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Received: 18 December 2016 / Accepted: 15 October 2018 / Published online: 1 November 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Mathematical analysis and numerical solutions of problems with unknown shapes or
geometrical domains is a challenging and rich research field in themodern theory of the
calculus of variations, partial differential equations, differential geometry as well as in
numerical analysis. In this series of three review papers, we describe some aspects of
numerical solution for problems with unknown shapes, which use tools of asymptotic
analysis with respect to small defects or imperfections to obtain sensitivity of shape
functionals. In classical numerical shape optimization, the boundary variation tech-
nique is used with a view to applying the gradient or Newton-type algorithms. Shape
sensitivity analysis is performed by using the velocity method. In general, the contin-
uous shape gradient and the symmetric part of the shape Hessian are discretized. Such
an approach leads to local solutions, which satisfy the necessary optimality conditions
in a class of domains defined in fact by the initial guess. A more general framework of
shape sensitivity analysis is required when solving topology optimization problems. A
possible approach is asymptotic analysis in singularly perturbed geometrical domains.
In such a framework, approximations of solutions to boundary value problems (BVPs)
in domains with small defects or imperfections are constructed, for instance by the
method of matched asymptotic expansions. The approximate solutions are employed
to evaluate shape functionals, and as a result topological derivatives of functionals are
obtained. In particular, the topological derivative is defined as the first term (correc-
tion) of the asymptotic expansion of a given shape functional with respect to a small
parameter that measures the size of singular domain perturbations, such as holes, cav-
ities, inclusions, defects, source terms and cracks. This new concept of variation has
applications in many related fields, such as shape and topology optimization, inverse
problems, image processing, multiscale material design and mechanical modeling
involving damage and fracture evolution phenomena. In the first part of this review,
the topological derivative concept is presented in detail within the framework of the
domain decomposition technique. Such an approach is constructive, for example, for
coupled models in multiphysics as well as for contact problems in elasticity. In the
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second and third parts, we describe the first- and second-order numerical methods
of shape and topology optimization for elliptic BVPs, together with a portfolio of
applications and numerical examples in all the above-mentioned areas.

Keywords Topological derivatives · Asymptotic analysis · Singular perturbations ·
Domain decomposition
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1 Introduction

Shape and topology optimization is a broad field of modern research in pure (dif-
ferential geometry) and applied mathematics, and in structural mechanics. In applied
mathematics, it is a branch of the calculus of variations, partial differential equations
and numerical methods. In structural mechanics, design and synthesis of metamateri-
als, fracture and damage modeling and structural optimization are areas of particular
interest for shape and topology optimization techniques. Shape and topology optimiza-
tion is also an efficient mathematical tool for numerical solution of inverse problems,
involving defect identification for instance.

The problem of shape optimization is to minimize a shape functional over a family
of admissible domains. The shape functional depends directly on geometrical domains
and implicitly by means of solutions to the state equation defined in those domains.
For example, in structural mechanics, the specific functional depends on solutions to
elasticity BVPs defined in the domains of integration. From the mathematical point
of view, the questions to address, as usual in the calculus of variations, are:

1. Existence of an optimal domain.
2. Necessary conditions for optimality, which can be obtained for differentiable shape

functionals.
3. Convergence of numerical methods of solution of the shape optimization problem

under study.

There is a vast literature on the subject; the representative sources are, for example,
the monographs [1–5] on the theory and applications in mechanics of solids and fluids.

In general, we cannot expect the existence of a global solution to shape optimiza-
tion problems, since shape functionals are nonconvex. Therefore, it makes sense to
introduce generalized optimal solutions of shape optimization problems, for exam-
ple, by means of the homogenization technique [6–8]. As a result, the optimization
procedure leads to optimal microstructures and there appear subdomains of optimal
domains filled with metamaterials. These methods are known in structural mechanics
as the homogenization method [9] or the SIMP method [10].

In this review,we are interested in applications of asymptotic analysis tools and tech-
niques to shape and topologyoptimization in singularly perturbedgeometrical domains
[11] (see also, e.g., [12–14]). Regarding the theoretical development of topological
asymptotic analysis, see, for instance, [15–27].An account of newdevelopments in this
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branch of shape optimization may be found in the book by Novotny and Sokołowski
[28].

2 Classical Shape Optimization and Asymptotic Analysis Related to
Topological Derivatives

Topological derivatives of shape functionals were introduced for elliptic BVPs quite
recently. Instead of deformations of domains by diffeomorphism [1,3], asymptotic
analysis in singularly perturbed geometrical domains is performed for the purposes of
shape sensitivity analysis [11]. However, the approach based on deformations applies
to all types of linear PDEs. In addition, the velocitymethod of shape sensitivity analysis
is simpler compared to asymptotic analysis, but it has some drawbacks from the
point of view of numerics. In general, there is a close relationship between the two
approaches; the results obtained by the second approach can also be derived from
the velocity method, under some local regularity assumptions on solutions of elliptic
BVPs. In other words, the knowledge of shape gradients and shape Hessians leads to
topological derivatives of, for example, energy functionals under additional regularity
assumptions. Asymptotic analysis is performed in the original, unperturbed domains.
It is worth mentioning that classical shape sensitivity analysis can be derived by using
only asymptotic analysis tools. We present a general setting of asymptotic analysis in
singularly perturbed geometrical domains in Appendices. In the main body of Part I,
for simplicity, we restrict ourselves to the simple case of circular or ball-shaped voids.

As a result of asymptotic analysis, we obtain a function T(x), x ∈ Ω , such that

J (Ωε) = J (Ω) + f (ε)T(x) + o( f (ε))

for a given shape functional Ω �→ J (Ω) and a given domain Ω ⊂ R
d , d ≥ 2.

Here, Ωε = Ω\ωε, where ωε ⊂ Ω represents a singular domain perturbation of the
size governed by a small parameter ε → 0. Finally, f (ε) is a positive function such
that f (ε) → 0 as ε → 0. Therefore, the variation of the shape functional associated
with the creation of a small singularity around x ∈ Ω is measured by the function
x �→ T(x), which is called the topological derivative of the mapping Ω �→ J (Ω).

In the first part of the review, we describe some qualitative results for the Laplacian
and the elasticity system. In the second and third parts, we present, respectively, the
first- and the second-order numerical methods of shape and topology optimization for
elliptic BVPs, with many examples and numerical results. In order to fix ideas, let us
give a very simple example.

Example 2.1 The notion of topological derivative extends the conventional definition
of derivative to functionals depending on a geometrical domain, subjected to singular
topology changes. The analogy between T(x) and the corresponding expressions for a
conventional derivative should be noted. To illustrate the application of this concept,
let us consider the very simple functional

J (Ω) := |Ω| =
∫

Ω

1, (1)
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with Ω ⊂ R2 subject to the class of topological perturbations given by the nucleation
of circular holes, namely ωε = Bε(̂x) := {‖x − x̂‖ < ε}, for x̂ ∈ Ω . For two-
dimensional domains Ω , the functional J (Ω) represents the area of the domain. The
expansion with respect to ε in this case is trivial:

J (Ωε) = |Ωε| =
∫

Ω

1 −
∫
Bε

1 = J (Ω) − πε2, (2)

and the topological derivative T(x) and the function f (ε) are immediately found to be

T(x) = −1, f (ε) = πε2. (3)

In this particular case, T(x) is independent of x , and the rightmost term of the topo-
logical asymptotic expansion is zero.

A particular case of shape optimization is minimization of a functional over an
admissible set of characteristic functions [3]. In Example 2.1, the integral is of this
type,

J (Ω) =
∫
R2

χΩ(x)dx,

where χΩ is the characteristic function of Ω . We provide an example of a similar
problem in the third part of the review.

