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Abstract
This paper concerns optimal control problems for a class of sweeping processes
governed by discontinuous unbounded differential inclusions that are described via
normal cone mappings to controlled moving sets. Largely motivated by applications
to hysteresis, we consider a general setting where moving sets are given as inverse
images of closed subsets of finite-dimensional spaces under nonlinear differentiable
mappings dependent on both state and control variables. Developing the method of
discrete approximations and employing generalized differential tools of first-order and
second-order variational analysis allow us to derive nondegenerate necessary optimal-
ity conditions for such problems in extended Euler–Lagrange and Hamiltonian forms
involving theHamiltonianmaximization. The latter conditions of the PontryaginMax-
imum Principle type are the first in the literature for optimal control of sweeping
processes with control-dependent moving sets.
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1 Introduction

The original sweeping process (“processus de rafle”) was introduced by Moreau [1]
as a differential inclusion governed by the negative normal cone to a nicely moving
convex set. Themotivation came from problems of elastoplasticity. It has been realized
that the Cauchy problem for Moreau’s sweeping process and the like admits a unique
solution (see, e.g., [2]), and hence optimization does not make sense in such settings. It
was suggested in [3], probably for the first time in the literature, to formulate optimal
control problems for the sweeping process by entering control functions into moving
sets. In this way, we arrive at new and very challenging classes of optimal control
problems on minimizing certain Bolza-type cost functionals over feasible solutions to
highly non-Lipschitzian unbounded differential inclusions under irregular pointwise
state-control constraints. It occurs that not only results but also methods developed
in optimal control theory for controlled differential equations and Lipschitzian dif-
ferential inclusions (see, e.g., [4–6] and the references therein) are not suitable for
applications to the new classes of sweeping control systems. Papers [3,7] present sig-
nificant extensions to sweeping control systems with controlled polyhedral moving
sets of the method of discrete approximations developed in [5,8] for Lipschitzian dif-
ferential inclusions.Major new ideas in the obtained extensions consist ofmarrying the
discrete approximation approach to recently established second-order subdifferential
calculus and explicit computations of the corresponding second-order constructions
of variational analysis. Other developments of the discrete approximation approach
to derive necessary conditions for controlled sweeping systems with controls not only
in the moving sets but also in additive perturbations are given in [9–11], where the
reader can find applications of the obtained results to crowd motion models of traffic
equilibrium. The method of discrete approximations was also implemented in [12] to
study various optimal control issues for evolution inclusions governed by one-sided
Lipschitzianmappings and in [13] for those described bymaximalmonotone operators
in Hilbert spaces, but without deriving necessary optimality conditions.

Note that the necessary optimality conditions obtained in the previous papers [7–9]
do not contain the formalism of the Pontryagin Maximum Principle (PMP) [14] (i.e.,
the maximization of the corresponding Hamiltonian function) established in classi-
cal optimal control and then extended to optimal control problems for Lipschitzian
differential inclusions. To the best of our knowledge, necessary optimality conditions
involving the maximization of the corresponding Hamiltonian were first obtained for
sweeping control systems in [15], where the authors considered a sweeping process
with uncontrolled strictly smooth, convex, and solid, and moving sets when control
functions entering linearly an adjacent ordinary differential equation. Further results
with themaximum condition for global (as in [15]) minimizers were derived in [16,17]
for sweeping control systems with uncontrolled moving sets but with measurable
controls entering additive function terms. The assumptions imposed in these papers
are pretty strong and involve, in particular, higher-order smoothness requirements on
compact moving sets. The penalty-type approximation methods developed in [15–17]
are different from each other, significantly based on the smoothness of uncontrolled
moving sets while being totally distinct from the method of discrete approximations
employed in our previous papers and in what follows.
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This paper addresses a new class of sweeping control problems where the control-
dependent moving sets are given as inverse images of arbitrary closed sets under
smooth mappings. Besides being attracted by challenging mathematical issues, our
interest to such problems is largely motivated by applications to rate-independent
operators that frequently appear, for example, in various plasticity models and in the
study of hysteresis; see Sects. 7 and 8. While the underlying approach to derive nec-
essary conditions for local minimizers in the new setting is the usage of the method of
discrete approximations and generalized differentiation, similarly to [7] and our other
publications on sweeping optimal control, some important elements of our technique
here are significantly different from the previous developments. From one side, the
new/modified technique allows us to establish nondegenerate necessary optimality
conditions for local minimizers in the extended Euler–Lagrange form for more gen-
eral sweeping systems with relaxing several restrictive technical assumptions of [7]
in its polyhedral setting. On the other hand, we obtain optimality conditions of the
Hamiltonian/PMP type, which are new even for polyhedral moving sets as in [7] under
an additional surjectivity assumption. The optimality conditions in the PMP form are
the first results of this type for sweeping process with controlled moving sets.

The rest of the paper is organized as follows. Section 2 contains the problem formu-
lation and presents some background material. In Sect. 3, we formulate and discuss
our standing assumptions and present necessary preliminaries from first-order and
second-order generalized differentiation that are widely used for deriving the main
results of the paper.

Section 4 concerns discrete approximations of feasible and local optimal solutions
to the sweeping control problem (P)with the verification of the required strong conver-
gence. In Sect. 5, we derive the extended Euler–Lagrange conditions for local optimal
solutions to (P) by passing to the limit from discrete approximations and using the
second-order subdifferential calculations.

Section 6 contains necessary optimality conditions of the PMP type involving the
maximization of the new Hamiltonian function, discusses relationships with the con-
ventional Hamiltonians, and presents an example showing that themaximum principle
in the conventional Hamiltonian form fails in our framework. More examples of some
practical meaning in the areas of elastoplasticity and hysteresis are given in Sect. 7.
The final Sect. 8 discusses some directions of the future research.

Throughout the paper, we use standard notation of variational analysis and control
theory; see, for example, [5,6,18]. Recall that N := {1, 2, . . .}, that A∗ stands for the
transposed/adjoint matrix to A, and that B denotes the closed unit ball of the space in
question.

2 Problem Formulation and BackgroundMaterial

The basic sweeping process was introduced by Moreau in the form

ẋ(t) ∈ −N
(
x(t); C(t)

)
a.e. t ∈ [0, T ], (1)
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where N (x;Ω) stands for the normal cone to a convex set Ω ⊂ R
n at x defined by

N (x;Ω) :=
{{

v ∈ R
n : 〈v, u − x〉 ≤ 0 for all u ∈ Ω

}
if x ∈ Ω,

∅ otherwise,
(2)

and where the convex variable set C(t) continuously evolves in time. As mentioned in
Sect. 1, the Cauchy problem x(0) = x0 ∈ C(0) for (1) has a unique solution, and hence
there is no room for optimization of (1) in such a framework. This is totally different
from the developed optimal control theory for Lipschitzian differential inclusions of
the type

ẋ(t) ∈ F
(
x(t)

)
a.e. t ∈ [0, T ], (3)

which arose from the classical one for controlled differential equations

ẋ(t) = f
(
x(t), u(t)

)
, u(t) ∈ U a.e. t ∈ [0, T ] (4)

with F(x) := f (x, U ) = {y ∈ R
n| y = f (x, u) for some u ∈ U } in (3).

It was proposed in [3] to use a control parametrization of the moving set C(t) in
the form

C(t) = C
(
u(t)

)
for all t ∈ [0, T ]. (5)

This leads us to optimization of non-Lipschitzian differential inclusionswith the point-
wise constraints

x(t) ∈ C
(
u(t)

)
for all t ∈ [0, T ], (6)

which intrinsically arise from (1) and (5) due to the normal cone construction in (2).
Developing the method of discrete approximations, paper [7] establishes necessary
optimality conditions for the generalized Bolza problem with the controlled sweeping
dynamics in (1), (5), and (6) described by the moving convex polyhedra of the type

C(t) := {x ∈ R
n : 〈ui (t), x〉 ≤ bi (t), i = 1, . . . , m

}
, t ∈ [0, T ], (7)

where both actions ui (t) and bi (t) are involved in control. Further developments and
applications in this direction are given in [9]–[11] for polyhedral sweeping control
problems with control functions acting in both moving sets and additive perturbations.

In this paper, we consider sweeping control systems modeled as

ẋ(t)∈ f
(
t, x(t)

)−N
(
g(x(t)); C(t, u(t))

)
a.e. t ∈ [0, T ], x(0)= x0∈C

(
0, u(0)

)
,

(8)

where the controlled moving set is given by

C(t, u) := {x ∈ R
n : ψ(t, x, u) ∈ Θ

}
, (t, u) ∈ [0, T ] × R

m, (9)
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with f : [0, T ]×R
n → R

n , g : Rn → R
n ,ψ : [0, T ]×R

n ×R
m → R

s , andΘ ⊂ R
s .

Definition (9) amounts to saying that C(t, u) is the inverse image of the set Θ under
the mapping x 
→ ψ(t, g(x), u) for any ((t, u). Throughout the paper, we assume that
the setΘ is locally closed around the reference point. We do not impose any convexity
assumption on C(t, u) and use in (8) the (basic, limiting, Mordukhovich) normal cone
to an arbitrary locally closed set Ω ⊂ R

n at x̄ ∈ R
n defined by

N (x̄;Ω)

:=
{{

v∈R
n : ∃xk → x̄, αk ≥0, wk ∈�(xk;Ω), αk(xk −wk)→v

}
if x̄ ∈Ω,

∅ otherwise,

(10)

where �(x;Ω) stands for the Euclidean projector of x onto Ω . When Ω is convex,
the normal cone (10) reduces to the one (2) in the sense of convex analysis, but in
general the multifunction x ⇒ N (x;Ω) is nonconvex-valued while satisfying a full
calculus together with the associated subdifferential of extended real-valued functions
and coderivative of set-valued mappings considered below. Such a calculus is due to
variational/extremal principles of variational analysis; see [5,18,19] for more details.

Our major goal here is to study the optimal control problem (P) of minimizing the
cost functional

minimize J [x, u] := ϕ (x(T )) +
∫ T

0
� (t, x(t), u(t), ẋ(t), u̇(t)) dt (11)

over absolutely continuous control actions u(·) and the corresponding absolutely con-
tinuous trajectories x(·) of the sweeping differential inclusion (8) generated by the
controlled moving set (9). It follows from (8) and the normal cone definition (10)
that the optimal control problem in (8) and (11) intrinsically contains the pointwise
constraints on both state and control functions

ψ
(
t, g(x(t)), u(t)

) ∈ Θ for all t ∈ [0, T ].

Observe that the optimal control problem studied in [7] is a particular case of our
problem (P) that corresponds to the choice of g(x) := x (identity operator), of
ψ(t, x, w) := Ax − b with w = (A, b), and of Θ := R

m− in (8) and (9).

3 Standing Assumptions and Preliminaries

Let us first formulate the major assumptions on the given data of problem (P) that
are standing throughout the whole paper. Since our approach to derive necessary
optimality conditions for (P) is based on the method of discrete approximations, we
impose the a.e. continuity of the functions involved with respect to the time variable,
although it is not needed for results dealing with discrete systems before passing to
the limit. Note also that the time variable is never included in subdifferentiation. As
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mentioned above, the constraint set Θ in (9) is assumed to be locally closed unless
otherwise stated.

Our standing assumptions are as follows:
(H1) There exits L f > 0 such that ‖ f (t, x) − f (t, y)‖ ≤ L f ‖x − y‖ for all

x, y ∈ R
n, t ∈ [0, T ] and the mapping t 
→ f (t, x) is a.e. continuous on [0, T ] for

each x ∈ R
n .

(H2) There exits Lg > 0 such that ‖g(x) − g(y)‖ ≤ Lg‖x − y‖ for all x, y ∈ R
n .

