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Abstract
In this paper, we investigate a robust nonsmooth multiobjective optimization problem
related to a multiobjective optimization with data uncertainty.We firstly introduce two
kinds of generalized convex functions, which are not necessary to be convex. Robust
necessary optimality conditions for weakly robust efficient solutions and properly
robust efficient solutions of the problem are established by a generalized alternative
theorem and the robust constraint qualification. Further, robust sufficient optimality
conditions for weakly robust efficient solutions and properly robust efficient solutions
of the problem are also derived. The Mond–Weir-type dual problem and Wolfe-type
dual problem are formulated. Finally, we obtain the weak, strong and converse robust
duality results between the primal one and its dual problems under the generalized
convexity assumptions.
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1 Introduction

Robust optimization, which is an important approach to study optimization problems
with data uncertainty, has grown rapidly over the past two decades; see [1–8] and
the references therein. An overview of robust approaches for uncertain vector-valued
functions along with algorithms for obtaining robust solutions is presented in [9,
Chapter 15.4]. An uncertain optimization problem can be studied through its robust
counterpart. Robust optimization can be reviewed as a kind of sensitivity against per-
turbations in the decision space. In particular, robust optimization considers the case
that no probability distribution information on the uncertain parameters is given. It
is also common that the performance of the solutions is judged by multiple objec-
tives that are in conflict, such as quality/benefits versus cost. This situation calls for a
prioritization of the objectives, which can be difficult to articulate into a precise math-
ematical function prior to the procurement of information about the possible solutions
to the problem. So, it is interesting to deeply study the theory and applications of
robust multiobjective optimization.

In the optimization theory including multiobjective optimization, the main focus
is placed on finding the global optimum or global efficient solutions, representing the
best possible objective values. But, in practice, one may not always be interested in
finding the so-called global best solutions, particularly when these solutions are quite
sensitive to the variable perturbations, which cannot be avoided in practice. In such
cases, one would be interested in finding robust solutions, which are less sensitive to
small perturbations in variables. Gunawan and Azarm [10] studied the robust optimal-
ity for robust Pareto solution of nondifferentiable multiobjective robust optimization
by using a sensitivity region concept, and obtained sensitivity results of its robust
Pareto sets by a sensitivity measure, which did not require a presumed probability
distribution of uncontrollable parameters. Deb and Gupta [11] presented two differ-
ent robust multiobjective optimization procedures, where the emphasis was to find a
robust solution, and showed the differences between global and robust multiobjective
optimization principles. Kuroiwa and Lee [13] gave three kinds of robust efficient
solutions for an uncertain multiobjective optimization problem (UMOP) where the
objective functions and constraint functions were perturbed by different uncertain
data, and established necessary optimality conditions for weakly and properly robust
efficient solutions for (UMOP). Kim [14] discussed the Mond–Weir-type duality and
weak saddle-point results for an uncertainmultiobjective robust optimization problem.
Fliege andWerner [15] studied general convex parametric multiobjective optimization
problems with data uncertainty by using a robust approach, proved the relationship
between the originalmultiobjective formulation and its scalarizations, and showed that
standard techniques from multiobjective optimization can be applied to characterize
this robust efficient frontier.

Recently, Goberna et al. [16] dealt with robust solutions of multiobjective lin-
ear semi-infinite programs under constraint data uncertainty, provided a radius of
robust feasibility guaranteeing the feasibility of the robust counterpart under affine
data parametrization, and established dual characterizations of robust solutions of the
model that were immunized against data uncertainty by way of characterizing corre-
sponding solutions of robust counterpart of the model. Ide and Köbis [17] introduced
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various concepts of efficiency for uncertain multiobjective optimization problems
based on set less order relations, analyzed the resulting concepts of efficiency and
presented numerical results on the occurrence of the various concepts. Goberna et
al. [18] presented the numerically tractable optimality conditions for minmax robust
weakly efficient solutions and highly robust weakly efficient solutions of multiobjec-
tive linear programming problems in the face of data uncertainty in both the objective
function and the constraints, and derived a formula for the radius of robust feasibility
guaranteeing constraint feasibility for all possible scenarios within a specified uncer-
tainty set under affine data parametrization and the lower bounds for the radius of
highly robust efficiency guaranteeing the existence of highly robust weakly efficient
solutions under affine and rank-1 objective data uncertainty. Chuong [19] considered
necessary/sufficient optimality conditions for robust (weakly) Pareto solutions of the
a robust nonsmooth multiobjective optimization problem in terms of multipliers and
limiting subdifferentials of the related functions, and explored weak/strong duality
relations between the primal one and its dual robust problem under the (strictly) gen-
eralized convexity assumptions. Ide and Schöbel [20] compared and analyzed ten
different concepts of robustness for (UMOP), and presented reduction results for the
class of objective-wise uncertain multiobjective optimization problems. Lee and Lee
[21] studied necessary/sufficient optimality conditions for a weakly robust efficient
solution of a robust semi-infinite multiobjective optimization problem and gave its
robust counterpart (RSIMP) of the problem in the worst case of the uncertain semi-
infinite multiobjective optimization problem, and derived duality results on (RSIMP)
and its Wolfe-type dual problem.

Very recently, Klamroth et al. [22] considered uncertain scalar optimization prob-
lems with infinite scenario sets, and developed a unified characterization of different
concepts of robust optimization and stochastic programming by the existing methods
arising from vector optimization in general spaces, set optimization as well as scalar-
ization techniques. Bokrantz and Fredriksson [23] established necessary and sufficient
conditions for robust efficiency to multiobjective optimization problems that depend
on uncertain parameters by using scalarization method. Chen et al. [24] investigated
the optimality conditions for a class of nonsmooth multiobjective optimization prob-
lems with cone constraints by a modified objective function method, and applied
to multiobjective fractional programming problems. Suneja et al. [25] introduced
some generalized convex function associated with a vector optimization problem,
and obtained sufficient optimality conditions for the vector optimization problem and
weak/strong duality results between the primal problem and its Mond–Weir-type dual
problem using Clarke’s generalized gradients. To the best of our knowledge, there are
no results on the general weakly robust efficient solution and properly robust efficient
solution of nonsmooth/nonconvex multiobjective optimization with constraint data
uncertainty.

Motivated and inspired by the works [5,6,14,16,19,21,23], this paper is devoted to
investigate a nonsmooth/nonconvex multiobjective optimization problems with con-
straint data uncertainty (shortly, (UCMOP)) by using a robust approach. The paper is
organized as follows. In Sect. 2, we firstly present the robust counterpart of (UCMOP),
which is called a robust nonsmooth multiobjective optimization problem. Together
with the efficient solutions notions of [26–28], we introduce weakly robust efficient
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solution and properly robust efficient solution of (UCMOP) and several generalized
convex functions, which are not necessary to be convex and smooth. Fritz–John/Kuhn–
Tucker-type robust necessary optimality conditions forweakly robust efficient solution
and properly robust efficient solution of (UCMOP) are established by the generalized
alternative theorem of Illés and Kassay [29] in Sect. 3. Sufficient optimality conditions
for weakly robust efficient solution and properly robust efficient solution of (UCMOP)
are deduced under the generalized convexity assumptions. In Sect. 4, the Mond–Weir-
type dual problem is formulated. Section 5 is concerned with the Wolfe-type dual
problem. In these sections, we obtain the weak, strong and converse robust duality
results between the primal one and its dual problems under the generalized convexity
assumptions. Section 6 concludes this paper with a summary of the obtained results
and an outlook to future research.

2 Preliminaries

Let R
n+ be the nonnegative orthant of the n-dimensional Euclidean space R

n . A
nonempty subset C of R

n is called a convex cone if C + C ⊆ C and tC ⊆ C
for all t>0. Throughout this paper, without other specifications, let Q ⊆ R

k be
proper, closed and convex cone with nonempty interior, Vi be a nonempty, con-
vex and compact subset of R

ni for i = 1, 2, . . . ,m and
∑m

i=1 ni = p, and let
f = ( f1, . . . , fk)� : R

n → R
k and g = (g1, . . . , gm)� : R

n × R
p → R

m be
vector-valued mappings and gi : R

n × R
ni → R for i = 1, 2, . . . ,m, where the

superscript � denotes the transpose. We denote the closed hull, convex hull and inte-
rior of Q by clQ, convQ and intQ, respectively. The dual cone (positive polar cone)
of Q is defined by

Q∗ = {u ∈ R
m : u�x ≥ 0, ∀x ∈ Q}.