The main idea of numerical methods based on topological derivatives is the con-
struction of an auxiliary level set function, depending on the topological derivative in
the actual domain (see, e.g., [29–32]). In this method, the shape gradient is simply
replaced by the topological derivative. The line search procedure defined by simple
rules in terms of the descent direction, given by the current value of the topological
derivative, is used tomodify the current shape. The shape is determined by the level set
function. Therefore, within the topological derivative method, there is no need for the
complicatedHamilton–Jacobi equation to control the shape evolution. During the opti-
mization procedure, the shape evolution is governed by a simple updating algorithm
based on the current topological derivative. In numerical examples, the procedure con-
verges to a local solution of the topology-shape optimization problem. Therefore, this
method belongs to the field of experimental mathematics. To our best knowledge, the
convergence of the level set method is still to be shown, except for some particular
cases. In contrast to the first-order method presented in the second part of this review,
a novel method based on second-order topological derivatives is presented in the third
part of the review. The two-term expansion of the functional is exploited, leading to a
quadratic and strictly convex form with respect to the parameters under consideration.
Therefore, a single optimization step gives the solution, without the need for an iter-
ative algorithm. Second-order methods are discussed in the third part of the review,
with details and examples.

In this paper, we are concerned with the ideas for elliptic problems and singular
perturbations of the principal part of the elliptic operator. We refer the reader to [28]
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for the case of penetrable inclusions and associated topological derivatives depending
on the contrast parameter 0 < γ < ∞, in particular for isotropic elasticity. There are
also many problems where only lower order terms are perturbed, and in such cases
asymptotic analysis substantially simplifies.

It is crucial for applications to know the exact formof topological derivatives. Some-
times, the expressions for topological derivatives depend on the unknown polarization
tensor for the material, which is used to build geometrical domains.

3 Evaluation of Topological Derivatives

Evaluation of topological derivatives requires approximation of changes to solutions
of elliptic BVPs with respect to small singular perturbations of geometrical domains.
Such approximations are constructed, for example, in the monographs [33,34]; see
also [35,36]. We refer the reader to [21] for the comparison of the known methods
for evaluation of energy change due to the appearance of cavities in elastic solids. In
Appendices, asymptotic analysis of scalar elliptic equations is discussed in a general
setting.

We point out that in all methods listed below, for differentiable shape functionals,
appropriate adjoint state equations can be introduced. Evaluation methods for topo-
logical derivatives depend on specific applications. The computational approaches of
particular interest are:

1. The direct method of shape calculus combined with asymptotic expansions of
solutions, proposed in the first paper on the topic [37]. In this method, the Taylor
expansion of shape functionals, obtained in the framework of the velocity method
[3], is used to pass to the limit with the small perturbation parameter, and as a result
the topological derivative of the specific shape functional is obtained. The method
is improved in [38] and finally uses the first shape derivatives only for a class
of shape functionals. The method is difficult to apply for variational inequalities.
See, for example, [39] for an application of standard asymptotic analysis to the
Signorini problem, performed under the hypothesis of strict complementarity for
unknown solutions. In the case of linear elliptic equations, the method can be
combined with an adjoint equation approach [18,40].

2. The direct method of two-scale asymptotic analysis [11] performed for elliptic
systems, and leading in particular to self-adjoint extensions of elliptic operators.
In this method, appropriate adjoint state equations can be introduced at the end of
the procedure, in order to simplify formulas for topological derivatives. In other
words, first a two-scale asymptotic approximation of solutions with prescribed
precision is constructed, and it is then used to construct an approximation of the
functional. Finally, a convenient form of topological derivative is obtained, for the
purposes of numerical methods. In [11], complete proofs of the results obtained
for linearized elasticity boundary value problems are given.

3. The method using fundamental solutions in truncated domains and the standard
two-scale expansion techniques of asymptotic analysis (see [41], for instance).
In a sense, this method is substantially improved by the addition of the domain
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decomposition technique with the Steklov–Poincaré operators; see the last point of
this list. In addition, we refer to [15] for compound asymptotic analysis, combined
with a modified adjoint sensitivity method.

4. The method using the technique of integral equations in electromagnetism, pro-
posed, for instance, in [42] and [43]. We also refer to the recent book [44] for
modeling influence of defects in elastic bodies, using well-established asymptotic
formulas, with some applications to imaging.

5. The domain decomposition technique with asymptotic expansions of Steklov–
Poincaré operators for small defects [27]. This framework is well adapted to the
sensitivity analysis of coupled models in multiphysics, as well as of variational
inequalities and contact problems in elasticity. The adjoint state equations are intro-
duced in order to simplify the formulas for topological derivatives. The method
has been used in many numerical examples: see, for example, [45,46].

The evaluation technique depends on the problem under consideration. If there is
a state equation, the evaluation process usually includes asymptotic expansions of
solutions with respect to a small parameter ε → 0, which governs the size of singular
geometrical perturbation. Asymptotic expansions of solutions to scalar equations for a
model problem are given inAppendices. The case of the elasticity system is considered
in [11].

We restrict ourselves to elliptic BVPs, namely the Laplace or Helmholtz equations,
as well as to the BVPs of linear elasticity or for the Stokes system. The expansion
depends on the spatial dimensions d = 2, 3, since we use the fundamental solutions to
the associated elliptic equations. Most important for applications are elliptic equations
in three spatial dimensions.

The differentiability of energy functionals is the first task of asymptotic analysis for
the purposes of topological optimization. This property of functionals is used explicitly
in numerical methods and implicitly when using the domain decomposition technique.

The general mathematical theory of solution’s expansions, which applies to the
elasticity system, can be found in [11]; see also [47] for the polarization tensors
associated with the elasticity system. The results are given for arbitrary shapes of
cavities or holes. However, closed formulas are available only for some specific shapes
[47]. Usually, the results obtained for the contrast parameter 0 < γ < ∞ lead to the
limit cases for rigid inclusions and cavities [28].

Once the result of asymptotic analysis is known, there are some methods available
which can be used to identify topological derivatives. We are particularly interested
in numerical methods which are used in the framework of topological optimization.
Therefore, topological derivatives should be given by robust expressions, which are
approximated with the standard finite element techniques. The recommended way of
identification is the application of the domain decomposition technique, in particular
for topological derivatives of coupledmodels in multiphysics [27]. See also [41] for an
early attempt at the truncated domain approach without Steklov–Poincaré operators.

In order to simplify asymptotic analysis, we are going to explain the application of
Steklov–Poincaré operators to evaluation of topological derivatives for elliptic BVPs.
Without the state equation, this evaluation is simpler and it becomes a purely geomet-
rical problem; we refer to [48] for recent results in this direction. To be more specific,

123



Journal of Optimization Theory and Applications (2019) 180:341–373 347

we are going to explain in detail the asymptotic expansions for the elasticity system in
Sects. 4.4.1 and 4.4.2. The Neumann problem on a hole of arbitrary shape is analyzed
in Appendices.

To obtain the form of topological derivatives, appropriate asymptotic analysis of
solutions to the associated partial differential equation should be performed. There are
some monographs on the subject, for example, [33,34]. We also refer the reader to the
related results obtained in collaboration with Nazarov [11,22,47,49–55]. See also [56]
for further developments, using matched asymptotic expansions for the Laplacian.
In general, the form of the topological derivative is given in terms of adjoint states
and polarization tensors. This is an additional difficulty for numerical methods of
topology optimization using topological derivatives, since the polarization tensor is
known explicitly only for specific geometries of voids or cavities.

4 Asymptotic Expansions for the Domain Decomposition Technique

The domain decomposition technique seems to be the most important method of eval-
uation of topological derivatives for numerical methods of topology optimization. In
particular, the topological derivatives for BVPs of coupled models in multiphysics can
be obtained in the framework of this technique, combined with asymptotic expansions
of Steklov–Poincaré operators. In control theory, at least for scalar elliptic problems,
the Steklov–Poincaré operator becomes the Dirichlet-to-Neumann map. The domain
decomposition method can be applied to linear elliptic problems, as well as to vari-
ational inequalities. Numerical applications of the method can be found in [45], for
shape–topology optimization in piezo-elasticity, or in [46], for thermo-elasticity.

