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Abstract
In this paper, we propose the descent method with new inexact line-search for uncon-
strained optimization problems on Riemannian manifolds. The global convergence
of the proposed method is established under some appropriate assumptions. We fur-
ther analyze some convergence rates, namely R-linear convergence rate, superlinear
convergence rate and quadratic convergence rate, of the proposed descent method.
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1 Introduction

Since the non-convex problems can be translated into convex problems with appro-
priate Riemannian metrics, and constrained optimization problems can be written as
unconstrained optimization problems from the Riemannian geometry viewpoint, in
recent years, many concepts, techniques, as well as methods of optimization theory
have been extended from Euclidean space to Riemannian manifolds; see, for instance,
[1–15]. It is an emerging area of research in convex analysis, optimization theory,
game theory, etc; see, for example, [12,14] and the references therein.

The descent method is one of the oldest and widely known methods for solv-
ing minimization problems. Many convergence results for descent method have been
established in the setting of Euclidean space. For instance, some line-search tech-
niques for the general descent method in R

n are proposed by Nocedal and Wright
[16]. They proved the global convergence and studied convergence rate of steepest
descent method, Newton’s method and coordinate descent method. Shi and Shen [17]
also proved the global convergence and local convergence rate of descent method with
new inexact line-search in R

n . The new inexact line-search in [17] has many advan-
tages comparing with some other similar line-searches, such as Armijo line-search
and Wolfe line-search; see [18,19]. Based on the results in [17], a new inexact line-
search for quasi-Newton method is proposed and some global convergence results
are established by Shi [20]. Recently, some authors focused on extending the conver-
gence results for descent methods from Euclidean space to Riemannian manifolds. In
particular, the steepest descent method and the Newton method to solve convex opti-
mization problems on Riemannian manifolds have been studied by Udrişte [14], in
which the linear convergence result for the steepest descent method is obtained under
the assumption of exact line-search. Smith [21] considered the steepest descent, New-
ton method and conjugate gradient method on Riemannian manifolds and analyzed
their convergence properties by employing the Riemannian structure of the manifold.
The full convergence result for the steepest descentmethodwith theArmijo line-search
on Riemannian manifolds has been studied by da Cruz Neto et al. [4,5]. A combina-
tion of generalized Armijo method and generalized Newton method in the setting of
Riemannian manifolds is investigated by Yang [15]. The global convergence results
for these methods with less restrictions are obtained. Estimations of linear/quadratic
convergence rate for the generalized Armijo–Newton algorithms are also derived in
[15]. Moreover, the global and local convergence analysis of the exact and approxi-
mate line-search such as the Newton’s method, the gradient descent method and the
trust-region method on Riemannian manifolds is studied in [22–27].

Motivated by the results described above, in this paper, we propose a new inexact
line-search for the descent method on Riemannian manifolds and establish its conver-
gence results. Since the computation of the exponential mapping and parallel transport
can be quite expensive in the setting of manifolds, and many convergence results show
that the nice properties of some algorithms hold for all suitably defined retractions and
isometric vector transports on Riemannian manifolds (see, for example, [6,13,28]),
we replace the geodesic by retraction and parallel transport by isometric vector trans-
port, respectively. As a result, the global convergence result of the descent method,
with new inexact line-search for unconstrained optimization problems on Riemannian
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manifolds, is proved under some appropriate assumptions. Moreover, we analyze the
convergence rate, such as R-linear convergence rate, superlinear convergence rate and
quadratic convergence rate, of the descent method on Riemannian manifolds. To the
best of our knowledge, these results have not been studied before, and it is very inter-
esting to explore the convergence results for a new inexact line-search algorithm on
manifolds by utilizing Riemannian techniques.

The present paper is organized as follows: In Sect. 2, we recall some notions and
known results from Riemannian geometry, which will be used throughout the paper.
We propose the descent method with new inexact line-search for unconstrained opti-
mization problems on Riemannian manifolds. In Sect. 3, the global convergence result
for the descent method on Riemannian manifolds is proved. Section 4 is devoted to
analyze the convergence rate of the descent method with new inexact line-search.

2 Preliminaries

In this section, we recall some standard notations, definitions and results from Rie-
mannian manifolds, which can be found in any introductory book on Riemannian
geometry; see, for example, [2,3,7].

LetM be afinite-dimensional differentiablemanifold and x ∈ M . The tangent space
of M at x is denoted by TxM and the tangent bundle of M by T M = ⋃

x∈M TxM ,
which is naturally a manifold.We denote by gx (., .) the inner product on TxM with the
associated norm ‖ · ‖x . If there is no confusion, then we omit the subscript x . If M is
endowed with a Riemannian metric g, then M is a Riemannian manifold. Throughout
the paper, unless otherwise specified, we assume that M is a Riemannian manifold.
Given a piecewise smooth curve γ : [t0, t1] → M joining x to y, that is, γ (t0) = x
and γ (t1) = y, we can define the length of γ by l(γ ) = ∫ b

a ‖γ ′(t)‖dt . Minimizing this
length functional over the set of all curves, we obtain a Riemannian distance d(x, y)
which induces the original topology on M .

Let ∇ be the Levi-Civita connection associated with M . A vector field V : M →
T M along γ is said to be parallel if ∇γ ′V = 0. We say that γ is a geodesic when
∇γ ′γ ′ = 0; in the case ‖γ ′‖ = 1, γ is said to be normalized. Let γ : R → M
be a geodesic and Pγ [.,.] denote the parallel transport along γ , which is defined by
Pγ [γ (a),γ (b)](v) = V (γ (b)) for all a, b ∈ R and v ∈ Tγ (a)M , where V is the unique
C∞ vector field such that ∇γ ′(t)V = 0 and V (γ (a)) = v.

A Riemannianmanifold is complete if, for any x ∈ M , all geodesic emanating from
x are defined for all t ∈ R. By Hopf–Rinow theorem [29], any pair of points x, y ∈ M
can be joined by a minimal geodesic. The exponential mapping expx : TxM → M is
defined by expx v = γv(1, x) for each v ∈ TxM , where γ (·) = γv(·, x) is the geodesic
starting from x with velocity v, that is, γ (0) = x and γ ′(0) = v. It is easy to see that
expx tv = γv(t, x) for each real number t .

The exponential mapping expx provides a local parametrization of M via TxM .
However, the systematic use of the exponential mapping may not be desirable in
all cases. Some local mappings to TxM may reduce the computational cost while
preserving the useful convergence properties of the considered method. In this paper,
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we relax the exponential mapping by a class of mappings called retractions, a concept
that can be seen in [1,6,13,30,31].

Definition 2.1 Given x ∈ M , a retraction is a smooth mapping Rx : TxM → M such
that

(i) Rx (0x ) = x for all x ∈ M , where 0x denotes the zero element of TxM ;
(ii) DRx (0x ) = idTx M , where DRx denotes the derivative of Rx and id denotes the

identity mapping.