Consider the following uncertain constrained multiobjective optimization problem:

min f (x) s.t. − g(x, v) ∈ S, (UCMOP)

where S ⊆ R
m is a proper, closed and convex cone, v := (v1, v2, . . . , vm)� ∈ R

p is
the vector of uncertain parameter with vi ∈ Vi , i = 1, 2, . . . ,m, and x ∈ R

n is the
vector of decision variable.

For the sake of brevity, we set V := ∏m
i=1 Vi . Since Vi are nonempty, convex and

compact sets for all i = 1, 2, . . . ,m, then V is a nonempty, convex and compact
subset of R

p. One of the important approaches for studying (UCMOP) is the robust
optimization approach, which can be reviewed as a kind of sensitivity against pertur-
bations in the decision space. Particularly, robust optimization considers the case that
no stochastic information on the uncertain parameters is given.

In this paper,we investigate (UCMOP)by a robust approach.The robust counterpart
of (UCMOP) read as following:

min f (x) s.t. − g(x, v) ∈ S, ∀ v ∈ V . (RMOP)
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A vector x is called a robust feasible solution of (UCMOP) if it is a feasible solution
of (RMOP). Denote by F := {x ∈ R

n : −g(x, v) ∈ S, ∀ v ∈ V } the set of all robust
feasible solutions of (UCMOP). It is noted that if Q := R

k+ and S := R
m+, then

(RMOP) is reduced to the robust optimization problems of [14,19]; in particular, if
f : R

n → R, Q := R+ and S := R
m+, then (RMOP) is reduced to the scalar robust

optimization problems of [5,6]. As we know, any system of inequalities and equalities
can be characterized by the nonnegative orthant. Without loss of generality, we always
assume that S := R

m+ throughout this paper.

We now recall some definitions and basic results in the literature.

Definition 2.1 Avector x̄ ∈ F is called aweakly robust efficient solution of (UCMOP)
iff

f (x) − f (x̄) /∈ −intQ, ∀x ∈ F .

Definition 2.2 ([27]) A vector x̄ ∈ F is called a properly robust efficient solution of
(UCMOP) iff there exists λ ∈ intQ∗ such that

λ�( f (x) − f (x̄)) ≥ 0, ∀x ∈ F .

We denote the sets of all weakly robust efficient solutions and the properly robust
efficient solutions of (UCMOP) by Fw and F pr , respectively. It easily follows from
Definitions 2.1 and 2.2 that F pr ⊆ Fw. Besides, x̄ ∈ F pr if and only if there exists
λ ∈ intQ∗ such that x̄ ∈ argmin

{
λ� f (x) : x ∈ F

}
. This shows that one can compute

properly robust efficient solutions of (UCMOP) by a standard linear scalarization
method.

The following result of properly robust efficient solutions of (UCMOP) is imme-
diately obtained from Definition 2.2.

Lemma 2.1 F pr = ⋃
λ∈intQ∗ argmin

{
λ� f (x) : x ∈ F

}
.

Definition 2.3 ([30]) A real-valued function � : R
n → R is said to be locally Lipschitz

iff, for any z ∈ R
n , there exist a positive constant κ and a neighborhood U of z such

that, for any x, y ∈ U ,

|�(x) − �(y)| ≤ κ‖x − y‖,

where ‖ · ‖ denotes any norm in R
n .

In [30], the Clarke’s generalized subgradient of � at z is denoted by

∂�(z) =
{
ζ ∈ R

n : �◦(z; d) ≥ ζ�d, ∀d ∈ R
n
}

,

where �◦(z; d) := lim supy→z,t→0+
�(y+td)−�(y)

t .

Clearly, �◦(z; d) = max {〈ζ, d〉 : ζ ∈ ∂�(z)}. It is well known that if � : R
n →

R is locally Lipschitz, then the Clarke’s generalized subgradient ∂� : R
n⇒ R

n is
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nonempty and compact-valued onR
n and also is upper semicontinuous onR

n (see [31,
Proposition 2.5.5, p.54]), i.e., for any sequences (xn) and (yn) ofRn with xn → x ∈ R

n

and yn ∈ ∂�(xn) for all n ∈ N, there exists a subsequence (ynk ) → y ∈ ∂�(x).
A vector-valued function f = ( f1, f2, . . . , fk)� : R

n → R
k is said to be locally

Lipschitz on R
n iff fi is locally Lipschitz on R

n, i = 1, . . . , k. In the following, we
always assume that f is locally Lipschitz on R

n and that g is locally Lipschitz on R
n

with respect to the first argument and its components are upper semicontinuous with
respect to the second argument.

Definition 2.4 ([30]) Let f = ( f1, f2, . . . , fk)� : R
n → R

k be locally Lipschitz on
R
n . The generalized subgradient of f at z ∈ R

n is the set

∂ f (z) = {(ζ1, . . . , ζk) : ζi ∈ ∂ fi (z), i = 1, . . . , k} ,

where ∂ fi (z) is the Clarke’s generalized subgradient of fi (i ∈ {1, . . . , k}) at z ∈ R
n .

Definition 2.5 ([32]) Let X be a nonempty subset of R
n . f : X → R

k is said to be
Q-convexlike iff the set f (X) + Q is convex.

It is worth mentioning that a Q-convexlike function is usually not Q-convex func-
tion (see, e.g., [32, Example 2.1, p.322]): f : X → R

k is said to be Q-convex iff the
set,

epiQ( f ) := {(x, y) : x ∈ X , y − f (x) ∈ Q} ,

is convex. Besides, the Q-convexlike function contains Q-function as special case
(see [33]): f : X → R

k is said to be Q-function at x̄ ∈ R
n iff, for any x, y ∈ R

n and
t ∈]0, 1[,

t f (x) + (1 − t) f (y) ∈ f (t x + (1 − t)y) + Q.

A pair of functions ( f , h) is said to be (Q, R
m+)-convexlike iff f is Q-convexlike and

h is R
m+-convexlike, where h : X → R

m .
We next introduce two kinds of generalized convex functions corresponding to the

robust feasible solutions set F .

Definition 2.6 ( f , g) is said to be type I (Q, R
m+)-generalized convex at x̄ ∈ R

n iff,
for each x ∈ F and A ∈ ∂ f (x̄), B ∈ ∂x g(x̄, v), v ∈ V , there exists d ∈ R

n such that

f (x) − f (x̄) − Ad ∈ Q, g(x, v) − g(x̄, v) − Bd ∈ R
m+.

Definition 2.7 ( f , g) is said to be type II (Q, R
m+)-generalized convex at x̄ ∈ R

n iff,
for each x ∈ F and A ∈ ∂ f (x̄), B ∈ ∂x g(x̄, v), v ∈ V , there exists d ∈ R

n such that

f (x) − f (x̄) − Ad ∈ Q, −g(x̄, v) − Bd ∈ R
m+.
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Remark 2.1 (i) It follows from Definitions 2.5, 2.6 and 2.7 that the following rela-
tions hold: the type I (Q, R

m+)-generalized convexity of ( f , g) at x̄ ∈ R
n

�⇒ the type II (Q, R
m+)-generalized convexity of ( f , g) at x̄ ∈ R

n .
(ii) It is noted that the type II (Q, R

m+)-generalized convexity of ( f , g) extends the
(Q, R

m+)-generalized type I (see [25, Definition 5, p. 26] of ( f , g) even if f :
R
n → R and g : R

n × R
p → R

m are differentiable. Besides, if Q := R
k+, then

the type I (Q, R
m+)-generalized convexity of ( f , g) is reduced to the generalized

convexity (see [19, Definition 3.9, p. 136]) of ( f , g), which is not necessary
convex (see [19, Example 3.10, p. 136]).

We need to point out that the converse of the assertion (i) in Remark 2.1 is not true
(see Example 2.2). We next give two examples to show the type I (or, II) (Q, R

m+)-
generalized convexity of a pair of functions ( f , g).

Example 2.1 Let R
n := R, R

k = R
m = R

p := R
2, let Q := {

(y, z)� ∈ R
2 :

y ≤ 0, z ≤ −y}, V1 := [0, 1], V2 := [−1, 1] and let

f (x) :=

⎧
⎪⎪⎨

⎪⎪⎩

(
x

1 + x

)

, if x < 0,
(−x2

1

)

, if x ≥ 0
and g(x, v) :=

⎧
⎪⎪⎨

⎪⎪⎩

(
x2 − v1 − 3

−v22

)

, if x > 0,
(−x + v1 − 3

− x
2 − v22

)

, if x ≤ 0,

where v = (v1, v2) ∈ V = V1 × V2. After calculation, we have

F =
{
x ∈ R : −g(x, v) ∈ R

2+, ∀ v ∈ V
}

=
[
0,

√
3
]
.

