
Journal of Optimization Theory and Applications (2019) 181:197–215
https://doi.org/10.1007/s10957-018-1401-7

An Augmented Lagrangian Method for Equality
Constrained Optimization with Rapid Infeasibility Detection
Capabilities

Paul Armand1 · Ngoc Nguyen Tran1

Received: 1 May 2018 / Accepted: 19 September 2018 / Published online: 29 September 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
We present a primal-dual augmented Lagrangian method for solving an equality
constrained minimization problem, which is able to rapidly detect infeasibility. The
method is based on a modification of the algorithm proposed in Armand and Omheni
(OptimMethods Softw 32(1):1–21, 2017). A new parameter is introduced to scale the
objective function and, in case of infeasibility, to force the convergence of the iterates
to an infeasible stationary point. It is shown, under mild assumptions, that whenever
the algorithm converges to an infeasible stationary point, the rate of convergence is
quadratic. This is a new convergence result for the class of augmented Lagrangian
methods. The global convergence of the algorithm is also analyzed. It is also proved
that, when the algorithm converges to a stationary point, the properties of the original
algorithm are preserved. The numerical experiments show that our new approach is as
good as the original one when the algorithm converges to a local minimum, but much
more efficient in case of infeasibility.

Keywords Nonlinear optimization · Augmented Lagrangian method · Infeasibility
detection

1 Introduction

When solving an optimization problem, most of the time it is not known in advance
if the problem is feasible or not. If care is not taken, the numerical solution of an
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infeasible nonlinear problem may lead to a long sequence of iterations until the algo-
rithm stops because a failure is detected. Even if the problem is feasible, the sequence
of iterates may sometimes converges to an infeasible stationary point. In that case, it
would be convenient to quickly detect the infeasibility of the computed solution, in
order to choose a new starting point and hope to converge to a feasible solution. A
rapid infeasibility detection is particularly important when solving large sequences of
nonlinear optimization problems that differ from each other by the variation of values
of some parameters or by some slight modifications of the optimization model, as for
example in branch-and-bound methods.

In this paper, we concentrate on the rapid detection of the infeasibility in the frame-
work of the solution of a nonlinear optimization problem by means of a primal-dual
augmented Lagrangian method. The augmented Lagrangian method was proposed
independently by Hestenes [1] and Powell [2]. It is known to be very robust with
respect to the degeneracy due to the linear dependence of the gradients of the con-
straints. This method is the basis of some efficient softwares like LANCELOT-A [3],
ALGENCAN [4–6] and SPDOPT [7]. It is worth noting that the algorithm proposed
in [7] departs from the standard augmented Lagrangian algorithm by its primal-dual
nature. The advantage is to get a superlinear or quadratic rate of convergence of the
iterates to an optimal solution under usual assumptions. In this paper, we propose a
modification of this algorithm, which also guarantees a rapid rate of convergence when
the sequence of iterates converges to an infeasible stationary point.

The infeasibility detection has been recently the focus of particular attention for
improving the behavior of augmented Lagrangian algorithms. Martínez and Prudente
[8] proposed an adaptive stopping criterion for the solution of the subproblems and
showed that their new algorithm performs better than the original version of ALGEN-
CAN. Birgin et al. [9,10] improved also an augmented Lagrangian algorithm within
the framework of global optimization and show better performances than the initial
implementation in [11]. Gonçalves et al. [12] extend the results of [9] to an entire
class of penalty functions. Within the framework of sequential quadratic program-
ming (SQP) methods, Byrd et al. [13] have proposed an algorithm to quickly detect
infeasibility and have shown that their algorithm has fast local convergence properties.
To our knowledge, this is the first work that analyzes the local convergence around an
infeasible stationary point. More recently, Burke et al. [14] have improved the infea-
sibility detection for an SQP algorithm. They also proved the global and rapid local
convergence properties of their algorithm.

The augmented Lagrangian method of Armand and Omheni [7] may detect infea-
sibility when the sequence of dual variables becomes unbounded and the penalty
parameter is forced to zero. The main drawback is that the infeasibility can take long
to detect. We then propose to introduce a new parameter, called the feasibility parame-
ter,whose role is to control the progress of the iterates to the feasible set. This parameter
scales the objective function relatively to the constraints until a nearly feasible point
is detected. The level of feasibility detection is arbitrary and, for example, can be
chosen of the same order as the overall stopping tolerance. Once this event arises,
the algorithm switches to its normal behavior and continues the minimization process
until convergence. From a formal point of view, the algorithm can be interpreted as
the numerical solution of the Fritz John optimality conditions, but with a perturbation
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of the constraints due to the augmented Lagrangian parameters (Lagrange multiplier
and quadratic penalty term). The feasibility parameter is updated dynamically. In par-
ticular, its value depends on the norm of the residual of a primal-dual system related to
the minimization of the infeasibility measure. This leads to a superlinear or quadratic
convergence of the sequence of iterates to an infeasible stationary point. To our knowl-
edge, this is the first local convergence result in the infeasible case of an augmented
Lagrangian method. The paper concentrates on the equality constraints case, to com-
plete the capability of the algorithm [7] in detecting infeasibility. A possible extension
to the general case with equalities and inequalities is discussed in Sect. 7.

The paper is organized as follows. In the next section, we summarize our notation
and terminology which will be used. The algorithm is described in the next section.
The global convergence and the asymptotic analysis are studied in Sects. 4 and 5.
Some numerical experiments are reported in Sect. 6 to demonstrate the efficiency of
new method. Section 7 ends the paper.