As we know, the exponential mapping is a special retraction, and some retractions
can be seen as an approximation of the exponential mapping.

The parallel transport is often too expensive to use in a practical method, so we
can consider a more general vector transport (see, for example, [6,13,22]), which is
built upon the retraction Rx . A vector transportT : T M

⊕
T M → T M , (ηx , ξx ) �→

Tηx ξx with the associated retraction Rx is a smooth mapping such that, for all ηx in the
domain of Rx and all ξx , ζx ∈ TxM , (i) Tηx ξx ∈ TRx (ηx )M ; (ii) T0x ξx = ξx ; (iii) Tηx

is a linear mapping. Let TS denote the isometric vector transport (see, for example,
[13,22,31]) with Rx as the associated retraction. Then it satisfies (i), (ii), (iii) and the
following condition (iv):

g(TS(ηx )ξx ,TS(ηx )ζx ) = g(ξx , ζx ). (1)

In most of the practical cases, TS(ηx ) exists for all ηx ∈ TxM , and thus, we make this
assumption throughout the paper. Furthermore, let TRx denote the derivative of the
retraction, that is,

TRx (ηx )ξx = DRx (ηx )[ξx ] = d

dt
Rx (ηx + tξx )

∣
∣
∣
∣
t=0

. (2)

Let L(T M, T M) denote the fiber bundle with the base space M × M such that the
fiber bundle over (x, y) ∈ M × M is L(TxM, TyM), the set of all linear mappings
from TxM to TyM . We recall, from Section 4 in [6], that a transporter L on M to
be a smooth section of the bundle L(T M, T M), that is, for all x, y ∈ M , L (x, y) ∈
L(TxM, TyM) andL (x, x) = id, where id means the identity mapping. Furthermore,
L (x, y) is isometric from TxM to TyM , L −1(x, y) = L (y, x) and L (x, z) =
L (y, z)L (x, y). Given a retraction Rx , for any ηx , ξx ∈ TxM , the isometric vector
transport TS can be defined by

TS(ηx )ξx = L (x, Rx (ηx ))(ξx ).

In this paper, we require
TRx (ηx )ξx = TS(ηx )ξx .

In some manifolds, there exist retractions such that the above equality holds, e.g.,
the Stiefel manifold and the Grassmann manifold [31]. Furthermore, from the above
equality and (1), we have
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‖ξx‖ = ‖TS(ηx )ξx‖ = ‖L (x, Rx (ηx ))(ξx )‖
= ‖TRx (ηx )ξx‖ = ‖DRx (ηx )[ξx ]‖.

In this paper, we consider the following unconstrained minimization problem

min
x∈M f (x), (3)

where f : M → R is a continuously differentiable function with a lower bound and
M is a complete Riemannian manifold.

Now, we describe the descent method with new inexact line-search on Riemannian
manifolds for finding the solution of the minimization problem (3).

New Inexact Line-Search on RiemannianManifolds

Given β ∈ ]0, 1[ and σ ∈ ]0, 1[, the Hessian approximation Bk is symmetric positive
definite with respect to the metric g, and sk = −g(grad f (xk ),dk )

g(Bk [dk ],dk ) , where dk ∈ Txk M is
a descent direction with g(grad f (xk), dk) < 0. The step size αk is the largest one in
{sk, skβ, skβ2, . . .} such that

f (Rxk (αkdk)) − f (xk) ≤ σαk

(

g(grad f (xk), dk) + 1

2
αkg(Bk[dk], dk)

)

. (4)

In comparison with the original Armijo line-search on Riemannian manifolds [4,5],
there are some advantages of the new inexact line-search. For example, let αk denote
the step size defined by the original Armijo line-search and α′

k denote the step size
defined by the new inexact line-search; then, it is easy to see that αk < α′

k .
Now we present a related descent method with the new inexact line-search on

Riemannian manifolds for the minimization problem (3) as follows.

Algorithm 2.1 (Descent Method with New Inexact Line-search)

Step 1. Given x0 ∈ M, initial Hessian approximation B0, which is symmetric positive
definite with respect to the metric g, k := 0;

Step 2. If ‖grad f (xk)‖ = 0, then stop. Else go to step 3;
Step 3. Set xk+1 = Rxk (αkdk), where dk is a descent direction with g(grad f (xk),

dk) < 0, αk is defined by the new inexact line-search on Riemannian mani-
folds;

Step 4. Define pk = grad f (xk+1) −L (xk, xk+1)grad f (xk) and modify Bk as Bk+1
by using BFGS quasi-Newton algorithm or other quasi-Newton algorithms
(see, for example, [6,13]);

Step 5. Set k := k + 1 and go to step 2.

Remark 2.1 IfM is aRiemannianmanifoldwith nonnegative curvature, then byPropo-
sition 5.4.1 in [22], the exponential mapping on M induced by∇ is a retraction R, and
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the parallel transport is isometric vector transport. Furthermore, if dk = −grad f (xk)
and Bk = I (I denotes the unit matrix), then from (4), we get

f (xk+1) − f (xk) ≤ σαk

(
1

2
αk − 1

)

‖grad f (xk)‖2.

In this case, the descentmethodwith new inexact line-search onRiemannianmanifolds
is a generalization of the steepest descent method with Armijo line-search in [4].

From Lemma 5.2.1 and Lemma 5.2.2 in [31], and the definition of L (., .), we
obtain the following result.

Lemma 2.1 Suppose that the function f : M → R is twice continuously differentiable
on a set S ⊂ M. Then, there exists a constant L0 > 0 such that, for all x, y ∈ S,

‖L (x, y)grad f (x) − grad f (y)‖ ≤ L0‖R−1
x y‖. (5)

3 Global Convergence

In this section, we study the global convergence property of the descent method with
new inexact line-search on Riemannian manifolds under some appropriate assump-
tions.

Definition 3.1 The matrix Bk is said to be uniformly positive definite, iff there exist
constants m′ and m such that 0 < m′ ≤ m and for any k ∈ N,

m′‖d‖2 ≤ g(Bk[d], d) ≤ m‖d‖2, ∀d ∈ Txk M . (6)

Proposition 3.1 Assume that f is twice continuously differentiable on M, Bk is uni-
formly positive definite, dk is a descent direction, and {xk} is the sequence generated
by Algorithm 2.1. Then, there exists τ > 0 such that

f (xk) − f (xk+1) ≥ τ

(
g(grad f (xk), dk)

‖dk‖
)2

, ∀k ∈ N. (7)

Proof Let K1 = {k ∈ N : αk = sk} and K2 = {k ∈ N : αk < sk}. The proof is divided
into two parts.