Let x̄ = 0 ∈ F . Then, ∂ f (x̄)� = [0, 1]×[0, 1] and ∂x g(x̄, v)� = [−1, 0]×[−1/2, 0]
for all v ∈ V . For each x ∈ F , there exists d = x2 ∈ R such that

f (x) − f (x̄) − Ad =
(−(1 + a1) x2

−a2 x2

)

∈ Q

and

g(x, v) − g(x̄, v) − Bd =
⎧
⎨

⎩

(
(1 − b1) x2

−b2 x2

)

∈ R
2+, if x ∈]0,√3],

0 ∈ R
2+, if x = 0,

where A = (a1, a2)� ∈ ∂ f (x̄)� and B = (b1, b2)� ∈ ∂x g(x̄, v)�. Therefore, ( f , g)
is type I (Q, R

2+)-generalized convex at x̄ .

Example 2.2 Let R
n := R, R

k = R
m = R

p := R
2, let Q := {

(y, z)� ∈ R
2 :

y ≤ 0, z ≤ −y}, V1 := [0, 1], V2 := [−1, 1] and let

f (x) :=

⎧
⎪⎪⎨

⎪⎪⎩

(
x

1 + x

)

, if x < 0,
(−x2

1

)

, if x ≥ 0
and g(x, v) :=

⎧
⎪⎪⎨

⎪⎪⎩

(
x2 − v1 − 3

−v22

)

, if x < 0,
(
x2 − v1 − 3
− x

2 − v22

)

, if x ≥ 0,
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where v = (v1, v2) ∈ V = V1 × V2. After calculation, we have

F =
{
x ∈ R : −g(x, v) ∈ R

2+, ∀ v ∈ V
}

=
[
−√

3,
√
3
]
.

Let x̄ = 0 ∈ F . Then, ∂ f (x̄)� = [0, 1] × [0, 1] and ∂x g(x̄, v)� = [0, 1]× [−1/2, 0]
for all v ∈ V . For each x ∈ F , there exists d = x2 ∈ R such that

f (x) − f (x̄) − Ad =

⎧
⎪⎪⎨

⎪⎪⎩

(
(1 − a1x)x
(1 − a2x)x

)

∈ Q, if x < 0,
(−(1 + a1)x2

−a2x2

)

∈ Q, if x ≥ 0,

and

−g(x̄, v) − Bd =
(
3 + v1 − b1 x2

v22 − b2 x2

)

∈ R
2+,

where A = (a1, a2)� ∈ ∂ f (x̄)� and B = (b1, b2)� ∈ ∂x g(x̄, v)�. Therefore, ( f , g)
is type II (Q, R

2+)-generalized convex at x̄ . However, for each d ∈ R, there exist
x = 1 ∈ F and B = (b1, 0)� such that

g(x, v) − g(x̄, v) − Bd =
(
1 − b1d

− 1
2

)

/∈ R
2+,

This thus implies that ( f , g) is not type I (Q, R
2+)-generalized convex at x̄ .

We next present a generalized constraint qualification in the sense of robustness,
which plays an important role in establishing necessary optimality conditions.

Definition 2.8 ([13]) The generalized robust Slater constraint qualification (GRSCQ)
is satisfied if there exists x0 ∈ R

n such that −g(x0, v) ∈ intRm+ for all v ∈ V .

Remark 2.2 (i) If g(·, v) := h(·) for all v ∈ V , then (GRSCQ) reduces to the
extended Slater constraint qualification: There exists x0 ∈ R

n such that −h(x0) ∈
intRm+.

(ii) It is noted that the condition: “for each v ∈ V , there exists x0 ∈ R
n such

that −g(x0, v) ∈ intRm+ ”does not imply (GRSCQ). For instance, let R
n =

R
2, g(x, v) := (

x21 + 4x1 − 5 − ln(1 + v1), x2 − |v2|
)�

and V = V1 × V2 =
]0, 1]× ]0, 1]. After verification, for each v ∈ V , there exists x = ( 12 ,

|v2|
2 )� ∈ R

2

such that −g(x, v) ∈ intR2+. In particular, set ṽ = (1, 1)� ∈ V , x̃ = ( 12 ,
1
2 )

� ∈
R
2, then

−g(x̃, ṽ) =
(
11

4
+ ln 2,

1

2

)�
∈ intR2+.

However, there exists v̂ = (1, 1
2 )

� ∈ V such that −g(x̃, v̂) = ( 11
4 + ln 2, 0

)�
/∈

intR2+, and consequently, g2(x̃, v̂2) = 0 �< 0.
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Lemma 2.2 ([30]) If fi : R
n → R (i ∈ {1, . . . , k}) are locally Lipschitz, then

∂

(
k∑

i=1

ti fi

)

(z) ⊆
k∑

i=1

ti∂ fi (z), ∀ z ∈ R
n,

where t = (t1, . . . , tk)� ∈ R
k .

Lemma 2.3 ([34]) Let Q ⊆ R
k be a closed convex cone with intQ �= ∅. Then,

y ∈ intQ ⇔ u�y > 0, ∀ u ∈ Q∗ \ {0}.

It is worth noting that for any nonempty subset U of R
k+m , U + (Q × R

m+) has
nonempty interior because of intQ �= ∅ and intRm+ �= ∅. In view of this, the following
theorem of the alternative can be derived from [29, Theorem 3.1, p.246].

Lemma 2.4 Let X be a nonempty subset of R
n. Assume that ( f , h) : X → R

k+m is
(Q, R

m+)-convexlike. Then, the following assertions hold:

(i) If there is no x ∈ X such that

f (x) ∈ −intQ and h(x) ∈ −R
m+, (1)

then there exist λ ∈ Q∗ and μ ∈ R
m+ with (λ, μ) �= 0 such that

λ� f (x) + μ�h(x) ≥ 0, ∀ x ∈ X . (2)

(ii) If there exist λ ∈ Q∗ \ {0} and μ ∈ R
m+ such that (2) holds, then there is no

x ∈ X such that (1) holds.

The next important result is a generalized Fermat rule.

Lemma 2.5 Let h : R
n → R be a locally Lipschitz function. If h attains a local

minimum or maximum at x̄ , then 0 ∈ ∂h(x̄).

Lemma 2.6 Let I be a finite index set and hi : R
n → R (i ∈ I ) be locally Lipschitz.

Set h(x) := maxi∈I hi (x). Then, ∂h(x) ⊆ conv{∂hi (x) : i ∈ I (x)} for all x ∈ R
n,

where I (x) = {i ∈ I : hi (x) = h(x)}.
In the rest of this paper, we always denote by Assumption A the following:

(A1) g is locally Lipschitz with respect to the first argument and uniformly on V
with respect to the second argument, i.e., for each x ∈ R

n , there exist an open
neighborhood U of x and a positive constant L such that

‖g(y, v) − g(z, v)‖ ≤ L‖y − z‖, ∀ y, z ∈ U , v ∈ V .

(A2) for each j ∈ {1, 2, . . . ,m}, the function v j �−→ g j (·, v j ) is concave on Vj .
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For j ∈ {1, 2, . . . ,m}, we define a family of real-valued functions ϕ, ϕ j : R
n → R

as follows:

ϕ j (x) := max
v j∈Vj

g j (x, v j ) (3)

and

ϕ(x) := max
j∈{1,2,...,m} ϕ j (x). (4)

Since g j is upper semicontinuous and Vj is nonempty, convex and compact for each
j ∈ {1, 2, . . . ,m}, ϕ j is well defined. By the auxiliary functions (3), the set of robust
feasible solutions F can be equivalently characterized as follows:

F = {x ∈ R
n : ϕ j (x) ≤ 0, j = 1, 2, . . . ,m} = {x ∈ R

n : ϕ(x) ≤ 0}. (5)

Besides, for each j ∈ {1, 2, . . . ,m}, ϕ j and ϕ are locally Lipschitz functions under
the assumption (A1) (see, e.g., [19, (H1), p.131], and also see [35, p. 290] or [36,
P.2043]).