2 Notation

For two real vectors x and y of same lengths, x�y is their Euclidean scalar product and
‖x‖ = (x�x)1/2 is the associated norm. For a real matrix M , the induced matrix norm
is ‖M‖ = max{‖Md‖ : ‖d‖ ≤ 1}. The inertia of a real symmetric matrix M , denoted
by In(M) := (ι+, ι−, ι0), is the numbers of positive, negative and null eigenvalues.
For a function f and an iterate xk , to simplify the notation we denote fk = f (xk).
Likewise, f ∗ stands for f (x∗), g+

k stands for g(x+
k ), and so on. The positive part

of a real number r is defined by r+ = max{r , 0}. Let {ak} and {bk} be nonnegative
scalar sequences. We write ak = O(bk), or equivalently bk = Ω(ak), if there exists a
constant c > 0 such that ak ≤ c bk for all k ∈ N. The notation ak = Θ(bk) means that
ak = O(bk) and ak = Ω(bk). We also write ak = o(bk), if ak = εkbk for all k ∈ N,
with lim εk = 0.

3 Algorithm

We consider the equality constrained optimization problem

minimize ρ f (x) subject to c(x) = 0, (Pρ)

where f :Rn → R and c:Rn → R
m are smooth, and where ρ ≥ 0. For the value

ρ = 1, the problem (P1) is referred as the original problem, the one to be initially
solved. For the value ρ = 0, any feasible solution is optimal for (P0). The parameter
ρ is then called as the feasibility parameter.

The main contribution of this paper is to propose an updating strategy of the fea-
sibility parameter, in order to guarantee the global convergence of the minimization
algorithm to a feasible or an infeasible stationary point of the original problem and
also fast local convergence in both cases.
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Let us recall some definitions about stationary points. A point x ∈ R
n is called a

Fritz John (FJ) point of problem (P1) if there exists (z, y) ∈ R × R
m with (z, y) 	= 0

such that

c(x) = 0 and zg(x) + A(x)y = 0,

where g(x) = ∇ f (x) denotes the gradient of f at x and A(x) = ∇c(x) is the transpose
of the Jacobian matrix of the constraints at x . A FJ point x is a Karush–Kuhn–Tucker
(KKT) point whenever z 	= 0. In that case, y/z is the vector of Lagrange multipliers
related to problem (P1). A FJ point x for which z = 0 is called a singular stationary
point. In other words, a singular stationary point is a feasible point at which the linear
independence constraint qualification (LICQ) does not hold. A point x ∈ R

n is called
an infeasible stationary point of problem (P1) if

c(x) 	= 0 and A(x)c(x) = 0.

In other words, an infeasible stationary point is not feasible for the problem (P1) and
is a stationary point for the feasibility problem

minimizex∈Rn
1
2‖c(x)‖2. (1)

The augmented Lagrangian associated with (Pρ) is defined as

Lρ,σ (x, λ) := ρ f (x) + λ�c(x) + 1
2σ ‖c(x)‖2, (2)

where λ ∈ R
m is an estimate of the vector of Lagrange multipliers associated with

the equality constraints and σ > 0 is a quadratic penalty parameter. Recall that when
x∗ is a KKT point for (Pρ), with an associated vector of Lagrange multipliers λ∗, if
the sufficient second-order optimality conditions hold at x∗, then x∗ is a strict local
minimum of Lρ,σ (·, λ∗) provided that σ is small enough, see e.g., [15, Proposition
1.26]. This result serves as a basis of augmented Lagrangian methods, in which the
augmented Lagrangian is minimized while the parameters λ and σ are updated in an
appropriate manner, see e.g., [16, Chapter 17].

The first-order optimality conditions for minimizing Lρ,σ (·, λ) are

ρg(x) + A(x)
(
λ + 1

σ
c(x)

) = 0.

By introducing the dual variable y ∈ R
m and the notationw := (x, y), these optimality

conditions can be reformulated as

Φ(w, λ, ρ, σ ) :=
(

ρg(x) + A(x)y
c(x) + σ(λ − y)

)
= 0.

This formulation of the optimality conditions for minimizing (2) serves as a basis of
our algorithm. Note that by setting λ = y, we retrieve the optimality conditions of
problem (Pρ).
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Let us define the regularized Jacobian matrix of the function Φ with respect to w

by

Jρ,σ,θ (w) =
(
Hρ,θ (w) A(x)
A(x)� −σ I

)
,

where θ ≥ 0 is a regularization parameter and where

Hρ,θ (w) = ρ∇2 f (x) +
m∑

i=1

yi∇2ci (x) + θ I

is the regularizedHessian of theLagrangian associatedwith (Pρ).During the iterations,
the regularization parameter is chosen to control the inertia of regularized Jacobian
matrix of Φ. It is well known that In(Jρ,σ,θ (w)) = (n,m, 0) if and only if the matrix

Kρ,σ,θ (w) := Hρ,θ (w) + 1
σ
A(x)A(x)�

is positive definite (see e.g., [17, LemmaA.16]). A linkwith the augmentedLagrangian
is given by the following formula:

Kρ,σ,θ (w) = ∇2
xxLρ,σ (x, y − 1

σ
c(x)) + θ I .

The algorithm is a Newton-type method for the solution of the optimality system
Φ = 0, and it follows the one proposed in [7]. The globalization scheme of the
algorithm uses two kinds of iteration. At a main iteration, called outer iteration, all the
parameters λ, ρ and σ are updated and a full Newton step for the solution of Φ = 0
is performed. If the norm of the residual ‖Φ‖ at the trial iterate is deemed sufficiently
small, then the new iterate is updated and a new outer iteration is called, otherwise the
parameters are fixed to their current values and a sequence of inner iterations is applied
in order to reduce sufficiently ‖Φ‖. The inner iteration algorithm is a backtracking line
search applied to a primal-dual merit function, whose first-order optimality conditions
correspond to Φ = 0.

Algorithm 1 is quite similar to [7, Algorithm 1], except for the first four steps which
are related to the updating of the parameters.

Initially, a primal-dual starting point is defined and the values of the parameters are
chosen. A flag is used to indicate if the algorithm is in the feasibility detection phase
(F = true) or not (F = false).