4.1 Asymptotic Expansions of Steklov–Poincaré Operators

Our goal is to apply the domain decomposition method to evaluate topological deriva-
tives. The first step of such an evaluation for complex models is always the local
analysis of singular perturbations of geometrical domains. Thus, for example, in lin-
ear elasticity in two or three spatial dimensions, with a traction-free hole or cavity,
we consider a ring-shaped domain C(R, ε) and obtain an asymptotic expansion of the
Steklov–Poincaré operators associated with the elasticity problem, defined in its exter-
nal boundary ΓR , with respect to the small parameter ε → 0. Let us consider a family
of perturbationsΩε of the reference domainΩ by small holes or small cavities ωε(̂x),
with center x̂ ∈ Ω . The method consists in approximating singular domain perturba-
tions by regular perturbations of the bilinear form v �→ a(Ω; v, v), in the variational
formulation of the elliptic boundary value problem. The approximation means that
the small domain ωε is replaced by the correction term to the bilinear form, given by
the boundary bilinear form v �→ εdb(ΓR; v, v) concentrated on the curve or surface
ΓR . This bilinear form can be determined from asymptotic expansions of Steklov–
Poincaré operators defined at the interface ΓR , i.e., from the topological derivative of
the energy functional in Ωε\ΩR . In this section, we provide all the necessary details
with some examples (Figs. 1, 2).
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Fig. 1 Domain Ωε with small
void ωε

Ωε
ε

ωε

Γε

Fig. 2 Truncated domain ΩR
and the ring C(R, ε)

ΩR
ΓRR

C(R, ε)

Remark 4.1 In a sense, our approach is similar, but not equivalent, to self-adjoint
extensions of elliptic operators [57] as they are used in physics. See [11,22,52,54]
for applications to asymptotic approximations, which lead to equivalent formulas
for topological derivatives. In other words, we are able to define an approximate
mathematicalmodel in the original domain in such away that the first-order asymptotic
expansion of the energy functional is the same as for the originalmodel in the perturbed
domain. For self-adjoint extensions, the domain Ωε is replaced by the punctured
domain Ω\{̂x}, while in our approach the truncated domain is ΩR := Ω\BR (̂x) for
small R > ε > 0. This approximation is sufficient for most of the applications we
have in mind. In any case, we need polarization tensors or matrices [47,49] in order
to use topological derivatives in numerical methods applied to shape and topology
optimization.

4.2 From Singular Domain Perturbations to Regular Perturbations of Bilinear
Forms

In this section, we present the abstract scheme of asymptotic analysis for solutions
of variational problems, posed in singularly perturbed geometrical domains. For sim-
plicity, let us consider linear problems.

A weak solution of a linear elliptic problem with a symmetric, coercive and con-
tinuous bilinear form posed in Ω ⊂ R

d ,

u := uΩ ∈ H : a(Ω; u, ϕ) = L(Ω;ϕ) ∀ϕ ∈ H , (4)
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is given by a unique minimizer of the quadratic functional

I (Ω;ϕ) := 1

2
a(Ω;ϕ, ϕ) − L(Ω;ϕ) = 1

2
a(ϕ, ϕ) − L(ϕ) (5)

over the Sobolev space H := H(Ω) of functions defined in Ω . For simplicity, we
write also

I (ϕ) := 1

2
a(Ω;ϕ, ϕ) − L(Ω;ϕ).

The energy shape functional is defined for Ω as

Ω �→ E(Ω) := I (u) = 1

2
a(Ω; u, u) − L(Ω; u).

We consider the singular geometrical perturbation Ωε := Ω\Bε(̂x) of the reference
domain produced by a small circle or ball.

In order to evaluate the topological derivatives of the energy shape functional, as
well as of some other shape functionals, we are going to use the domain decomposition
technique. To this end, the reference domain is divided into two subdomains. The
complement in Ω of the first subdomain ΩR := Ω\BR (̂x) is the ball BR (̂x) which
includes the singular geometrical perturbation of the reference domain. The energy
functional in the perturbed domain is

E(Ωε) = E(ΩR) + E(C(R, ε)),

where C(R, ε) is a ring,

C(R, ε) := BR (̂x)\Bε(̂x).

Now, we would like to introduce a bounded perturbation of the bilinear form

(ϕ, ϕ) �→ bε(ΓR;ϕ, ϕ),

such that for ε > 0,

E(C(R, ε)) = bε(ΓR; uε, uε).

In fact,we can introduce such a formwhich is asymptotically exact for the first-order
expansion of the solution uε, restricted to the truncated domain ΩR , namely

uR
ε = uR + εdq R + o(εd) (6)

in H(ΩR) for fixed R > ε > 0. Here, f (ε) = εd ; thus, we assume implicitly that the
homogeneous Neumann boundary conditions are prescribed on the cavity Bε(̂x).
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In this way, we could obtain the first-order topological derivatives for shape func-
tionals defined inΩR , using the expansion of the energy functional in the ringC(R, ε).

Let us fix x̂ ∈ Ω and consider again the truncated domain ΩR := Ω\BR (̂x) and
the perturbed domain Ωε := Ω\Bε(̂x), where R > ε > 0 are two parameters such
that ε → 0 and Bε(̂x) ⊂ Ω . By definition (5), we associate with the domains the
quadratic functionals

IR(ϕ) := 1

2
a(ΩR;ϕ, ϕ) − L(ΩR;ϕ) = 1

2
aR(ϕ, ϕ) − LR(ϕ)

and

Iε(ϕ) := 1

2
aε(ϕ, ϕ) − Lε(ϕ), (7)

obtained by restriction of the test functions ϕ ∈ H(Ω) to ΩR (respectively, to Ωε).
Our goal is to construct an approximation of the quadratic functional for which the
minimizer uR

ε is given by the restriction to ΩR of the variational solution uε in the
singularly perturbed domain. The variational solution in Ω is given by (4), and the
variational problem in the perturbed domain Ωε is given by

uε ∈ Hε : aε(uε, ϕ) = Lε(ϕ) ∀ϕ ∈ Hε. (8)

To this end, we introduce the nonlocal Steklov–Poincaré operatorAε on the interior
boundaryΓR ofΩR . The operator is defined by the nonhomogeneous Dirichlet bound-
ary value problem over C(R, ε). We determine the expansion of the Steklov–Poincaré
operator

Aε = A + εdB + Rε

in the space of linear operators and introduce the bilinear form associated with the
first term of the expansion,

b(h, h) := (B(h), h)ΓR .

It can be shown that minimization of the first-order approximation of the quadratic
functional (9), defined in the original domain, leads to the first-order expansion of the
minimizers for the perturbed domain, which holds in the truncated domain ΩR :

Theorem 4.1 Let uR
ε be the minimizer of the approximate quadratic functional

I Rε (ϕ) = 1

2
a(Ω;ϕ, ϕ) + 1

2
εd(B(ϕ), ϕ)ΓR − L(ΩR;ϕ). (9)

Then, the restriction of this minimizer to ΩR (denoted by the same symbol uR
ε ) has in

H1(ΩR) an expansion
uR

ε = uR + εdq R + o(εd), (10)

where uR = u|ΩR
. This expansion coincides with the expansion of the solution to (8)

in H1(ΩR).
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Corollary 4.1 In the case of variational equations resulting from the minimization
of (7), we have the same result. Indeed, the first-order expansion of the minimizers
ε �→ uε, restricted to the truncated domain ΩR, i.e., for R > ε > 0,

uε|ΩR = u|ΩR + εdq R + o(εd) (11)

is preserved when using the minimization of (9), since, for example, for the second-
order elliptic boundary value problems,

‖uε|ΩR − uR
ε ‖H1(ΩR) = o(εd).

Taking into account these estimates, the topological derivatives of shape functionals,
defined by integrals in the truncated domain, can be obtained.

Corollary 4.2 The topological derivative of the tracking-type functional,

J (Ωε) = 1

2

∫
ΩR

(uε − zd)
2dx, (12)

is given by the expression

T(̂x) =
∫

ΩR

(uR(x) − zd(x))q
R(x)dx =

∫
ΩR

(u(x) − zd(x))q(x)dx, (13)

where

q = lim
ε→0

1

εd
(uε − u) in ΩR .

Remark 4.2 The topological derivative of the tracking-type functional (12) can be
simplified for variational equations by using the adjoint state equation. Then, the full
potential of the topological derivative is seen, since it becomes a function of the point
x̂ , obtained at the expense of solving only two sets of state-like systems. The corre-
sponding formulas are given in Parts II [58] and Part III [59] of the paper. However,
even if we cannot use adjoint equations, the domain decomposition method based on
the asymptotic expansion of the Steklov–Poincaré operator has its advantages. They
consist in replacing the influence of the small hole (inclusion) by the small, localized
disturbance of the main bilinear form (see (9)), defined in the original domain. In this
way, the method facilitates and speeds up numerical approximations, for example,
using finite element methods.