3 Robust Optimality Conditions of (UCMOP)

In this section, we study Fritz–John/Kuhn–Tucker-type robust necessary optimality
conditions for weakly robust efficient solutions and properly robust efficient solu-
tions of (UCMOP) by using the generalized alternative theorem of Illés and Kassay
[29] and (GRSCQ), and discuss sufficient robust optimality conditions for weakly
robust efficient solutions and properly robust efficient solutions of (UCMOP) under
the generalized convexity assumptions.

Theorem 3.1 (Fritz–John-type robust necessary optimality conditions) Let g satisfy
theAssumption A and that ϕ isR+-convexlike, and let f be Q-convexlike. If x̄ ∈ Fw,
then there exist λ̄ ∈ Q∗, μ̄ ∈ R

m+ not both zero and v̄ ∈ V such that

0 ∈ ∂ f (x̄)�λ̄ + ∂x g(x̄, v̄)�μ̄,

μ̄�g(x̄, v̄) = 0.
(6)

Proof Assume that x̄ ∈ Fw. Then, we have

f (x) − f (x̄) /∈ −intQ, ∀x ∈ F . (7)

Note that x ∈ F ⇐⇒ ϕ(x) ≤ 0. Therefore, (7) is equivalent to the infeasibility of
the following system (in the unknown x):

( f (x) − f (x̄), ϕ(x)) ∈ −(intQ × R+). (8)
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Since ( f , ϕ) is (Q, R+)-convexlike, it follows from Lemma 2.4 and (8) that there
exist (λ̄, τ̄ ) ∈ (Q∗ × R+) \ {0} such that

λ̄�( f (x) − f (x̄)) + τ̄ ϕ(x) ≥ 0, ∀ x ∈ R
n .

Taking x = x̄ in the above inequality, we obtain that τ̄ ϕ(x̄) ≥ 0. According to
ϕ(x̄) ≤ 0, we have τ̄ ϕ(x̄) = 0. Consequently, x̄ is a solution of the unconstrained
optimization problem:

min
x∈Rn

λ̄� f (x) + τ̄ ϕ(x).

Since g satisfies the assumption (A1),ϕ is locally Lipschitz. FromLemmas 2.2 and 2.5,
we deduce that

0 ∈ ∂
(
λ̄� f (·) + τ̄ ϕ(·)

)
(x̄) ⊆ ∂ f (x̄)�λ̄ + ∂ϕ(x̄)τ̄ . (9)

From Lemma 2.6, we deduce that

∂ϕ(x̄) ⊆ conv {∂ϕi (x̄) : i ∈ I (x̄)} , (10)

where I (x̄) = {i : ϕi (x̄) = ϕ(x̄), i = 1, 2, . . . ,m}. According to [35, Theorem 2.4,
p. 290], we have

∂ϕi (x̄) = {ξi : ∃ vi ∈ Vi (x̄) such that ξi ∈ ∂x gi (x̄, vi )} , (11)

for all i ∈ {1, 2, . . . ,m}, where Vi (x̄) := {vi ∈ Vi : gi (x̄, vi ) = ϕi (x̄)}
is nonempty, convex and compact set. So, (10) and (11) imply that there exists
v̄ = (v̄1, v̄2, . . . , v̄m) ∈ V such that

gi (x̄, v̄i ) = ϕi (x̄), i ∈ {1, 2, . . . ,m}

and

∂ϕ(x̄) ⊆ conv {∂x gi (x̄, v̄i ) : i ∈ I (x̄)} .

This combined with (9) yields that

0 ∈ ∂ f (x̄)�λ̄ + τ̄conv {∂x gi (x̄, v̄i ) : i ∈ I (x̄)} .

Hence, there exists μ̃ = (μ̃1, μ̃2, . . . , μ̃m)� ∈ R
m+ with

∑
i∈I (x̄) μ̃i = 1 and μ̃ j = 0

for all j ∈ {1, 2, . . . ,m} \ I (x̄) such that

0 ∈ ∂ f (x̄)�λ̄ + τ̄ ∂x g(x̄, v̄)�μ̃.
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Set μ̄ = τ̄ μ̃. Due to τ̄ ≥ 0, one has μ̄ ∈ R
m+. Therefore, there exist (λ̄, μ̄) ∈

(Q∗ × R
m+) \ {0} and v̄ ∈ V such that

0 ∈ ∂ f (x̄)�λ̄ + ∂x g(x̄, v̄)�μ̄. (12)

Note that ϕi (x̄) = ϕ(x̄) for all i ∈ I (x̄). Taking into account that τ̄ ϕ(x̄) = 0 and∑
i∈I (x̄) μ̃i = 1, we have

μ̄�g(x̄, v̄) =
m∑

i=1

τ̄ μ̃iϕi (x̄) =
∑

i∈I (x̄)
τ̄ μ̃iϕi (x̄) =

∑

i∈I (x̄)
μ̃i [τ̄ ϕ(x̄)] = τ̄ ϕ(x̄) = 0,

i.e., μ̄�g(x̄, v̄) = 0. This combined with (12) yields that (6) holds. ��
Remark 3.1 Observe that many existing results on the robust necessary optimality
conditions for uncertain optimization problems containing the scalar case and vector
case are established under the convexity of every components of f and g with respect
to the first argument by the subdifferential of the convex function; see, e.g., [6,7,35,36]
and the references therein. It is not hard to verify that ϕ is R+-convexlike when every
components of g with respect to the first argument are convex. So, the assumption: “ϕ
is R+-convexlike”is reasonable.

On the other hand, since the robust necessary optimality conditions in Theorem 3.1
are established by the subdifferential in the sense of Clarke instead of the subdiffer-
ential in the sense of convex function, Theorem 3.1 is distinct with the corresponding
results of [6,7,35,36].

Theorem 3.2 (Kuhn–Tucker-type robust necessary optimality conditions) Assume
that all conditions of Theorem 3.1 and (GRSCQ) hold. If x̄ ∈ Fw, then there exist
λ̄ ∈ Q∗ \ {0}, μ̄ ∈ R

m+ and v̄ ∈ V such that (6) holds.

Proof Assume that x̄ ∈ Fw. It thus follows from Theorem 3.1 that there exist λ̄ ∈
Q∗, μ̄ ∈ R

m+ not both zero and v̄ ∈ V such that (6) holds.
Let us prove that λ̄ �= 0. Suppose that λ̄ = 0. Then, μ̄ ∈ R

m+ \ {0}. By the proof of
Theorem 3.1, we have

ϕ(x) ≥ 0, ∀ x ∈ R
n . (13)

Since (GRSCQ) is satisfied, there exists x0 ∈ R
n such that

−g(x0, v) ∈ intRm+, ∀ v ∈ V ,

i.e., for each j = 1, 2, . . . ,m, g j (x0, v j ) < 0 for all v j ∈ Vj . Since g j are upper
semicontinuous with respect to the second argument and Vj are nonempty, convex
and compact for all j = 1, 2, . . . ,m, then there exist j ∈ {1, 2, . . . ,m} and ṽ j ∈ Vj

such that

ϕ(x0) = ϕ j (x0) = g j (x0, ṽ j ) < 0,

which contradicts (13). ��
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If g(·, v) := h(·) for all v ∈ V , from Theorems 3.1 and 3.2, we can derive the
following necessary optimality conditions for the weakly efficient solutions of the
multiobjective optimization problem:

(MOP) min
x∈F

f (x),

where F := {x ∈ R
n : −h(x) ∈ S}.

Corollary 3.1 Let ( f , h) be (Q, R
m+)-convexlike. If x̄ is a weakly efficient solution of

(MOP), then there exist λ̄ ∈ Q∗, μ̄ ∈ R
m+ not both zero such that 0 ∈ ∂ f (x̄)�λ̄ +

∂h(x̄)�μ̄ and μ̄�h(x̄) = 0.

Corollary 3.2 Assume that ( f , h) is (Q, R
m+)-convexlike and that the extended Slater

constraint qualification is satisfied. If x̄ is a weakly efficient solution of (MOP), then
there exist λ̄ ∈ Q∗\{0}, μ̄ ∈ R

m+ such that 0 ∈ ∂ f (x̄)�λ̄+∂h(x̄)�μ̄ and μ̄�h(x̄) = 0.

Remark 3.2 It is worth noting that the conditions of Corollaries 3.1 and 3.2 are distinct
with that of [37, Theorems 3.1 and 3.2, pp.33-34], respectively, since Corollaries 3.1
and 3.2 do not involve the cone invexity of ( f , h).

