if otherwise.

It is easy to check that SolO is upper semicontinuous on dom SolO = IR2+, butO does
not have the R0 property.

Proposition 5.2 Assume that Sol(A, a) is nonempty and bounded. If the map Sol is
upper semicontinuous at (A, a), then A is an R0–tensor.

Proof Suppose that Sol(A, 0) �= {0} and y ∈ Sol(A, 0) with y �= 0. According to
Remark 2.1, there exists λ ∈ IRn such that
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A ym−1 − λ = 0, 〈λ, y〉 = 0, λ ≥ 0, y ≥ 0. (10)

For each t ∈]0, 1[, we take yt = t−1y and λt = t−(m−1)λ. We will show that for every
t there exists At ∈ IR[m,n], with At → A when t → 0, and the following system is
satisfied

At (yt )
m−1 + q − λt = 0, 〈λt , yt 〉 = 0, λt ≥ 0, yt ≥ 0. (11)

Since y = (y1, . . . , yn) �= 0, there exists y� �= 0, so one has ym−1
� �= 0. Take

Q ∈ IR[m,n] such that

Q xm−1 =
(
q1x

m−1
� , . . . , qnx

m−1
�

)
,

where q j = −a j/y
m−1
� for j = 1, . . . , n. It is clear that Q ym−1 + a = 0. We take

At = A+t Q and claim that system (11) holds. Indeed, the last two inequalities in
(11) are obvious. Consider the left-hand side of the first equation in (11); from (10),
we have

At (yt )m−1 + a − λt = (A+t Q)(t−1y)m−1 + a − t−(m−1)λ

= t−(m−1)(A ym−1 − λ) + (Q ym−1 + a)

= 0.

The second equation in (11) is obtained by

〈λt , yt 〉 = 〈t−(m−1)λ, t−1y〉 = t−m〈λ, y〉 = 0.

According to Remark 2.1, system (11) leads to yt ∈ Sol(At , a). Remind that this
argument holds for all t ∈]0, 1[.

Since Sol(A, a) is nonempty bounded, let V be a nonempty bounded open set
containing Sol(A, a). By the upper semicontinuity of Sol at (A, a), there exists δ > 0
such that Sol(B, b) ⊂ V for all (B, b) ∈ IR[m,n]×IRn satisfying ‖(B, b)−(A, a)‖ < δ.
Taking t small enough such that ‖(At , a)−(A, a)‖ < δ, we have Sol(At , a) ⊂ V . So,
yt ∈ V for every t > 0 sufficiently small. This is impossible, because V is bounded
and yt = t−1y → ∞ as t → 0. The assertion is proved. ��

The main result of this section is the next theorem.

Theorem 5.1 Let A be given. The following two statements are equivalent:

(a) The tensor A is R0;
(b) The map Sol is upper semicontinuous at (A, a), for every a ∈ IRn satisfying

Sol(A, a) �= ∅.
Proof From Proposition 5.1, one has (a) ⇒ (b). Hence, we only need to prove (b) ⇒
(a). Clearly, 0 ∈ Sol(A, a) �= ∅ for every a ∈ IRn+. By Remark 4.2, there exists
q ∈ IRn+ such that Sol(A, a) is bounded. By assumptions, the map Sol is upper
semicontinuous at (A, a). Proposition 5.2 says that A is R0. The proof is completed.

��
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5.2 Single-Valued Continuity

Recall that TCP(A, a) is said to have the GUS-property if TCP(A, a) has a unique
solution for every a ∈ IRn . Some special structured tensors which have GUS-property
are shown in [4,9]. A new property of the GUS-property of tensor complementarity
problems is given in the following theorem.

Theorem 5.2 If TCP(A, a) has the GUS-property, then the map SolA is single-valued
continuous on IRn.

Proof By assumptions, TCP(A, 0) has a unique solution. This implies thatA is an R0–
tensor. Proposition 5.1 shows that SolA is upper semicontinuous on IRn . Therefore,
SolA is single-valued continuous on IRn . ��
Example 5.2 Consider the problem TCP(A, a) where A ∈ IR[3,2] given by setting
a111 = a222 = 1 and ai1i2i3 = 0 for all other components. Obviously, one has

A xm−1 + q =
[
x21

x22

]

+
[
a1

a2

]

,

where a1, a2 ∈ IR. An easy computation shows that

SolA(a1, a2) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{
(
√−a1,

√−a2)
}
, if a1 < 0, a2 < 0,

{
(0,

√−a2)
}
, if a1 ≥ 0, a2 < 0,

{
(
√−a1, 0)

}
, if a1 < 0, a2 ≥ 0,

{(0, 0)} , if a1 ≥ 0, a2 ≥ 0.

The problem TCP(A, a) has the GUS-property, the domain of SolA is IR2, and SolA
is single-valued continuous on IR2.

Recall that a tensor A is copositive, if A xm ≥ 0 for all x ≥ 0. A function F :
IRn → IRn is monotone on X ⊂ IRn , if for all x, y ∈ X the following inequality is
satisfied

〈F(x) − F(y), x − y〉 ≥ 0. (12)

If F(x) = A xm−1 is monotone on IRn+ then A is copositive. Indeed, if one takes
y = 0 in (12), then A is copositive.