At the first step, the algorithm tests if a nearly feasible point, with regards to a
feasibility tolerance ε > 0, has been detected. If it is the case, the algorithm switches
into the normal operating mode of [7, Algorithm 1]. This means in particular that the
feasibility parameter ρk will remain constant for all further iterations. This switching
mechanism is necessary to avoid the undesirable situation where the feasibility mea-
sure goes to zero very slowly, while the condition (3) is alternatively satisfied and not
satisfied an infinite number of times, leading to decreasing the feasibility parameter
to zero. Moreover, in this situation, it would be impossible to make the distinction
between the satisfaction of the KKT conditions and the regularity of the constraints.
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Algorithm 1
0. Initialize w0 = (x0, y0) ∈ R

n+m and set λ0 = y0. Choose parameters ρ0 > 0, σ0 > 0, ε > 0,
a ∈]0, 1[, � ∈ N and τ ∈]0, 1[. Set k = 0 and i0 = 0. Set F = true.

1. If ‖ck‖ ≤ ε, then set F = false.
2. Choose ζk > 0 such that {ζk } → 0. If k = 0 or

‖ck‖ ≤ amax{‖ci j ‖ : (k − �)+ ≤ j ≤ k} + ζk (3)

then set ik+1 = k and go to Step 4, otherwise set ik+1 = ik .
3. If F = true, then choose 0 < ρk+1 ≤ τρk and set σk+1 = σk , else choose 0 < σk+1 ≤ τσk and set

ρk+1 = ρk . Set λk+1 = ρk+1
ρk

λk and go to Step 5.
4. Choose 0 < σk+1 ≤ σk . Set ρk+1 = ρk and λk+1 = yk .
5. Choose θk ≥ 0, such that In(Jk ) = (n,m, 0), where Jk = Jρk+1,σk+1,θk (wk ). Compute w+

k by
solving the linear system

Jk (w
+
k − wk ) = −Φ(wk , λk+1, ρk+1, σk+1).

6. Choose εk > 0 such that {εk } → 0. If

‖Φ(w+
k , λk+1, ρk+1, σk+1)‖ ≤ εk , (4)

then set wk+1 = w+
k . Otherwise, apply a sequence of inner iterations to find wk+1 such that

‖Φ(wk+1, λk+1, ρk+1, σk+1)‖ ≤ εk . (5)

7. If termination criteria hold for (Pρ ) then stop, else increment k by 1 and go to Step 1.

At the second step, the algorithm tests if a sufficient reduction in the feasibility
measure has been obtained. If it is the case, the feasibility parameter is kept constant,
the Lagrange multiplier estimate is set to the current value of the dual variable and
a new value of the quadratic penalty parameter is chosen. For k ≥ 1, the index ik is
the number of the last iteration prior to k at which inequality (3) holds. Note that, at
Step 4, the quadratic penalty parameter is chosen in such a way that it could remain
constant all along the iterations. But in that case, the convergence to a KKT point is
only linear and the numerical experiments in [7] have shown that, in practice, it is
better to force the convergence of σk to zero.

If the algorithm detects that the constraints have not decreased sufficiently, because
condition (3) is not satisfied, then there are two situations. If F = true, then the
algorithm is still in the feasibility detection phase. In that case, the feasibility param-
eter is sufficiently decreased, the quadratic penalty parameter is kept constant and the
Lagrange multiplier estimate is rescaled. This scaling is important to force the con-
vergence to zero of {λk} when this step is always executed from some iteration (see
Lemma 3.1-(ii)), ensuring that the sequence of iterates approaches stationarity of the
feasibility problem (see Theorem 4.1-(ii)). The second situation is when F = false.
In that case, the algorithm has left the feasibility detection phase. Then, the feasibility
parameter is kept constant, but the quadratic penalty parameter is decreased to penalize
the constraints and the Lagrange multiplier estimate is kept constant as in a classical
augmented Lagrangian algorithm.
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The following lemma summarizes the behavior of the algorithm regarding the fea-
sibility detection strategy and the update rules of the parameters.

Lemma 3.1 Assume that Algorithm 1 generates an infinite sequence {wk}. LetK ⊂ N

be the set of iteration indices for which the condition (3) is satisfied.

(i) If K is infinite, then the subsequence {ck}k∈K converges to zero and {ρk} is even-
tually constant.

(ii) IfK is finite, then lim inf ‖ck‖ > 0 and both sequences {σkρk} and {σkλk} converge
to zero.

Proof For k ∈ N, set βk = ‖cik‖. We then have for all k ∈ K,

βk+1 ≤ amax{β j : (k − �)+ ≤ j ≤ k} + ζk

and for all k /∈ K, βk+1 = βk . It has been shown in [7, Lemma 3.1] that such a
sequence converges to zero. This proves the first conclusion of assertion (i). Since
{ck}k∈K converges to zero, then there exists k0 ∈ K such that ‖ck0‖ ≤ ε and thus
F = false for all further iterations. The update rules of the feasibility parameter
at Step 3 and Step 4 imply that ρk = ρk0 for all k ≥ k0, which proves the second
conclusion of assertion (i).

To prove conclusion (ii), suppose that K is finite and let k0 = maxK. For all
k ≥ k0 + 1, ik = k0 and Step 3 is executed. It follows that for all k ≥ k0 + �, we have
‖ck‖ > a‖ck0‖, and therefore lim inf ‖ck‖ > 0. We consider two cases. If at some
iteration k, ‖ck‖ ≤ ε, then F = false for all further iterations. The update of the
parameters at Step 3 implies that both sequences {ρk} and {λk} are eventually constant
and {σk} tends to zero. It follows that {σkρk} and {σkλk} tend to zero. The second case
is when ‖ck‖ > ε for all k ∈ N, which implies that F = true at each iteration. In that
case, for all k ≥ k0 + 1, ρk+1 ≤ τρk , σk+1 = σk and λk+1 = ρk+1

ρk0
yk0 . We deduce that

{ρk} goes to zero, {σk} is eventually constant, and {λk} goes to zero, which implies
that both sequences {σkρk} and {σkλk} tend to zero. �

At Step 5 of Algorithm 1, the parameter θk is selected to control the inertia of
the matrix Jk . This issue is important to avoid that the outer iterates converge to a
stationary point, which is not a local minimum, see [18].