Similarly, we can get the necessary optimality conditions for properly robust effi-
cient solutions of (UCMOP).

Theorem 3.3 (Fritz–John-type robust necessary optimality conditions) Assume that
all conditions of Theorem 3.1 are satisfied. If x̄ ∈ F pr , then there exist λ̄ ∈ Q∗, μ̄ ∈
R
m+ not both zero and v̄ ∈ V such that

0 ∈ ∂ f (x̄)�λ̄ + ∂x g(x̄, v̄)�μ̄,

μ̄�g(x̄, v̄) = 0,

λ̄� f (x̄) = minx∈F λ̄� f (x).

(14)

Proof Assume that x̄ ∈ F pr . Then, there exists λ̃ ∈ intQ∗ such that

λ̃�( f (x) − f (x̄)) ≥ 0, ∀x ∈ F . (15)

Since f is Q-convexlike, we deduce that λ̃� f (·) is R+-convexlike. Similar to the
proof of Theorem 3.1, there exist (ᾱ, μ̄) ∈ (R+ × R

m+) \ {0} and v̄ ∈ V such that

0 ∈ ∂ f (x̄)�(ᾱλ̃) + ∂x g(x̄, v̄)�μ̄ (16)

and μ̄�g(x̄, v̄) = 0. Due to λ̃ ∈ intQ∗, we have

ᾱλ̃ ∈ intQ∗, if ᾱ > 0,

ᾱλ̃ = 0, if ᾱ = 0.

123



424 Journal of Optimization Theory and Applications (2019) 181:411–436

Set λ̄ = ᾱλ̃. So, (λ̄, μ̄) ∈ (Q∗ × R
m+) \ {0} and

λ̄� f (x) − λ̄� f (x̄) = λ̄�( f (x) − f (x̄)) = ᾱλ̃�( f (x) − f (x̄))
(15)≥ 0, ∀x ∈ F,

i.e., λ̄� f (x̄) = minx∈F λ̄� f (x). Therefore, using (16) implies

0 ∈ ∂ f (x̄)�λ̄ + ∂x g(x̄, v̄)�μ̄,

as required. ��
Theorem 3.4 (Kuhn–Tucker-type robust necessary optimality conditions) Assume
that all conditions of Theorem 3.1 and (GRSCQ) hold. If x̄ ∈ F pr , then there exist
λ̄ ∈ Q∗ \ {0}, μ̄ ∈ R

m+ and v̄ ∈ V such that (14) holds.

Proof It directly follows from Theorem 3.3 and the proof of Theorem 3.2. ��
We next give two examples to illustrate Theorems 3.1, 3.2, 3.3 and 3.4.

Example 3.1 Let R
n = R

k = R
m = R

p := R
2, and let V1 := [−0.5, 0], V2 :=

[−1, 1], Q := R
2+. Let the functions f (x) := (2x1, 3x22 )

� and

g(x, v) := (x21 + 4x1 − 5 + ln(1 + v1), x2 − |v2|)�

for all x, y ∈ R
2, where v = (v1, v2) ∈ V = V1 × V2. It is easy to verify that

F = [−5, 1] × (−R+), Q∗ = R
2+, that g satisfies the assumptions (A1) and (A2)

and f is Q-convexlike and that x̄ = (−5, 0)� is a weakly robust efficient solution of
(UCMOP). Besides, ϕ is convex on R

n and so it is R+-convexlike. Observe that there
exist λ̄ = (1, 1)� ∈ intQ∗ and x̂ = (−1,−1) ∈ R

2 such that

−g(x̂, v) = (−1 + 4 + 5 − ln(1 + v1), 1 + |v2|)�
= (8 − ln(1 + v1), 1 + |v2|)� ∈ intR2+, ∀ v ∈ V

and

λ̄�( f (x) − f (x̄)) = (1, 1)(2x1 + 10, 3x22 )
� = 2x1 + 3x22 + 10 ≥ 0,

∀ x = (x1, x2)
� ∈ F,

i.e., (GRSCQ) is satisfied and x̄ is a properly robust efficient solution of (UCMOP).
On the other hand, there exist μ̄ = ( 13 , 0)

� ∈ R
2+ and v̄ = 0 ∈ V such that

μ̄�g(x̄, v̄) = 0 and

∂ f (x̄)�λ̄ + ∂x g(x̄, v̄)�μ̄ =
(
2 0
0 0

) (
1
1

)

+
(−6 0

0 0

)( 1
3
0

)

= 0.

As a matter of fact, we have g(x̄, v̄) = 0 ∈ R
2+.
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The next example shows that the condition “the closedness of V ”is indispensable
to Theorems 3.1-3.4.

Example 3.2 Let R
n, R

k, R
m, R

p, Q, g be the same as Example 3.1, let V2 :=
[−1, 1] \ {0}, V1 := [−0.5, 0[, and let the function f (x) := (2x1 + x2, 3x22 )

�. It
is easy to check that g satisfies the assumptions (A1) and (A2), that ( f , ϕ) is (Q, R+)-
convexlike and that x̄ = (−5, 0)� is a weakly robust efficient solution and a properly
robust efficient solution of (UCMOP) and (GRSCQ) is satisfied. Taking into account
that

∂ f (x̄)�λ =
(
2 1
0 0

)(
λ1
λ2

)

=
(
2λ1 + λ2

0

)

�= 0, ∀ λ =
(

λ1
λ2

)

∈ Q∗ \ {0}.

Clearly, one has

g(x̄, v) = (ln(1 + v1),−|v2|)� /∈ R
2+, ∀ v ∈ V = V1 × V2.

On the other hand, for each v ∈ V and μ ∈ R
2+, μ�g(x̄, v) = 0 if and only if

μ = 0. Altogether, there do not exist (λ, μ) ∈ (
Q∗ × R

2+
) \ {0} and v̄ ∈ V such that

∂ f (x̄)�λ + ∂x g(x̄, v̄)�μ = 0 and μ�g(x̄, v̄) = 0.

It is easy to see that if λ̄ ∈ intQ∗ in (14), (14) implies x̄ ∈ F pr . Now we fur-
ther develop sufficient optimality conditions for weakly robust efficient solutions and
properly robust efficient solutions of (UCMOP).

Theorem 3.5 Let ( f , g) be type II (Q, R
m+)-generalized convex at x̄ ∈ F. Assume that

there exist λ̄ ∈ Q∗ \ {0}, μ̄ ∈ R
m+ and v̄ ∈ V such that (6) holds. Then, x̄ ∈ Fw.

Proof Suppose that x̄ /∈ Fw. Then, there exists x̂ ∈ F such that

f (x̂) − f (x̄) ∈ −intQ. (17)

Since ( f , g) is type II (Q, R
m+)-generalized convex at x̄ ∈ R

n , then there exists d ∈ R
n

such that

f (x̂) − f (x̄) − Ad ∈ Q, ∀ A ∈ ∂ f (x̄) (18)

and

− g(x̄, v̄) − Bd ∈ R
m+, ∀ B ∈ ∂x g(x̄, v̄). (19)

Combining (17) with (18), one has

− Ad ∈ Q − ( f (x̂) − f (x̄)) ⊆ Q + intQ = intQ, ∀ A ∈ ∂ f (x̄). (20)

In view of λ̄ ∈ Q∗ \ {0} and μ̄ ∈ R
m+, it follows from Lemma 2.3 and (19), (20) that

λ̄�Ad < 0, ∀ A ∈ ∂ f (x̄) (21)
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and

− μ̄� (g(x̄, v̄) + Bd) = μ̄� (−g(x̄, v̄) − Bd) ≥ 0, ∀ B ∈ ∂x g(x̄, v̄). (22)

Using (6) yields that μ̄�g(x̄, v̄) = 0. Hence, we deduce from (22) that

μ̄�Bd ≤ 0, ∀ B ∈ ∂x g(x̄, v̄). (23)

Adding both sides of (21) and (23), we obtain

(
λ̄�A + μ̄�B

)
d < 0, ∀ A ∈ ∂ f (x̄), B ∈ ∂x g(x̄, v̄). (24)

Note that 0 ∈ ∂ f (x̄)�λ̄ + ∂x g(x̄, v̄)�μ̄. Therefore, there exist Ā ∈ ∂ f (x̄) and B̄ ∈
∂x g(x̄, v̄) such that Ā�λ̄ + B̄�μ̄ = 0. Consequently,

(
λ̄� Ā + μ̄� B̄

)
d = 0, which

contradicts (24). ��
The following sufficient optimality conditions are immediately derived from

Remark 2.1(ii) and Theorem 3.5.