4.3 Signorini Problem in Two Spatial Dimensions

Now we shall explain the domain decomposition technique used in approximation of
quadratic energy functionals to evaluate topological derivatives for the Laplace oper-
ator [27]. We restrict ourselves to the homogeneous Neumann boundary conditions
on holes in order to use f (ε) ≈ ε2.
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Let us consider the Signorini problem in a domain Ω ⊂ R
2 with smooth boundary

∂Ω = Γ0 ∪ Γs . The bilinear form

a(u, v) = a(Ω; u, v) =
∫

Ω

∇u · ∇vdx

is coercive and continuous over the Sobolev space

H1
Γ0

(Ω) = {v ∈ H1(Ω) : v = 0 on Γ0},

and the linear form

L(v) = L(Ω; v) =
∫

Ω

f vdx

is continuous on L2(Ω). There is a unique solution to the variational inequality

u ∈ K : a(u, v − u) ≥ L(v − u) ∀v ∈ K ,

where K is the convex and closed cone

K = K (Ω) = {v ∈ H1
Γ0

(Ω) : v ≥ 0 on Γs}.

Let us consider the variational inequality over the singularly perturbed domain Ωε =
Ω\Bε,

uε ∈ Kε = K (Ωε) : aε(uε, v − uε) ≥ Lε(v − uε) ∀v ∈ Kε,

with the solution given by the unique minimizer of the quadratic functional

Iε(v) = 1

2
aε(v, v) − Lε(v) (14)

over the convex set Kε := K (Ωε). Let us assume that Lε is supported in ΩR .
We can show that there is an approximation of (14), denoted by

I Rε (v) = 1

2
aε(ΩR; v, v) − Lε(ΩR; v),

such that the first-order expansion of theminimizerswith respect to the small parameter
ε2 → 0 is the same in H1(ΩR) as in the perturbed problem. Namely, we can introduce
a continuous, symmetric and nonlocal bilinear form on the circle ΓR = {‖x − x̂‖ =
R > ε > 0},

H1/2(ΓR) × H1/2(ΓR)  (v, v) �→ b(ΓR; v, v) ∈ R,
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such that

I Rε (v) = 1

2
a(Ω; v, v) − L(Ω; v) + ε2b(ΓR; v, v).

Furthermore, if the solution to the perturbed variational inequality has an expansion
in H1(ΩR),

uε = u + ε2q + o(ε2),

then the minimizer uR
ε of v �→ I Rε (v) over the convex cone K (Ω) has in H1(ΩR) the

same first-order expansion,

uR
ε = u + ε2q + o(ε2).

Corollary 4.3 The topological derivative of the tracking-type functional for the varia-
tional inequality,

J (Ωε) = 1

2

∫
ΩR

(uε − zd)
2dx, (15)

is given by

T(̂x) =
∫

ΩR

(uR(x) − zd(x))q
R(x)dx =

∫
ΩR

(u(x) − zd(x))q(x)dx, (16)

where

q = lim
ε→0

1

ε2
(uε − u) in ΩR .

For variational inequalities, we cannot introduce adjoint states.
Thus, we are able to replace the singular geometrical domain perturbation Bε(̂x) by

the regular perturbation v �→ ε2b(ΓR; v, v) of the bilinear form v �→ a(Ω; v, v) and
preserve the first-order expansion of minimizers in the truncated domain. The bilinear
form is constructed using the expansion of the Steklov–Poincaré operator, defined in
ΓR and given by the expansion of the energy functional in the ring C(R, ε):

a(Ωε; v, v) ∼= a(Ω; v, v) + ε2b(ΓR; v, v),

where

b(ΓR; v, v) =
(

1

πR3

∫
ΓR

v · (x1 − x̂1) ds

)2

+
(

1

πR3

∫
ΓR

v · (x2 − x̂2) ds

)2

.

For the elasticity system, the relevant formulas are given in Sects. 4.4.1 and 4.4.2.
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4.4 Domain DecompositionMethod for Elasticity BVPs

The domain decomposition method has been used to evaluate topological derivatives
for coupled BVPs [28,45,46]. In this section, we shall consider asymptotic corrections
to the energy functional corresponding to the elasticity system inRd , where d = 2, 3.
The change of energy is caused by creating a small ball-like void of variable radius ε in
the interior of the domain Ω , with the homogeneous Neumann boundary condition on
its surface. We assume that the void is centered at the originO. We takeΩR = Ω\BR ,
where BR := B(O, R) is an open ball with fixed radius R. In this way, the void
Bε := B(O, ε) is surrounded by BR ⊂ Ω . We also denote the ring or spherical shell
as C(R, ε) = BR\Bε, and its boundaries as ΓR = ∂BR and Γε := ∂Bε.

Using these notations, we define our main tool, the Dirichlet-to-Neumann mapping
for linear elasticity, which is called the Steklov–Poincaré operator:

Aε : H1/2(ΓR;Rd) → H−1/2(ΓR;Rd)

by means of the boundary value problem

μΔw + (λ + μ)∇(divw) = 0, in C(R, ε),

w = v on ΓR, σ (u)n = 0 on Γε, (17)

so that
Aε(v) = σ(w)n on ΓR . (18)

Here, μ, λ are the Lamé coefficients, and σ(w) is the Cauchy stress tensor,

σ(w) = 2μ(∇w)s + λ div(w) I, with (∇w)s = 1

2
(∇w + (∇w)�).

Let uR be the restriction of u to ΩR , and γ R(ϕ) the trace of ϕ on ΓR , still denoted
by ϕ for simplicity. We may then define the functional

I Rε (ϕ) := 1

2

∫
ΩR

σ(ϕ) · (∇ϕ)s dx −
∫

ΓN

h · ϕ ds + 1

2

∫
ΓR

Aε(ϕ) · ϕ ds (19)

and the solution uR
ε as a minimizer for

I Rε (uR
ε ) := inf

ϕ∈K⊂H(ΩR)
I Rε (ϕ), (20)

We have replaced the variable domain ε �→ Ωε by a fixed truncated domain ΩR , at
the price of introducing a variable boundary operator Aε. Thus, the goal is to find an
asymptotic expansion

Aε = A + εdB + Rε, (21)

where the remainder Rε is of order o(εd) in the operator norm in

L(H1/2(ΓR;R2), H−1/2(ΓR;R2))
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and the operator B is regular enough, namely it is bounded and linear:

B ∈ L(L2(ΓR;R2), L2(ΓR;R2)).

Under this assumption, the following propositions hold true.

Proposition 4.1 Assume that (21) holds in the operator norm. Then,

uR
ε → uR (22)

strongly in the H1(ΩR)-norm.

Proposition 4.2 The energy functional has a representation

I Rε (uR
ε ) = I (u) + εd〈B(u), u〉R + o(εd) , (23)

where o(εd)/εd → 0 as ε → 0 in the same energy norm.

Here, I R(uR) denotes the functional I Rε on the original domain, i.e., ε = 0, with
Aε replaced by A applied to truncation of u.

Generally, the energy correction for the elasticity system has the form

〈B(uR), uR〉R = −cdeu(O),

where cd = vol(B1), with B1 being the unit ball in Rd . The energy-like density
function eu(O) has the form

eu(O) = 1

2
Pσ(uR) · (∇uR)s(O),

where for d = 2 and the plane stress,

P = 1

1 − ν
(4I − I ⊗ I),

and for d = 3,

P = 1 − ν

7 − 5ν
(10I − 1 − 5ν

1 − 2ν
I ⊗ I).

Here, I is the fourth-order identity tensor, and I is the second-order identity tensor.
This approach is important for variational inequalities, since it allows us to derive

formulas for topological derivatives which are similar to expressions obtained for the
corresponding linear BVPs.
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4.4.1 Explicit Form of the OperatorB in Two Spatial Dimensions

Let us denote, for the plane stress case,

k = λ + μ

λ + 3μ
.