Remark 5.2 If the R0–tensor A is copositive, then Sol(A, a) is nonempty for every
q ∈ IRn [22, Corollary 7.2].

Theorem 5.3 Assume thatA is an R0–tensor. If F(x) = A xm−1 is monotone on IRn+,
then the map SolA is single-valued continuous on a generic semi-algebraic set in IRn.
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Proof By the copositivity and the R0 property of A, according to Corollary 7.2 in
[22], one has SolA(a) �= ∅ for all a ∈ IRn . By Proposition 4.1, there exists a generic
semi-algebraic set S ⊂ IRn such that SolA is finite-valued on S.

For every a ∈ IRn , by the monotonicity of F , F + a is also monotone. It follows
that SolA(a) is convex [33, Theorem 2.3.5]. Since SolA(a) is nonempty and has
finite points, this set has a unique point. So, SolA is single-valued on S. Moreover,
Proposition 5.1 says that SolA is upper semicontinuous on S. From what has already
been shown, SolA is single-valued continuous on S. ��
Example 5.3 Consider the problem TCP(A, a) where A ∈ IR[3,2] is given by setting
a111 = a122 = 1, a211 = a222 = 1, and ai1i2i3 = 0 for all other components.
Obviously, one has

F(x) = A xm−1 + a =
[
x21 + x22

x21 + x22

]

+
[
a1

a2

]

,

where the parameters a1, a2 ∈ IR. The Jacobian matrix of F is positive semidefinite
on IR2+. Hence, F is monotone on IR2+. By Remark 2.1, an easy computation shows
that

SolA(a1, a2) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{
(0,

√−a2)
}
, if a2 < 0, a2 ≤ a1,

{
(
√−a1, 0)

}
, if a1 < 0, a1 ≤ a2,

{(0, 0)} , if 0 ≤ a1, 0 ≤ a2,

S−a1 , if a1 = a2 < 0,

where

S−a1 = {(x1, x2) : x21 + x22 = a1, x1 ≥ 0, x2 ≥ 0}, a1 < 0.

The tensor A is R0 since SolA(0, 0) = {(0, 0)}. The map SolA is single-valued
continuous on the generic semi-algebraic set S, where

S = IR2\{(a1, a2) ∈ IR2 : a1 = a2 < 0}.

6 Stability of the SolutionMap

We will show that the map SolA is locally upper-Hölder when the involved tensor is
R0. In addition, if the tensor is copositive then one obtains a result on the stability of
the solution map.

The map SolA defined in (9) is said to be locally upper-Hölder at a if there exist
γ > 0, c > 0 and ε > 0 such that

SolA(b) ⊂ SolA(a) + γ ‖b − a‖cB(0, 1)

for all a satisfying ‖b − a‖ < ε, where B(0, 1) is the closed unit ball in IRn .
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Proposition 6.1 If A is R0 and Sol(A, a) �= ∅, then the map SolA is locally upper-
Hölder at a.

Proof By our assumptions and Proposition 5.1, it follows that SolA is upper semicon-
tinuous at a. According to [35, Theorem 4.1], the upper semicontinuity and the local
upper-Hölder stability of SolA at a are equivalent. Hence, the assertion is proved. ��

Let C be a nonempty and closed cone. Here intC+ stands for the interior of the
dual cone C+ of C . Note that q ∈ intC+ if and only if 〈v, q〉 > 0 for all v ∈ C and
v �= 0 [34, Lemma 6.4].

Proposition 6.2 If A is copositive and a ∈ int(Sol(A, 0)+), then the map SolA is
locally upper-Hölder at a.

Proof Suppose that A is copositive and a ∈ int(Sol(A, 0)+). On account of [22,
Corollary 7.3], Sol(A, a) is nonempty and compact. Due to [35, Theorem 4.1], we
only need to prove that SolA is upper semicontinuous at a.

We suppose that SolA is not upper semicontinuous at a. There are a nonempty
open set V containing Sol(A, a), and two sequences {ak} ⊂ IRn , where ak → a, and
{xk} ⊂ IRn+ such that

xk ∈ Sol(A, ak)\V . (13)

The sequence {xk} is bounded. Indeed, if {xk} is unbounded, then we can assume that
‖xk‖−1xk → v and ‖v‖ = 1. Clearly, one has v ∈ Sol(A, 0). From (3), (13), and the
copositivity of A, we have

−
〈
xk, ak

〉
= A(xk)m ≥ 0.

It follows that 〈v, a〉 ≤ 0. This contradicts the fact that a ∈ int(Sol(A, 0)+). So, {xk}
is bounded, and we can suppose that xk → x̄ . It easy to check that x̄ ∈ Sol(A, a). This
leads to x̄ ∈ V . Besides, since V is an open nonempty set, the relation (13) implies
that x̄ /∈ V . We obtain a contradiction. Therefore, SolA is upper semicontinuous
at a. ��

Theorem 7.5.1 in [23] is an interesting result on the upper-Lipschitz stability of the
solution map of linear complementarity problems under the copositivity condition.
Here, we obtain an analogous one for the solution map of tensor complementarity
problems.