Part 1. If k ∈ K1, then by (4) and (6), we have

f (xk) − f (xk+1) ≥ −αkσ

(

g(grad f (xk), dk) + 1

2
αkg(Bk[dk], αk)

)

= σ g(grad f (xk), dk)

g(Bk[dk], αk)
(g(grad f (xk), dk)
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−1

2

g(grad f (xk), dk)

g(Bk[dk], αk)
g(Bk[dk], αk))

≥ σ

2m

(
g(grad f (xk), dk)

‖dk‖
)2

, ∀k ∈ K1.

Thus,

f (xk) − f (xk+1) ≥ σ

2m

(
g(grad f (xk), dk)

‖dk‖
)2

, ∀k ∈ K1. (8)

Part 2. If k ∈ K2, then αkβ
−1 ∈ {sk, skβ, skβ2, . . .}. This implies that (4) does

not hold, and so,

f (xk) − f (Rxk (αkβ
−1dk))

< − σαkβ
−1(g(grad f (xk), dk) + 1

2
αkβ

−1g(Bk[dk], dk)), ∀k ∈ K2. (9)

Define m(t) = f (Rxk (tdk)). By using mean value theorem on the left-hand side of
the above inequality, there exists θk ∈ ]0, 1[ such that

f (xk) − f (Rxk (αkβ
−1dk))

= m(0) − m(αkβ
−1)

= dm(θkαkβ
−1)

dt
(0 − αkβ

−1)

= −αkβ
−1g

(
grad f (Rxk (θkαkβ

−1dk)),DRxk (θkαkβ
−1dk)[dk]

)

= −αkβ
−1g

(
grad f (Rxk (θkαkβ

−1dk)),L (xk, Rxk (θkαkβ
−1dk))dk

)

< − σαkβ
−1

(

g(grad f (xk), dk) + 1

2
αkβ

−1g(Bk[dk], dk)
)

, ∀k ∈ K2.

This shows that

g
(
grad f (Rxk (θkαkβ

−1dk)),L (xk, Rxk (θkαkβ
−1dk))dk

)

> σ

(

g(grad f (xk), dk) + 1

2
αkβ

−1g(Bk[dk], dk)
)

. (10)

Noting that
‖L (xk, Rxk (θkαkβ

−1dk))dk‖ = ‖dk‖,
it follows from Lemma 2.1 that there exists L0 > 0 such that

g
(
grad f (Rxk (θkαkβ

−1dk))

−L (xk, Rxk (θkαkβ
−1dk))grad f (xk),L (xk, Rxk (θkαkβ

−1dk))dk
)

≤ ‖grad f (Rxk (θkαkβ
−1dk)) − L (xk, Rxk (θkαkβ

−1dk))grad f (xk)‖‖dk‖
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≤ L0‖R−1
xk Rxk (θkαkβ

−1dk)‖‖dk‖
≤ L0αkβ

−1‖dk‖2.

This together with (10) implies that

L0αkβ
−1‖dk‖2

≥ g
(
grad f (Rxk (θkαkβ

−1dk))

−L (xk, Rxk (θkαkβ
−1dk))grad f (xk),L (xk, Rxk (θkαkβ

−1dk))dk
)

> σ(g(grad f (xk), dk) + 1

2
αkβ

−1g(Bk[dk], dk)) − g(grad f (xk), dk)

> (σ − 1)g(grad f (xk), dk), ∀k ∈ K2.

Thus, we obtain

αk >
β(σ − 1)

L0
· g(grad f (xk), dk)‖dk‖2 , ∀k ∈ K2.

Let

α′
k = β(σ − 1)

L0
· g(grad f (xk), dk)‖dk‖2 .

Then,
α′
k < αk < sk . (11)

Now, from (4) and (11), one has

f (xk) − f (xk+1) ≥ − σαk

(

g(grad f (xk), dk) + 1

2
αkg(Bk[dk], dk)

)

≥ − σ max
α′
k≤α≤sk

{

α

(

g(grad f (xk), dk) + 1

2
αg(Bk[dk], dk)

)}

= − σα′
k

(

g(grad f (xk), dk) + 1

2
αkg(Bk[dk], dk)

)

≥ − σα′
kg(grad f (xk), dk) − σ

2
α′
kskg(Bk[dk], dk)

= βσ(1 − σ)

2L0

(
g(grad f (xk), dk)

‖dk‖
)2

, ∀k ∈ K2.

Thus,

f (xk) − f (xk+1) ≥ βσ(1 − σ)

2L0

(
g(grad f (xk), dk)

‖dk‖
)2

, ∀k ∈ K2. (12)

Let

τ = min

{
σ

2m
,
βσ (1 − σ)

2L0

}

.

123



838 Journal of Optimization Theory and Applications (2019) 180:830–854

By (8) and (12), we obtain

f (xk) − f (xk+1) ≥ τ

(
g(grad f (xk), dk)

‖dk‖
)2

, ∀k ∈ N.

This completes the proof. �
Corollary 3.1 Suppose that all the assumptions of Proposition 3.1 are satisfied and dk
satisfies

cos θk = −g(grad f (xk), dk)

‖grad f (xk)‖‖dk‖ ≥ μ, (13)

where 0 < μ ≤ 1 is a constant and θk denotes the angle between −grad f (xk) and
dk. Then,

f (xk) − f (xk+1) ≥ τμ2‖grad f (xk)‖2, ∀k ∈ N.

Proof It follows from (13) that

g2(grad f (xk), dk) ≥ μ2‖grad f (xk)‖2‖dk‖2.

This together with (7) implies that

f (xk) − f (xk+1) ≥ τμ2‖grad f (xk)‖2, ∀k ∈ N.

This completes the proof. �
Theorem 3.1 Suppose that all the assumptions of Corollary 3.1 are satisfied. Then,

+∞∑

k=1

‖grad f (xk)‖2 < +∞,

and thus,
lim

k→+∞ ‖grad f (xk)‖ = 0. (14)

Proof Since f has a lower bound on M , by Corollary 3.1, the result follows. �
Remark 3.1 Theorem 3.1 shows that all accumulation points of the sequence {xk}
generated by Algorithm 2.1 are stationary points. Moreover, if we consider M = R

n

and Rx (η) = x + η, then Theorem 3.1 reduces to Corollary 3.4 in [17].

4 Convergence Rate

In this section, we analyze the convergence rate, such as R-linear convergence rate,
superlinear convergence rate and quadratic convergence rate, of the descent method
with new inexact line-search on Riemannian manifolds.
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Definition 4.1 Let {xk} be a sequence converging to x∗. The convergence is said to be

(a) R-linear, iff there exist a constant 0 ≤ θ < 1 and a positive integer N such that

[d(xk, x
∗)] 1k ≤ θ, ∀k > N ;

(b) superlinear, iff there exist a sequence {αk} converging to 0 and a positive integer
N such that

d(xk+1, x
∗) ≤ αkd(xk, x

∗), ∀k > N ;
(c) quadratic, iff there exist a constant θ ≥ 0 and a positive integer N such that

d(xk+1, x
∗) ≤ θd2(xk, x

∗), ∀k > N .