It has been proved in [27] that the following exact formulas hold:

u1,1(O) + u2,2(O) = 1

πR3

∫
ΓR

(u1x1 + u2x2) ds,

u1,1(O) − u2,2(O) = 1

πR3

∫
ΓR

[
(1 − 9k)(u1x1 − u2x2) + 12k

R2 (u1x
3
1 − u2x

3
2)

]
ds,

u1,2(O) + u2,1(O) = 1

πR3

∫
ΓR

[
(1 + 9k)(u1x2 + u2x1) − 12k

R2 (u1x
3
2 + u2x

3
1)

]
ds.

These expressions contain additional integrals of third powers of xi . Therefore, strains
evaluated atOmay be expressed as linear combinations of integrals over the circle of
the form

∫
ΓR

ui x j ds,
∫

ΓR

ui x
3
j ds.

The same is true, due toHooke’s law, for the stresses σi j (O). Theymay then be inserted
into the expression for B, yielding

〈B(uR), uR〉R = −1

2
c2Pσ(u) · (∇u)s .

These formulas are quite easy to compute numerically.

4.4.2 Explicit Form of the OperatorB in Three Spatial Dimensions

It turns out that a similar situation holds in three spatial dimensions, but obtaining
exact formulas is more difficult. Assuming given values of u on ΓR , the solution of
the elasticity system in BR may be expressed, following partially the derivation from
[60] (pp. 285 ff.), as

u =
∞∑
n=0

[Un + (R2 − r2)kn(ν)∇(divUn)], (24)

where kn(ν) = 1/2[(3− 2ν)n − 2(1− ν)] and r = ‖x‖, with ν denoting the Poisson
ratio. In addition,

Un = 1

Rn
[an0dn(x) +

n∑
m=1

(anmc
m
n (x) + bnms

m
n (x))]. (25)
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The vectors

an0 = (a1n0, a
2
n0, a

3
n0)

�,

anm = (a1nm, a2nm, a3nm)�,

bnm = (b1nm, b2nm, b3nm)�

are constants, and the set of functions

{d0; d1, c
1
1, s

1
1 ; d2, c

1
2, s

1
2 , c

2
2, s

2
2 ; d3, c

1
3, s

1
3 , c

2
3, s

2
3 , c

3
3, s

3
3 ; . . .}

constitutes a complete system of orthonormal harmonic polynomials on ΓR , related
to Laplace spherical functions. Specifically,

clk(x) = P̂l,c
k (x)

‖P̂l,c
k ‖R

, slk(x) = P̂l,s
k (x)

‖P̂l,s
k ‖R

, dk = Pk(x)

‖P̂k‖R
.

For example,

c23(x) = 1

R4

√
7

240π
(15x21 x3 − 15x22 x3).

If the value of u on ΓR is assumed to be given, then, denoting

〈φ,ψ〉R =
∫

ΓR

φψ ds,

we have for n ≥ 0, m = 1..n, i = 1, 2, 3:

ain0 = Rn〈ui , dn(x)〉R,

ainm = Rn〈ui , cmn (x)〉R,

binm = Rn〈ui , smn (x)〉R . (26)

Since we are looking for ui, j (O), only the part of u which is linear in x is relevant. It
contains two terms:

û = U1 + R2k3(ν)∇(divU3). (27)

For any f (x), ∇div (a f ) = H( f ) · a, where a is a constant vector and H( f ) is the
Hessian matrix of f . Therefore,

û = 1

R
[a10d1(x) + a11c

1
1(x) + b11s

1
1(x))]

+ R2k3(ν)
1

R3

[
H(d3)(x)a30 +

3∑
m=1

(
H(cm3 )(x)a3m + H(sm3 )(x)b3m

)]
. (28)
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From the above, we may single out the coefficients of x1, x2, x3 in u1, u2, u3. For
example,

u1,1(O) = 1

R3

√
3

4π
a111 + 1

R5
k3(ν)

[
− 3

√
7

4π
a3309

√
7

24π
a131

− 3

√
7

24π
b231 + 30

√
7

240π
a332 + 90

√
7

1440π
a133 + 90

√
7

1440π
b233

]
,

u1,2(O) = 1

R3

√
3

4π
(b111 + a211) + 1

R5
k3(ν)

[
− 3

√
7

24π
a231 −

√
7

24π
b131

+ 15

√
7

60π
b332 − 90

√
7

1440π
a233 + 90

√
7

1440π
b133

]
.

Observe that

u1,1(O) + u2,2(O) + u3,3(O) = 1

R3

√
3

4π

(
R〈u1, c11〉R + R〈u2, s11 〉R + R〈u3, d1〉R

)

and c11 = 1
R2

√
3
4π x1, s

1
1 = 1

R2

√
3
4π x2, d1 = 1

R2

√
3
4π x3, which is in agreement with

the fact that the trace of the strain tensor is a harmonic function.
As a result, the operator B may be defined by

〈BuR, uR〉R := −c3Pσ(u) · (∇u)s(O),

where the right-hand side consists of integrals of u multiplied by first- and third-order
polynomials in xi over ΓR resulting from (26). This is a very similar situation to the
case of two spatial dimensions. Thus, the new expressions for strains make it possible
to rewrite B in the form of the desired regularity. We refer the reader to [61–63] for
supplementary material on elasticity models.

5 Perspectives and Open Problems

The topological derivative method in shape and topology optimization introduces the
asymptotic analysis of elliptic BVPs, for example, into the field of structural opti-
mization in elasticity. The method requires the local regularity of solutions to elliptic
problems. Nowadays, classical shape optimization techniques are not restricted to
elliptic problems, but can be applied to evolution problems, including linear parabolic
and hyperbolic equations. Extension of the topological derivative method to evolu-
tion problems is one of the challenging issues in the field of shape optimization. In
particular, for transport equations, the notion of topological derivative is still to be dis-
covered. Let us mention that the transport equations are components of compressible
Navier–Stokes equations. The modern theory of shape optimization for compressible
Navier–Stokes equations can be found in themonograph [2]. Another domain which is
promising for developments of shape optimization is nonlinear elasticity. Evolution of
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geometrical domains is also used in growth modeling. Shape and topology optimiza-
tion for nonlinear elasticity is still poorly understood. There is already some numerical
evidence that topological derivatives are well adapted to the design of metamaterials
in elasticity.

In order to state some open problems for applications of topological sensitivity anal-
ysis to numerical solution of shape optimization and inverse problems, we specify the
mathematical framework, which combines analysis of weak solutions to elliptic BVPs
with the domain decomposition method, as well as with asymptotic approximation of
solutions in singularly perturbed geometrical domains.

1. Applications of Γ -convergence to topological differentiability of shape function-
als. It is known that the shapederivatives of energy-type functionals canbeobtained
by the Γ -limit procedure; see the derivation of the elastic energy with respect to
crack length [64,65] or [66–70] for related topics. It is not known whether the
same Γ -convergence can be used for topological derivatives.

2. Sensitivity analysis of evolution variational inequalities. Shape optimization for
stationary variational inequalities is studied in [3]. The results are based on
Hadamard differentiability of the metric projection onto convex sets in Sobolev
spaces [71–73]. The results are obtained by using potential theory in Dirichlet
spaces [74], which leads toHadamard differentiability of themetric projection. For
stationary variational inequalities with local constraints on gradients or on stresses,
shape and topological sensitivity analysis is an open problem. For example, for
Hencky plasticity, there are no results, either in shape optimization or for topolog-
ical derivatives. Extension of such results to evolution variational inequalities is a
challenging problem, necessary for development of topological derivatives.

3. Asymptotic analysis of evolution variational inequalities. Asymptotic analysis
of stationary variational inequalities was studied, for example, by Argatov and
Sokolowski [39]. The concept of polyhedral subsets of Sobolev spaces can be used
in order to derive topological derivatives for contact problems in solid mechan-
ics. Open problems for stationary variational inequalities include some models of
plates and shells and plasticity. This domain of research has stagnated for a long
time. The mathematical result required concerns directional differentiability of the
metric projection onto a convex set defined by local constraints on the stresses.
Extending such results to asymptotic analysis of evolution variational inequalities
is another challenging problem.