(H3) For each (t, u) ∈ [0, T ] × R
m , the mapping ψt,u(x) := ψ(t, x, u) is C2-

smooth around the reference points with the surjective derivative ∇ψt,u(x) satisfying

‖∇ψt,u(x) − ∇ψt,v(x)‖ ≤ Lψ‖u − v‖

with the uniform Lipschitz constant Lψ . Furthermore, the mapping t 
→ ψ(t, x) is
a.e. continuous on [0, T ] for each x ∈ R

n and u ∈ R
m .

(H4) There are a number τ > 0 and a mapping ϑ : × R
n × R

n × R
m → R

m

locally Lipschitz continuous and uniformly bounded on bounded sets such that for all
t ∈ [0, T ], v̄ ∈ N (ψ(t,ū)(x̄);Θ), and x ∈ ψ−1

(t,u)(Θ) with u := ū + ϑ(x, x̄, ū) there
exists v ∈ N (ψ(t,u)(x);Θ) satisfying ‖v − v̄‖ ≤ τ‖x − x̄‖.

(H5) The cost functions ϕ : Rn → R := [−∞,∞[ and �(t, ·) : R2(n+m) → R in
(11) are bounded from below and lower semicontinuous (l.s.c.) around a given feasible
solution to (P) for a.e. t ∈ [0, T ], while the integrand � is a.e. continuous in t and is
uniformly majorized by a summable function on [0, T ].

Assumption (H4) is technical and seems to be the most restrictive. Let us show
nevertheless that it holds automatically in the polyhedral setting of [7] and also for
nonconvex moving sets.

Proposition 3.1 (Validity of (H4) for controlled polyhedra) For x ∈ R
n and w =

(A, b) where A is a m × n-matrix and b ∈ R
m, let

ψ
(
t, x, w

) := Ax − b and Θ = R
m−

in (9). Then condition (H4) is satisfied.

Proof Pick v̄ ∈ N (Ax̄ − b̄;Rm−), x ∈ R
n and denote ϑ(y, z, A) := (0, A(y − z)).

Choose (A, b) := (A, b̄) + ϑ(x, x̄, A) and hence get A = A and b = b̄ + A(x − x̄),
which results in Ax̄ − b̄ = Ax − b. Then, N (〈Ax̄ − b̄;Rm−) = N (Ax − b;Rm−). Thus,
condition (H4) is satisfied with v := v̄ for any τ ≥ 1. ��

The following simple example illustrates that (H4) is also satisfied in standard
nonconvex settings.

Example 3.1 (Validity of (H4) for nonconvex moving sets) Consider the nonconvex
set

C(t, u) = {x ∈ R : x2 ≥ −u + 1
}
,

which corresponds to ψ(x, u) := x2 + u − 1 and Θ := [0,∞[ in (9). To verify (H4)
in this setting, denote ϑ(y, z, u) := −(y − z)(y + z) and pick any v̄ ∈ N (x̄2 + ū −
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1; [0,∞[) and x ∈ R
n . Choosing now u := ū − (x − x̄)(x + x̄), we get x2 + u − 1 =

x̄2 + ū − 1 and thus verify (H4) with v := v̄ for every τ ≥ 1.

Let us next discuss condition (H3), which plays a significant role in deriving some
major results of the paper. This condition, which is equivalent in the finite-dimensional
setting under consideration to the full rank of the Jacobian matrix ∇ψt,u(x), amounts
to metric regularity of the mapping x 
→ ψt,u(x) by the seminal Lyusternik–Graves
theorem; see, for example, [5, Theorem 1.57]. The following normal cone calculus
rule is a consequence of [5, Theorem 1.17].

Proposition 3.2 (Normal cone representation for inverse images) Under the validity
of (H3), the normal cone (10) to the controlled moving set (9) is represented by

N
(
x; C(t, u)

) = ∇ψt,u(x)∗N
(
ψt,u(x);Θ

)
whenever ψ(t, x, u) ∈ Θ.

To proceed further, we recall some constructions of first-order and second-order
generalized differentiation for functions and multifunctions/set-valued mappings
needed in what follows; see [5,19] for detailed expositions. All these constructions
are generated geometrically by our basic normal cone (10).

Given a set-valued mapping F : Rn ⇒ R
q and a point (x̄, ȳ) ∈ gph F from its

graph

gph F := {(x, y) ∈ R
n × R

q : y ∈ F(x)
}
,

the coderivative D∗F(x̄, ȳ) : Rq ⇒ R
n of F at (x̄, ȳ) is defined by

D∗F(x̄, ȳ)(u) := {v ∈ R
n : (v,−u) ∈ N

(
(x̄, ȳ); gph F

)}
, u ∈ R

q , (12)

where ȳ is omitted in the notation if F : Rn → R
q is single-valued. If furthermore

F is C1-smooth around x̄ (or merely strictly differentiable at this point), we have
D∗F(x̄)(v) = {∇F(x̄)∗v} via the adjoint Jacobianmatrix. In general, the coderivative
(12) is a positively homogeneous multifunction satisfying comprehensive calculus
rules and providing complete characterizations of major well-posedness properties
in variational analysis related to Lipschitzian stability, metric regularity, and linear
openness; see [5,18].

For an extended real-valued function φ : Rn → R finite at x̄ , i.e., with x̄ ∈ dimφ,
the (first-order) subdifferential of φ at x̄ is defined geometrically by

∂φ(x̄) := {v ∈ R
n : (v,−1) ∈ N ((x̄, φ(x̄)); epiφ)

}
(13)

via the normal cone (10) to the epigraphical set epiφ := {(x, α) ∈ R
n+1| α ≥ φ(x)}.

If φ(x) := δΩ(x), the indicator function of a set Ω that is equal to 0 for x ∈ Ω and to
∞ otherwise, we get ∂φ(x̄) = N (x̄;Ω). Given further v̄ ∈ ∂φ(x̄), the second-order
subdifferential (or generalized Hessian) ∂2φ(x̄, v̄) : Rn ⇒ R

n of φ at x̄ relative to v̄

is defined as the coderivative of the first-order subdifferential by

∂2φ(x̄, v̄)(u) := (D∗∂φ)(x̄, v̄)(u), u ∈ R
n, (14)
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where v̄ = ∇φ(x̄) is omitted when φ is differentiable at x̄ . If φ is C2-smooth around
x̄ , then (14) reduces to the classical (symmetric) Hessian matrix

∂2φ(x̄)(u) = {∇2φ(x̄)u
}

for all u ∈ R
n .

For applications in this paper, we also need partial versions of the above subdif-
ferential constructions for functions of two variables φ : Rn × R

m → R. Consider
the partial first-order subdifferential mapping (x, w) 
→ ∂xφ(x, w) for ϕ(x, w) with
respect to x by

∂xφ(x, w) := {set of subgradients v ∈ R
n of φw := φ(·, w) at x

} = ∂φw(x)

and then, picking (x̄, w̄) ∈ domφ and v̄ ∈ ∂xφ(x̄, w̄), define the partial second-order
subdifferential of φ with respect to x at (x̄, w̄) relative to v̄ by

∂2x φ(x̄, w̄, v̄)(u) := (D∗∂xφ)(x̄, w̄, v̄)(u) for all u ∈ R
n . (15)

If φ is C2-smooth around (x̄, w̄), we have the representation

∂2φ(x̄, w̄)(u) = {(∇2
xxφ(x̄, w̄)∗u,∇2

xwφ(x̄, w̄)∗u
)}

for all u ∈ R
n .

Taking into account the controlled moving set structure (9), important roles in this
paper are played by the parametric constraint system

S(w) := {x ∈ R
n : ψ(x, w) ∈ Θ

}
, w ∈ R

m, (16)

and the normal cone mapping N : Rn × R
m ⇒ R

n associated with (16) by

N (x, w) := N
(
x; S(w)

)
for x ∈ S(w). (17)

It is easy to see that the mapping N in (17) admits the composite representation

N (x, w) = ∂xφ(x, w) with φ(x, w) := (δΘ ◦ ψ
)
(x, w) (18)

via the C2-smooth mapping ψ : Rn ×R
m → R

s from (16) and the indicator function
δΘ of the closed set Θ ⊂ R

s . It follows directly from (18) due to the second-order
subdifferential construction (15) that

∂2x φ(x̄, w̄, v̄)(u) = D∗N (x̄, w̄, v̄)(u) for any v̄ ∈ N (x̄, w̄) and u ∈ R
n . (19)

Applying now the second-order chain rule from [20, Theorem 3.1] to the composition
in (19) allows us to compute the coderivative of the normal cone mapping (17) via the
given data of (16).
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Proposition 3.3 (Coderivative of the normal conemapping for inverse images)Assume
that ψ is C2-smooth around (x̄, w̄) and that the partial Jacobian matrix ∇xψ(x̄, w̄) is
of full rank. Then, for each v̄ ∈ N (x̄, w̄), there is a unique vector p̄ ∈ NΘ(ψ(x̄, w̄)) :=
N (ψ(x̄, w̄);Θ) satisfying

∇xψ(x̄, w̄)∗ p̄ = v̄ (20)

and such that the coderivative of the normal cone mapping is computed for all u ∈ R
n

by

D∗N (x̄, w̄, v̄)(u)

=
[ ∇2

xx 〈 p̄, ψ〉(x̄, w̄)

∇2
xw〈 p̄, ψ〉(x̄, w̄)

]
u + ∇ψ(x̄, w̄)∗ D∗NΘ

(
ψ(x̄, w̄), p̄

)(∇xψ(x̄, w̄)u
)
.

Thus, Proposition 3.3 reduces the computation of D∗N to that of D∗NΘ , which
has been computed via the given data for broad classes of sets Θ; see, for example,
[19–22] for more details and references.

4 Discrete Approximations

In this section, we construct a well-posed sequence of discrete approximations for
feasible solutions to the constrained sweeping dynamics in (8), (9) and for local optimal
solutions to the sweeping optimal control problem (P). The results obtained here
establish the W 1,2-strong convergence of discrete approximations while being free of
generalized differentiation. They are certainly of independent interest from just their
subsequent applications to deriving necessary optimality conditions for problem (P).

Starting with discrete approximations of the sweeping differential inclusion (8), we
replace the time derivative therein by the Euler finite difference ẋ(t) ≈ [x(t + h) −
x(t)]/h and proceed as follows. For each k ∈ N, define hk := T /k and consider the
discrete mesh Tk := {tk

j := jhk | j = 0, 1, . . . , k}. Then, the sequence of discrete
approximations of (8) is given by

xk
j+1 − xk

j

hk
∈ f (tk

j , xk
j ) − N

(
g(xk

j ); C(tk
j , uk

j )
)
,

j = 0, . . . , k − 1; xk
0 = x0 ∈ C

(
0, u(0)

)
. (21)

The following major result on a strong approximation of feasible solutions to the
controlled sweeping process in (8), (9) by feasible solutions to the discretized systems
in (21) is essentially different from the related one in [7, Theorem 3.1]. Besides being
applied to more general systems, it eliminates or significantly relaxes some restrictive
technical assumptions imposed in [7] for the polyhedral controlled sets (7) by using
another proof technique under the surjectivity assumption in (H3). Note furthermore
that the choices of the reference feasible pair (x̄(·), ū(·)) in [7] and Theorem 4.1 are
also different: Instead of the actual choice of (x̄(·), ū(·)) ∈ W 2,∞[0, T ]×W 2,∞[0, T ],

123



Journal of Optimization Theory and Applications (2019) 180:256–289 265

we now have the less restrictive pick (x̄(·), ū(·)) ∈ C1[0, T ] × C[0, T ] and establish
its strong approximation in the W 1,2 ×C topology instead of W 1,2 × W 1,2 in [7]. This
actually affects the types of local minimizers for which we derive necessary optimality
conditions in the setting of this paper; see Definition 4.1. If, however, the mapping g
is linear in (8) and if ū(·) ∈ W 1,2[0, T ], we obtain the same W 1,2-approximation of
the reference control as in the polyhedral framework of [7].