The convergence rate depends on the property of uniformly retraction-convexity,
which is defined as follows.

Definition 4.2 For a function f : M → R on the Riemannian manifold M with the
retraction R, define the function mx,η(t) = f (Rx (tη)) for x ∈ M and η ∈ TxM .
The function f is said to be uniformly retraction-convex on S ⊂ M , iff mx,η(t) is
uniformly convex, i.e., there exists a constant c > 0 such that

αmx,η(t1) + (1 − α)mx,η(t2) − mx,η(t2 + α(t1 − t2)) ≥ cα(1 − α)(t1 − t2)
2,

for all x ∈ S, η ∈ TxM with ‖η‖ = 1, α ∈ ]0, 1[ and t1, t2 ≥ 0 such that Rx (ςη) ∈ S
for all ς ∈ [0,max(t1, t2)].
Remark 4.1 From Section 3.4 in [32], if there exists a constant c > 0 such

that d2mx,η(t)
dt2

≥ c, then mx,η(t) is uniformly convex, and so f is uniformly
retraction-convex. Next, we provide a sufficient condition to ensure the uniformly
retraction-convexity of f . Assume that x∗ is a stationary point of f and the Hessian
matrix of f at x∗, denoted by Hess f (x∗), is positive definite. Then, from Lemma
3.1 in [6], there exist c1, c2 > 0, t > 0 and a neighborhood N of x∗ such that

c1 ≤ d2mx,η(t)
dt2

≤ c2 for all x ∈ N and t ≤ t . Thus, f is uniformly retraction-convex
on a neighborhood of x∗.

Lemma 4.1 Assume that f is twice continuously differentiable and uniformly
retraction-convex on M, and x∗ is a stationary point of f . Moreover, assume that

D

dt
DRx (tη)[η] = 0, ∀x ∈ M, η ∈ TxM, (15)

whereD/dt denotes the covariant derivative along the curve t �→ Rx (tη) (seeChapter
2 in [33]). Then, there exist constants m′ and m such that 0 < m′ ≤ m and

m′‖η‖2 ≤ g(Hess f (x)[η], η) ≤ m‖η‖2, ∀x ∈ M, η ∈ TxM; (16)

123



840 Journal of Optimization Theory and Applications (2019) 180:830–854

and thus,

1

2
m′‖R−1

x∗ x‖2 ≤ f (x) − f (x∗) ≤ 1

2
m‖R−1

x∗ x‖2, ∀x ∈ M; (17)

m′‖R−1
x y‖2 ≤ g(L (y, x)grad f (y) − grad f (x), R−1

x y) ≤ m‖R−1
x y‖2, ∀x, y ∈ M;

(18)

‖grad f (x)‖ ≥ m′‖R−1
x∗ x‖, ∀x ∈ M . (19)

Proof Define mx,η(t) = f (Rx (tη)), for all x ∈ M, η ∈ TxM with ‖η‖ = 1 and
t ≥ 0. Let y = Rx (tη). Then, it is easy to see that tη = R−1

x y. Since f is uniformly
retraction-convex on M , there exists a constant c > 0 such that

αmx,η(0) + (1 − α)mx,η(t) − mx,η(t + α(0 − t)) ≥ cα(1 − α)t2, ∀α ∈ ]0, 1[.

This implies that

mx,η(0) − mx,η(t) ≥ lim
α→0

{
mx,η(t + α(0 − t)) − mx,η(t)

α
+ c(1 − α)t2

}

= g(grad f (Rx (tη)), (−t)DRx (tη)[η]) + ct2

= g(grad f (Rx (tη)),L (x, Rx (tη))(−tη)) + ct2. (20)

By the similar argument, we also have

mx,η(t) − mx,η(0) ≥ g(grad f (x), tη) + ct2. (21)

Combining (20) and (21), we get

g(grad f (Rx (tη)),−L (x, Rx (tη))tη) + g(grad f (x), tη) + 2ct2 ≤ 0.

Hence,
g(L (y, x)grad f (y) − grad f (x), η) ≥ 2ct‖η‖2. (22)

Clearly,

dmx,η(t)

dt
= g(grad f (Rx (tη)),DRx (tη)[η])
= g(grad f (y),L (x, y)η)

= g(L (y, x)grad f (y), η), (23)

and
dmx,η(0)

dt
= g(grad f (x), η). (24)
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Then, it follows from (23) that

d2mx,η(t)

dt2
= g (Hess f (Rx (tη))[DRx (tη)[η]],DRx (tη)[η])

+ g

(

grad f (Rx (tη)),
D

dt
DRx (tη)[η]

)

,

Since D
dtDRx (tη)[η] = 0, we have

d2mx,η(t)

dt2
= g(Hess f (Rx (tη))[DRx (tη)[η]],DRx (tη)[η]). (25)

Thus, by (22), (23), (24) and (25), we have

g(Hess f (x)[η], η) = d2mx,η(0)

dt2

= lim
t→0

g(L (y, x)grad f (y), η) − g(grad f (x), η)

t

= lim
t→0

g(L (y, x)grad f (y) − grad f (x), η)

t
≥ 2c‖η‖2. (26)

Since f is twice continuously differentiable on M , from Lemma 2.1, for t > 0, we
obtain

g(L (y, x)grad f (y) − grad f (x), η)

t
≤ ‖L (y, x)grad f (y) − grad f (x)‖‖η‖

t

≤ L0‖tη‖‖η‖
t

= L0‖η‖2. (27)

Taking 2c = m′ and L0 = m, then, it follows from (26) and (27) that

m′‖η‖2 ≤ g(Hess f (x)[η], η) ≤ m‖η‖2, ∀x ∈ M, η ∈ TxM . (28)

Thus, (16) holds.

For any x ∈ M and x �= x∗, let z = ‖R−1
x∗ x‖ and p = R−1

x∗ x
z . Define

mx∗,p(t) = f (Rx∗(tp)).

From Taylor theorem, we have

mx∗,p(z) − mx∗,p(0) = dmx∗,p(0)

dt
(z − 0) +

∫ 1

0
(1 − t)

d2mx∗,p(t z)

dt2
z2dt . (29)
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Noting that

d2mx∗,p(t z)

dt2
= g(Hess f (Rx∗(t zp))[DRx∗(t zp)[p]],DRx∗(t zp)[p]),

then, it follows from (29) that

mx∗,p(z) − mx∗,p(0) = g(grad f (x∗), R−1
x∗ x) +

∫ 1

0
(1 − t)g(Hess f (Rx∗(t R−1

x∗ x))

×[L (x∗, Rx∗(t R−1
x∗ x))R−1

x∗ x],L (x∗, Rx∗(t R−1
x∗ x))R−1

x∗ x)dt .