4. Second-order necessary optimality conditions in topological optimization. First-
order necessary optimality conditions are known for linear state equations [26].
Using second-order topological derivatives to derive optimality conditions seems
to be an open problem.

5. Exact solutions in singularly perturbed geometrical domains for anisotropic elas-
ticity, transient wave equations and nonlinear transport problems for evaluation
of topological derivatives. Exact solutions of elliptic BVPs in a ring are used to
evaluate topological derivatives within the domain decomposition technique. Such
results are of interest for the PDEs listed below.

(a) Elasticity with complex Kolosov potentials and Steklov–Poincaré formalism in
domain decomposition. Using complex potentials of Kolosov, one can obtain
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exact solutions of the elasticity system in two spatial dimensions. These results
lead to topological derivatives of arbitrary order. Extending such results to a
full range of models in mechanics is an interesting line of research, which is
still to be taken up.

(b) Wave equations. An important field of applications is electromagnetism and
exact solutions, which are not standard from the mathematical point of view
for asymptotic analysis. We refer the reader to [75–77] for related results in the
static case. Open problems in the field of wave equations include all aspects
of time-dependent problems, including asymptotic analysis in singularly per-
turbed geometrical domains. Wave equations with self-adjoint extensions of
elliptic operators are used in [78].

(c) Transport equations in singularly perturbed domains. The domain decompo-
sition method is also used for transport problems. Open problems in this field
involve all aspects of asymptotic analysis. The compressible Navier–Stokes
equations can also be considered from the point of view of singular domain
perturbations, provided the related results for the transport equation component
are established.

6 Conclusions

The proposed approach to evaluation of topological derivatives applies to some classes
of variational inequalities and to multiphysics BVPs. From the mathematical point of
view, the domain decomposition method of evaluation of topological derivatives uses
asymptotic expansions of the energy functional in a small neighborhood of the sin-
gular domain perturbation, produced by a hole or a cavity. In our applications, the
energy expansions are equivalent to expansions of nonlocal Steklov–Poincaré bound-
ary operators. In the truncated domain, perturbations of boundary conditions with the
expansion of Steklov–Poincaré boundary operators lead to regular perturbations of
the bilinear form and allow us to avoid self-adjoint extensions of elliptic operators in
punctured domains. Topological derivatives are known for linear elliptic BVPs. They
remain almost unknown for some nonlinear problems, including nonlinear elasticity
and plasticity. See [79] for some recent developments in this direction. Extension of
this approach to shape optimization to evolution problems should also be considered
for variational inequalities modeling compressible fluids.
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Appendices

Formal asymptotic analysis for a scalar elliptic equation is presented. The samemethod
is used for linear elasticity in [11].
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A.1 Asymptotic Expansions of Solutions and Functionals

In previous sections, basic derivations are conducted for the simplest case of circular
or ball-shaped voids, which nevertheless illustrate the most important features of the
approach. In a similarway, ball-shapedpenetrable inclusionswith contrast 0 < γ < ∞
can be obtained [28].

If more general shapes of voids (inclusions) are required, the asymptotic analysis
approach applies as well, as is shown below.We refer the reader to [34] for the general
theory and examples of asymptotic expansions.

For the convenience of the reader, a two-scale asymptotic analysis of a nonhomoge-
neous boundary value problem is performed, for a simple model problem. The small
cavity ωε := εω with center at the origin O ∈ ωε ⊂ ω can be considered without
loss of generality. We denote by the same symbol ωε(̂x) := x̂ + ωε the cavity with
center at x̂ ∈ Ω . Matched asymptotic expansions are used in two spatial dimensions
for scalar problems with the Laplacian, where we consider singular perturbations of
the principal part of the elliptic operator. In the case of a penetrable inclusion with
contrast parameter 0 < γ < ∞, the results are obtained in a similar way, since it is a
regular perturbation of the main part of the elliptic operator.

A.2 Asymptotic Expansions of Steklov–Poincaré Operators

We consider a smooth domain Ωε := Ω\ωε for ε → 0 and the nonhomogeneous
Dirichlet problem with h ∈ H1/2(Γ ),

Δwε = 0 in Ωε,

wε = h on Γ , (29)
∂wε

∂n
= 0 on ∂ωε,

where Γ = ∂Ω is the boundary of Ω .
The energy associated with (29) is given by a symmetric bilinear form on the

fractional Sobolev space H1/2(Γ ),

aε(h, h) =
∫

Ωε

‖∇wε‖2dx .

We are interested in the asymptotic expansion of this quadratic functional for ε → 0.
To this end, the technique of matched asymptotic expansions [33,34] is used.

Using Green’s formula, we derive equivalent forms of the energy (here, the bound-
ary integrals stand for the duality pairing between H1/2(Γ ) and its dual H−1/2(Γ )):

aε(h, h) =
∫

Γ

wε

∂wε

∂n
ds =

∫
Γ

h
∂wε

∂n
ds. (30)

Now, we introduce two-scale asymptotic approximation of solutions. We use the
method of matched asymptotic expansions and look for two types of expansions, the
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outer expansion valid far from the cavity ωε,

wε(x) = w0(x) + ε2w1(x) + ε3w2(x) + · · · ,

and the inner expansion, valid in a small neighborhood of ωε,

wε(x) = W0(ξ) + εW1(ξ) + ε2W (ξ) + · · · ,

where the fast variable ξ is defined by

ξ := x

ε
.

Following [33,34], we obtain

W0(ξ) ≡ w0(0),

and

W1(ξ) =
2∑
j=1

Y j (ξ)
∂w0

∂x j
(0),

whereY j is harmonic inR2\ω andω := ω1. In addition,Y j satisfies the homogeneous
Neumann boundary conditions on ∂ω and enjoys the following behavior at infinity:

Y j (ξ) = ξ j + 1

2π‖ξ‖2
2∑

k=1

mω
k jξk + O(‖ξ‖−2), ‖ξ‖ → ∞.

Its regular part is denoted by

Y j
0(ξ) := 1

2π‖ξ‖2
2∑

k=1

mω
k jξk + O(‖ξ‖−2),

and we denote its higher order term O(‖ξ‖−2) by

y
j
0(ξ) := Y j

0(ξ) − 1

2π‖ξ‖2
2∑

k=1

mω
k jξk .

Taking into account this expansion, we get

w1(x) =
2∑

j,k=1

∂w0

∂x j
(0)mω

k jG(k)(x).
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Wedenote byG(k) the singular solutions to the problem posed in the punctured domain,

ΔxG(k)(x) = 0 in Ω\O,

G(k)(x) = 0 on Γ ,

G(k)(x) = xk
2π‖x‖2 + O(1) ‖x‖ → 0.

(31)

We set

G(k)(x) = xk
2π‖x‖2 + G(k)

0 (x),

where G(k)
0 stands for the regular part. Therefore, far from the cavity ωε, we have

wε(x) = w0(x) + ε2
2∑

j,k=1

∂w0

∂x j
(0)mω

k jG(k)(x) + O(ε2).

Substituting this representation into formula (30), we obtain the one-term expansion

aε(h, h) = a(h, h) + ε2b(h, h) + O(ε3−α).

Here, α ∈]0, 1[ and

b(h, h) =
∫

Γ

h(x)
2∑

j,k=1

∂w0

∂x j
(0)mω

k j
∂G(k)

∂n
(x)ds.

If we combine this with the integral equality on the sphere of radius δ > 0,

∫
Sδ(O)

(
x j

∂

∂n

xk
2π‖x‖2 − xk

2π‖x‖2
∂x j
∂n

)
ds = δ jk,

we get

b(h, h) = −mω∇w0(0) · ∇w0(0).

Since

∫
Γ

w0(x)∂nG(k)(x)ds = −∂w0

∂xk
(0),

it follows that

b(h, h) = −
(∫

Γ

h(x)∂nG( j)(x)ds

)
mω

jk

(∫
Γ

h(x)∂nG(k)(x)ds

)
ds.
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Remark A.1 It can be shown that the following supremum taken with respect to the
H1/2(Γ )-norm is bounded with respect to ε → 0:

sup
‖h‖≤1

∣∣∣aε(h, h) − a(h, h) − ε2b(h, h)

∣∣∣ ≤ Cαε3−α.