Corollary 3.3 Let ( f , g) be type I (Q, R
m+)-generalized convex at x̄ ∈ F. Assume that

there exist λ̄ ∈ Q∗ \ {0}, μ̄ ∈ R
m+ and v̄ ∈ V such that (6) holds. Then, x̄ ∈ Fw.

We now present sufficient optimality conditions for the properly robust efficient
solutions of (UCMOP).

Theorem 3.6 Let ( f , g) be type II (Q, R
m+)-generalized convex at x̄ ∈ F. Assume that

there exist λ̄ ∈ intQ∗, μ̄ ∈ R
m+ and v̄ ∈ V such that (6) holds. Then, x̄ ∈ F pr .

Proof Suppose that x̄ /∈ F pr . Then, there exists x̂ ∈ F such that

λ̄� (
f (x̂) − f (x̄)

)
< 0. (25)

Since ( f , g) is type II (Q, R
m+)-generalized convex at x̄ ∈ R

n , then there exists d ∈ R
n

such that

f (x̂) − f (x̄) − Ad ∈ Q, ∀ A ∈ ∂ f (x̄)

and

−g(x̄, v̄) − Bd ∈ R
m+, ∀ B ∈ ∂x g(x̄, v̄),

which together with the definition of dual cone, (25) and μ̄�g(x̄, v̄) = 0 imply that
λ̄�Ad < 0 and μ̄�Bd ≤ 0 for all A ∈ ∂ f (x̄) and B ∈ ∂x g(x̄, v̄). Consequently, one
has

(
λ̄�A + μ̄�B

)
d < 0, ∀ A ∈ ∂ f (x̄), B ∈ ∂x g(x̄, v̄),

which contradicts the fact that 0 ∈ ∂ f (x̄)�λ̄ + ∂x g(x̄, v̄)�μ̄. ��
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FromRemark2.1(ii) andTheorem3.6,we canget the following sufficient optimality
conditions for the properly robust efficient solutions of (UCMOP).

Corollary 3.4 Let ( f , g) be type I (Q, R
m+)-generalized convex at x̄ ∈ F. Assume that

there exist λ̄ ∈ intQ∗, μ̄ ∈ R
m+ and v̄ ∈ V such that (6) holds. Then, x̄ ∈ F pr .

Let us present the following example to show Theorems 3.3 and 3.6.

Example 3.3 Let R
n, R

k, R
m, R

p, Q, V1, V2, f and g be the same as Example 2.2.
After calculation, we have Q∗ = {

(y, z) ∈ R
2 : z − y ≥ 0 ≥ z

}
. Let x̄ = 0. It

then follows from Example 2.2 that F =
[
−√

3,
√
3
]
, ∂ f (x̄)� = [0, 1] × [0, 1]

and ∂x g(x̄, v)� = [0, 1] × [−1/2, 0] for all v ∈ V and that ( f , g) is type II
(Q, R

2+)-generalized convex at x̄ . Therefore, there exist λ̄ = (−2,−1)� ∈ intQ∗,
μ̄ = (0, 1)� ∈ R

2+ and v̄ = 0 ∈ V such that μ̄�g(x̄, v̄) = 0 and 0 ∈
∂ f (x̄)�λ̄ + ∂x g(x̄, v̄)�μ̄. Then, for each x ∈ F , we have

f (x) − f (x̄) =
{

(x, x)� /∈ −intQ, if x ∈ [−√
3, 0[,

(−x2, 0)� /∈ −intQ, if x ∈
[
0,

√
3
]
,

and

λ̄�( f (x) − f (x̄)) =
{−3x ≥ 0, if x ∈ [−√

3, 0[,
2x2 ≥ 0, if x ∈

[
0,

√
3
]
.

Hence, x̄ = 0 is aweakly robust efficient solution and properly robust efficient solution
of (UCMOP).

4 Mond–Weir-Type Robust Dualities of (UCMOP)

In this section,we investigate theweak, strong and converse dualities between (RMOP)
and the Mond–Weir-type robust dual problem of (UCMOP) in terms of the weakly
robust efficient solutions and properly efficient solutions.

The Mond–Weir-type robust dual problem of (UCMOP) is formulated as follows:

max f (y) s.t.0 ∈ ∂ f (y)�λ + ∂x g(y, v)�μ,

μ�g(y, v) = 0, v ∈ V ,

λ ∈ Q∗ \ {0}, μ ∈ R
m+.

(MWRD)

It is worth noting that (MWRD) can be understood as the optimistic counterpart of
the Mond–Weir-type dual model of (UCMOP):

max f (y) s.t. 0 ∈ ∂ f (y)�λ + ∂x g(y, v)�μ,

μ�g(y, v) = 0,

λ ∈ Q∗ \ {0}, μ ∈ R
m+.

(26)

where v ∈ V is an uncertain parameter.
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A vector (y, v, λ, μ) is said to be a feasible solution of (MWRD) if it satisfies
(MWRD). We denote by FD the set of the feasible solutions of (MWRD).

Definition 4.1 A vector (ȳ, v̄, λ̄, μ̄) ∈ FD is called a

(i) weak robust solution of (MWRD) iff

f (y) − f (ȳ) /∈ intQ, ∀(y, v, λ, μ) ∈ FD;

(ii) proper robust solution of (MWRD) iff λ̄ ∈ intQ∗ and

λ̄�( f (y) − f (ȳ)) ≤ 0, ∀(y, v, λ, μ) ∈ FD.

Theorem 4.1 (Weak duality) Let x ∈ F and (y, v, λ, μ) ∈ FD. If ( f , g) is type II
(Q, R

m+)-generalized convex at y, then f (x) − f (y) /∈ −intQ.

Proof Suppose that f (x) − f (y) ∈ −intQ. Since (y, v, λ, μ) ∈ FD , we obtain
λ ∈ Q∗ \ {0}, μ ∈ R

m+, v ∈ V , μ�g(y, v) = 0 and

0 ∈ ∂ f (y)�λ + ∂x g(y, v)�μ. (27)

Since ( f , g) is type II (Q, R
m+)-generalized convex at y, then there exists d ∈ R

n such
that

f (x) − f (y) − Ad ∈ Q, ∀ A ∈ ∂ f (y)

and

−g(y, v) − Bd ∈ R
m+, ∀ B ∈ ∂x g(y, v).

Moreover, one has

−Ad = f (x) − f (y) − Ad − ( f (x) − f (y)) ∈ Q + intQ = intQ,

∀ A ∈ ∂ f (y) (28)

and

μ�(−Bd) = μ�(−g(y, v) − Bd) + μ�g(y, v) ≥ 0, ∀ B ∈ ∂x g(y, v). (29)

Combined with (28) and (29), we deduce that λ�Ad < 0 for all A ∈ ∂ f (y) and
μ�Bd ≤ 0 for all B ∈ ∂x g(y, v). Therefore, we obtain

(
λ�A + μ�B

)
d = λ�Ad + μ�Bd < 0, ∀ A ∈ ∂ f (y), B ∈ ∂x g(y, v),

which contradicts (27). ��
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Theorem 4.2 (Strong duality) Let x̄ ∈ Fw and (GRSCQ) hold. Assume that all condi-
tions of Theorem 3.1 are satisfied. Then, there exist v̄ ∈ V , λ̄ ∈ Q∗ \ {0} and μ̄ ∈ R

m+
such that (x̄, v̄, λ̄, μ̄) ∈ FD. Furthermore, if ( f , g) is type II (Q, R

m+)-generalized
convex at y, where (y, v, λ, μ) ∈ FD, then (x̄, v̄, λ̄, μ̄) is a weak robust solution of
(MWRD).

Proof Since x̄ ∈ Fw and (GRSCQ) is satisfied, then from Theorem 3.2, there exist
v̄ ∈ V , λ̄ ∈ Q∗ \{0} and μ̄ ∈ R

m+ such that (x̄, v̄, λ̄, μ̄) satisfies (6), i.e., (x̄, v̄, λ̄, μ̄) ∈
FD . By Theorem 4.1, we have

f (x̄) − f (y) /∈ −intQ, ∀ (y, v, λ, μ) ∈ FD,

which implies that (x̄, v̄, λ̄, μ̄) is a weak robust solution of (MWRD). ��
We next present a strong duality concerning the weakly robust efficient solution of

(UCMOP) and properly robust solution of (MWRD).