(30)

By combining (28) and (30), we obtain

1

2
m′‖R−1

x∗ x‖2 =
∫ 1

0
(1 − t)m′‖L (x∗, Rx∗(t R−1

x∗ x))R−1
x∗ x‖2

≤ f (x) − f (x∗) ≤
∫ 1

0
(1 − t)m‖L (x∗, Rx∗(t R−1

x∗ x))R−1
x∗ x‖2

= 1

2
m‖R−1

x∗ x‖2. (31)

Hence, (17) holds.

For any x, y ∈ M and x �= y, let z̃ = ‖R−1
x y‖ and p̃ = R−1

x y
z̃ . Define mx,p(t) =

f (Rx (t p̃)). Then, we have

dmx,p (̃z)

dt
− dmx,p(0)

dt
=

∫ z̃

0

d2mx,p(t)

dt2
dt .

Therefore,

g(grad f (y),L (x, y) p̃) − g(grad f (x), p̃)

=
∫ z̃

0
g(Hess f (Rx (t p̃))[DRx (t p̃)[ p̃]],DRx (t p̃)[ p̃])dt, (32)

since

m′‖R−1
x y‖ =

∫ z̃

0
m′‖ p̃‖2dt ≤

∫ z̃

0
g(Hess f (Rx (t p̃))[DRx (t p̃)[ p̃]],DRx (t p̃)[ p̃])dt

≤
∫ z̃

0
m‖ p̃‖2dt = m‖R−1

x y‖.

From (32) and the above inequality, we have

m′‖R−1
x y‖2 ≤ g(L (y, x)grad f (y) − grad f (x), R−1

x y) ≤ m‖R−1
x y‖2.
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Then, inequality (18) holds. Furthermore, we obtain

m′‖R−1
x y‖ ≤ ‖grad f (y) − L (x, y)grad f (x)‖.

In particular, when y = x and x = x∗, one has

m′‖R−1
x∗ x‖ ≤ ‖grad f (x)‖.

This completes the proof. �
Remark 4.2 If the retraction Rx is an exponential mapping, then from [22], assumption
(15) holds. We further illustrate assumption (15) by the following example.

We consider the sphere S
n−1 := {x ∈ R

n : x�x = 1} with its structure of
Riemannian submanifold of the Euclidean space Rn . The projection retraction Rx is
defined by

Rx (η) = (x + η)/‖x + η‖, ∀x ∈ S
n−1, η ∈ TxS

n−1.

The chosen isomeric vector transport T on Sn−1 is

TRx (η)ξ = ξ − 2y�ξ

‖x + y‖2 (x + y), ∀x ∈ M, η, ξ ∈ TxS
n−1,

where y = Rx (η). For further details, see, for example [22,31]. From Section 8.1 in
[22] and Section 5 in [34], we obtain

D

dt
DRx (tη)[η] = D

dt
TRx (tη)η = 0, ∀x ∈ M, η ∈ TxS

n−1.

Thus, assumption (15) holds on S
n−1 for the projection retraction.

Lemma 4.2 [13] Let S ⊂ M be an open set, x ∈ S and the retraction Rx : TxM → M
has equicontinuous derivatives at x in the sense that

∀ε > 0, ∃δ > 0,∀x ∈ S : ‖v‖ < δ ⇒ ‖Pγ [x,Rx (v)]DRx (0) − DRx (v)‖ < ε.

Then, for any ε > 0, there exists ε′ > 0 such that, for all x ∈ S and v,w ∈ TxM with
‖v‖, ‖w‖ < ε′,

(1 − ε)‖w − v‖ ≤ d(Rx (v), Rx (w)) ≤ (1 + ε)‖w − v‖.

Theorem 4.1 Suppose that all the assumptions of Lemma 4.1 are satisfied, Bk is
uniformly positive definite, and dk satisfies (13). Furthermore, assume that DRxk is
equicontinuous on a neighborhood U of the stationary point x∗. Then, the sequence
{xk} generated by Algorithm 2.1 converges R-linearly to x∗.
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Proof From (14) and (19), we have

lim
k→+∞ xk = x∗.

It follows from Corollary 3.1, (17) and (19) that

f (xk) − f (xk+1) ≥ τμ2‖grad f (xk)‖2 ≥ τμ2m′2‖R−1
x∗ xk‖2

≥ 2τμ2m′2

m
( f (xk) − f (x∗)).

Set θ =
√

2 τμ2m′2
m = m′

√

2 τμ2

m . Then,

f (xk) − f (xk+1) ≥ θ2( f (xk) − f (x∗)). (33)

We can prove that θ < 1. Indeed, since f is twice continuously differentiable on M ,
it follows from Lemma 2.1 that there exists a constant L0 > 0 such that

‖L (y, x)grad f (y) − grad f (x)‖ ≤ L0‖R−1
x y‖, ∀x, y ∈ M .

Then,

g(L (y, x)grad f (y)−grad f (x), R−1
x y) ≤ ‖L (y, x)grad f (y) − grad f (x)‖‖R−1

x y‖
≤ L0‖R−1

x y‖2, ∀x, y ∈ M .

Taking L0 = m, then by the definition of τ in the proof of Proposition 3.1, we obtain

θ2 = 2τμ2m′2

m
≤ 2τm′2

m
≤ 2m′2

m
· βσ(1 − σ)

2L0
≤ βσ(1 − σ) < 1.

Set ω = √
1 − θ2. Then, ω < 1, and from (33), we obtain

f (xk+1) − f (x∗) ≤ (1 − θ2)( f (xk) − f (x∗))
= ω2( f (xk) − f (x∗)) ≤ · · · ≤ ω2(k+1)( f (x0) − f (x∗)).

From (17), we have

‖R−1
x∗ xk+1‖2 ≤ 2

m′ ( f (xk+1) − f (x∗)) ≤ 2ω2(k+1)

m′ ( f (x0) − f (x∗)). (34)
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It follows from Lemma 4.2 that, for k sufficiently large,

d(xk+1, x
∗) = d(Rx∗(R−1

x∗ xk+1), Rx∗(0x∗))

≤ 3

2
‖R−1

x∗ xk+1 − 0x∗‖

= 3

2
‖R−1

x∗ xk+1‖.

By (34), we get

lim
k→+∞[d(xk+1, x

∗)] 1
k+1 ≤ lim

k→+∞

[
3

2
‖R−1

x∗ xk+1‖
] 1

k+1

≤ lim
k→+∞

⎛

⎝ωk+1

√

2 × 9
4 ( f (x0) − f (x∗))

m′

⎞

⎠

1
k+1

= ω < 1.

Thus, xk converges R-linearly to x∗. This completes the proof. �
In the following, we assume that

(H) Bk and dk generated by Algorithm 2.1 satisfy the following condition

lim
k→+∞

‖Bk[dk] − L (x∗, xk)(Hess f (x∗)[L (xk, x∗)dk])‖
‖dk‖ = 0.