Since the operators associated with the bilinear forms (h, h) �→ aε(h, h) are positive
and self-adjoint, the one-term expansion of Steklov–Poincaré operators is obtained
for ε → 0,

Aε = A − ε2B + O(ε3−α),

with the remainder bounded in the operator norm H1/2(Γ ) → H−1/2(Γ ). The self-
adjoint positive linear operators Aε are uniquely determined by the symmetric and
coercive bilinear forms h �→ aε(h, h). The operator B is determined by h �→ b(h, h).

A.3 Asymptotic Expansion of a Linear Form

Let us now consider the linear form

Lε(h) =
∫

Ωε

f (x)wε(x)dx .

We use the method of matched asymptotic expansions and set

wε(w) = w0(x) + ε

2∑
j=1

∂w0

∂x j
(0)Y j

0(ξ) + ε2
2∑

j,k=1

∂w0

∂x j
(0)mω

jkG
(k)
0 (x) + · · · ,

hence

Lε(h) =
∫

Ωε

f (x)w0(x)dx + ε

∫
Ωε

f (x)
2∑
j=1

∂w0

∂x j
(0)Y j

0(ξ)

+ ε2
∫

Ωε

f (x)
2∑

j,k=1

∂w0

∂x j
(0)mω

jkG
(k)
0 (x)dx .

Taking into account that

∣∣∣Y j
0(ξ)

∣∣∣ ≤ C0
1

‖ξ‖ = C0
ε

‖x‖ in Ωε,

123



Journal of Optimization Theory and Applications (2019) 180:341–373 365

it follows that

Lε(h) =
∫

Ω

f (x)w0(x)dx −
∫

ωε

f (x)w0(x)dx

+ ε2
∫

Ω

f (x)
2∑

j,k=1

∂w0

∂x j
(0)mω

jkG(k)(x)dx + · · ·

In order to replace the integrals over Ωε by integrals over Ω , we use the estimates

ε

∫
ωε

f (x)
2∑

j,k=1

∂w0

∂x j
(0)mω

jk
εxk

2π‖x‖2 dx ≤ C0ε
2 sup
x∈Ω

| f (x)|
∫ ε

0

1

r
rdr

and

∫
ωε

f (x)
2∑

j,k=1

∂w0

∂x j
(0)mω

jkG
(k)
0 (x) ≤ C0ε

2.

Finally,

Lε(h) = L0(h) − ε2 f (0)w0(0)|ω| + ε2
∫

Ω

f (x)
2∑

j,k=1

∂w0

∂x j
(0)mω

jkG(k)(x)dx + · · ·

A.4 Energy Functional of the Nonhomogeneous Dirichlet Problem in a Perturbed
Domain

The energy functional

JΩε(uε) = 1

2

∫
Ωε

‖∇uε‖2dx −
∫

Ωε

f uεdx = 1

2

∫
Γ

uε

∂uε

∂n
ds − 1

2

∫
Ωε

f uεdx

depends on solutions to the boundary value problem

−Δuε = f in Ωε,

uε = hε on Γ ,
∂uε

∂n
= 0 on ∂ωε.

(32)

with the associated Green formula

∫
Ωε

‖∇uε‖2dx =
∫

Γ

hε

∂uε

∂n
ds +

∫
Ωε

f uεdx .
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For completeness of our analysis, we assume that the Dirichlet boundary datum also
depends on the small parameter,

hε = h0 + ε2h1 + o(ε2) in H1/2(Γ ),

and that there is a source term inside the perturbed domain Ωε.
The approximation of solutions takes the form

uε(x) = v0(x) + ε2v1(x) + ε

2∑
j=1

∂v0

∂x j
(0)Y j

0(ξ) + ε2
2∑

j,k=1

∂v0

∂x j
(0)mω

jkG
(k)
0 (x) + · · ·

where

−Δv0 = f in Ω,

v0 = h0 on Γ ,
and

−Δv1 = 0 in Ω,

v1 = h1 on Γ .

The approximation of the normal derivatives is

∂uε

∂n
(x) =∂v0

∂n
(x) + ε2

∂v1

∂n
(x) + ε

2∑
j=1

∂v0

∂x j
(0)

∂Y j
0

∂ν
(ξ)

+ ε2
2∑

j,k=1

∂v0

∂x j
(0)mω

jk
∂G(k)

0

∂n
(x) + · · ·

where
∂

∂n
= n · ∇x ,

∂

∂ν
= n · ∇ξ and ξ = x/ε. We recall that the higher order term

of Y j
0(ξ) satisfies

∣∣∣y j
0(ξ)

∣∣∣ ≤ C0
1

‖ξ‖2 = C0
ε2

‖x‖2 for ξ = x

ε
∈ R

2\ω or for x ∈ Ωε.

Thus, in the approximation of uε(x), the terms of order O(ε3),

ε

2∑
j=1

∂v0

∂x j
(0)y j

0(ξ)

can be neglected. Therefore, from the formula

uε(x) = v0(x) + ε2v1(x) + ε

2∑
j=1

∂v0

∂x j
(0)y j

0(ξ) + ε2
2∑

j,k=1

∂v0

∂x j
(0)mω

jkG(k)(x) + · · ·
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we deduce

∂uε

∂n
(x) = ∂v0

∂n
(x) + ε2

∂v1

∂n
(x) + ε2

2∑
j,k=1

∂v0

∂x j
(0)mω

jk
∂G(k)

∂n
(x) + · · · ,

and it follows that

uε(x)
∂uε

∂n
(x) = v0(x)

∂v0

∂n
(x)

+ ε2

⎛
⎝v1(x)

∂v0

∂n
(x) + v0(x)

∂v1

∂n
(x)

+ v0(x)
2∑

j,k=1

∂v0

∂x j
(0)mω

jkG(k)(x)

⎞
⎠ + · · ·

since the second-order term

∂v0

∂n
(x)

2∑
j,k=1

∂v0

∂x j
(0)mω

jkG(k)(x)

vanishes, by taking into account that G(k)(x) = 0 on the boundary Γ . We return to the
shape functional,

JΩε(uε) = 1

2

∫
Γ

uε(x)
∂uε

∂n
(x)ds − 1

2

∫
Ωε

f uεdx,

and find approximations for the integrals

1

2

∫
Γ

uε(x)
∂uε

∂n
(x)ds = 1

2

∫
Γ

v0(x)
∂v0

∂n
(x)ds

+ ε2

2

∫
Γ

(
v1(x)

∂v0

∂n
(x) + v0(x)

∂v1

∂n
(x)

)
ds

+ ε2

2

∫
Γ

v0(x)
2∑

j,k=1

∂v0

∂x j
(0)mω

jk
∂G(k)

∂n
(x)ds + · · ·

and

−1

2

∫
Ωε

f uεdx = −1

2

∫
Ωε

f v0dx − ε2

2

∫
Ωε

f v1dx

− ε2

2

∫
Ωε

f
2∑

j,k=1

∂v0

∂x j
(0)mω

jkG(k)(x) + · · · ,
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which can be written as

−1

2

∫
Ωε

f uεdx = −1

2

∫
Ω

f v0dx + 1

2

∫
ωε

f v0dx − ε2

2

∫
Ω

f v1dx + ε2

2

∫
ωε

f v1dx

− ε2

2

∫
Ω

f
2∑

j,k=1

∂v0

∂x j
(0)mω

jkG(k)(x)dx

+ ε2

2

∫
ωε

f
2∑

j,k=1

∂v0

∂x j
(0)mω

jkG(k)(x)dx + · · ·

or as

−1

2

∫
Ωε

f uεdx = −1

2

∫
Ω

f v0dx + ε2

2
f (0)v0(0)|ω| − ε2

2

∫
Ω

f v1dx

− ε2

2

∫
Ω

f
2∑

j,k=1

∂v0

∂x j
(0)mω

jkG(k)(x)dx + O(ε3).