Theorem 6.1 Assume that A is copositive and a ∈ int(Sol(A, 0)+). Then there exist
constants ε > 0, γ > 0, and c > 0 such that, if B ∈ IR[m,n] and b ∈ IRn satisfy

max{‖B−A ‖, ‖b − a‖} < ε, (14)

and B is copositive, then the following statements are true:

(a) The set Sol(B, b) is nonempty and bounded;
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(b) One has

Sol(B, b) ⊂ Sol(A, a) + γ (‖B−A ‖ + ‖b − a‖)cB(0, 1). (15)

Proof (a) We prove that there exists ε1 > 0 such that, if B is copositive and b ∈ IRn

satisfy

max{‖B−A ‖, ‖b − a‖} < ε1, (16)

then Sol(B, b) is nonempty and bounded. Suppose that the assertion is false. Then
there is a sequence {(Bk, bk)}, where (Bk, bk) → (A, a) and Bk is copositive, such
that Sol(Bk, bk) is empty or unbounded, for each k ∈ N. From [22, Corollary 7.3], we
conclude that bk /∈ int(Sol(Bk, 0)+), and then there exists xk ∈ Sol(Bk, 0) such that
xk �= 0 and

〈
xk, bk

〉 ≤ 0. We can suppose that ‖xk‖−1xk → x̄ with ‖x̄‖ = 1. Clearly,
one has 〈x̄, a〉 ≤ 0.

If we prove that x̄ solves TCP(A, 0), then this contradicts the assumption that
a ∈ int(Sol(A, 0)+), and (a) is proved. Thus,we only need to show that x̄ ∈ Sol(A, 0).
Because xk belongs to Sol(Bk, 0), one has

Bk(xk)m−1 ≥ 0, Bk(xk)m = 0. (17)

By dividing the inequality and the equation in (17) by ‖xk‖m−1 and ‖xk‖m , respec-
tively, and taking k → +∞, we obtain

A x̄m−1 ≥ 0, A x̄m = 0.

This leads to x̄ ∈ Sol(A, 0).
(b) We prove the inclusion (15). According to Proposition 6.2, there exist γ0 >

0, c > 0 and ε such that

Sol(A, b) ⊂ Sol(A, a) + γ0‖b − a‖cB(0, 1) (18)

for every b satisfying ‖b−a‖ < ε. Suppose that B is copositive and b ∈ IRn such that
(16) holds. For each z ∈ Sol(B, b), by setting

b̄ := b + (B−A) zm−1, (19)

we have

Azm−1 + b̄ = B zm−1 + b ≥ 0,
〈
z,A zm−1 + b̄

〉
=
〈
z,B zm−1 + b

〉
= 0.

These show that z ∈ Sol(A, b̄). By the assertion (a), Sol(B, b) is bounded and
nonempty. Remark 2.2 states that there exists β > 0 such that

‖(B−A)zm−1‖ ≤ β‖B−A ‖, (20)

for any z ∈ Sol(B, b). From (19) and (20), one has
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‖b̄ − a‖ ≤ ‖b − a‖ + ‖(B−A)zm−1‖
≤ ‖b − a‖ + β‖B−A ‖. (21)

Hence, for ε1 given in the proof of (a), on account of (16), we conclude that ‖b̄−a‖ ≤
(1+ β)ε1. Choose ε1 as small as ‖b̄− a‖ < ε. Since z ∈ Sol(A, b̄), by (18) and (21),
there exists x ∈ Sol(A, a) such that

‖z − x‖ ≤ γ0‖b̄ − a‖c
≤ γ0 (‖b − a‖ + β‖B−A ‖)c
≤ γ (‖b − a‖ + ‖B−A ‖)c ,

where γ = max
{
γ c
0 , γ c

0 β
}
. The inclusion (15) is obtained. ��

Corollary 6.1 Assume that A is an R0–tensor, F(x) = A xm−1 is monotone on IRn+.
Then for any a ∈ IRn, there exist constants ε > 0, γ > 0 and c > 0 such that, if
B ∈ IR[m,n] and b ∈ IRn satisfy (14) and G(x) = B xm−1 is monotone on IRn+, then
the following statements are true:

(a) The set Sol(B, b) is nonempty and bounded;
(b) The conclusion (15) is valid.

Proof Since Sol(A, 0) = {0}, one has int(Sol(A, 0)+) = IRn . By the monotonicity of
F and G, both A,B are copositive. Therefore, the assertions follow Theorem 6.1. ��

7 Conclusions

In this paper, we have proved that the set R0 of all R0-tensors is an open generic
semi-algebraic cone. Upper and lower estimates for the dimension of the complement
C(R0) are shown. Several results on local boundedness, upper semicontinuity, lower
semicontinuity, finite-valuedness, and stability of the solutionmap have been obtained.
In our further research, we intend to develop these results for polynomial variational
inequalities.
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