Lemma 4.3 Suppose that all the assumptions of Lemma 4.1 are satisfied, Bk is uni-
formly positive definite, dk = −B−1

k grad f (xk) and the assumption (H) holds. Then,
there exists k′ ∈ N such that

αk = 1, ∀k ≥ k′.

Proof From (14) and (19), we have

lim
k→+∞ xk = x∗. (35)

Since Bk is uniformly positive definite, there exists a constant q > 0 such that

‖dk‖ = ‖ − B−1
k grad f (xk)‖ ≤ ‖B−1

k ‖‖grad f (xk)‖ ≤ q‖grad f (xk)‖.

Then, from (14) and the above inequality, we obtain

lim
k→+∞ ‖dk‖ = 0, (36)

and thus,
lim

k→+∞ Rxk (tdk) = x∗. (37)
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Assumption (H) implies that

‖g(Bk[dk], dk) − g(L (x∗, xk)(Hess f (x∗)[L (xk, x
∗)dk]), dk)‖

= ‖g(Bk[dk] − L (x∗, xk)(Hess f (x∗)[L (xk, x
∗)dk]), dk)‖

≤ ‖Bk[dk] − L (x∗, xk)(Hess f (x∗)[L (xk, x
∗)dk])‖‖dk‖

= ‖dk‖o(‖dk‖),

and thus,

g(Bk[dk] − L (x∗, xk)(Hess f (x∗)[L (xk, x
∗)dk]), dk) = o(‖dk‖2). (38)

Clearly,

g(Hess f (Rxk (tdk))[L (xk, Rxk (tdk))dk]
−L (x∗, Rxk (tdk))(Hess f (x

∗)[L (xk, x
∗)dk]),L (xk, Rxk (tdk))dk)

≤ ‖Hess f (Rxk (tdk))[L (xk, Rxk (tdk))dk]
−L (x∗, Rxk (tdk))(Hess f (x

∗)[L (xk, x
∗)dk])‖‖dk‖

= ‖Hess f (Rxk (tdk))[L (x∗, Rxk (tdk))(L (xk, x
∗)dk)]

−L (x∗, Rxk (tdk))(Hess f (x
∗)[L (xk, x

∗)dk])‖‖dk‖
= ‖(Hess f (Rxk (tdk))L (x∗, Rxk (tdk))

−L (x∗, Rxk (tdk))Hess f (x
∗))[L (xk, x

∗)dk]‖‖dk‖
≤ ‖Hess f (Rxk (tdk))L (x∗, Rxk (tdk))

−L (x∗, Rxk (tdk))Hess f (x
∗)‖‖L (xk, x

∗)dk‖‖dk‖
= ‖Hess f (Rxk (tdk))L (x∗, Rxk (tdk)) − L (x∗, Rxk (tdk))Hess f (x

∗)‖‖dk‖2.

This together with (37) implies that, for k sufficiently large,

g(Hess f (Rxk (tdk))[L (xk, Rxk (tdk))dk] − L (x∗, Rxk (tdk))

(Hess f (x∗)[L (xk, x
∗)dk]),L (xk, Rxk (tdk))dk) = o(‖dk‖2).

Define m(t) = f (Rxk (tdk)). By using Taylor theorem, (38) and the above equality,
we obtain for k sufficiently large,

m(1) − m(0) = dm(t)

dt

∣
∣
∣
∣
t=0

+
∫ 1

0
(1 − t)

d2m

dt2
(t)dt

= g(grad f (xk), dk) +
∫ 1

0
(1 − t)g(Hess f (Rxk (tdk))[DRxk (tdk)[dk]],DRxk (tdk)[dk ])dt

= g(grad f (xk), dk) + 1

2
g(Bk[dk ], dk)

+
∫ 1

0
(1 − t){g(Hess f (Rxk (tdk))[L (xk , Rxk (tdk))dk],L (xk , Rxk (tdk))dk)
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− g(Hess f (x∗)[L (xk , x
∗)dk ],L (xk , x

∗)dk)}dt − 1

2
g(Bk[dk ], dk)

+1

2
g(Hess f (x∗)[L (xk , x

∗)dk ],L (xk , x
∗)dk)

= g(grad f (xk), dk) + 1

2
g(Bk[dk ], dk)

+
∫ 1

0
(1 − t){g(Hess f (Rxk (tdk))[L (xk , Rxk (tdk))dk]

−L (x∗, Rxk (tdk))(Hess f (x
∗)[L(xk , x

∗)dk]),L (xk , Rxk (tdk))dk)}dt
+1

2
g(L (x∗, xk)(Hess f (x∗)[L (xk , x

∗)dk ]) − Bk[dk ], dk)

= g(grad f (xk), dk) + 1

2
g(Bk[dk ], dk) + o(‖dk‖2)

= − 1

2
g(grad f (xk), B

−1
k grad f (xk)) + o(‖dk‖2).

Thus, for k sufficiently large, we obtain

f (Rxk (dk)) − f (xk) ≤ σ(g(grad f (xk), dk) + 1

2
g(Bk[dk], dk)).

This implies that there exists k′ > 0 such that

αk = 1, ∀k ≥ k′.

This completes the proof. �
Theorem 4.2 Suppose that all the assumptions of Lemma 4.3 are satisfied, and DRxk
is equicontinuous on a neighborhood U of the stationary point x∗. Then, the sequence
{xk} generated by Algorithm 2.1 converges superlinearly to x∗.

Proof From Lemma 4.3, we obtain that there exists k′ > 0 such that

xk+1 = Rxk (dk), ∀k ≥ k′,

where dk = −B−1
k grad f (xk). Let γ be the curve defined by γ (t) = Rxk (tdk). Then,

we have

‖Pγ [Rxk (tdk ),xk ]Hess f (Rxk (tdk))[L (xk, Rxk (tdk))dk]
−L (x∗, xk)(Hess f (x∗)[L (xk, x

∗)dk])‖
= ‖(Pγ [Rxk (tdk),xk ]Hess f (Rxk (tdk))L (x∗, Rxk (tdk))

−L (x∗, xk)Hess f (x∗))[L (xk, x
∗)dk]‖

≤ ‖Pγ [Rxk (tdk),xk ]Hess f (Rxk (tdk))L (x∗, Rxk (tdk))

−L (x∗, xk)Hess f (x∗)‖‖dk‖.
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It follows from (35) and (37) that, for k sufficiently large,

‖Pγ [Rxk (tdk),xk ]Hess f (Rxk (tdk))[L (xk, Rxk (tdk))dk]
−L (x∗, xk)(Hess f (x∗)[L (xk, x

∗)dk])‖ = o(‖dk‖). (39)

Noting that

Pγ [xk+1,xk ]grad f (xk+1) − grad f (xk)

=
∫ 1

0
Pγ [Rxk (tdk),xk ]Hess f (Rxk (tdk))[DRxk (tdk)[dk]]dt

=
∫ 1

0
Pγ [Rxk (tdk),xk ]Hess f (Rxk (tdk))[L (xk, Rxk (tdk))dk]dt

= L (x∗, xk)(Hess f (x∗)[L (xk, x
∗)dk])

+
∫ 1

0
{Pγ [Rxk (tdk),xk ]Hess f (Rxk (tdk))[L (xk, Rxk (tdk))dk]

−L (x∗, xk)(Hess f (x∗)[L (xk, x
∗)dk])}dt .