At Step 6, a tolerance εk > 0 is chosen to check if a sufficient reduction in the
norm of the optimality conditions at the candidate iterate w+

k has been obtained. An
example of choice of εk is detailed in Sect. 6. If the residual norm is not smaller than
this tolerance, then a sequence of inner iterations is called to compute the new iterate.

The inner iteration algorithm consists of a minimization procedure of the primal-
dual merit function defined by

ϕλ,ρ,σ,ν(w) = Lρ,σ (x, λ) + ν
2σ ‖c(x) + σ(λ − y)‖2,

where ν > 0 is a scaling parameter. It is easy to see that w is a stationary point
of this function if and only if Φ(w, λ, ρ, σ ) = 0. The minimization procedure is a
backtracking line search algorithm quite similar to [7, Algorithm 2], and we refer
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the interested reader to this paper for a full description of this algorithm. The only
difference is that in our description of Algorithm 1, the quadratic parameter σk+1 is
kept constant during the inner iterations, while in [7] it can be increased. This choice
has no impact from a theoretical point of view and simplifies the presentation of the
algorithm. In our numerical experiments, the value of the quadratic penalty parameter
is also kept constant during the inner iterations.

4 Global Convergence Analysis

The global convergence of the inner iteration algorithm has been studied in [7, The-
orem 2.3]. It has been shown that if the function f is bounded from below and if the
gradient of the constraints and the regularized Hessian of the Lagrangian stay bounded
during the inner iterations, then the iterate wk+1 can be computed in a finite number
of inner iterations. In view of this result, it will be assumed that the inner iteration
algorithm succeeds in a finite number of iterations in finding wk+1 each time it is
called at Step 6 of Algorithm 1.

Theorem 4.1 Assume that Algorithm 1 generates an infinite sequence {wk}. Assume
also that the sequence {(gk, Ak)} is bounded. In any case, the iterates approach feasible
or infeasible stationarity of problem (P1). More precisely, let K ⊂ N be the set of
iteration indices for which the condition (3) is satisfied. Then, at least one of the
following situations occurs.

(i) If K is infinite, then the subsequence {ck}K tends to zero. In addition, if {yk}K is
bounded, then the sequence {(gk , Ak)}has a limit point (ḡ, Ā) such that ḡ+ Ā ȳ = 0
for some ȳ ∈ R

m. If {yk}K is unbounded, then {Ak} has a limit point Ā which is
rank deficient.

(ii) If K is finite, then {‖ck‖} is bounded away from zero and {Akck} tends to zero.

Proof First note that the convergence to zero of the sequence {ρkgk + Ak yk} is a direct
consequence of Step 6 of Algorithm 1.

Let us prove outcome (i). Lemma 3.1-(i) implies that limK ck = 0 and {ρk} is
eventually constant. If {yk}K is bounded, then the assumptions imply that the whole
sequence {(gk, Ak, yk/ρk)}K is bounded and so has a limit point (ḡ, Ā, ȳ) such that
ḡ + Ā ȳ = 0, which proves the first part of outcome (i). Suppose now that {yk}K is
unbounded. There existsK′ ⊂ K such that yk 	= 0 for all k ∈ K′ and limK′ ‖yk‖ = ∞.
For k ∈ K′, we have

‖Akuk‖ ≤ 1
‖yk‖‖ρkgk + Ak yk‖ + ρk‖yk‖‖gk‖,

where uk = yk/‖yk‖. Since {(Ak, uk)}K′ is bounded, it has a limit point ( Ā, ū), with
ū 	= 0. By taking the limit in the previous inequality, knowing that the two terms of
the right-hand side tend to zero, we deduce that Āū = 0, which proves the second part
of outcome (i).
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For outcome (ii), suppose that K is finite. Lemma 3.1-(ii) implies that {‖ck‖} is
bounded away from zero and {σkρk, σkλk} tends to zero. For all k ∈ N, we have

Akck = Ak(ck + σk(λk − yk)) − σk Akλk + σk(ρkgk + Ak yk) − σkρkgk .

By taking the norm on both sides, for all k we have

‖Akck‖
≤ ‖Ak‖‖ck + σk(λk − yk)‖ + σk‖Ak‖‖λk‖ + σk‖ρkgk + Ak yk‖ + σkρk‖gk‖
≤ max{‖Ak‖, σk, ‖gk‖}(2‖Φ(wk, λk, yk, σk)‖ + σk‖λk‖ + σkρk).

Since the first term of the right-hand side of this inequality is bounded above and all
the terms in the parentheses tend to zero, we have lim Akck = 0, which concludes the
proof. �

To sum up, the next result shows the behavior of the algorithmwhen the sequence of
primal iterates remains bounded, a usual and mild assumption in a global convergence
analysis.

Theorem 4.2 Assume that Algorithm 1 generates an infinite sequence {wk} such that
the sequence {xk} lies in a compact set.
(i) Any feasible limit point of the sequence {xk} is a Fritz John point of problem (P1).
(ii) If the sequence {xk} has no feasible limit point, then any limit point is an infeasible

stationary point of problem (P1).

Proof The compactness assumption implies that the sequences {gk} and {Ak} are
bounded and so Theorem 4.1 applies.

Let x̄ be a limit point of {xk} such that c̄ = 0. From Lemma 3.1-(ii), we have that
the condition (3) is satisfied an infinite number of times. It follows fromLemma 3.1-(i)
that there exists k0 ∈ N such that for all k ≥ k0, ρk = ρk0 . Let J ⊂ N such that
the subsequence {xk}J tends to x̄ . Step 6 of Algorithm 1 implies that the sequence
{ρk0gk + Ak yk} tends to zero. Dividing by ‖(ρk0 , yk)‖ and because ρk0 	= 0, we have

lim
k→∞
k∈J

ρk0gk + Ak yk
‖(ρk0 , yk)‖

= 0.