Theorem 4.1 (Strong discrete approximation of feasible sweeping solutions) Let the
pair (x̄(·), ū(·)) ∈ C1[0, T ] × C[0, T ] satisfy (8) with the moving set C(t, u) from
(9) under the validity of the standing assumptions in (H1)–(H4). Then, there exists
a sequence {(xk(·), uk(·))} of piecewise linear functions on [0, T ] satisfying the dis-
crete inclusions (21) with (xk(0), uk(0)) = (x̄0, ū(0)) and such that {(xk(·), uk(·))}
converges to (x̄(·), ū(·)) in the norm topology of W 1,2([0, T ];Rn) × C([0, T ];Rm).
If in addition the mapping g(·) in (8) is linear and ū(·) ∈ W 1,2([0, T ];Rm),
then the sequence {(xk(·), uk(·))} converges to (x̄(·), ū(·)) in the norm topology of
W 1,2([0, T ];Rn) × W 1,2([0, T ];Rm).

Proof Fix k ∈ N, choose xk
0 := x0 and uk

0 := ū(0), and then construct (xk
j , uk

j ) for

j = 1, . . . , k by induction. Suppose that xk
j is known and satisfies ‖xk

j − x̄(tk
j )‖ ≤ 1

without loss of generality. Define

ε j := ‖x̄(tk
j+1) − x̄(tk

j ) − hk ˙̄x(tk
j )‖ for all j = 0, . . . , k − 1 (22)

and deduce from the validity of (8) at tk
j that − ˙̄x(tk

j ) + f (tk
j , x̄(tk

j )) ∈ N (g(x̄(tk
j );

C(tk
j , ū(tk

j ))). Using x̄(·) ∈ C1([0, T ];Rn) allows us to find η > 0 such that

‖∇ψtk
j ,ū(tk

j )
‖ ≤ η and ‖ − ˙̄x(tk

j ) + f
(
tk

j , x̄(tk
j )
)‖

≤ η whenever k ∈ N and j = 0, . . . , k.

The surjectivity of ∇ψtk
j ,ū(tk

j )
ensures by the open mapping theorem the existence of

M > 0 for which

B ⊂ (∇ψtk
j ,ū(tk

j )

)∗
(MB).

Combining it with Proposition 3.2 tells us that

N
(
g(x̄(tk

j ); C(tk
j , ū(tk

j ))
) ∩ ηB = (∇ψtk

j ,ū(tk
j )

)∗(
N
(
ψtk

j ,ū(tk
j )
(g(x̄(tk

j ));Θ
) ∩ ηMB

)
.

Since − ˙̄x(tk
j ) + f (tk

j , x̄(tk
j )) ∈ N (g(x̄(tk

j ); C(tk
j , ū(tk

j ))) ∩ ηB, we find w ∈
N (ψtk

j ,ū(tk
j )
(g(x̄(tk

j )));Θ) with ‖w‖ ≤ ηM satisfying the equality

− ˙̄x(tk
j ) + f

(
tk

j , x̄(tk
j )
) = ∇ψ∗

tk
j ,ū(tk

j )
w.
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Using now themapping ϑ(·) from (H4) gives us vectors uk
j and w̃ ∈ N (ψtk

j ,ū
k
j
(xk

j );Θ)

for which

uk
j = ū(tk

j ) + ϑ
(
g(xk

j ), g(x̄(tk
j )), ū(tk

j )
)
and ‖w − w̃‖ ≤ τ‖g(xk

j ) − g
(

x̄(tk
j )
)

‖.

By the assumed uniform boundedness of the mapping ϑ(·), it is easy to adjust τ > 0

so that ‖uk
j − ū(tk

j )‖ ≤ τ‖g(xk
j ) − g(x̄(tk

j ))‖. Denoting vk
j :=

(
∇ψtk

j ,u
k
j

)∗
w̃, we

get vk
j ∈ N (g(xk

j ); C(tk
j , uk

j )) by employing Proposition 3.2 and then arrive at the
following estimates:

∥∥∥vk
j −
(
− ˙̄x(tk

j ) + f (tk
j , x̄(tk

j ))
)∥∥∥ =

∥∥∥
(
∇ψtk

j ,ū(tk
j )

)∗
w −

(
∇ψtk

j ,u
k
j

)∗
w̃

∥∥∥

≤ ∥∥(∇ψtk
j ,ū(tk

j )
− ∇ψtk

j ,u
k
j

)∗
w
∥∥+ ∥∥(∇ψtk

j ,u
k
j

)∗
(w − w̃)

∥∥

≤ ηM Lψ‖uk
j − ū(tk

j )‖ + τ Lg‖xk
j − x̄(tk

j )‖
(
η + Lψ‖uk

j − ū(tk
j )‖
)

≤
(
ηM Lψτ Lg + τ Lg

(
η + Lψτ Lg‖xk

j − x̄(tk
j )‖
))‖xk

j − x̄(tk
j )‖

≤
(
ηM Lψτ Lg + τ Lgη + Lψτ 2L2

g‖xk
j − x̄(tk

j )‖
)
‖xk

j − x̄(tk
j )‖.

Denoting further α := ηM Lψτ Lg + τηLg and β := Lψτ 2L2
g , we get from the above

that

∥∥vk
j − (− ˙̄x(tk

j ) + f (tk
j , x̄(tk

j ))
)∥∥ ≤ (α + β‖xk

j − x̄(tk
j )‖
)‖xk

j − x̄(tk
j )‖. (23)

Now we are ready to construct the next iterate xk
j+1 by

xk
j+1 := xk

j + hk f (tk
j , xk

j ) − hkv
k
j

and thus conclude that inclusion (21) holds at the discrete time j . It follows from
the arguments above that for any k ∈ N sufficiently large, we always have ‖xk

j+1 −
x̄(tk

j+1)‖ ≤ 1. This completes the induction process and gives us therefore a sequence

{(xk(·), uk(·))} defined on the discrete mesh Tk for large k ∈ N and satisfied therein
the discretized sweeping inclusion (21) with the controlled moving set (9).

Next, we prove that piecewise linear extensions (xk(t), uk(t)), 0 ≤ t ≤ T , of the
above sequence to the continuous-time interval [0, T ] converge to the reference pair
(x̄(·), ū(t)) in the norm topology of W 1,2([0, T ];Rn) × C([0, T ];Rm). To proceed,
fix any ε > 0 and recall the definition of ε j in (22). Taking into account that x̄(·) ∈
C1([0, T ];Rn), we get that ε j ≤ hkε for all j = 0, . . . , k −1 and all k ∈ N sufficiently
large. This gives us the relationships

‖xk
j+1 − x̄(tk

j+1)‖ ≤ ‖xk
j + hk f (tk

j , xk
j ) − hkv

k
j − x̄(tk

j+1)‖
≤ ‖xk

j − x̄(tk
j )‖+hk‖ f (tk

j , xk
j )− f (tk

j , x̄(tk
j ))‖+hk‖ f (tk

j , x̄(tk
j ))
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− vk
j − ˙̄x(tk

j )‖ + ε j

≤ (1 + (α + L f )hk + βhk‖xk
j − x̄(tk

j )‖
)‖xk

j − x̄(tk
j )‖ + ε j

≤ (1 + (α + L f )hk + βhk‖xk
j − x̄(tk

j )‖
)‖xk

j − x̄(tk
j )‖ + hkε,

and therefore we arrive at the following estimate:

‖xk
j+1 − x̄(tk

j+1)‖ ≤ (1 + (α + L f hk + βhk‖xk
j − x̄(tk

j )‖
)‖xk

j − x̄(tk
j )‖ + hkε.

Define further the quantities a j := ‖xk
j − x̄(tk

j )‖ for all j = 0, . . . , k and k ∈ N.
Observe that a j+1 = (1+ (α + L f )hk +βhka j )a j +hkε for j = 0, . . . , k −1, which
is equivalent to

a j+1 − a j

hk
= (α + L f )a j + βa2

j + ε, j = 0, . . . , k − 1.

Denoting by aε(·) the solution of the differential equation

ȧ(t) = (α + L f )a(t) + βa2(t) + ε, t ∈ [0, T ], a(0) = 0,

we see that aε(t) → 0 uniformly on [0, T ] as ε ↓ 0. It readily implies that

max
{‖xk

j − x̄(tk
j )‖, j = 0, . . . , k

}→ 0 as k → ∞.

This verifies, in particular, that max{‖xk
j − x̄(tk

j )‖, j = 0, . . . , k} ≤ 1 for all k ∈ N,
which was needed to complete the induction process. Since we have

‖uk
j − ū(tk

j )‖ ≤ τ Lg‖xk
j − x̄(tk

j )‖ for all j = 0, . . . , k (24)

as shown above, the control sequence {uk(t)} converges to ū(·) strongly in
C([0, T ];Rm).

Let us next justify the strong W 1,2-convergence of the trajectories xk(·) to x̄(·) on
[0, T ]. We have

∫ T

0
‖ẋ k(t) − ˙̄x(t)‖2dt =

k−1∑

j=0

∫ tk
j+1

tk
j

‖ f (tk
j , xk

j ) − vk
j − ˙̄x(t)‖2dt

≤ 2
k−1∑

j=0

hk
∥∥ f (tk

j , xk
j ) − vk

j − ˙̄x(tk
j )
∥∥2

+ 2
k−1∑

j=0

∫ tk
j+1

tk
j

‖ ˙̄x(tk
j ) − ˙̄x(t)‖2dt,
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where the last term converges to zero due to x̄(·) ∈ C1([0, T ];Rn). The first term
therein also converges to zero by the following estimates valid for all j = 0, . . . , k:

‖ f (tk
j , xk

j )−vk
j − ˙̄x(tk

j )‖≤∥∥ f
(
tk

j , x̄(tk
j )
)−vk

j − ˙̄x(tk
j )
∥∥+‖ f (tk

j , xk
j )− f (tk

j , x̄(tk
j ))‖

≤ (L f + α + β‖xk
j − x̄(tk

j )‖
)‖xk

j − x̄(tk
j )‖,

which is due to (23). Thus, we get
∫ T
0 ‖ẋ k(t)− ˙̄x(t)‖2dt → 0 as k → ∞. Since xk

0 =
x̄(0), the latter verifies that {xk(·)} strongly converges to x̄(·) in W 1,2([0, T ];Rn).