Theorem 4.3 (Strong duality) Let x̄ ∈ Fw and (GRSCQ) hold. Assume that all con-
ditions of Theorem 3.1 are satisfied. Then, there exist v̄ ∈ V , λ̄ ∈ Q∗ \ {0} and
μ̄ ∈ R

m+ such that (x̄, v̄, λ̄, μ̄) ∈ FD. Furthermore, if λ̄ ∈ intQ∗ and (− f ,−g) is
type II (Q, R

m+)-generalized convex at x̄ , then (x̄, v̄, λ̄, μ̄) is a proper robust solution
of (MWRD).

Proof By the same proof as Theorem 4.2, we deduce that there exist v̄ ∈ V , λ̄ ∈
Q∗ \ {0} and μ̄ ∈ R

m+ such that (x̄, v̄, λ̄, μ̄) ∈ FD . Let λ̄ ∈ intQ∗ and (− f ,−g) be
type II (Q, R

m+)-generalized convex at x̄ .
Suppose that (x̄, v̄, λ̄, μ̄) is not a proper robust solution of (MWRD). Then, there

exists (ŷ, v̂, λ̂, μ̂) ∈ FD such that

λ̄�( f (ŷ) − f (x̄)) > 0. (30)

Since (− f ,−g) is type II (Q, R
m+)-generalized convex at x̄ , then there exists d ∈ R

n

such that

− f (ŷ) + f (x̄) + Ad ∈ Q, ∀ A ∈ ∂ f (x̄)

and

g(x̄, v̄) + Bd ∈ R
m+, ∀ B ∈ ∂x g(x̄, v̄).

In view of (x̄, v̄, λ̄, μ̄) ∈ FD , we have μ̄ ∈ R
m+, μ̄�g(x̄, v̄) = 0 and

0 ∈ ∂ f (x̄)�λ̄ + ∂x g(x̄, v̄)�μ̄. (31)

Note that

− λ̄�( f (ŷ) − f (x̄)) + λ̄�Ad = λ̄�(− f (ŷ) + f (x̄) + Ad) ≥ 0, ∀ A ∈ ∂ f (x̄)

(32)
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and

μ̄�Bd = μ̄�(g(x̄, v̄) + Bd) ≥ 0, ∀ B ∈ ∂x g(x̄, v̄). (33)

It therefore follows from (30) and (32) that

λ̄�Ad ≥ λ̄�( f (ŷ) − f (x̄)) > 0, ∀ A ∈ ∂ f (x̄).

This together with (33) yields that

(
λ̄�A + μ̄�B

)
d = λ̄�Ad + μ̄�Bd > 0, ∀ A ∈ ∂ f (x̄), B ∈ ∂x g(x̄, v̄),

which contradicts (31). ��

Theorem 4.4 (Converse duality) Let (ȳ, v̄, λ̄, μ̄)beaweak robust solution of (MWRD)
with ȳ ∈ F. If ( f , g) is type II (Q, R

m+)-generalized convex at ȳ, then ȳ ∈ Fw.

Proof Since (ȳ, v̄, λ̄, μ̄) is a weak robust solution of (MWRD) and ȳ ∈ F , it then
follows from Theorem 4.1 that f (x) − f (ȳ) /∈ −intQ for all x ∈ F , i.e., ȳ ∈ Fw. ��

Theorem 4.5 (Converse duality) Let (ȳ, v̄, λ̄, μ̄) be a proper robust solution of
(MWRD) with ȳ ∈ F. If ( f , g) is type II (Q, R

m+)-generalized convex at ȳ, then
ȳ ∈ F pr .

Proof Since (ȳ, v̄, λ̄, μ̄) is a proper robust solution of (MWRD), then λ̄ ∈ intQ∗,
μ̄�g(ȳ, v̄) = 0 and

0 ∈ ∂ f (ȳ)�λ̄ + ∂x g(ȳ, v̄)�μ̄.

Consequently, ȳ ∈ F pr follows from Theorem 3.6. ��

It is worth noting that the type II (Q, R
m+)-generalized convexity of (− f ,−g)

cannot be dropped in Theorem 4.3. This fact is illustrated by the following example
when ( f , g) is type I (Q, R

m+)-generalized convex.

Example 4.1 Let R
n, R

k, R
m, R

p, Q, V1, V2, f and g be the same as Example 3.1. It
follows from Example 3.1 that x̄ = (−5, 0)� is a weakly robust efficient solution and
properly robust efficient solution of (UCMOP) and (GRSCQ) is satisfied. Again, from
Example 3.1, we have (x̄, v̄, λ̄, μ̄) ∈ FD , where λ̄ = (1, 1)� ∈ intQ∗, μ̄ = ( 13 , 0)

� ∈
R
2+ and v̄ = 0 ∈ V . For any (y, v, λ, μ) ∈ FD , we conclude that λ = (λ1, λ2)

� ∈
Q∗ \ {0}, μ = (μ1, μ2)

� ∈ R
2+, μ�g(y, v) = 0 and

0 = ∂ f (y)�λ + ∂x g(y, v)�μ =
(
2 0
0 6y2

) (
λ1
λ2

)

+
(
2y1 + 4 0

0 1

) (
μ1
μ2

)

.
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So, λ1 + (y1 + 2)μ1 = 0 and 6y2λ2 + μ2 = 0. Combined with λ1, λ2, μ1, μ2 ≥ 0,
we have y1 ≤ −2 and y2 ≤ 0. Then, μ2 (y2 − |v2|) ≤ 0. Again, from μ�g(y, v) = 0,
one has

μ�g(y, v) = μ1

[
(y1 + 2)2 − 9 − ln(1 + v1)

]
+ μ2 (y2 − |v2|) = 0.

Therefore, we get

(y1 + 2)2 − 9 − ln(1 + v1) ≥ 0.

It implies that y1 ≤ −2 − √
9 + ln(1 + v1) ≤ −5. So, y1 + 5 ≤ 0.

For each (y, v, λ, μ), (ỹ, ṽ, λ̃, μ̃) ∈ FD , there exists d = y − ỹ such that

f (y) − f (ỹ) − ∇ f (ỹ)d =
(
2y1
3y22

)

−
(
2 ỹ1
3ỹ22

)

−
(
2 0
0 6ỹ2

) (
y1 − ỹ1
y2 − ỹ2

)

=
(
0, 3(y2 − ỹ2)

2
)� ∈ Q

and

g(y, v) − g(ỹ, v) − ∇x g(ỹ, v)d

=
(
y21 + 4y1 − (ỹ21 + 4ỹ1)

y2 − ỹ2

)

−
(
2 ỹ1 + 4 0

0 1

) (
y1 − ỹ1
y2 − ỹ2

)

=
(
(y1 − ỹ1)

2, 0
)� ∈ R

2+;

namely, ( f , g) is type I (Q, R
2+)-generalized convex at ỹ, where (ỹ, ṽ, λ̃, μ̃) ∈ FD .

Taking into account that y1 + 5 ≤ 0 for all (y, v, λ, μ) ∈ FD , we obtain

f (y) − f (x̄) =
(
2(y1 + 5), 3y22

)�
/∈ intQ, ∀ (y, v, λ, μ) ∈ FD,

i.e., (x̄, v̄, λ̄, μ̄) is a weak robust solution of (MWRD).
Finally, we show that the type II (Q, R

2+)-generalized convexity of (− f ,−g) at
x̄ cannot be dropped in Theorem 4.3. Note that there exist ŷ = (−6,−7)�, v̂ = 0,
λ̂ = (4, 1/42)� and μ̂ = (1, 1)� such that (ŷ, v̂, λ̂, μ̂) ∈ FD and

− f (ŷ) + f (x̄) + ∇ f (x̄)d = (2 + 2d1,−147)� /∈ Q

where d = (d1, d2)� ∈ R
2. So, (− f ,−g) is not type II (Q, R

2+)-generalized convex
at x̄ . Due to

λ̄� (
f (ŷ) − f (x̄)

) = 2 ŷ1 + 10 + 3ŷ22 = 145 � 0.

Therefore, (x̄, v̄, λ̄, μ̄) is not a proper robust solution of (MWRD).

123



432 Journal of Optimization Theory and Applications (2019) 181:411–436

5 Wolfe-Type Robust Dualities of (UCMOP)

In this section,we investigate theweak, strong and converse dualities between (RMOP)
and theWolfe-type robust dual problem of (UCMOP) under some suitable conditions.