By compactness, the sequence {(ρk0 , yk)/‖(ρk0 , yk)‖}J has a limit point (ρ̄, ȳ), such
that ‖(ρ̄, ȳ)‖ = 1 and ρ̄ ḡ + Ā ȳ = 0, which proves assertion (i).

Suppose now that {xk} has no feasible limit point. FromLemma 3.1-(i), we have that
the condition (3) is only satisfied a finite number of times. Theorem 4.1-(ii) implies
that Āc̄ = 0 for any limit point x̄ of {xk}, which proves assertion (ii). �

5 Asymptotic Analysis

We have to distinguish two cases for the asymptotic analysis. The first one is when
the sequence {wk} converges to a primal-dual solution of the problem. In this case,
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because {ck} converges to zero, the feasibility parameter becomes constant after a
finite number of iterations and the algorithm is reduced to Algorithm 1 in [7] applied
to the solution of problem (Pρ) with a fixed value of ρ. It has been shown that under
the classical assumptions of linear independence constraint qualification and second-
order sufficient conditions at the optimal limit point, a suitable choice of the parameters
allows to get a superlinear or quadratic rate of convergence of {wk}, see [7, Theorems
4.4 and 4.5]. The second case to analyze is when the sequence {xk} converges to an
infeasible stationary point. This is what we will develop in detail in this section.

The first assumption is that the sequence of iterates converges to an infeasible
stationary point.

Assumption 1 Algorithm 1 generates an infinite sequence {wk} which converges to
w∗ = (x∗, y∗) ∈ R

n+m, where x∗ is an infeasible stationary point of problem (P1).

This assumption is very usual for the analysis of the rate of convergence of a numer-
ical optimization algorithm. Note that it is equivalent to assume that {xk} converges to
an infeasible stationary point x∗ and that the algorithm always stays in the feasibility
detection phase, i.e., F = true for all the iterations. Indeed, by Lemma 3.1-(i), the
convergence of {xk} to an infeasible stationary point x∗ implies that the condition (3) is
satisfied for a finite number of iterations. In that case, by Lemma 3.1-(ii), the sequence
{σkλk} tends to zero. Step 3 of Algorithm 1 implies that if F = true at any iteration,
then {σk} is eventually constant and on the contrary, if F = false at some iteration,
then {σk} → 0. Since {ck + σk(λk − yk)} tends to zero, the sequence {σk yk} tends to
c∗ 	= 0 and thus {yk} has a finite limit if and only if F keeps the value true at all the
iterations. This indicates that the choice of the value of the feasibility tolerance ε is
an important issue relatively to the behavior of the algorithm. In practice, ε is chosen
equal to, or smaller than, the stopping tolerance of the overall algorithm.

Lemma 5.1 Under Assumption 1, the inequality (3) is satisfied a finite number of times,
the sequence {ρk} converges to zero, {σk} is eventually constant, and ‖λk‖ = O(ρk).

Proof Assumption 1 implies that {ck} converges to a nonzero value. Therefore, by
virtue of Lemma 3.1-(i), the inequality (3) is satisfied only a finite number of times. It
follows that Step 3 of Algorithm 1 is always executed for k sufficiently large and that
F = true for all iterations. Indeed, for all k ∈ N we have

‖ck‖ ≤ ‖ck + σk(λk − yk)‖ + σk‖λk‖ + σk‖yk‖.

Step 6 and Lemma 3.1-(ii) imply that the first two terms of the right-hand side of the
inequality tend to zero. Because {yk} is supposed to be convergent, we deduce that
the sequence {σk} does not converge to zero, which implies that F = true for all
iterations. Therefore, there exists k0 ∈ N such that for all k ≥ k0, ρk ≤ τ k−k0ρk0 ,
σk = σk0 and λk/ρk = λk0/ρk0 , the conclusion follows. �

Let σ > 0 be the limit value of {σk}. For w = (x, y) ∈ R
n+m , let us define

F(w) =
(

A(x)y
c(x) − σ y

)
. (6)
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We have limΦ(wk, λk, ρk, σk) = Φ(w∗, 0, 0, σ ) = F(w∗), and therefore y∗ = 1
σ
c∗.

Assumption 2 The functions f and c are twice continuously differentiable and their
second derivatives are Lipschitz continuous over an open neighborhood of x∗.

The Hessian matrix of the function 1
2‖c‖2 is defined as

C := ∑
i ci∇2ci + AA�.

Assumption 3 The sufficient second-order optimality conditions hold at x∗ for the
feasibility problem (1), i.e., the matrix C∗ is positive definite.

The following lemma is a direct consequence of these assumptions.

Lemma 5.2 Under Assumptions 2 and 3, there exist a neighborhood W ofw∗, M > 0,
L > 0 and 0 < a1 ≤ a2 such that for all w,w′ ∈ W we have

(i) ||F ′(w)−1|| ≤ M,

(ii) ||F(w′) − F(w) − F ′(w)(w′ − w)‖ ≤ L
2 ‖w − w′‖2,

(iii) a1‖w − w′‖ ≤ ‖F(w) − F(w′)‖ ≤ a2‖w − w′‖.
Proof To prove (i), it suffices to show that F ′(w∗) is nonsingular. By using the fact
that y∗ = 1

σ
c∗, we have

F ′(w∗) =
( 1

σ

∑
i c

∗
i ∇2c∗

i A∗
A∗� −σ I

)
.