To complete the proof of the theorem, it remains to show that if ū(·) ∈
W 1,2([0, T ];Rm) and the mapping g(·) is linear, then uk(·) → ū(·) strongly in
W 1,2([0, T ];Rm). Denoting

Ak
j := (g(xk

j ), g(x̄(tk
j )), ū(tk

j )
)
for all j = 0, . . . , k − 1 and k ∈ N

and using the local Lipschitz continuity of d(·) with constant Ld > 0, we get

∥
∥∥∥∥

uk
j+1 − uk

j

hk
− ū(tk

j+1) − ū(tk
j )

hk

∥
∥∥∥∥

= 1

hk

∥∥d
(
g(xk

j+1)

− g(x̄(tk
j+1)), Ak

j+1

)− d
(
g(xk

j ) − g(x̄(tk
j )), Ak

j

)∥∥

≤ 1

hk

∥∥d
(
g(xk

j+1) − g(x̄(tk
j+1)), Ak

j+1

)− d
(
g(xk

j ) − g(x̄(tk
j )), Ak

j+1

)∥∥

+ ∥
∥d
(
g(xk

j ) − g(x̄(tk
j )), Ak

j+1

)− d
(
g(xk

j ) − g(x̄(tk
j )), Ak

j

)∥∥

≤ Ld Lg

hk

∥∥(xk
j+1 − x̄(tk

j+1)
)− (xk

j − x̄(tk
j )
)∥∥

+ M
Ld

hk

(‖g(xk
j+1)−g(xk

j )‖+∥∥g
(
x̄(tk

j+1)
)− g

(
x̄(tk

j )
)∥∥+‖ū(tk

j+1) − ū(tk
j )‖
)
,

where M > 0 is sufficiently large. This shows that

∫ T

0
‖u̇k(t) − ˙̄u(t)‖2dt ≤ M

∫ T

0
‖ẋ k(t) − ˙̄x(t)‖2dt

+ M
k−1∑

j=0

hk

(
‖g(xk

j+1)−g(xk
j )‖2+

∥
∥g
(
x̄(tk

j+1)
)−g

(
x̄(tk

j )
)∥∥2+‖ū(tk

j+1)−ū(tk
j )‖2

)

and thus verifies the claimed convergence under the assumptions made. ��
The two approximation results established in Theorem 4.1 allow us to apply the

method of discrete approximations to deriving necessary optimality conditions for
two types of local minimizers in problem (P). The first type treats the trajectory and
control components of the optimal pair (x̄(·), ū(·)) in the same way and reduces in
fact to the intermediate W 1,2 -minimizers introduced in [8] in the general framework
of differential inclusions and then studied in [7–9] for various controlled sweeping
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processes. The second type seems to be new in control theory; it treats control and
trajectory components differently and applies to problems (P) whose running costs
do not depend on control velocities.

Definition 4.1 (Local minimizers for controlled sweeping processes) Let the pair
(x̄(·), ū(·)) be feasible to problem (P) under the standing assumptions made.

(i) We say that (x̄(·), ū(·)) be a local W 1,2 × W 1,2- minimizer for (P) if x̄(·) ∈
W 1,2([0, T ];Rn), ū(·) ∈ W 1,2([0, T ];Rm), and

J [x̄, ū] ≤ J [x, u] for all x(·) ∈ W 1,2([0, T ];Rn) and u(·) ∈ W 1,2([0, T ];Rm)

(25)

sufficiently close to (x̄(·), ū(·)) in the norm topology of the corresponding spaces in
(25).

(ii) Let the running cost �(·) in (11) do not depend on u̇. We say that the pair
(x̄(·), ū(·)) be a local W 1,2 × C- minimizer for (P) if x̄(·) ∈ W 1,2([0, T ];Rn),
ū(·) ∈ C([0, T ];Rm), and

J [x̄, ū] ≤ J [x, u] for all x(·) ∈ W 1,2([0, T ];Rn) and u(·) ∈ C([0, T ];Rm)

(26)

sufficiently close to (x̄(·), ū(·)) in the norm topology of the corresponding spaces in
(26).

Our main attention in what follows is to derive necessary optimality conditions for
both types of local minimizers in Definition 4.1 by developing appropriate versions of
the method of discrete approximations. It is clear that any local W 1,2 × C-minimizer
for (P) is also a local W 1,2 × W 1,2-minimizer for this problem, provided that we
restrict the class of feasible controls to W 1,2-functions. Thus, necessary optimality
conditions for local W 1,2 × W 1,2-minimizers are also necessary for local W 1,2 × C-
ones in this framework, while not vice versa. On the other hand, we may deal with
local W 1,2 ×C-minimizers without imposing anything but the continuity assumptions
of feasible controls, provided that the running cost in (11) does not depend on control
velocities. Note furthermore that considering a W 1,2-neighborhood of the trajectory
part x̄(·) in both settings of Definition 4.1 leads us to potentially more selective nec-
essary optimality conditions for such minimizers than for conventional strong local
minimizers and global solutions to (P).

It has beenwell recognized in the calculus of variations and optimal control, starting
with pioneering studies by Bogolyubov andYoung, that limiting procedures of dealing
with continuous-time dynamical systems involving time derivatives require a certain
relaxation stability, which means that the value of cost functionals does not change
under the convexification of the dynamics and running cost with respect to velocity
variables; see, for example, [6,19] for more details and references. In sweeping control
theory, such issues have been investigated in [23,24] for controlled sweeping processes
somewhat different from (P).
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To consider an appropriate relaxation of our problem (P), denote

F = F(t, x, u) := f (t, x) − N
(
g(x); C(t, u)

)
(27)

and formulate the relaxed optimal control problem (R) as a counterpart of (P) with
the replacement of the cost functional (11) by the convexified one

minimize Ĵ [x, u] := ϕ
(
x(T )

)+
∫ T

0
�̂F
(
t, x(t), u(t), ẋ(t), u̇(t)

)
dt,

where �̂(t, x, u, ·, ·) is defined as the largest l.s.c. convex function majorized by
�(t, x, u, ·, ·) on the convex closure of the set F in (27) with �̂ := ∞ otherwise.
Then, we say that the pair (x̄(·), ū(·)) is a relaxed local W 1,2 × W 1,2-minimizer for
(P) if in addition to the conditions of Definition 4.1(i) we have J [x̄, ū) = Ĵ [x̄, ū].
Similarly, we define a relaxed local W 1,2 × C-minimizer for (P) in the setting of
Definition 4.1(ii). Note that, in contrast to the original problem (P), the convexi-
fied structure of the relaxed problem (R) provides an opportunity to establish the
existence of global optimal solutions in the prescribed classes of controls and tra-
jectories. It is not a goal of this paper, but we refer the reader to [11, Theorem 4.1]
and [24, Theorem 4.2] for some particular settings of controlled sweeping processes
in the classes of W 1,2 × W 1,2 and W 1,2 × C feasible pairs (x̄(·), ū(·)), respec-
tively.

There is clearly no difference between the problems (P) and (R) if the nor-
mal cone in (27) is convex and the integrand � in (11) is convex with respect
to velocity variables. On the other hand, the measure nonatonomicity on [0, T ]
and the differential inclusion structure of (8) are instrumental to find efficient
conditions under which any local minimizer of the types under consideration
is also a relaxed one. Without delving into details here, we just mention the
possibility to derive such a local relaxation stability from [24, Theorem 4.2]
for strong local (in the C-norm) minimizers of (P), provided that the con-
trolled moving set C(t, u) in (9) is convex and continuously depends on its
variables.

Given now a relaxed local minimizer (x̄(·), ū(·)) of the types introduced in Defini-
tion 4.1, we construct appropriate sequences of discrete-time optimal control problems
corresponding to each type therein separately. For brevity and simplicity, from now
on we restrict ourselves to the setting of (P) where g(x) := x , f := 0 while ψ

and � do not depend on t . The reader can easily check that the procedure developed
below is applicable to the general version of (P) under the standing assumptions
made.

If the pair (x̄(·), ū(·)) is a relaxed local W 1,2 × W 1,2-minimizer of (P), we fix
ε > 0 sufficiently small to accommodate theW 1,2×W 1,2-neighborhood of (x̄(·), ū(·))
in Definition 4.1(i) and for each k ∈ N define the approximation problem (P1

k ) as
follows:

123



Journal of Optimization Theory and Applications (2019) 180:256–289 271

minimize Jk[zk]

:= ϕ(xk
k ) + hk

k−1∑

j=0

�

(

xk
j , uk

j ,
xk

j+1 − xk
j

hk
,

uk
j+1 − uk

j

hk

)

+ hk

k−1∑

j=0

tk
j+1∫

tk
j

⎛

⎝

∥∥∥∥∥

xk
j+1 − xk

j

hk
− ˙̄x(t)

∥∥∥∥∥

2

+
∥∥∥∥∥

uk
j+1 − uk

j

hk
− ˙̄u(t)

∥∥∥∥∥

2
⎞

⎠ dt

over collections zk := (xk
0 , . . . , xk

k , uk
0, . . . , uk

k) subject to the constraints

xk
j+1 ∈ xk

j + hk F(xk
j , uk

j ) for j = 0, . . . , k − 1 with
(
xk
0 , uk

0

) = (x0, ū(0)
)
,

(28)

(xk
k , uk

k) ∈ ψ−1(Θ), (29)
∥∥(xk

j , uk
j ) − (x̄(tk

j ), ū(tk
j )
)∥∥ ≤ ε/2 for j = 0, . . . , k,

k−1∑

j=0

tk
j+1∫

tk
j

(∥∥∥
xk

j+1 − xk
j

hk
− ˙̄x(t)

∥∥∥
2 +

∥∥∥
uk

j+1 − uk
j

hk
− ˙̄u(t)

∥∥∥
2)

dt ≤ ε

2
. (30)

If the pair (x̄(·), ū(·)) is a relaxed local W 1,2 × C-minimizer of (P), fix ε > 0
sufficiently small to accommodate the W 1,2 × C-neighborhood of (x̄(·), ū(·)) in Def-
inition 4.1(ii) and for each k ∈ N define the approximation problem (P2

k ) in the
following way corresponding to (26):

minimize Jk[zk] := ϕ(xk
k ) + hk

k−1∑

j=0

�
(

xk
j , uk

j ,
xk

j+1 − xk
j

hk

)

+
k∑

j=0

∥
∥uk

j − ū(tk
j )
∥
∥2 +

k−1∑

j=0

tk
j+1∫

tk
j

∥
∥∥

xk
j+1 − xk

j

hk
− ˙̄x(t)

∥
∥∥
2
dt

over zk = (xk
0 , . . . , xk

k , uk
0, . . . , uk

k) subject to the constraints in (28)–(30) and

k−1∑

j=0

tk
j+1∫

tk
j

∥∥
∥

xk
j+1 − xk

j

hk
− ˙̄x(t)

∥∥
∥
2
dt ≤ ε

2
.

To proceed further with the method of discrete approximations, we need to make
sure that the approximating problems (Pi

k ), i = 1, 2, admit optimal solutions. This is
indeed the case due to Theorem 4.1 and the robustness (closed-graph property) of our
basic normal cone (10).
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Proposition 4.1 (Existence of discrete optimal solutions) Under the imposed standing
assumptions (H1)–(H5), each problem (Pi

k ), i = 1, 2, has an optimal solution for all
k ∈ N sufficiently large.

Proof It follows from Theorem 4.1 and the constructions of (P1
k ), (P2

k ) that the set
of feasible solutions to each of these problems is nonempty for all large k ∈ N.
Applying the classical Weierstrass existence theorem, observe that the boundedness
of the feasible sets follows directly from the constraint structures in (P1

k ) and (P2
k ).

The remaining closedness of the feasible sets for these problems is a consequence of
the robustness property of the normal cone (10) that determines the discrete inclusions
(28). ��

The next theorem establishes the strong convergence in the corresponding spaces of
extended discrete optimal solutions for discrete approximation problems to the given
relaxed local minimizers for (P).

Theorem 4.2 (Strong convergence of discrete optimal solutions) In addition to the
standing assumption (H1)–(H5), suppose that the cost functions ϕ and � are continuous
around the given local minimizer. The following assertions hold:

(i) If (x̄(·), ū(·)) is a relaxed local W 1,2 × W 1,2-minimizer for (P), then any
sequence of piecewise linear extensions on [0, T ] of the optimal solutions (x̄ k(·), ūk(·))
to (P1

k ) converges to (x̄(·), ū(·)) in the norm topology of W 1,2([0, T ];Rn) ×
W 1,2([0, T ];Rm) as k → ∞.

(ii) If (x̄(·), ū(·)) is a relaxed local W 1,2 ×C-minimizer for (P), then any sequence
of piecewise linear extensions on [0, T ] of the optimal solutions (x̄ k(·), ūk(·)) to (P2

k )

converges to (x̄(·), ū(·)) in the norm topology of W 1,2([0, T ];Rn)×C([0, T ];Rm) as
k → ∞.