Here, we take into account that the Taylor formula
1

2

∫
ωε

f v0dx is replaced by

ε2

2
f (0)v0(0)|ω|. In the same way, it follows that

ε2

2

∫
ωε

f v1dx is O(ε4); finally,

the latter integral over ωε is O

(∫ ε

0
1

r
r

)
. As a result,

JΩε(uε) = 1

2

∫
Γ

v0(x)
∂v0

∂n
(x)ds − 1

2

∫
Ω

f v0dx

+ ε2

2

∫
Γ

(
v1(x)

∂v0

∂n
(x) + v0(x)

∂v1

∂n
(x)

)
ds

+ ε2

2

∫
Γ

v0(x)
2∑

j,k=1

∂v0

∂x j
(0)mω

jk
∂G(k)

∂n
(x)ds

− ε2

2

∫
Ω

f
2∑

j,k=1

∂v0

∂x j
(0)mω

jkG(k)(x)dx

+ ε2

2
f (0)v0(0)|ω| − ε2

2

∫
Ω

f v1dx .

We denote by Bδ(O) the ball at the origin of radius δ, with boundary Sδ := Sδ(O).
By the Green formula in the domain Ωδ = Ω\Bδ(O) with boundary ∂Ωδ = Γ ∪ Sδ ,
for δ → 0,

∫
Ωδ

(v0ΔG(k) − G(k)Δv0)dx =
∫

∂Ωδ

(
v0

∂G(k)

∂n
− G(k) ∂v0

∂n

)
ds.
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Since Δv0 = − f , we find

∫
Ωδ

G(k) f dx =
∫

Γ

v0
∂G(k)

∂n
ds +

∫
Sδ

(
v0

∂G(k)

∂n
− G(k) ∂v0

∂n

)
ds.

Passage to the limit δ → 0 leads to

∫
Ωδ

G(k) f dx −
∫

Γ

v0
∂G(k)

∂n
ds = ∂v0

∂xk
(0)

Finally, we arrive at the expression

JΩε(uε) = JΩ(v0) + ε2

2
f (0)v0(0)|ω| − ε2

2

2∑
j,k=1

∂v0

∂x j
(0)mω

jk
∂v0

∂xk
(0)

+ ε2

2

∫
Γ

(
v1(x)

∂v0

∂n
(x) + v0(x)

∂v1

∂n
(x)

)
ds

− ε2

2

∫
Ω

f (x)v1(x)dx + O(ε3).

Remark A.2 The adjoint equations are commonly used in final formulas for topological
derivatives. We refer the reader to[80] for related results. Some asymptotic expansions
for the Laplace operator are given in [81,82].

Remark A.3 The case of the elasticity system in the same framework of asymptotic
analysis is considered in [11], where the results obtained are given with complete
proofs.
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38. Sokołowski, J., Żochowski, A.: Topological derivatives of shape functionals for elasticity systems.
Mech. Struct. Mach. 29(3), 333–351 (2001)

39. Argatov, I.I., Sokolowski, J.: Asymptotics of the energy functional of the Signorini problem under a
small singular perturbation of the domain. Comput. Math. Math. Phys. 43, 710–724 (2003)

40. Novotny, A.A., Feijóo, R.A., Padra, C., Taroco, E.: Topological sensitivity analysis. Comput. Methods
Appl. Mech. Eng. 192(7–8), 803–829 (2003)

41. Samet, B., Amstutz, S., Masmoudi, M.: The topological asymptotic for the Helmholtz equation. SIAM
J. Control Optim. 42(5), 1523–1544 (2003)

42. Guzina, B., Bonnet, M.: Topological derivative for the inverse scattering of elastic waves. Q. J. Mech.
Appl. Math. 57(2), 161–179 (2004)

43. Ammari, H., Garnier, J., Jugnon, V., Kang, H.: Stability and resolution analysis for a topological
derivative based imaging functional. SIAM J. Control Optim. 50(1), 48–76 (2012)

44. Ammari, H., Bretin, E., Garnier, J., Kang, H., Lee, H., Wahab, A.: Mathematical Methods in Elasticity
Imaging. Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2015)

45. Amigo, R.C.R., Giusti, S., Novotny, A.A., Silva, E.C.N., Sokolowski, J.: Optimum design of flexten-
sional piezoelectric actuators into two spatial dimensions. SIAM J. Control Optim. 52(2), 760–789
(2016)

46. Giusti, S., Mróz, Z., Sokolowski, J., Novotny, A.: Topology design of thermomechanical actuators.
Struct. Multidiscip. Optim. 55, 1575–1587 (2017)

47. Nazarov, S., Sokolowski, J., Specovius-Neugebauer, M.: Polarization matrices in anisotropic hetero-
geneous elasticity. Asymptot. Anal. 68(4), 189–221 (2010)

48. Delfour, M.: Topological derivative: a semidifferential via the Minkowski content. J. Convex Anal.
25(3), 957–982 (2018)

49. Cardone, G., Nazarov, S., Sokolowski, J.: Asymptotic analysis, polarization matrices, and topological
derivatives for piezoelectric materials with small voids. SIAM J. Control Optim. 48(6), 3925–3961
(2010)

50. Laurain, A., Nazarov, S., Sokolowski, J.: Singular perturbations of curved boundaries in three dimen-
sions. The spectrum of the Neumann Laplacian. Z. Anal. Anwend. 30(2), 145–180 (2011)

51. Nazarov, S.A., Sokolowski, J.: Spectral problems in the shape optimisation. Singular boundary pertur-
bations. Asymptot. Anal. 56(3–4), 159–204 (2008)

52. Nazarov, S., Sokołowski, J.: Selfadjoint extensions for the elasticity system in shape optimization.
Bull. Pol. Acad. Sci. Math. 52(3), 237–248 (2004)

53. Nazarov, S., Sokolowski, J.: Modeling of topology variations in elasticity. In: System Modeling and
Optimization, IFIP International Federation for Information Processing, vol. 166, pp. 147–158. Kluwer
Academic Publishers, Boston, MA (2005)

54. Nazarov, S., Sokołowski, J.: Self-adjoint extensions of differential operators and exterior topological
derivatives in shape optimization. Control Cybern. 34(3), 903–925 (2005)

55. Nazarov, S., Sokolowski, J.: Shape sensitivity analysis of eigenvalues revisited. Control Cybern. 37(4),
999–1012 (2008)

56. Argatov, I.I.: Asymptotic models for the topological sensitivity versus the topological derivative. Open
Appl. Math. J. 2, 20–25 (2008)

57. Pavlov, B.S.: The theory of extensions, and explicitly solvable models. Akademiya Nauk SSSR i
Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk 42(6(258)), 99–131,
247 (1987)
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59. Novotny, A.A., Sokołowski, J., Żochowski, A.: Topological derivatives of shape functionals. Part III:
second order method and applications. J. Optim. Theory Appl. 181, 1–22 (2019)

60. Lurie, A.I.: Theory of Elasticity. Springer, Berlin (2005)
61. Ammari, H., Kang, H., Nakamura, G., Tanuma, K.: Complete asymptotic expansions of solutions of

the system of elastostatics in the presence of inhomogeneities of small diameter. J. Elast. 67, 97–129
(2002)

123



372 Journal of Optimization Theory and Applications (2019) 180:341–373

62. Beretta, E., Bonnetier, E., Francini, E., Mazzucato, A.L.: Small volume asymptotics for anisotropic
elastic inclusions. Inverse Probl. Imaging 6(1), 1–23 (2012)

63. Schneider, M., Andrä, H.: The topological gradient in anisotropic elasticity with an eye towards
lightweight design. Math. Methods Appl. Sci. 37, 1624–1641 (2014)

64. Khludnev, A.M., Sokołowski, J.: Griffith formulae for elasticity systems with unilateral conditions in
domains with cracks. Eur. J. Mech. A/Solids 19, 105–119 (2000)

65. Khludnev, A.M., Sokołowski, J.: On differentation of energy functionals in the crack theory with
possible contact between crack faces. J. Appl. Math. Mech. 64(3), 464–475 (2000)

66. Khludnev, A.M., Kovtunenko, V.A.: Analysis of Cracks in Solids. WIT Press, Southampton (2000)
67. Khludnev, A.M., Sokołowski, J.: Modelling and Control in Solid Mechanics. Birkhauser, Basel (1997)
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