It is well known that F ′(w∗) is nonsingular if and only if the matrix 1
σ
C∗, the Schur

complement of −σ I of the matrix F ′(w∗), is positive definite (see e.g., [19, Lemma
4.1]). Thus, item (i) follows from Assumption 3. Assumption 2 implies that F ′ is
Lipschitz continuous on W with the Lipschitz constant L . Property (ii) then follows
from the Lipschitz continuity of F ′ and from [20, Lemma 4.1.12]. The assertion (iii)
follows from [20, Lemma 4.1.16]. �

The next lemma shows that the matrix Jk used at Step 5 of Algorithm 1 is a good
approximation of the Jacobian matrix of F at wk when the feasibility parameter goes
to zero.

Lemma 5.3 Under Assumptions 1–3, there exists β > 0 such that for all k ∈ N large
enough,

‖Jk − F ′
k‖ ≤ βρk+1 and ‖J−1

k ‖ ≤ 2M,

where M is defined by Lemma 5.2.

Proof From the definition of Jk , for all k ∈ N we have

‖Jk − F ′
k‖ = ‖ρk+1∇2 fk + θk I‖.
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Since {xk} converges to x∗ and f is assumed to be twice continuously differentiable
in a neighborhood of x∗, the first inequality will be proved if we show that θk = 0 for
k large enough. This is the case if In(Jk) = (n,m, 0) or, equivalently, if Kρk+1,σ,0(wk)

is positive definite for k large enough. For all k ∈ N, we have

Kρk+1,σ,0(wk) = Hρk+1,0(wk) + 1
σ
Ak A�

k

= 1
σ
C∗ + 1

σ
(Ck − C∗) + Hρk+1,0(xk, yk − 1

σ
ck).

By assumption, C∗ is positive definite and the two other matrices tend to zero when k
tends to infinity. It follows that Kρk+1,σ,0(wk) is positive definite for k large enough,
first inequality.

Using Lemma 5.2-(i), the inequality just proved and the fact that {ρk} tends to zero,
for k large enough we have

‖F ′−1
k (Jk − F ′

k)‖ ≤ ‖F ′−1
k ‖‖Jk − F ′

k‖
≤ Mβρk+1

≤ 1
2 .

It then suffices to apply [20, Theorem 3.1.4] to prove the second inequality.

The last lemma gives an estimate of the distance of the Newton iterate w+
k to the

solution w∗.

Lemma 5.4 Assume that Assumptions 1–3 hold. The sequence of iterates generated
by Algorithm 1 satisfies

‖w+
k − w∗‖ = O(‖wk − w∗‖2) + O(ρk+1).

Proof Let k ∈ N. From the definition of the trial iterate w+
k at Step 5 of Algorithm 1,

we have

w+
k − w∗ = wk − w∗ − J−1

k Φ(wk, λk+1, ρk+1, σ )

= J−1
k

(
(Jk − F ′

k)(wk − w∗) + F ′
k(wk − w∗) − Fk

+ Fk − Φ(wk, λk+1, ρk+1, σ )
)
.

By using F∗ = 0, by taking the norm on both sides, then by applying Lemma 5.3,
Lemma 5.2-(ii), finally by using the convergence of {wk} to w∗, the boundedness of
{gk} and ‖λk‖ = O(ρk) from Lemma 5.1, we obtain

‖w+
k − w∗‖

≤ ‖J−1
k ‖(‖Jk − F ′

k‖‖wk − w∗‖ + ‖F∗ − Fk − F ′
k(w

∗ − wk)‖
+‖Fk − Φ(wk, λk+1, ρk+1, σ )‖)

≤ 2M
(
βρk+1‖wk − w∗‖ + L

2 ‖wk − w∗‖2 + ρk+1‖gk‖ + σ‖λk+1‖
)

= O(ρk+1) + O(‖wk − w∗‖2),
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which concludes the proof. �

We now state the main result of this section. This theorem shows the rapid rate of
convergence of Algorithm 1 in the infeasible case. In addition, under a suitable choice
of the parameters, there is no need of inner iterations for k large enough. In this case,
the cost of the one iteration of the algorithm is reduced to the solution of the linear
system at Step 5, which can be done with O((n + m)3) arithmetic operations.

Theorem 5.1 Assume thatAssumptions1–3hold. Let t ∈]0, 2]. If the feasibility param-
eter of Algorithm 1 is chosen so that ρk+1 = O(‖Fk‖t ), then

‖wk+1 − w∗‖ = O(‖wk − w∗‖t ). (7)

In addition, if ρk+1 = Θ(‖Fk‖t ) and if εk = Ω(ρt ′
k ) for 0 < t ′ < t , then for k large

enough there is no inner iterations, i.e., wk+1 = w+
k .

Proof The assumption on the value of ρk+1 and the Lipschitz property of F from
Lemma 5.2-(iii) imply that

ρk+1 = O(‖wk − w∗‖t ). (8)

Using this estimate in Lemma 5.4, we deduce that

‖w+
k − w∗‖ = O(‖wk − w∗‖t ). (9)

At Step 6 of Algorithm 1, we have either wk+1 = w+
k or wk+1 is computed by means

of the inner iterations. In the first case, it is clear that (7) follows from (9). Suppose
now that the second case holds, i.e., the inequality (4) is not satisfied at iteration k.
We then have

‖Φ(wk+1, λk+1, ρk+1, σ )‖ ≤ εk < ‖Φ(w+
k , λk+1, ρk+1, σ )‖. (10)

From (9), the sequence {w+
k } tends to w∗, and therefore {g+

k } is bounded. Using the
second inequality of Lemma 5.2-(iii) and Lemma 5.1, then (8) and (9), we deduce
that

‖Φ(w+
k , λk+1, ρk+1, σ )‖ ≤ ‖F+

k − F∗‖ + ρk+1‖g+
k ‖ + σ‖λk+1‖

= O(‖w+
k − w∗‖) + O(ρk+1)

= O(‖wk − w∗‖t ). (11)