Proof To verify assertion (i), we proceed similarly to the proof of [7, Theorem 3.4]
with the usage of the normal cone robustness for (10) instead of Attouch’s theorem
in the convex setting of [7]. The proof of assertion (ii) goes in the same lines with
observing that the required C-compactness of the control sequence follows from the
control-state relationship of type (24) valid due to assumption (H4). ��

5 Extended Euler–Lagrange Conditions for Sweeping Solutions

Having the strong convergence results of Theorem 4.2 as the quintessence of the
discrete approximation well-posedness justified in Sect. 4, we now proceed first with
deriving necessary optimality conditions in both discrete problems (P1

k ) and (P2
k ) for

each k ∈ N and then with the subsequent passage to the limit therein as k → ∞. In
this way, we arrive at necessary optimality conditions for relaxed local minimizers in
(P) of both W 1,2 × W 1,2 and W 1,2 × C types.

Observe that for each fixed k ∈ N, both problems (P1
k ) and (P2

k ) belong to the
class of finite-dimensional mathematical programming with nonstandard geometric
constraints (28) and (29). We can handle them by employing appropriate tools of
variational analysis that revolve around the normal cone (10).
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Theorem 5.1 (Necessary optimality conditions for (P1
k )) Fix k ∈ N and consider an

optimal solution z̄k := (x0, x̄ k
1 . . . , x̄ k

k , ūk
0, . . . , ūk

k) to problem (P1
k ), where F may be

a general closed-graph mapping. Suppose that the cost functions ϕ and � are locally
Lipschitzian around the corresponding components of the optimal solution and denote
the quantities

(
θ xk

j , θuk
j

)
:=2

tk
j+1∫

tk
j

(
x̄ k

j+1− x̄ k
j

hk
− ˙̄x(t),

ūk
j+1 − ūk

j

hk
− ˙̄u(t)

)

dt, j =0, . . . , k − 1.

(31)

Then, there exist dual elements λk ≥ 0, pk
j = (pxk

j , puk
j ) ∈ R

n ×R
m as j = 0, . . . , k

and subgradient vectors

(
wxk

j , wuk
j , vxk

j , vuk
j

)∈∂�

(

x̄ k
j , x̄ k

j ,
x̄ k

j+1 − x̄ k
j

hk
,

ūk
j+1 − ūk

j

hk

)

, j = 0, . . . , k − 1,

(32)

such that the following conditions are satisfied:

λk +
k−1∑

j=0

‖pxk
j ‖ + ‖puk

0 ‖ + ‖pxk
k ‖ + ‖puk

k ‖ �= 0, (33)

−(pxk
k , puk

k ) ∈ λk(∂ϕ(x̄ k
k ), 0

)+ N
(
(x̄ k

k , ūk
k);ψ−1(Θ)

)
, (34)

puk
j+1 = λk(vuk

j + h−1
k θuk

j ), j = 0, . . . , k − 1, (35)
(

pxk
j+1 − pxk

j

hk
− λkwxk

j ,
puk

j+1 − puk
j

hk
− λkwuk

j , pxk
j+1 − λk

(
vxk

j + 1

hk
θ xk

j

))

∈ N
((

x̄ k
j , ūk

j ,
x̄ k

j+1 − x̄ k
j

hk

)
; gph F

)
, j = 0, . . . , k − 1. (36)

Proof It follows the lines in the proof of [7,Theorem5.1] by reducing (P1
k ) to a problem

of mathematical programming. The usage of necessary optimality conditions for such
problems and calculus rules of generalized differentiation for the basic constructions
(10) and (13) available in the books [5,18,19] allow us to arrive at (32)–(36) due to
the particular structure of the data in (P1

k ). ��
The same approach holds for verifying the necessary optimality conditions for

problem (P2
k ) presented in the next theorem, which also takes into account the specific

structure of this problem.

Theorem 5.2 (Necessaryoptimality conditions for (P2
k )) Let z̄k := (x0, x̄ k

1 . . . , x̄ k
k , ūk

0,

. . . , ūk
k) be an optimal solution problem (P2

k ) in the framework of Theorem 5.1. Con-
sider the quantities
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θ xk
j := 2

tk
j+1∫

tk
j

(
x̄ k

j+1 − x̄ k
j

hk
− ˙̄x(t)

)

dt, θuk
j := 2

(
ūk

j − ū(tk
j )
)

, j = 0, . . . , k.

Then, there exist dual elements λk ≥ 0, pk
j = (pxk

j , puk
j ) ∈ R

n ×R
m as j = 0, . . . , k

and subgradient vectors

(
wxk

j , wuk
j , vxk

j

) ∈ ∂�

(

x̄ k
j , ūk

j ,
x̄ k

j+1 − x̄ k
j

hk

)

, j = 0, . . . , k − 1,

satisfying the following necessary optimality conditions:

λk +
k−1∑

j=0

‖pxk
j ‖ + ‖puk

0 ‖ + ‖pxk
k ‖ �= 0,

− (pxk
k , 0) ∈ λk(∂ϕ(x̄ k

k ), 0
)+ N

(
(x̄ k

k , ūk
k);ψ−1(Θ)

)
,

puk
j+1 = 0, j = 0, . . . , k − 1,

×
(

pxk
j+1 − pxk

j

hk
−λkwxk

j ,
puk

j+1− puk
j

hk
−λk(wuk

j +θuk
j ), pxk

j+1−λk
(
vxk

j + 1

hk
θ xk

j

))

∈ N

((

x̄ k
j , ūk

j ,
x̄ k

j+1 − x̄ k
j

hk

)

; gph F

)

, j = 0, . . . , k − 1.

Now we are ready to derive necessary optimality conditions for both types of
(relaxed) local minimizers for (P) from Definition 4.1 by passing the limit from those
in Theorems 5.1 and 5.2 with taking into account the convergence results from Sect. 4
and calculation results of generalized differentiation presented in Sect. 3. The reader
can see that the obtained optimality conditions for both types are local minimizers
that are pretty similar under the imposed assumptions. This is largely due to the
achieved discrete approximation convergence in Theorem 4.2 and the structures of the
discretized problems. Necessary optimality conditions for relaxed local W 1,2 × W 1,2-
minimizers of (P) were derived in [7, Theorem 6.1] for polyhedral moving sets (7)
under significantly more restrictive assumptions, which basically cover the case of
(x̄(·), ū(·)) ∈ W 2,∞([0, T ];Rn+m). Note that the linear independence constraint
qualification (LICQ) condition on generating polyhedral vectors imposed therein is a
counterpart of our surjectivity assumption (H3) in the polyhedral setting of [7].

Theorem 5.3 (Necessary optimality conditions for the controlled sweeping process)
We assume that (x̄(·), ū(·)) is a local minimizer for problem (P) of the types specified
below. In addition to the standing assumptions, suppose that ψ = ψ(x, u) is C2-
smooth with respect to both variables while ϕ and � are locally Lipschitzian around
the corresponding components of the optimal solution. The following assertions hold:

(i) If (x̄(·), ū(·)) is a relaxed local W 1,2 × W 1,2-minimizer, then there exist a multi-
plier λ ≥ 0, an adjoint arc p(·) = (px , pu) ∈ W 1,2([0, T ];Rn ×R

m), a signed vector
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measure γ ∈ C∗([0, T ];Rs), as well as pairs (wx (·), wu(·)) ∈ L2([0, T ];Rn ×R
m)

and (vx (·), vu(·)) ∈ L∞([0, T ];Rn × R
m) with

(
wx (t), wu(t), vx (t), vu(t)

) ∈ co ∂�
(
x̄(t), ū(t), ˙̄x(t), ˙̄u(t)

)
a.e. t ∈ [0, T ] (37)

satisfying the collection of necessary optimality conditions:
• Primal- dual dynamic relationships:

ṗ(t) = λw(t) +
[ ∇2

xx

〈
η(t), ψ

〉(
x̄(t), ū(t)

)

∇2
xw

〈
η(t), ψ

〉(
x̄(t), ū(t)

)
]
(− λvx (t) + qx (t)

)
a.e. t ∈ [0, T ],

(38)

qu(t) = λvu(t) a.e. t ∈ [0, T ], (39)

where η(·) ∈ L2([0, T ];Rs) is a uniquely defined vector function determined by the
representation

˙̄x(t) = −∇xψ
(
x̄(t), ū(t)

)∗
η(t) a.e. t ∈ [0, T ] (40)

with η(t) ∈ N (ψ(x̄(t), ū(t));Θ), and where q : [0, T ] → R
n × R

m is a function
of bounded variation on [0, T ] with its left-continuous representative given, for all
t ∈ [0, T ] except at most a countable subset, by

q(t) = p(t) −
∫

[t,T ]
∇ψ
(
x̄(τ ), ū(τ )

)∗dγ (τ). (41)

•Measured coderivative condition: Considering the t-dependent outer limit

Lim sup
|B|→0

γ (B)

|B| (t) :=
{

y ∈ R
s
∣∣∣ ∃ sequence Bk ⊂ [0, 1] with t ∈ Bk, |Bk |

→ 0,
γ (Bk)

|Bk | → y

}

over Borel subsets B ⊂ [0, 1] with the Lebesgue measure |B|, for a.e. t ∈ [0, T ], we
have

D∗NΘ

(
ψ(x̄(t), ū(t)), η(t)

)(∇xψ(x̄(t), ū(t))(qx (t) − λvx (t))
)

∩Lim sup
|B|→0

γ (B)

|B| (t) �= ∅. (42)

• Transversality condition at the right endpoint:

− (px (T ), pu(T )
) ∈ λ

(
∂ϕ(x̄(T )), 0

)+ ∇ψ
(
x̄(T ), ū(T )

)
NΘ

(
(x̄(T ), ū(T )

)
.

(43)
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• Measure nonatomicity condition: Whenever t ∈ [0, T ) with ψ(x̄(t), ū(t))
∈ intΘ , there is a neighborhood Vt of t in [0, T ] such that γ (V ) = 0 for any Borel
subset V of Vt .

• Nontriviality condition:

λ + sup
t∈[0,T ]

‖p(t)‖ + ‖γ ‖ �= 0 with ‖γ ‖ := sup
‖x‖C([0,T ]=1

∫

[0,T ]
x(s)dγ. (44)

(ii) If (x̄(·), ū(·)) is a relaxed local W 1,2×C-minimizer, then all conditions (38)–(44)
in (i) hold with the replacement of the quadruple (wx (·), wu(·), vx (·), vu(·)) in (37) by
the triple (wx (·), wu(·), vx (·)) ∈ L2([0, T ];Rn)× L2([0, T ];Rm)× L∞([0, T ];Rn)

satisfying the inclusion

(
wx (t), wu(t), vx (t)

) ∈ co ∂�
(
x̄(t), ū(t), ˙̄x(t)

)
a.e. t ∈ [0, T ].

Proof We give it only for assertion (i), since the proof of (ii) is similar with taking
into account the type of convergence ūk(·) → ū(·) achieved in Theorem 4.2(ii) and
that the running cost � in Definition 4.1(ii) does not depend on the control velocity u̇.