Since dk = −B−1
k grad f (xk), we have grad f (xk) = −Bkdk and

Pγ [xk+1,xk ]grad f (xk+1)

= L (x∗, xk)(Hess f (x∗)[L (xk, x
∗)dk]) − Bkdk

+
∫ 1

0
{Pγ [Rxk (tdk),xk ]Hess f (Rxk (tdk))[L (xk, Rxk (tdk))dk]

−L (x∗, xk)(Hess f (x∗)[L (xk, x
∗)dk])}dt .

Consequently, for k sufficiently large, it follows from (39) that

‖Pγ [xk+1,xk ]grad f (xk+1)‖
≤ ‖L (x∗, xk)(Hess f (x∗)[L (xk, x

∗)dk]) − Bkdk‖ + o(‖dk‖).

By assumption (H), we have

lim
k→+∞

‖grad f (xk+1)‖
‖dk‖

≤ lim
k→+∞

‖L (x∗, xk)(Hess f (x∗)[L (xk, x∗)dk]) − Bkdk‖ + o(‖dk‖)
‖dk‖ = 0.

(40)

From Lemma 4.2, we obtain for k sufficiently large,

1

2
‖R−1

x∗ xk+1‖ ≤ d(xk+1, x
∗) = d(Rx∗(R−1

x∗ xk+1), Rx∗(0x∗)) ≤ 3

2
‖R−1

x∗ xk+1‖,
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and

1

2
‖R−1

xk xk+1‖ ≤ d(xk+1, xk) = d(Rxk (R
−1
xk xk+1), Rxk (0xk )) ≤ 3

2
‖R−1

xk xk+1‖.

This together with (19) implies that

‖grad f (xk+1)‖
‖dk‖ ≥ m′‖R−1

x∗ xk+1‖
‖R−1

xk xk+1‖
≥ m′ × 2

3d(xk+1, x∗)
2d(xk+1, xk)

≥ m′ × 1
3d(xk+1, x∗)

d(xk+1, x∗) + d(xk, x∗)
=

m′
3

d(xk+1,x∗)
d(xk ,x∗)

1 + d(xk+1,x∗)
d(xk ,x∗)

.

Consequently, from (40), we obtain

lim
k→+∞

d(xk+1, x∗)
d(xk, x∗)

= 0,

which implies that {xk} converges superlinearly to x∗ . This completes the proof. �
Theorem 4.3 Suppose that all the assumptions of Lemma 4.3 are satisfied, Bk =
Hess f (xk) for k sufficiently large, and DRxk is equicontinuous on a neighborhood U
of the stationary point x∗. Moreover, assume there exists a constant L̃ > 0 such that

‖Hess f (y) − Pγ [x,y]Hess f (x)L (y, x)‖ ≤ L̃d(x, y), ∀x, y ∈ U .

Then, the sequence {xk} generated by Algorithm 2.1 converges quadratically to x∗ .

Proof From Lemma 4.3, there exists k′ > 0 such that

xk+1 = Rxk (dk), ∀k ≥ k′,

where dk = −(Hess f (xk))−1grad f (xk). Let γ be the curve defined by γ (t) =
Rxk (t R

−1
xk x∗). Then, it follows from Lemma 4.2 that, for k sufficiently large,

‖Hess f (xk)[dk − R−1
xk x∗]‖

=
∥
∥
∥Pγ [x∗,xk ]grad f (x∗) − grad f (xk) − Hess f (xk)[R−1

xk x∗]
∥
∥
∥

=
∥
∥
∥
∥

∫ 1

0
P

γ [Rxk (t R−1
xk x∗),xk ]Hess f (Rxk (t R

−1
xk x∗))[DRxk (t R

−1
xk x∗)[R−1

xk x∗]]dt

−Hess f (xk)[R−1
xk x∗]

∥
∥
∥

≤
∫ 1

0
‖(Hess f (Rxk (t R

−1
xk x∗)) − P

γ [xk ,Rxk (t R−1
xk x∗)]Hess f (xk)L (Rxk (t R

−1
xk x∗), xk))

[L (xk , Rxk (t R
−1
xk x∗))R−1

xk x∗]‖dt

≤
∫ 1

0
‖Hess f (Rxk (t R

−1
xk x∗)) − P

γ [xk ,Rxk (t R−1
xk x∗)]Hess f (xk)L (Rxk (t R

−1
xk x∗), xk)‖‖R−1

xk x∗‖dt
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≤
∫ 1

0
L̃d(xk , Rxk (t R

−1
xk x∗))‖R−1

xk x∗‖dt

= L̃‖R−1
xk x∗‖

∫ 1

0
d(xk , Rxk (t R

−1
xk x∗))dt

= L̃‖R−1
xk x∗‖

∫ 1

0
d(Rxk (0xk ), Rxk (t R

−1
xk x∗))dt

≤ L̃‖R−1
xk x∗‖

∫ 1

0

3

2
‖t R−1

xk x∗‖dt = 3

4
L̃‖R−1

xk x∗‖2. (41)

Since f is uniformly retraction-convex on M , from (16), there existsm′ > 0 such that

‖Hess f (xk)[dk − R−1
xk x∗]‖ ≥ m′‖dk − R−1

xk x∗‖. (42)

Furthermore, it follows from Lemma 4.2 that, for k sufficiently large,

d(xk+1, x
∗) = d(Rxk (dk), Rxk (R

−1
xk x∗)) ≤ 3

2
‖R−1

xk x∗ − dk‖, (43)

and

d(xk, x
∗) = d(Rxk (0xk ), Rxk (R

−1
xk x∗)) ≥ 1

2
‖R−1

xk x∗‖. (44)

By (41), (42), (43) and (44), we obtain

2

3
d(xk+1, x

∗) ≤ ‖dk − R−1
xk x∗‖ ≤ 1

m′ ‖Hess f (xk)[dk − R−1
xk x∗]‖

≤ 3L̃

4m′ ‖R−1
xk x∗‖2 ≤ 3L̃

m′ d
2(xk, x

∗).