Combining (10) and(11), we obtain

‖Φ(wk+1, λk+1, ρk+1, σ )‖ = O(‖wk − w∗‖t ).
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Finally, from the first inequality of Lemma 5.2-(iii), the last estimate, the boundedness
of {gk}, Lemma 5.1 and the estimate (8), we have

a1‖wk+1 − w∗‖ ≤ ‖Fk+1 − F∗‖
= ‖Fk+1‖
≤ ‖Φ(wk+1, λk+1, ρk+1, σ )‖ + ρk+1‖gk+1‖ + σ‖λk+1‖
= O(‖wk − w∗‖t ) + O(ρk+1)

= O(‖wk − w∗‖t ),

which proves (7).
Let us now prove the second assertion of the theorem. On the one hand, Lemma 5.2-

(iii) and (7) imply that ‖Fk+1‖ = O(‖Fk‖t ). By assumption, we have ρk+1 =
Θ(‖Fk‖t ), and thus ρk+1 = O(ρt

k). Since t ′ < t , we then have ρk+1 = o(ρt ′
k ).

On the other hand, the estimate (11) implies that

‖Φ(w+
k , λk+1, ρk+1, σ )‖ = O(‖Fk‖t ) = O(ρk+1).

By assumption, εk = Ω(ρt ′
k ); therefore, for k large enough, the inequality (4) is

satisfied. �

6 Numerical Experiments

Our algorithm is called SPDOPT-ID (strongly primal-dual optimization with infeasi-
bility detection) and has been implemented in C. The performances of SPDOPT-ID
are compared with those of SPDOPT-AL [7] on a set of 130 standard problems from
the CUTEr collection [21]. The selected problems are those with equality constraints
and a solution time less than 300s. To create a second set of 130 infeasible problems,
the constraint c21 + 1 = 0, where c1 is the first component of c, has been added to
each problem. Note that the addition of this new constraint leads to a twofold diffi-
culty. Indeed, not only the constraints are infeasible, but their gradients are linearly
dependent.

We also compare the condition used to update the parameters in Step 2 of Algo-
rithm 1, with the one used in [7, Algorithm 1]. The algorithm called SPDOPT-IDOld
is Algorithm 1, but with the inequality (3) which is replaced by

‖ck‖ ≤ amax{‖ci j ‖ + ζi j : (k − �)+ ≤ j ≤ k}. (12)

We will show that this modification is of importance when solving an infeasible prob-
lem and that the use of (3) in place of (12) leads to better numerical performances.

The feasibility parameter is initially set to ρ0 = 1. When F = true, the feasibility
parameter in Step 3 is updated by the formula

ρk+1 = min{0.2ρk, 0.2‖Fk‖2, 1/(k + 1)}.
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The assumption on ρk+1 in the statements of Theorem 5.1 is satisfied with t = 2. The
rate of convergence of {wk} tow∗ is then quadratic. A lower bound of 10−16 is applied
on this parameter.

The parameters σk and θk are updated at Step 4 and Step 5 as in [7, Algorithm 1].
To be able to solve a quadratic problem in only one iteration, we adopt the

same procedure as in [22] for the choice of the starting point. Let w̄ = (x̄, ȳ),
where x̄ is the default starting point and ȳ = (1, . . . , 1)�. Initially, the fol-
lowing linear system J1,0,0(w̄)d = −Φ(w̄, ȳ, 1, 0) is solved. If the inequality
‖Φ(w̄ + d, 0, 1, 0)‖∞ ≤ ‖Φ(w̄, 0, 1, 0)‖∞ is satisfied, then w0 = w̄ + d, other-
wise w0 = w̄.

The algorithm is terminated and an optimal solution is declared to be found if
‖(gk + Ak yk/ρk, ck)‖∞ ≤ εtol with ε tol = 10−8. Otherwise, the algorithm returns a
notification that an infeasible stationary point has been found if ρk ≤ εtol, ‖ck‖ > εtol

and ‖Φ(wk, 0, 0, σk)‖∞ ≤ εtol. For SPDOPT-AL, we also add the stopping condition
‖ck‖ > εtol, ‖Akck‖ ≤ εtol and σk ≤ εtol to terminate this algorithm at an infeasible
stationary point.

As mentioned in Sect. 5, the feasibility tolerance at Step 1 is set to ε = εtol, to get a
fast local convergence when the algorithm converges to an infeasible stationary point.

At Step 2 of Algorithm 1, we choose a = 0.9, � = 2 and ζk = 10σkρk for all
iteration k.

The sequence of tolerance {εk} in Step 6 is defined by the following formula:

εk = 0.9max{‖Φ(wi , λi , ρi , σi )‖ : (k − 4)+ ≤ i ≤ k} + ζk .

The convergence to zero of the sequence {εk} is a consequence of [22, Proposition 1].
This choice meets the requirements to get a fast convergence both in the feasible case,
i.e., εk = Ω(σk+1), and in the infeasible case, i.e., εk = Ω(ρt ′

k ), with t ′ = 1.
The symmetric indefinite factorization code MA57 [23] is used to factorize and

regularize the matrix Jk . Since this factorization reveals the inertia of the matrix, the
correction parameter θk , initially set to zero, is increased and a new factorization is
performed until the inertia of Jk has the correct value.

Themaximumnumber of iterations, counting both the inner and the outer iterations,
is limited to 3000.

For the standard problems, only 129 problems solved by at least one of three algo-
rithms are selected for the comparison purpose (problem dixchlng has not been
solved). Figure 1 shows the performance profiles of Dolan and Moré [24] on the num-
bers of function and gradient evaluations. For τ ≥ 0, ρs(τ ) is the fraction of test
problems for which the performance of the solver s is within a factor 2τ of the best
one. These profiles show that the performances of the three algorithms are very simi-
lar, the difference is not significant. In terms of robustness, the three algorithms solve
successfully the same number of problems (128 problems). We can conclude that the
infeasibility detection does not reduce the performances of the algorithm for solving
standard problems.