To verify assertion (i), deduce first from (36) and Proposition 3.3 that for each
k ∈ N and j = 0, . . . , k − 1 there is a unique vector ηk

j ∈ NZ (ψ(x̄ k
j , ūk

j )) satisfying
the conditions

∇xψ(x̄ k
j , ūk

j )
∗ηk

j = − x̄ k
j+1 − x̄ k

j

hk
,

pxk
j+1 − pxk

j

hk
− λkwk

j =
[

∇2
xx 〈ηk

j , ψ〉(x̄ k
j , ūk

j )

∇2
xw〈ηk

j , ψ〉(x̄ k
j , ūk

j )

]

u + ∇ψ(x̄ k
j , ūk

j )
∗γ k

j (45)

with u := pxk
j+1 − λk

(
vxk

j + 1
hk

θ xk
j

)
and some vectors

γ k
j ∈ D∗NZ

(
ψ(x̄ k

j , ūk
j ), η

k
j

)(∇xψ(x̄ k
j , ūk

j )
(

pxk
j+1 − λk

(
vxk

j + 1

hk
θ xk

j

)))
. (46)

Taking this into account, we get from (33) the improved nontriviality condition

λk + ‖puk
0 ‖ + ‖pxk

k ‖ + ‖puk
k ‖ �= 0 for all k ∈ N (47)

with the validity of (35) as well as λk ≥ 0 and the relationships in (31) and (32) of
Theorem 5.1.

Now we proceed with passing to the limit as k → ∞ in the obtained optimality
conditions for discrete approximations. Since some arguments in this procedure are
similar to those used in [7, Theorem 6.1] in a more special setting, we skip them for
brevity while focusing on significantly new developments. In particular, the existence
of the claimed quadruples (wx (·), wu(·), vx (·), vu(·)) satisfying (37) is proved as in
[13] while the existence of the uniquely defined η(·) ∈ L2([0.T ];Θ) solving the
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differential equation (40) follows from representation (20) by repeating the limiting
procedure of [7, Theorem 6.1].

Next, we define qk(·) = (qxk(·), quk(·)) by extending pk
j piecewise linearly to

[0, T ] with qk(tk
j ) := pk

j for j = 0, . . . , k. Construct γ k(·) on [0, T ] by

γ k(t) := γ k
j , for t ∈ [tk

j , tk
j+1), j = 0, . . . , k − 1,

with γ k(T ) := 0 and consider the auxiliary functions

ϑk(t) := max
{
tk

j

∣∣ tk
j ≤ t, 0 ≤ j ≤ k

}
for all t ∈ [0, T ] , k ∈ N, (48)

so thatϑk(t) → t uniformly in [0, T ] as k → ∞. Sinceϑk(t) = tk
j for all t ∈ [tk

j , tk
j+1)

and j = 0, . . . , k − 1, the equations in (45) can be rewritten as

q̇k(t) − λkwk(t) =
[ ∇2

xx

〈
ηk

i (t), ψ
〉(

x̄ k(ϑk(t), ūk(ϑk(t)
)

∇2
xw

〈
ηk

i (t), ψ
〉(

x̄ k(ϑk(t), ūk(ϑk(t)
)
]

u

+∇ψ
(
x̄ k(ϑk(t), ūk(ϑk(t)

)∗
γ k(t), (49)

whereu := qxk(ϑk+(t))−λk(vxk(t)+θ xk(t)) for every t ∈ (tk
j , tk

j+1), j = 0, . . . , k−1,

and i = 1, . . . , m, and where ϑk+(t) := tk
j+1 for t ∈ [tk

j , tk
j+1).

Define now we pk(·) = (pxk(·), puk(·)) on [0, T ] by setting

pk(t) := qk(t) +
∫ T

t
∇ψ
(
x̄ k(ϑk(τ )), ūk(ϑk(τ ))

)
γ k(τ )dτ

for every t ∈ [0, T ]. This gives us pk(T ) = qk(T ) with the differential relation

ṗk(t) = q̇k(t) − ∇ψ
(
x̄ k(ϑk(t)), ūk(ϑk(t))

)∗
γ k(t)

holding for a.e. t ∈ [0, T ]. Substituting the latter into (49), we get

ṗk(t) − λkwk(t) =
[ ∇2

xx

〈
ηk

i (t), ψ
〉(

x̄ k(ϑk(t)), ūk(ϑk(t)
)

∇2
xw

〈
ηk

i (t), ψ
〉(

x̄ k(ϑk(t)), ūk(ϑk(t)
)
]

u,

for every t ∈ (tk
j , tk

j+1), j = 0, . . . , k −1, and i = 1, . . . , m. Define further the vector

measures γ k by

∫

B
dγ k :=

∫

B
γ k(t)dt for every Borel subset B ⊂ [0, T ]

and observe that, due to the positive homogeneity of all the expressions in the statement
of Theorem 5.1 with respect to (λk, pk, γ k), the nontriviality condition (47) can be
rewritten as
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λk + ‖quk(0)‖ + ‖pk(T )‖ +
∫ T

0
‖γ k(t)‖dt = 1 for all k ∈ N, (50)

which tells us that all the sequential terms in (50) are uniformly bounded. Following
the proof of [7, Theorem 6.1], we obtain the relationships in (38), (41), and (43), where
the form of the transversality condition (43) benefits from the “full” counterpart of the
calculus rule in Proposition 3.2 for normals to inverse images that is valid under the
full rank assumption in (H3). The measure nonatomicity condition of this theorem is
also verified similarly to [7, Theorem 6.1].

Next, we establish the new measured coderivative condition (42), which was not
obtained in [7] even in the particular framework therein. Rewrite first (46) in the form

γ k(t) ∈ D∗NΘ

(
ψ(x̄ k(ϑk(t)), ūk(ϑk(t)), ηk(t)

)

×
(
∇xψ

(
x̄ k(ϑk(t)

)
, ūk(ϑk(t)

)
u
)

a.e. t ∈ [0, T ]

via the functions ϑk(t) from (48). Since γ k(t) is a step vector function for each k ∈ N ,
taking any t �= tk

j as j = 0, . . . , k allows us to choose a number δk > 0 sufficiently
small so that |B| ≤ δk whenever a Borel set B contains t , and thus B does not contain
any mesh points. Hence, γ k(t) remains constant on B. As a result, we can write the
representation

γ k(t) = 1

|B|
∫

B
γ k(τ )dτ on t ∈ B for all large k ∈ N.

The separability of the space C([0, T ];Rs) and the boundedness of γ k(·) in
C∗([0, T ];Rs) by (50) allow us to select a subsequence of {γ k(·)} (no relabeling)
that weak∗ converges in C∗([0, T ];Rs) to some γ (·). As a result, we get without loss
of generality that

∫

B
γ k(τ )dτ →

∫

B
γ (τ)dτ as k → ∞

for any Borel set B. To proceed further, choose a sequence {Bk} ⊂ B such that t ∈ Bk ,
|Bk | → 0, and 1

|Bk |
∫

Bk
γ (τ)dτ → α as k → ∞ for some α ∈ R

s . It follows from the
constructions above that

γ k(t) → α ∈
(

Lim sup
|B|→0

1

|B|
∫

B
γ (τ)dτ

)

(t) = Lim sup
|B|→0

γ (B)

|B| (t).

Taking into account the coderivative robustness with respect to all of its variables, we
arrive at
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α∈ D∗NΘ

(
ψ(x̄(t), ū(t)), η(t)

)(∇xψ(x̄(t), ū(t))(qx (t)−λvx (t))
)∩Lim sup

|B|→0

γ (B)

|B| (t)

for a.e. t ∈ [0, T ], which verifies the measured coderivative condition (42).
To complete the proof of the theorem, it remains to justify the nontriviality condition

(44). Arguing by contradiction, suppose that (44) fails and thus find sequences of
λk → 0 and ‖pk

j‖ → 0 as k → ∞ uniformly in j . It follows from (50) and (39)

that
∫ T
0 ‖γ k(t)‖dt → 1 as k → ∞. Define now the sequence of measurable vector

functions βk : [0, T ] → R
s by

βk(t) :=
⎧
⎨

⎩

γ k(t)

‖γ k(t)‖ if γ k(t) �= 0,

0 if γ k(t) = 0
for all t ∈ [0, T ].

Using the Jordan decomposition γ k = (γ k)+ − (γ k)− gives us a subsequence {γ k}
and a Borel vector measure γ = γ + − γ − such that {(γ k)+} weak∗ converges to
γ + and {(γ k)−} weak∗ converges to γ − in C∗([0, T ];Rs). Taking into account the
uniform boundedness of βk(·) on [0, T ] allows us to apply the convergence result of
[6, Proposition 9.2.1] (with A = Ai := BRs for all i ∈ N therein) and thus find a
Borel measurable vector functions β+, β− : [0, T ] → R

s so that, up to a subsequence,
{βk(γ k)+} weak∗ converges to β+γ +, and {βk(γ k)−} weak∗ converges to β−γ −. As
a result, we get

∫ T

0
β+(t)dγ +(t) −

∫ T

0
β−(t)dγ −(t)

= lim
k→∞

∫ T

0
βk(t)d(γ k)+(t) −

∫ T

0
βk(t)d(γ k)−(t)

= lim
k→∞

∫ T

0
βk(t)d

(
(γ k)+ − (γ k)−

)
(t)

= lim
k→∞

∫ T

0
βk(t)d(γ k)(t) = lim

k→∞

∫ T

0
‖γ k(t)‖dt = 1.

This means that ‖γ ‖ = ‖γ +‖ + ‖γ −‖ �= 0, which contradicts the assumed failure of
(44). �

Note that the nontrivial optimality conditions obtained in Theorem 5.3 do not gen-
erally exclude the case of their validity for any feasible solution, although even in
this case they may be useful as is shown by examples. The following consequence of
Theorem 5.3 presents effective sufficient conditions ensuring nondegenerate optimal-
ity conditions for the considered local minimizers of (P). The reader can find more
discussions on nondegeneracy in [6,26,27] for classical optimal control problems and
Lipschitzian differential inclusions and in [7] for sweepings ones over polyhedral
controlled sets. ��
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Corollary 5.1 (Nondegeneracy) In the setting of Theorem 5.3, suppose that η(T ) is
well defined and that θ = 0 is the only vector satisfying the relationships

θ ∈ D∗NΘ

(
ψ(x̄(T ), ū(T )), η(T )

)
(0),

∇ψ
(
x̄(T ), ū(T )

)∗
θ ∈ ∇ψ

(
x̄(T ), ū(T )

)
NΘ

(
x̄(T ), ū(T )

)
. (51)

Then, the necessary optimality conditions of Theorem 5.3 hold with the enhanced
nontriviality

λ + mes
{
t ∈ [0, T ]∣∣ q(t) �= 0

}+ ‖q(0)‖ + ‖q(T )‖ > 0. (52)

Proof Arguing by contradiction, suppose that (52) fails, which yields λ = 0, q(0) = 0,
q(T ) = 0, and q = 0 for a.e. t ∈ [0, T ]. It follows from (38) that p ≡ p(T ) on
[0, T ]. By using (41) and the fact that ∇ψ(x̄(t), ū(t)) has full rank on [0, T ], we get
γ := θ1δ{T } + θ2δ{T } for some θ1, θ2 ∈ R

s via the Dirac measures. Let us now check
that θ1 = θ2 = 0. Since η(T ) is well defined and since q(T ) = 0 and λ = 0, we
conclude that condition (42) holds at t = T being equivalent to

θ2 ∈ D∗NΘ

(
ψ(x̄(T ), ū(T )), η(T )

)
(0). (53)

On the other hand, it follows from q(T ) = 0 due to (41) that p(T ) =
∇ψ(x̄(t), ū(t))∗θ . Using further (43) tells us that∇ψ(x̄(T ), ū(T ))∗θ2 ∈ −∇φ(x̄(T ),

ū(T ))NΘ((x̄(T ), ū(T )). Then, it follows from (51) and (53) that θ2 = 0, which yields
θ1 = 0 and gives us a contradiction. ��
Remark 5.1 (Discussions on nondegeneracy) It is easy to see that the imposed
assumption (52) excludes the degeneracy case of λ := 0, p = q ≡ 0, and γ := δ{T } in
Theorem 5.3. Furthermore, the inferiority assumption ψ(x̄(T ), ū(T )) ∈ intΘ yields
(51) while not vice versa. To illustrate it, consider the following example: Minimize
the cost

J [u] := 1

2

(
x(2) − 1

)2 +
∫ 1

0

(
u(t) + 2 − t

)2
dt +

∫ 2

1

(
u(t) + 1

)2
dt

over the dynamics −ẋ(t) ∈ N (x(t); ] − ∞, u(t)]) with x(0) = 3/2 and u(0) = −2.
We can directly check that the only optimal trajectory in this problem is given by
x̄(t) = 3/2 on [0, 1/2], x̄(t) = 2 − t on [1/2, 1], and x̄(t) = 1 on [1, 2], It is
generated by the optimal control ū(t) = t − 2 on [0, 1] and ū(t) = −1 on ]1, 2].