The Wolfe-type robust dual problem of (RMOP) is formulated as follows:

(WRD) max f (y) + μ�g(y, v)e

s.t. 0 ∈ ∂ f (y)�λ + ∂x g(y, v)�μ,

v ∈ V , λ�e = 1, λ ∈ Q∗ \ {0}, μ ∈ R
m+,

where e ∈ R
k and ‖e‖ = 1.

We denote by FD
w the set of the feasible solutions of (WRD).

Definition 5.1 A vector (ȳ, v̄, λ̄, μ̄) ∈ FD
w is called a

(i) weak robust solution of (WRD) iff

f (y) + μ�g(y, v)e −
(
f (ȳ) + μ̄�g(ȳ, v̄)e

)
/∈ intQ, ∀(y, v, λ, μ) ∈ FD

w ;

(ii) proper robust solution of (WRD) iff λ̄ ∈ intQ∗ and

λ̄� [
f (y) + μ�g(y, v)e −

(
f (ȳ) + μ̄�g(ȳ, v̄)e

)]
≤ 0, ∀(y, v, λ, μ) ∈ FD

w .

Theorem 5.1 (Weak duality) Let x ∈ F and (y, v, λ, μ) ∈ FD
w . If ( f , g) is type II

(Q, R
m+)-generalized convex at y, then

f (x) −
(
f (y) + μ�g(y, v)e

)
/∈ −intQ.

Proof Suppose that

f (x) −
(
f (y) + μ�g(y, v)e

)
∈ −intQ. (34)

Since (y, v, λ, μ) ∈ FD
w and x ∈ F , we obtain λ ∈ Q∗\{0},μ ∈ R

m+, v ∈ V , λ�e = 1
and

0 ∈ ∂ f (y)�λ + ∂x g(y, v)�μ. (35)

From (34) and Lemma 2.3, one has

λ�( f (x) − f (y)) − μ�g(y, v) = λ� f (x) − λ� (
f (y) + μ�g(y, v)e

)
< 0. (36)

Since ( f , g) is type II (Q, R
m+)-generalized convex at y, then there exists d ∈ R

n such
that

f (x) − f (y) − Ad ∈ Q, ∀ A ∈ ∂ f (y)
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and

−g(y, v) − Bd ∈ R
m+, ∀ B ∈ ∂x g(y, v).

Moreover, one has

λ�( f (x) − f (y) − Ad) ≥ 0, ∀ A ∈ ∂ f (y)

and

μ�(−g(y, v) − Bd) ≥ 0, ∀ B ∈ ∂x g(y, v).

Therefore, we obtain

λ� f (x) − λ� (
f (y) + μ�g(y, v)e

)
−

(
λ�A + μ�B

)
d

= λ�( f (x) − f (y) − Ad) + μ�(−g(y, v) − Bd)

≥ 0, (37)

for all A ∈ ∂ f (y) and B ∈ ∂x g(y, v). Then, we have

(
λ�A + μ�B

)
d ≤ λ� f (x) − λ� (

f (y) + μ�g(y, v)e
)

(36)
< 0, ∀ A ∈ ∂ f (y), B ∈ ∂x g(y, v),

which contradicts (35). Accordingly, we derive that f (x) − (
f (y) + μ�g(y, v)e

)
/∈

−intQ. ��
Theorem 5.2 (Strong duality) Let x̄ ∈ Fw and (GRSCQ) hold. Assume that all condi-
tions of Theorem 3.1 are satisfied. Then, there exist v̄ ∈ V , λ̄ ∈ Q∗ \ {0} and μ̄ ∈ R

m+
such that (x̄, v̄, λ̄, μ̄) ∈ FD

w . Furthermore, if ( f , g) is type II (Q, R
m+)-generalized

convex at y, where (y, v, λ, μ) ∈ FD
w , then (x̄, v̄, λ̄, μ̄) is a weak robust solution of

(WRD).

Proof It follows from Theorem 4.2 that there exist v̄ ∈ V , λ̄ ∈ Q∗ \ {0} and μ̄ ∈ R
m+

such that (x̄, v̄, λ̄, μ̄) ∈ FD
w and μ̄�g(x̄, v̄) = 0. By Theorem 5.1, we have

(
f (x̄) + μ̄�g(x̄, v̄)e

)
−

(
f (y) + μ�g(y, v)e

)

= f (x̄) −
(
f (y) + μ�g(y, v)e

)
/∈ −intQ, ∀ (y, v, λ, μ) ∈ FD

w ,

i.e.,

(
f (y) + μ�g(y, v)e

)
−

(
f (x̄) + μ�g(x̄, v̄)e

)
/∈ intQ, ∀ (y, v, λ, μ) ∈ FD

w .

Consequently, (x̄, v̄, λ̄, μ̄) is a weak robust solution of (WRD). ��
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Theorem 5.3 (Converse duality) Let (ȳ, v̄, λ̄, μ̄) be a weak robust solution of (WRD)
with ȳ ∈ F. If ( f , g) is type II (Q, R

m+)-generalized convex at ȳ, then ȳ ∈ Fw.

Proof Since (ȳ, v̄, λ̄, μ̄) is a weak robust solution of (WRD) and ȳ ∈ F , it then follows
from Theorem 5.1 that f (x) − f (ȳ) /∈ −intQ for all x ∈ F , i.e., ȳ ∈ Fw. ��
Remark 5.1 It follows from Remark 2.1(ii) that if the type II (Q, R

m+)-generalized
convexity of ( f , g) is replaced by the type I (Q, R

m+)-generalized convexity of ( f , g),
we can get the corresponding weak duality, strong duality and converse duality results
between (UCMOP) and (WRD).

6 Conclusions

This manuscript is concerned with a robust nonsmooth multiobjective optimization
problem.We introduced two kinds of generalized convex functions, which are not nec-
essarily convex. Bymeans of a generalized alternative theorem and the obtained robust
constraint qualification, robust necessary optimality conditions for weakly robust effi-
cient solutions and properly robust efficient solutions of the problem are presented.
We also establish robust sufficient optimality conditions for weakly robust efficient
solutions and properly robust efficient solutions. Moreover, we formulated the Mond–
Weir-type dual problem andWolfe-type dual problem.Our paper concludedwith some
weak, strong and converse robust duality results between the primal one and its dual
problems under the generalized convexity assumptions. Our research leaves various
avenues for future study. For example, it would be interesting to study the problem
(UCMOP) with uncertainties in the objective function. Additionally, more concepts
of robustness, for example deviation robustness, light robustness, reliable robustness
or ε-constraint robustness (see [12]), could be studied and examined in a similar way.

Acknowledgements The authors are grateful to the anonymous referees, theAssociate Editor and Professor
Giannessi for their constructive comments andvaluable suggestions,whichhavehelped to improve the paper.
This research was partially supported by the MOST 106-2923-E-039-001-MY3, the Natural Science Foun-
dation of China (11401487), the Basic and Advanced Research Project of Chongqing (cstc2016jcyjA0239),
the China Postdoctoral Science Foundation (2015M582512) and the Fundamental Research Funds for the
Central Universities.

References

1. Beck, A., Ben-Tal, A.: Duality in robust optimization: primal worst equals dual best. Oper. Res. Lett.
37, 1–6 (2009)

2. Ben-Tal, A., Ghaoui, L.E., Nemirovski, A.: Robust Optimization. Princeton series in applied mathe-
matics. Princeton University Press, Princeton (2009)

3. Ben-Tal, A., Nemirovski, A.: Robust optimization-methodology and applications. Math. Programm.
Ser. B. 92, 453–480 (2002)

4. Ben-Tal, A., Nemirovski, A.: A selected topics in robust convex optimization. Math. Programm. Ser.
B. 112, 125–158 (2008)

5. Jeyakumar, V., Li, G.: Strong duality in robust convex programming: complete characterizations. SIAM
J. Optim. 20, 3384–3407 (2010)

6. Jeyakumar, V., Li, G., Lee, G.M.: Robust duality for generalized convex programming problems under
data uncertainty. Nonlinear Anal. 75, 1362–1373 (2012)

123



Journal of Optimization Theory and Applications (2019) 181:411–436 435

7. Jeyakumar, V., Lee, G.M., Li, G.: Characterizing robust solutions sets convex programs under data
uncertainty. J. Optim. Theory Appl. 64, 407–435 (2015)

8. Lee, G.M., Yao, J.C.: On solution sets for robust optimization problems. J. Nonlinear Convex Anal.
17, 957–966 (2016)
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