Figure 2 shows the performances of these algorithms in termsof numbers of function
and gradient evaluations on a set of 126 infeasible problems (the problemsgilbert,
hager3, porous1, porous2 have been eliminated since three algorithms can-
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Fig. 1 Performance profiles comparing the three algorithms on the set of standard problems

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

τ

ρ
s
(τ
)

Function evaluations

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

τ

Gradient evaluations

SPDOPT-ID SPDOPT-IDOld SPDOPT-AL

Fig. 2 Performance profiles comparing the three algorithms on the set of infeasible problems

not detect the infeasibility).Weobserve that SPDOPT-ID is themost efficient algorithm
for detecting infeasible problems, with an efficiency rate of approximately 90%. In any
case, the efficiency of SPDOPT-ID and SPDOPT-IDOld is very significant compar-
ing to SPDOPT-AL. In terms of robustness, our two algorithms are more robust than
SPDOPT-AL since they can detect more than 95% of problems, whereas SPDOPT-AL
only detects less than 60%.This figure also shows that SPDOPT-ID is better comparing
to SPDOPT-IDOld, justifying the choice of new criterion for updating parameters.

We conclude this section by a comparison of a numerical estimate of the rate of
convergence of the new algorithm SPDOPT-ID and of the original one SPDOPT-
AL, when the sequence of iterates converges to an infeasible stationary point. We
used a graphical representation inspired by [14]. We selected a set of 58 problems
among the collection of infeasible problems, for which both algorithms generate a
sequence converging to an infeasible stationary point. Figure 3 shows the last ten
values of ‖Akck‖ for SPDOPT-AL and of ‖Fk‖ for SPDOPT-ID. We cannot plot
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Fig. 3 Values of log10 ‖Akck‖ and log10 ‖Fk‖ for the last ten iterations of SPDOPT-AL and SPDOPT-ID.
T represents the index of the stopping iteration for each run

the values ‖Fk‖ for SPDOPT-AL, because when the sequence of iterates converges
to an infeasible stationary point, {σk} goes to zero and {yk} becomes unbounded.
Under some regularity assumptions, we obviously have ‖Akck‖ = Θ(‖xk − x∗‖)
and ‖Fk‖ = Θ(‖wk − w∗‖). These curves empirically show that there is a true
improvement in the rate of convergence of the algorithm, from linear to quadratic.

For the solution of these infeasible problems, we observed that for the last four outer
iterations, there is no inner iterations (i.e., wk+1 = w+

k ) for 90% of the problems.
This percentage is more than 93% if one considers the last three outer iterations.
For the infeasible problems for which SPDOPT-ID uses inner iterations at the last
outer iterations, either the algorithm does not terminate successfully or the quadratic
convergence is not observed. These observations confirm the asymptotic property of
our algorithm.

7 Conclusions

During the solution of an optimization problem, a rapid detection of the infeasibility
is a difficult task. In the framework of an augmented Lagrangian method, we have
proposed to add a new parameter, which has to scale down the objective function when
the infeasibility measure is not sufficiently reduced. The global and local convergence
analyses, as well as the numerical results, show that this method is reliable for both
solving a feasible optimization problem and quickly detecting the infeasibility.

The original algorithm SPDOPT-AL [7] uses only one penalty parameter σk to
balance between optimality and feasibility as in a classical augmented Lagrangian
algorithm. According to [7, Theorem 3.4], when the problem is infeasible, any
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limit point of {xk} is an infeasible stationary point, but the sequence {yk} becomes
unbounded. For this classical scheme, we did not find a way to update the penalty
parameter to get a fast rate of convergence to an infeasible stationary point. In practice,
we only observed a linear rate of convergence, as shown in Fig. 3. The introduction
of the feasibility parameter ρk allows to balance between the solution of the first-
order optimality conditions of the original problem (P1) and the ones of the feasibility
problem (1). By this way, we see that taking σk → 0 in the classical scheme is not
equivalent to taking ρk → 0 and keeping σk constant in the new scheme.

Another advantage of our new scheme is that in case of convergence to an infeasible
stationary point, when the quadratic penalty parameter σk is kept constant, it becomes
a regularization term for the matrix F ′(w). For this reason, the asymptotic analysis
near an infeasible stationary point does not require a constraint qualification like some
other works in the literature, see e.g., [13, Assumption 3.2-(b)] and [14, Assumption
4.19-(a)].

The quadratic convergence to an infeasible stationary point is an original result
for an augmented Lagrangian algorithm. However, the fast local convergence is only
guaranteed under the assumption that the infeasible stationary point, the limit point
of the sequence of iterates, is sufficiently infeasible, i.e., ‖c∗‖ > ε, for some ε > 0.
On some examples, we observed that the algorithm converges with a linear rate to
an infeasible stationary point, because the norm of the constraints evaluated at this
point is very close to the stopping tolerance. Hence, an open question is to design an
algorithm with rapid convergence in the infeasible case, regardless the norm of the
constraints at the limit point.

Another natural question is the extension of this approach to the solution of general
optimization problem with equality and inequality constraints. One possibility is to
introduce slack variables to inequality constraints and apply augmented Lagrangian
method in the case of simple bounds as in [4,25]. On the other hand, we note that
infeasibility detection has been used in the framework of interior point methods [26,
27]. However, these works did not report complete global and local convergence
analyses of their methods, despite good numerical results. To our knowledge, there is
no local convergence result for nonlinear interior points methods in the infeasible case.
To extend our approach, a possibility is to combine an augmented Lagrangian method
and a log-barrier penalty to handle inequalities as in [28]. But the introduction of a
feasibility parameter makes the convergence analysis quite different. Indeed, in that
case the feasibility parameter becomes a scaling factor between the log-barrier function
and the quadratic penalty term; therefore, when the sequence of iterates converges to
an infeasible stationary point, this sequence follows a path of solutions parameterized
by the log-barrier penalty parameter, see [29].
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