To check the nondegeneracy condition (51) in this example with ψ(x, u) = x + u
and Θ = (−∞, 0], observe that the second inclusion therein reduces to

(α, α) ∈ −N ((1,−1); {(x, u) : x + u ≤ 0}) ,

which is equivalent to α ≤ 0. The first inclusion reads as

α ∈ D∗NR−(0, 0)(0) = [0,∞[
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giving us α ≥ 0. Thus, α = 0, and condition (51) is satisfied. On the other hand, we
see that the point (x̄(2), ū(2)) = (1,−1) does not belong to the interior of the set Θ .

6 Hamiltonian Formalism andMaximum Principle

The necessary optimality conditions for (P) obtained in Theorem 5.3 and Corol-
lary 5.1 are of the extended Euler–Lagrange type that is pivoting in optimal control
of Lipschitzian differential inclusions; see [5,6]. The result of [5, Theorem 1.34] tells
us that the Euler–Lagrange framework involving coderivatives implies the maximum
condition of theWeierstrass-Pontryagin type for problems with convex velocities pro-
vided that the velocity mapping is inner semicontinuous (e.g., Lipschitzian), which
is never the case in our setting (27). Nevertheless, we show in what follows that the
Hamiltonian formalism and the maximum condition can be derived from the mea-
sured coderivative condition of Theorem 5.3 in rather broad and important situations
by using coderivative calculations available in variational analysis.

The first result of this section deals with problem (P) in the case where Θ := R
s−.

In this case, we consider the set of active constraint indices

I (x, u) := {i ∈ {1, . . . , s} : ψi (x, u) = 0
}
. (54)

It follows from Proposition 3.2 under (H3) that for each v ∈ −N (x; C(u)), there is a
unique collection {αi }i∈I (x,u) with αi ≤ 0 and v = ∑

i∈I (x,u) αi [∇xψ(x, u)]i . Given
ν ∈ R

s , define the vector [ν, v] ∈ R
n by

[ν, v] :=
∑

i∈I (x,u)

νiαi
[∇xψ(x, u)

]
i (55)

and introduce the modified Hamiltonian function

Hν(x, u, p) := sup
{〈[ν, v], p

〉 : v ∈ −N
(
x; C(u)

)}
, (x, u, p) ∈ R

n × R
m × R

n .

(56)

The following consequence of Theorem 5.3 and Corollary 5.1 shows that the mea-
sured coderivative condition (42) yields themaximization of themodifiedHamiltonian
(56) at the local optimal solutions for (P) with polyhedral constraints corresponding
to Θ = R

s− in (9).

Corollary 6.1 (Maximum condition for polyhedral sweeping control systems under
surjectivity) In the frameworks of Theorem 5.3 and Corollary 5.1 with Θ = R

s−,
we have the corresponding necessary optimality conditions therein together with the
following maximum condition: There is a measurable vector function ν : [0, T ] → R

s

such that ν(t) ∈ Lim sup|B|→0
γ (B)
|B| (t) and

〈[
ν(t), ˙̄x(t)

]
, qx (t) − λvx (t)

〉= Hν(t)
(
x̄(t), ū(t), qx (t)−λvx (t)

)=0 a.e. t ∈[0, T ].
(57)
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Proof Let us show that the maximum condition (57) follows from the measured
coderivative condition (42). To proceed, we need to compute the coderivative of the
normal cone mapping D∗NR

s− , which has been done in variational analysis in several
forms; see, for example, [19,20] for more discussions and references. We use here the
one taken from [22]: If D∗NR

s−(w, ξ)(u) �= ∅, then

D∗NR
s−(w, ξ)(u)=

⎧
⎨

⎩
ω ∈ R

s

∣∣∣
∣∣∣

ωi =0 if wi <0 or if wi =0, ξi =0, ui <0
ωi ≥ 0 if wi = 0, ξi =0, ui ≥0
ωi ∈ R if ξi > 0, ui =0

⎫
⎬

⎭
.

(58)

The measured coderivative condition (42) reads in this case as:

ν(t)∈ D∗NR
s−
(
ψ(x̄(t), ū(t)), η(t)

)(∇xψ(x̄(t), ū(t))(qx (t)−λvx (t))
)
a.e. t ∈[0, T ]

with a vector function ν(t) ∈ Lim sup|B|→0
γ (B)
|B| (t), which can be selected as

(Lebesgue) measurable on [0, T ] due to the well-known measurable selection results;
see, for example, [6,18]. It follows from (58) that

[
ηi (t) > 0

] �⇒
[〈

λvx (t) − qx (t),
[∇xψ

(
x̄(t), ū(t)

)]
i

〉

= 0
]
for a.e. t ∈ [0, T ], i = 1, . . . , s, (59)

which gives us by Eq. (40) that

〈[
ν(t), ˙̄x(t)

]
, λvx (t) − qx (t)

〉 = 0 a.e. t ∈ [0, T ]. (60)

On the other hand, we get from (54) to (56) with I := I (x̄(t), ū(t)) that

Hν(t)
(
x̄(t), ū(t), qx (t) − λvx (t)

) = sup
{∑

i∈I

αiνi (t)
〈[∇xψ

(
x̄(t), ū(t)

)]
i , qx (t)

− λvx (t)
〉| αi ≤ 0

}
. (61)

for a.e. t ∈ [0, T ]. Applying now (58) gives us the implication

[
i ∈ I

(
x̄(t), ū(t)

)] �⇒
[
νi (t)

〈[∇xψ
(
x̄(t), ū(t)

)]
i , qx (t) − λvx (t)

〉 ≥ 0
]

a.e. t ∈ [0, T ].

Combining this with (61), we get Hν(t)(x̄(t), ū(t), qx (t) − λvx (t)) = 0 for a.e. t ∈
[0, T ] and thus arrive at the maximum condition (57), where the other equality was
established in (60). ��

Observe that the explicit coderivative computation (58) plays a crucial role in deriv-
ing the maximum condition (57) in Corollary 6.1. Available second-order calculus and
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coderivative evaluations for the normal conemappings allow us to derive more general
results of the maximum principle type in sweeping optimal control. The next theorem
addresses the case where the set Θ in (9) is given by

Θ = h−1(Rl−) := {z ∈ R
s : h(z) ∈ R

l−
}

(62)

via a smooth mapping h : Rs → R
l . As mentioned above, the surjectivity condition

on the Jacobian ∇h(z̄) at a fixed point z̄ corresponds to the LICQ condition at z̄.
Dealing with linear mappings h(z) := Az − b, we can replace the LICQ condition in
the coderivative evaluation by the weaker positive LICQ (PLICQ) condition at x̄ that
is discussed and implemented in [7]. It is used in what follows.

Theorem 6.1 (Maximum principle in sweeping optimal control) Consider the control
problem (P) in the frameworks of Theorem 5.3 and Corollary 5.1 with the set Θ

given by (62), where h : Rs → R
l is C2-smooth around the local optimal solution

z̄(t) := (x̄(t), ū(t)) for all t ∈ [0, T ]. Suppose that either ∇h(z̄(t)) is surjective, or
h(·) is linear and the PLICQ assumption is fulfilled at z̄(t) on [0, T ]. Then, in addition
to the corresponding necessary optimality conditions of the statements above, the
maximum condition (57) holds with a measurable vector function ν : [0, T ] → R

s

satisfying the inclusions ν(t) ∈ Lim sup|B|→0
γ (B)
|B| (t) for a.e. t ∈ [0, T ] and

ν(t) ∈ D∗NR
s−
(
h(ψ(x̄(t), ū(t))), μ(t)

)(∇xψ(x̄(t), ū(t))(qx (t) − λvx (t))
)

a.e. t ∈ [0, T ], (63)

where μ : [0, T ] → R
l is also measurable and such that

μ(t)∈ NR
s−
(
h(ψ(x̄(t), ū(t))

)
with η(t)=∇h

(
ψ(x̄(t), ū(t)

)∗
μ(t) a.e. t ∈[0, T ].

Proof As in the proof of Corollary 6.1, we derive from the measured coderivative
condition (42) the existence of a measurable function ν̃ : [0, T ] → R

l satisfying the
inclusion

ν̃(t) ∈ D∗Nh−1(Rl−)

(
ψ(x̄(t), ū(t)), η(t)

)(∇xψ(x̄(t), ū(t))(qx (t) − λvx (t))
)

a.e. t ∈ [0, T ]. (64)

Assuming that ∇h(z̄(t)) is surjective on [0, T ] and applying the second-order chain
rule from [5, Theorem 1.127] together with the aforementioned measurable selection
results, we find measurable functions ν : [0, T ] → R

s and μ : [0, T ] → R
l satisfying

the conditions (63) and (64) as well as

ν̃(t) = ∇2〈μ(t), h
〉(
ψ(x̄(t), ū(t))

)+ ∇h
(
ψ(x̄(t), ū(t))

)∗
ν(t),

which uniquely determines ν(t) from ν̃(t) for a.e. t ∈ [0, T ]. The validity of the max-
imum condition follows now from the proof of Corollary 6.1 due to the relationships
above.
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In the case where h is linear and the PLICQ holds, we proceed similarly by applying
the evaluation of D∗Nh−1(Rl−) from [7, Lemma 4.2] without claiming that ν(t) is
uniquely defined by ν̃(t). ��
Remark 6.1 (Discussions on themaximum principle) The necessary optimality con-
ditions of the maximum principle type obtained in Corollary 6.1 and Theorem 6.1 are
the first in the literature for sweeping processes with controlled moving sets. Note
that our form of the modified Hamiltonian (56) is different from the conventional
Hamiltonian form

H(x, p) := sup
{〈p, v〉〉 : v ∈ F(x)

}
(65)

used in optimal control of Lipschitzian differential inclusions ẋ ∈ F(x) that extends
the Hamiltonian in classical optimal control. We show below in Example 6.1 that the
maximum principle via the conventional Hamiltonian (65) fails for our problem (P).
The reason is that (65) does not reflect implicit state constraints, which do not appear
for Lipschitzian problems while being an essential part of the sweeping dynamics; see
the discussions in Sect. 1. Note that the Hamiltonian form (56) is also different from
that used in [15–17] for deriving maximum principles in sweeping control problems
with uncontrolled moving sets that are significantly diverse from our problem (P).

We can see that the newmaximumprinciple form (57) incorporates vectormeasures
that appear through the measured coderivative condition (42). The fact that measures
naturally arise in descriptions of necessary optimality conditions in optimal control
problems with state constraints has been first realized by Dubovitskii and Milyutin
[25] and since that has been fully accepted in the literature; see, for example, [6,26]
and the references therein. There are interesting connections between our form of the
maximum principle for controlled sweeping processes and the Hamiltonian formalism
in models of contact and nonsmooth mechanics (see, e.g., [28,29]), which we plan to
fully investigate in subsequent publications.

The next example shows that the maximum principle in the conventional form used
for Lipschitzian differential inclusions [6,26] with the standard Hamiltonian (65) fails
for the sweeping control problem (P), while our new form obtained in Theorem 6.1
holds.