Thus,

d(xk+1, x
∗) ≤ 9L̃

2m′ d
2(xk, x

∗),

which implies that {xk} converges quadratically to x∗. This completes the proof. �
Remark 4.3 Smith [21, Theorem 4.4] presented Newton’s method on Riemannian
manifolds and proved that its convergence is quadratic. If the retraction Rx is the
exponential mapping, and the isometric vector transport is the parallel transport, then
Theorem 4.3 can be seen as a generalization of Theorem 4.4 in [21]. If M = R

n and
Rx (η) = x + η, then Theorems 4.1, 4.2 and 4.3 reduce to Theorems 4.1, 5.1 and 5.3
in [17].

Example 4.1 Let St(p, n) (p ≤ n) denote the set of all n × p orthonormal matrices,
that is,

St(p, n) :=
{
X ∈ R

n×p : X�X = Ip
}

,

where Ip denotes the p× p identity matrix. The set St(p, n) is called Stiefel manifold.
The tangent space of St(p, n) is given by

TXSt(p, n) =
{
XΩ + X⊥K : Ω� = −Ω, K ∈ R

(n−p)×p
}

,
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where X⊥ is any n × (n − p) orthonormal matrix such that (X X⊥) is an orthogonal
matrix. The canonical inner product is given by

g(Z1, Z2) = trace(Z�
1 Z2), ∀Z1, Z2 ∈ TXSt(p, n).

As in [6], the isometric vector transport from TX1St(p, n) to TX2St(p, n) is given by

L (X1, X2) = BX2B
�
X1

,

where a� denotes the flat of a ∈ TXSt(p, n), i.e., a� : TXSt(p, n) → R : v → g(a, v).

Moreover, a smooth function B : U → R
np×(

np−p(p+1)
2 ) : X �→ BX is defined on

an open set U of St(p, n), and the columns of BX form an orthonormal basis of
TXSt(p, n). Let X ∈ St(p, n). Then, from [6,31], we obtain

(RX (η) RX (η)⊥) = (X X⊥) exp

(
Ω −K�
K 0(n−p)×(n−p)

)

,

where Ω = X�η and K = X�⊥η. The function Y = RX (η) is the desired retraction
by the isometric vector transport L (·, ·). Consider the cost function

f (X) = trace(X�AX),

where A = diag(μ1, . . . , μp) with 0 < μ1 < · · · < μp. From Chapter 11 in [31],
the gradient of f is

grad f (X) = PX (2AX),

where sym(Q) = Q+Q�
2 and PX (V ) = Xsym(X�V ). Moreover, the Hessian of f

on η ∈ TXSt(p, n) is given by

Hess f (X)η = PX

(
2Aη − ηsym(X�(2AX))

)
.

Let β, σ ∈ ]0, 1[, Bk = Hess f (xk) and dk = −B−1
k grad f (xk) for all k ∈ N. Define

mX ,η(t) = f (RX (tη)) for all X ∈ St(p, n) and η ∈ TXSt(p, n). From the above

equality, it is easy to check that
d2mX ,η(t)

dt2
> 0. Thus, by Remark 4.1, f is uniformly

retraction-convex. Furthermore, the vector transport L (·, ·) is parallel translation.
From Section 8.1 in [22] and Section 5 in [34], it follows that assumption (15) holds.
Thus, all the assumptions of Theorem 4.1 are satisfied. Assume that X∗ is a stationary
point of f . Then, the sequence {Xk} generated by Algorithm 2.1 converges R-linearly
to the stationary point X∗.

Example 4.2 Let M = H := {(x1, x2) ∈ R
2 : x2 > 0} be the Poincaré plane endowed

with the Riemannian metric given by

gi j = 1

x22
δi j , i, j = 1, 2.
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Then,H is a Hadamard manifold with the constant sectional curvature − 1 (see [14]).
The geodesics in H are vertical semilines

Ca : x = a, y = cet , t ∈] − ∞,+∞[,

and semicircles

Cb,r : x = b − r tanh t, y = r

cosh t
, t ∈] − ∞,+∞[.

For fixed (x0, y0) ∈ H and for the vector p = (p1, p2) ∈ T(x0,y0)H, we have

R(x0,y0)(tp) = exp(x0,y0)(tp)

=
{(

x0, y0et
)
, if p1 = 0, p2 = y0,(

x0 + p2
p1

‖p‖ + ‖p‖2
p1

tanh t,−y0
‖p‖
p1

1
cosh t

)
, if p1 < 0, t ∈ [0,+∞[,

where ‖p‖2 = ‖p1‖2+‖p2‖2. For further details, see Chapter 1 in [14]. Let f : H →
R be a twice continuously differentiable function. Then, as in [14], the gradient of f
and the Hessian of f are given by

grad f ((x1, x2)) =
(

x22
∂ f

∂x1
, x22

∂ f

∂x2

)

,

and

Hess f ((x1, x2)) =
⎛

⎝

∂2 f
∂x21

− 1
x2

∂ f
∂x2

∂2 f
∂x1∂x2

+ 1
x2

∂ f
∂x1

∂2 f
∂x1∂x2

+ 1
x2

∂ f
∂x1

∂2 f
∂x22

+ 1
x2

∂ f
∂x2

,

⎞

⎠ ,

respectively. Let C ⊆ H be defined by

C := {(x1, x2) ∈ H : (x1 − 1)2 + x22 ≤ 5, x1 ≥ x2 ≥ 1}.

Then, C is geodesic convex in H (see, [14]). Consider the cost function

f ((x1, x2)) = ln2
x1
x2

, ∀(x1, x2) ∈ C .

Then, we obtain

Hess f ((x1, x2)) =
( 2

x21
(1 − ln x1

x2
) + 2

x22
ln x1

x2
2

x1x2
(ln x1

x2
− 1)

2
x1x2

(ln x1
x2

− 1) 2
x22

)

, ∀(x1, x2) ∈ C .

It is easy to check f is uniformly retraction-convex on C . However, f is not uni-
formly convex on C in Euclidean sense. Suppose that the isometric vector transport
is parallel transport. Let β, σ ∈ ]0, 1[, Bk = Hess f (xk) and dk = −B−1

k grad f (xk)
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for all k ∈ N. Then, all the assumptions of Theorems 4.1, 4.2 and 4.3 are satisfied.
Hence, the sequence {xk} generated by Algorithm 2.1 converges R-linearly / super-
linearly/quadratically to the stationary point x∗.

5 Conclusions

We proposed a descent method with new inexact line-search for unconstrained opti-
mization problems on Riemannian manifolds. By using the retraction and isometric
vector transport, the global convergence of the descent method with new inexact
line-search on Riemannian manifolds is obtained, under some appropriate assump-
tions. Moreover, the R-linear / superlinear / quadratic convergence rate of the descent
method, with new inexact line-search, is extended from linear spaces to Riemannian
manifolds. In the future, we shall explore some other efficiently computable retrac-
tions and vector transport, which can be adjusted in the given problems.Moreover, it is
interesting to do some numerical experiments and comparisons with other line-search
algorithms for practical problems on Riemannian manifolds.
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