Example 6.1 (Failure of the conventional maximum principle for sweeping pro-
cesses)We consider the optimal control problem for the sweeping process taken from
[7, Example 7.6], where the controlledmoving set is defined by (7)with control actions
u j (t) and b j (t). Specify the initial data as

n = m = 2, x0 = (1, 1), T = 1, ϕ(x) = ‖x‖2
2

,

and �(t, x, u, b, ẋ, u̇, ḃ) := 1

2

(
ḃ21 + ḃ22

)

and fix the u-controls as ū1 ≡ (1, 0), ū2 ≡ (0, 1). The necessary optimality conditions
of Corollary 5.1 give us in this case the following relationships on [0, 1]:
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(1) w(·) = 0, vx (·) = 0, vb(·) = (ḃ1(·), ḃ2(·)
)
;

(2) ˙̄xi (t) �= 0 �⇒ qx
i (t) = 0, i = 1, 2,

(3) pb(·) is constant with nonnegative components; −px
i (·) = λx̄(1) + pb

i (·)ūi are
constant for i = 1, 2,

(4) qx (t) = px − γ ([t, 1]), qb(t) = λ ˙̄b(t) = pb + γ ([t, 1]) for a.e. t ∈ [0, 1],
(5) λ + ‖q(0)‖ + ‖p(1)‖ �= 0 with λ ≥ 0.

Observe first that the pair x̄(t) = (1, 1) and b̄(t) = 0 on [0, 1] satisfies the necessary
conditions with px

1 = px
2 = −1, pb

1 = pb
2 = γ1 = γ2 = 0, and λ = 1). The

conventional Hamiltonian (65) reads now as

H(x, b, p) = sup
{〈p, v〉 : v ∈ −N

(
x; C((1, 0), (0, 1)), b

)}
,

and we get by the direct calculation that

H
(
x̄(t), b̄(t), qx (t) − λvx (t)

)

= H
(
(1, 1), (1, 1), (−1,−1)

)

= sup
{〈

(−1,−1), v
〉 : v ∈ −N

(
(1, 1); C(((1, 0), (0, 1)), (1, 1)

)}

= sup
{〈

(−1,−1), v
〉 : v1 ≤ 0, v2 ≤ 0

} = ∞

while 〈 ˙̄x(t), qx (t) − λvx (t)〉 = 0, and thus the conventional maximum principle fails
in this example. At the same time, the new maximum condition (57) holds trivially
with ν(t) ≡ 0 on [0, 1].

The following consequence of Theorem 6.1 provides a natural sufficient condition
for the validity of the maximum principle in terms of the conventional Hamiltonian
(65).

Corollary 6.2 (Maximumprinciple in the conventional form)Assume that in the setting
of Theorem 6.1, we have the condition

ηi (t) > 0 for all i ∈ I
(
x̄(t), ū(t)

)
a.e. t ∈ [0, T ].

where η(t) ∈ N (ψ(x̄(t), ū(t));Θ) is uniquely defined by (40). Then

〈 ˙̄x(t), qx (t) − λvx (t)
〉 = H

(
x̄(t), ū(t), b̄(t), qx (t) − λvx (t)

) = 0 a.e. t ∈ [0, T ].

Proof This follows from (59) and its counterpart in the proof of Theorem 6.1 by
definitions of the modified and conventional Hamiltonians. ��

7 Applications to Elastoplasticity and Hysteresis

In this section, we discuss some applications of the obtained necessary optimality con-
ditions to a fairly general class of problems relating to elastoplasticity and hysteresis.

123



286 Journal of Optimization Theory and Applications (2019) 180:256–289

Let us consider the model of this type discussed in [30, Section 3.2], which can be
described in our form, where Z is a closed convex subset of the 1

2n(n+1)-dimensional
vector space E of symmetric tensors n ×n with int Z �= ∅. Using the notation of [30],
define the strain tensor ε = {ε}i, j by ε := εe + ε p, where εe is the elastic strain and
ε p is the plastic strain. The elastic strain εe depends on the stress tensor σ = {σ }i, j

linearly, i.e., εe = A2σ , where A is a constant symmetric positive-definite matrix. The
principle of maximal dissipation says that

〈
ε̇ p(t), z

〉 ≤ 〈ε̇ p(t), σ (t)
〉
for all z ∈ Z . (66)

It is shown in [30] that the variational inequality (66) is equivalent to the sweeping
processes

ζ̇ (t) ∈ −N
(
ζ(t); C(t)

)
, ζ(0) = Aσ(0) − A−1ε(0) ∈ C(0), (67)

where ζ(t) := Aσ(t)−A−1ε(t) andC(t) := −A−1ε(t)+AZ . It can be rewritten in the
frame of our problem (P) with x := ζ , u := ε, ψ(x, u) := x + A−1u, and Θ := AZ .
Thus, we can apply Theorem 5.3 to this class of hysteresis operators for the general
elasticity domain Z . Note that a similar model is considered in [31], only for the von
Mises yield criterion. Our results obtained here give us the flexibility of applications
to many different elastoplasticity models including those with the Drucker–Prager,
Mohr–Coulomb, Tresca, von Mises yield criteria, etc.

In the following example, we summarize applications of Theorem 5.3 to solve a
meaningful optimal control problem generated by the elastoplasticity dynamics (67).

Example 7.1 (Optimal control in elastoplasticity) Consider the dynamic optimiza-
tion problem:

minimize J [ε] :=
∫ 1

0

1

2
‖ε̇(t)‖2dt + 1

2
‖ζ(1) − ζ1‖2

over feasible solutions to the sweeping process (67) with the initial point ζ(0) ∈ C(0).
Observe that the linear function ε̄(t) := t z + ε̄(0) with appropriate adjustments of the
starting and terminal points is an optimal control to the corresponding problem (P).
Remembering the above notation for x, u, ψ , and Θ , we derive from Theorem 5.3 the
following necessary optimality conditions:

(1) ṗ(t) = λ(0, 0),
(2) qu(t) = λ d

dt ε̄(t) a.e. t ∈ [0, T ],
(3) q(t) = p(t) −

∫

[t,T ]
(1, 1)dγ (s) a.e. t ∈ [0, T ],

(4) − (px (1), pb(1)
)=λ

((
ζ(1)−ζ1

)
, 0
)+N

(
(ζ(1), ε(1)); {(ζ, ε)| ζ + A−1ε∈ AZ}),

(5) λ+supt∈[0,T ] ‖p(t)‖+‖γ ‖ �=0.

Assuming that ζ(T ) ∈ int C(T ) and using the measure nonatomicity condition, we
get from (1)–(5) that λ = 1. It follows from the linearity of ε̄ that d

dt ε̄(t) ≡: a and
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that the choice of p ≡ 0, q ≡ (λa, λa), and γ ≡ (−a,−a)δ{1} fulfills all conditions
(1)–(5). ��

Note that in the above example we actually guessed the form of optimal solutions
and then checked the fulfillment of the obtained necessary optimality conditions. The
following example does more by showing how to calculate an optimal solution by
using the necessary optimality conditions of Theorem 5.3 together with the maximum
condition from Corollary 6.1.

Example 7.2 (Calculation of optimal solutions) Consider here the optimal control
problem taken from the example in Remark 5.1. Applying the necessary optimality
conditions of Corollary 5.1 with the enhanced nontriviality condition (52), we get the
following:

(1) w = 0, v(t) = (0, 2(ū(t) + 2 − t)
)
if t ∈ [0, 1] and v(t) = (0, 2(ū(t) + 1)

)

if t ∈]1, 2],
(2) ˙̄x(t) ∈ −N

(
x̄(t); (−∞,−ū(t)]) a.e. t ∈ [0, 2],

(3)
(

ṗx , ṗu)(t) = (0, 0) a.e. t ∈ [0, 2],
(4) qu(t) = 2λ

(
ū(t)+2 − t

)
if t ∈ [0, 1] and qu(t)=2λ

(
ū(t)+1

)
if t ∈]1, 2],

(5) (qx , qu)(t) = (px , pu)(t) −
( ∫ 2

t
dγ,

∫ 2

t
dγ
)

a.e. t ∈ [0, 2],
(6) − (px (2), pu(2)

) = λ
((

x̄(2) − 1
)
, 0
)+ N

(
(x̄(2), ū(2)); {(x, u) : x + u ≤ 0}),

(7) λ + mes
{
t ∈ [0, 2]∣∣ q(t) �= 0

}+ ‖q(0)‖ + ‖q(T )‖ > 0,

together with the measured coderivative condition telling is that

ν(t) ∈ D∗NR−
(
x̄(t) + ū(t),− ˙̄x(t)

)(
qx (t)

)
a.e. t ∈ [0, 2], (68)

where ν(t) ∈ Lim sup|B|→0
γ (B)
|B| (t). To proceed, take σ ∈]0, 2] such that the state

constraint is inactive on [0, σ [ while it is active on [σ, 2]. It follows from (3) that
(px , pu) is constant on [0, 2]. Assuming by contradiction that λ = 0, we get from (4)
that qu ≡ 0, and so qx ≡ 0 by (5). It shows that (7) is violated, and thus λ = 1. Since
x̄(t)+ ū(t) < 0 on [0, σ [, it follows from (68) and (58), which gives us the maximum
condition (57), that ν(t) = 0 for all t ∈ [0, σ [. Then, qu(t) remains constant on [0, σ [
by (5). Combining this with (4) shows that ū(t) = t − 2 on [0, σ ]. Using now (2)
and the fact that x̄(t) + ū(t) < 0 for t ∈ [0, σ [, we get x̄ ≡ 3/2 on [0, σ ]. Then,
x̄(σ ) + ū(σ ) = σ − 2 + 3/2 = 0 and σ = 1/2. Assuming further that ˙̄x(t) < 0 on
]1/2, σ1[ for some σ1 ∈]1/2, 2] and using (68) together with (58) tell us that qx ≡ 0
on (1/2, σ1[. Applying (5) again, we have ū(t) = t − 2 on [1/2, σ1]. Since ˙̄x(t) < 0
on ]1/2, σ1[, it follows from (2) that x̄(t) = −ū(t) = 2− t on [1/2, σ1]; thus, we tend
to move x̄(t) toward 1. This means that when x̄(σ1) = 2 − σ1 = 1, the object stops
moving, i.e., ˙̄x(t) = 0 on [1, 2]. Note that (5) yields ν(t) = −q̇u(t) = −q̇ x (t) on
[0, 2]. If furthermore ū(t) is strictly increasing, then qu(t) is also strictly increasing.
Since ν(t) = −q̇u(t), we get ν(t) < 0. Then, (68) and (58) imply that ˙̄x(t) < 0, a
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contradiction. Assuming that ū(t) is strictly decreasing tells us by (4) that qu(t) is
strictly decreasing, and so ν(t) < 0 by ν(t) = −q̇u(t). In this case, conditions (68)
and (58) yield qx (t) ≥ 0, and hence we have qx (2) ≤ 0 by (6). It shows that qx (t) = 0
on [1, 2] and so ν(t) = −q̇ x (t) = 0, which contradicts the condition ν(t) < 0. Thus,
ū(t) remains constant on [1, 2], and we find an optimal solution to this problem.

8 Conclusions

This paper presents new results on extended Euler–Lagrange and Hamiltonian opti-
mality conditions for a rather general class of controlled sweeping processes. In our
future research in this direction,we plan to focus on optimal control problems governed
by rate-independent operators governed by doubly nonlinear evolution inclusions
(sometimes referred to as quasi-sweeping processes) in finite-dimensional and Banach
spaces. Among our major applications, we plan to consider practical hysteresis mod-
els, especially those arising in problems of contact and nonsmooth mechanics; see
[28,29] for more details.
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